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Chapter

Practical and Optimal Crossover
Designs for Clinical Trials
Su Hwan Kim and Keumhee Chough Carriere

Abstract

Crossover designs have received great attention in clinical trials, as they allow sub-
jects to serve as their own controls and gain such advantage as higher efficiency and
smaller sample size over parallel designs, because the within-subject variability is in
general smaller than between-subject variability. Response-adaptive crossover designs
allow clinical trials to adapt and respond to the information acquired during the trials
to achieve various objectives. Adaptive designs have been considered to allocate more
subjects to superior treatments, improve statistical efficiency, reduce the sample size
for cost savings, increase the sample size to maintain prespecified statistical power, or
include auxiliary information. We focus on an adaptive allocation scheme to maximize
the benefits from superior treatments, while maintaining a sufficiently high level of
statistical efficiency, controlled by a suitable weight parameter. We review and discuss
the strategy of incorporating multiple objectives, while advocating a regression type
estimation approach via the Generalized Estimating Equations method. We show that
the multiple objectives can be successfully incorporated to construct a spectrum of
designs, ranging over various efficiencies and trial outcomes of success. Moreover, the
adaptive allocation scheme successfully constructs designs with a desired efficiency, as
illustrated by practical two- and three-period designs.

Keywords: crossover design, response adaptive allocation, optimal design, multiple
objective function

1. Introduction

Crossover designs have enjoyed advantages over parallel designs, such as
completely randomized design in terms of statistical efficiencies. Equal or balanced
allocations play an important role in the construction of optimal designs under various
model assumptions. However, equal allocations may pose ethical dilemma when
researchers start to suspect that one treatment may be superior to the other. All trials
start with the null hypothesis that the effects of a new treatment being tested are the
same as comparators before we could prove its superiority. At some point in the trial,
one may find an evidence indicating that the effects of treatments are notably differ-
ent. Then, one may wonder whether to equally allocate remaining subjects to the
treatments as per the protocol or to adapt to the findings and alter the allocation
scheme to reflect the trial phenomena. Connor et al. [1] studied HIV treatment drug
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named AZT. Among 477 pregnant mothers with HIV, 239 were assigned to a placebo,
and 238 were assigned to the AZT. The trial resulted in 60 infants diagnosed with HIV
from the placebo group and 20 infants diagnosed with HIV from the AZT group. A
decade later, Tymofyeyev et al. [2] suggested that use of 50–50 allocation was ethically
improper given the seriousness of the outcome of the study and recommended to use a
response-adaptive allocation. Tymofyeyev et al. [2] utilized the Play the Winner Rule
(PWR) allocation [3, 4] and simulated the trial in a way that 360 and 117 pregnant
mothers were adaptively allocated to the AZT or the placebo, respectively. The results
of simulation showed that 60 infants were expected to be diagnosed with HIV in two
groups combined as opposed to 80 infants in 1994, which revealed some of the
benefits of the adaptive allocations.

Response-adaptive designs may have several other goals. Many authors [3–6] aimed
at allocating more subjects to a better treatment. Armitage [7] aimed at reducing the
sample size, andWang [8] aimed at increasing the sample size based on the prespecified
statistical power and the data acquired. Furthermore, Bandyopadhyay and Biswas [9]
introduced covariates in response-adaptive designs. Sorkness et al. [10] proposed
designs that were adaptive to the prevalence of events, in which the sample size
recalculation was done to remedy the loss of statistical power arising from the imbal-
ance of the prevalence. However, these studies utilized the acquired information using
only a single objective. Many authors proposed a multiple objective adaptive design for
continuous responses where they defined an objective function with two components,
controlled by a weight parameter [11–13].

Binary responses are modeled differently from continuous responses in a way that the
information is a function of the outcome. Standard logistic regression assumes that the
responses are independent although crossover trial data are dependent on each subject.
We use the Generalized Estimating Equations (GEEs) method, which can incorporate a
desired covariance structure of responses. Liang and Zeger [14] proposed the GEE,
which takes into account for the time dependencies of the data by allowing correlations.
The GEE method estimates parameters by solving the system of equations based on the
Quasi-Likelihood function. The advantage of Quasi-Likelihood method is that it does not
need to provide joint distribution of the data and only requires the marginal distribution
and its mean and variance. GEE estimates are proven consistent under a mild regularity
conditions [14]. Valois [15] utilized GEE in the analysis of crossover designs.

This chapter demonstrates how to construct multiple objective response-adaptive
designs for two treatments with binary outcomes using the GEE. We first review the
theoretical grounds for crossover designs with binary outcome and the GEE method.
Adaptive designs are constructed using simulations, and some two- and three-period
practical designs will be built for various weights of multiple objective functions. We
also compare the GEE methods to the other approaches done by Li [13]. Lastly, we
develop a new strategy for maximizing the success outcome, while maintaining
certain level of prefixed desired statistical efficiency.

2. Multiple objective response-adaptive designs with GEE

2.1 Model and information matrix

Agresti [16] discussed the Generalized Linear Model (GLM) for an exponential
family of distributions. Suppose Y follows a distribution in an exponential family with
parameters θ,ϕð Þ: Then the pdf of Y can be written as:
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f yjθ,ϕð Þ ¼ exp yθ � b θð Þð Þ=a ϕð Þ þ c y,ϕð ÞÞ: (1)

Consider that the Y ijk denotes the binary response of ith period of jth subject in kth

treatment sequence, distributed as Bernoulli (pijk), and X is a design matrix for an

overall mean effect (μ), period effects (αi), direct treatment effects (τd i, j,kð Þ), and

carryover effects (γd i�1, j,kð Þ) with the corresponding vector of parameters β. By defin-

ing the relation θ ¼ h ηð Þ, η ¼ x0β and with a logit link function gðÞ, we can entertain
the following model:

ηijk ¼ g E Y ijk

� �� �

¼ g P Y ijk ¼ 1
� �

¼ logit P Y ijk ¼ 1
� �� ��

(2)

¼ log
P Y ijk ¼ 1
� �

1� P Y ijk ¼ 1
� �

 !

¼ μþ αi þ τd i, j,kð Þ þ γd i�1, j,kð Þ ¼ X0
ijkβijk: (3)

It is easy to see that the mean and variance of Y ijk are defined as

E Y ijk

� �

¼ μijk ¼ b0 βijk

� �

¼
exp X0

ijkβijk

� �

1� exp X0
ijkβijk

� � , (4)

Var Y ijk

� �

¼ σijk ¼ b00 βijk

� �

¼
exp X0

ijkβijk

� �

1� exp X0
ijkβijk

� �� �2 : (5)

2.2 Generalized estimating equations

We use Generalized Estimating Equations to estimate the parameters of GLM with
unknown correlation structure using the mean μijk and unknown variance structure

V�1
j . The estimating equations can be shown as

X

n

j¼1

∂μ0j

∂β
V�1

j Y j � μ j

� �

¼ 0, (6)

where μ j and Y j are vector of means and responses for periods 1 to p.

The above estimating equation resembles that of GLM but does not require an
exponential distribution assumption for Y, which is the strength of GEE. McCullaugh
[17] showed that under the correct specification of mean and variance functions, the
quasi-likelihood estimators demonstrate characteristics similar to MLE. The
covariance matrix then can be written as:

Var βð Þ ¼
X

n

j¼1

∂μ0j

∂β
V�1

j

∂μ j

∂β

" #�1

(7)

Then, Bose and Dey [18] showed that the covariance matrix for parameters β can
be defined with respect to k treatment sequences as follows:
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Var β̂
� �

¼
X

k∈Ω

nk
∂μk

0

∂β
V�1

k

∂μk

∂β

 !�1

, (8)

where nk denotes number of subjects allocated to kth sequence and the design
matrices being identical for subjects in the same treatment sequence. However, when
the specified covariance matrix V is not identical to the observed covariance matrix
Var(Y), then the sandwich variance estimator is suggested:

Var βð Þ ¼ A
X

k∈Ω

nk
∂μ0j

∂β
V�1

k Var Ykð ÞV�1
k

∂μ j

∂β

 !

A, (9)

where A is the variance in Eq.(8). This sandwich variance estimator is shown to be
consistent [14].

2.3 Multiple objective function

Liang and Carriere [11] proposed the following multiple objective function for the
continuous responses:

Φ j,k ¼ λ
Δ Î

k

jþ1 βð Þ
� �

Δ Î
k0

jþ1 βð Þ
� �þ 1� λð Þ

f j,k

f j,k0
0
, (10)

where Î
k

jþ1 βð Þ is the Fisher’s Information matrix for subject jþ 1 allocated to

treatment sequence k with Δ being an optimality criterion of choice and f j,k is an

evaluation function for treatment sequence k based on the first j subjects in the trial.

In this function, treatment sequence k0 refers to the sequence with maximum Î
k

jþ1 βð Þ,

and k0
0
refers to the sequence with maximum f j,k, which may not necessarily be

identical. Among the two terms in the objective function, the first term of the function
investigates the efficiency of design with respect to the Fisher’s information matrix
given that subject jþ 1ð Þ is allocated to treatment sequence k. This is represented as a
ratio over the sequence with maximum information so that the component may take
value in 0, 1½ �. The second term of the function is called the evaluation function that
evaluates the total efficacy of treatment sequences based on the estimated treatment
effects. When λ ¼ 0, the objective function considers only the efficiency of the design
and ignores any superiority/inferiority of the treatments being tested. On the other
hand, the objective function with λ ¼ 1 would construct adaptive designs based solely
on the positive effects of treatments being tested.

Liang et al. [12] and Li [13] extended their multiple objective function to binary
responses and derived the information matrix for estimated success probabilities for
binary responses. The observed number of successes for each treatment sequence was
used for the evaluation function f . As the analysis of crossover trials mainly focuses
on direct treatment effects, we choose the inverse of the variance of estimated treat-
ment effects, 1=var τ̂ð Þ, as the criterion for comparing the efficiency of various treat-
ment sequences. McCullagh [19] showed that quasi-likelihood estimates are invariant
under a linear transformation. That is, μ̂k maximizes the quasi-likelihood function.
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Throughout this chapter, we will refer to the Eq. (10) as the multiple objective

function and choose the first term Δ Î
k

jþ1 βð Þ
� �

as the variance of the estimated treat-

ment effects, var τ̂ jþ1,k

� �

. The data acquired from the first j subjects are modeled using

the GEE approach, and predictions for subject jþ 1 are made for all of the K treatment
sequences. Then, we include the predicted responses of subject jþ 1 into the model
and obtain the variance of an estimated treatment effects of each treatment sequence.

Then, we evaluate the efficacy of each treatment sequence by using Σ
p
i¼1η̂i, j,k. The η

0s

take any values in IR where large values correspond to a better treatment sequence.
We transform these values to positive numbers so that a larger value indicates a better
sequence and the ratios could be easily implemented. For this reason, we choose

f j,k ¼ logit Σ
p
i¼1η̂i, j,k

� �

, which falls in 0, 1ð Þ over all p periods.

3. Practical and nearly optimal designs

We apply the allocation method to construct some popular practical designs in
clnical trials, two-treatment two-period designs and two-treatment three-period
designs based on the parameter settings from Li [13], which are shown in Table 1with
a slight modification on the values to incorporate the GEE modeling approach. Ini-
tially, one subject is assigned to each treatment sequence. Afterward, new subjects are
introduced sequentially and are assigned to the treatment sequence with the highest
Eq. (10). When all subjects are assigned, the variance of the estimated treatment
effects, var τ̂Nð Þ, is computed and compared with the variance obtained from the
optimal fixed designs suggested by Mukhopadhyay [20]. Mukhopadhyay [20]
conducted simulation study for the optimal fixed crossover design with binary out-
comes using the GEE method and showed that AA=AB=BB=BA is optimal for p = 2 and

P Parameters Treatment sequences Success probabilities Expected success per period

2 μ = �0.22 AA 0:60, 0:70ð Þ 0:65

.α2 = 0.018 AB 0:60, 0:40ð Þ 0:50

.τ = 0.63 BA 0:30, 0:50ð Þ 0:40

.γ = 0.42 BB 0:30, 0:22ð Þ 0:26

3 μ = �0.22 AAA 0:60, 0:70, 0:65ð Þ 0:65

.α2 = 0.018 AAB 0:60, 0:70, 0:35ð Þ 0:55

.α3 = �0.21 ABA 0:60, 0:40, 0:44ð Þ 0:48

.τ = 0.63 ABB 0:60, 0:40, 0:19ð Þ 0:40

.γ = 0.4 BAA 0:30, 0:50, 0:65ð Þ 0:48

BAB 0:30, 0:50, 0:35ð Þ 0:38

BBA 0:30, 0:22, 0:44ð Þ 0:32

BBB 0:30, 0:22, 0:19ð Þ 0:23

Table 1.
Parameter values for simulation in construction of multiple-objective response-adaptive crossover design with
binary outcomes.
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ABB=AAB=BAA=BBA is optimal for p = 3 under the compound symmetric covariance
structure with binary outcomes.

3.1 Two-period design

There are four possible treatment sequences for two-treatment two-period cross-
over trials. Carriere and Reinsel [21] showed that an equal allocation on all sequences
AA=BB=AB=BA, denoted as dopt,p2, is universally optimal for a continuous response,
and Mukhopadhyay [20] confirmed that it is also numerically optimal even when
responses are binary. We assign a subject to each of the four sequences and allocate
the rest based on the objective function in Eq. (10). The following tables show the
allocations of the adaptive designs, their efficiency compared with the fixed optimal
design, and their success outcome ratio for various values of λ and N.

When λ ¼ 0, the resulting allocation focuses on the treatment sequence AA with
very few assigned to the rest of the sequences due to randomness during the initial
stage of the trial. We can see that the allocation to the sequence AA decreases as λ
increases. The allocations move toward a dual balanced design dopt,p2, which assigns
equal allocations to all four sequences. The relative efficiency, which is defined as the
ratio of variance of estimated treatment effects of dopt,p2 over the proposed multiple
objective adaptive design, is low for λ ¼ 0 and approaches 1 as λ increases to 1. The
success ratio is close to the expected success shown in Table 1 when λ ¼ 0 and
decreases as λ increases. Therefore, we must find a reasonable compromise between
efficiency and a success ratio. For n ¼ 40, λ∈ 0:85, 0:9ð Þ would construct an efficient
design (efficiency > 0.8) with a sufficiently higher success ratio (5–8% increased)
than λ ¼ 1. For n ¼ 80, λ∈ 0:9, 0:95ð Þ would construct a similar design
(efficiency > 0.8 and success ratio improved by 5–8%). For n ¼ 100, we note a drastic
result around λ∈ 0:9, 0:95ð Þ where efficiency changes from 0.8957 to 0.7096, while
the success ratio changes from 0.5168 to 0.5638, showing that the choice of suitable λ
may vary significantly by the sample size n.

The consistent estimates for the above terms can be obtained by replacing the
parameters with their GEE estimates. Also, the variance of the estimated β’s can easily
be computed using the sandwich covariance matrix from GEE. The treatment
sequences with a smaller variance do not necessarily improve efficiency in this case,
and the efficiency depends on the covariance matrix of the estimates of parameters.
This covariance matrix, in turn, does not have a closed form, unlike in the continuous
response case.

3.2 Three-period design

Three-period two-treatment crossover designs constructed from the multiple
objective response-adaptive approach behave similarly as the two-period
two-treatment designs. When λ ¼ 0, the majority of the subjects are allocated to the
treatment sequence AAA, which has the highest success ratio per period. For small
sample size, n ¼ 40, the efficiencies remain high and the success ratios are
improved for any values of λ< 1. This is largely due to the conditions of the design,
where 3�8 = 24 subjects out of 40 are assigned evenly to all eight sequences and thus
only 16 subjects are allocated based on the multiple objective response-adaptive
schemes. Therefore, the relative efficiency, which is computed based on the optimal
design [20], remains high and the success ratio is improved only to a degree.
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However, in the case of n ¼ 80, the success ratio increases from 0:4323 to 0:5647
and the efficiency decreases from 1:0370 to 0:5793 as λ changes from 1 to 0. It is
notable that the relative efficiencies of multiple objective response-adaptive designs
for λ ¼ 1 are greater than 1, indicating that these designs are slightly better than the
optimal design [20] for the given set of parameters. The design with λ ¼ 0:95 is as
efficient as the optimal design, with a relative efficiency of 1:0055, and yet shows a
higher success ratio (0:4708 compared with 0:4323), with an expected success ratio of
0:4696 (compared with 0:4375). In the case of λ ¼ 0:9, the relative efficiency
decreases to 0:9220 while the success ratio increases to 0:5050 from 0:4323. Looking
at the design with λ ¼ 0:85, we see that the relative efficiency decreases to 0:8133
while the success ratio increases to 0:5290. These two designs with λ ¼ 0:9 and λ ¼
0:85 indicate that we could improve the success ratio of the design by 7–10% at the
cost of relative efficiency between 0:1 and 0:2.

When n ¼ 100, the designs show a similar performance to the case of n ¼ 80 with
respect to efficiency and the success ratio, except that efficiencies drop sharply, as we
give attention to beneficial treatment effects with λ< 1.

In summary, the above tables show that adaptive schemes could benefit more
subjects without much loss of efficiency for the given set of parameters. But it is
important to find an appropriate λ to improve the success ratios while maintaining a
sufficient level of statistical efficiency. In this case, λ ∈ 0:85, 0:9ð Þ is recommended
for both n ¼ 80 and n ¼ 100. However, we can see that the decrease in efficiency is
more evident for n ¼ 100 than that of n ¼ 80, indicating that sample size N is another
player determining the balance parameter λ. The resulting designs would have success
ratios increased by 9–12% when compared with the optimal fixed design (λ ¼ 1).
Taking a smaller value of λ can benefit further, but the gain in success ratio decreases
marginally as the λ decreases.

4. Comparison with other approaches

Bandyopadhyay [22] utilized an example of a three-period crossover trial of two
treatments for hypertension. In this trial, 68 subjects were equally assigned to the
treatment sequences ABB=BAA=ABA=BAB. Li [13] used the last two periods of this
trial to obtain a crossover design with AA=BB=AB=BA. The response variable was
continuous measurements of systolic blood pressure. Binary response variables were
computed by dichotomizing the blood pressures at “135 or more” and “140 or more”
and denoting the responses as failures. Two corresponding sets of success probabilities
were estimated from this data. v̂A1, v̂A2, v̂B1, v̂B2ð Þ ¼ 0:24, 0:24, 0:24, 0:35ð Þ and
v̂A1, v̂A2, v̂B1, v̂B2ð Þ= 0:35, 0:5,ð 0:35, 0:53Þ where v is the probability of success with the
letters denoting treatments and numbers denoting periods.

These estimated probabilities were considered as actual success probabilities, and
the multiple objective response-adaptive technique was applied with λ ¼ 1 and λ ¼ 0:9.
A comparison of allocations, efficiencies, and success ratios of the three methods
(B, L, K proposed by [20, 13, 23], respectively) is provided below. We included fixed
group effects, βk, to the model in Eq. (2) to incorporate success probabilities. The
parameters and other settings are provided inTable 2, and the results of simulations are
found in Tables 3 and 4.

The efficiencies inTable 3were computed against the equal allocation design, which
are nonadaptive but optimal for two-period and two-treatment designs. First, we
examine multiple objective response-adaptive designs with λ ¼ 1. We see that when the
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difference of the expected success probabilities between the sequences is small
(0.425 vs. 0.44, second example in Table 2), [13]‘s strategy allocates an extensive
number of the subjects to the treatment sequences AB=BB and results in a
substantial loss of efficiency. Moreover, the gain in the expected success over an
equal allocation design is minimal (0.4352 vs. 0.4325). The simulations confirm this
observation, and d8 has relative efficiency of 0.8376 without much gain as a result.
On the other hand, d10 adapts to the small differences in the sequences in a careful
manner, and it assigns about three more subjects to better treatment sequences AB=BB
without losing efficiency (0:9970). d10 allocates fewer subjects to AB=BB compared
with d7, d8, and d9.

It is noticeable that the pattern is not the same when there is some difference in the
expected success probabilities between the treatment sequences (0.24 vs. 0.295).
Design d2 allocates 41.83 subjects to better sequences AB=BB, whereas d4 allocates 42.7

Probabilities Parameters Treatment

sequences

Success

probabilities

Expected success per

period

v̂A1 ¼ 0:24 μ ¼ �1:89, β1 ¼ 1 AA 0:24, 0:24ð Þ 0:240

v̂A2 ¼ 0:24 α2 ¼ 0:27, β2 ¼ 1 AB 0:24, 0:35ð Þ 0:295

v̂B1 ¼ 0:24 τ ¼ �0:27, β3 ¼ 0:47 BA 0:24, 0:24ð Þ 0:240

v̂B2 ¼ 0:35 γ ¼ �0:27, β4 ¼ 0:47 BB 0:24, 0:35ð Þ 0:295

v̂A1 ¼ 0:35 μ ¼ �1:56, β1 ¼ 1 AA 0:35, 0:50ð Þ 0:425

v̂A2 ¼ 0:5 α2 ¼ 0:68, β2 ¼ 1 AB 0:35, 0:53ð Þ 0:440

v̂B1 ¼ 0:35 τ ¼ �0:06, β3 ¼ 0:88 BA 0:35, 0:50ð Þ 0:425

v̂B2 ¼ 0:53 γ ¼ �0:06, β4 ¼ 0:88 BB 0:35, 0:53ð Þ 0:440

Table 2.
Parameter values and expected success probabilities based on the crossover trial of [22].

Parameters Design λ AA AB BA BB Efficiency Expected success

v̂A1, v̂A2, v̂B1, v̂B2ð Þ

0:24, 0:24, 0:24, 0:35ð Þ
dB1 15.75 16.92 17.01 18.32 0.9912 0.2685

dL2 1 13.13 21.03 13.03 20.80 0.9143 0.2738

dL3 0.1 14.69 19.06 13.64 20.62 0.9522 0.2729

dK4 1 12.81 20.85 12.49 21.85 0.8913 0.2745

dK5 0.1 15.22 19.58 14.19 19.01 0.9829 0.2713

dE6 17.00 17.00 17.00 17.00 1.0000 0.2675

0:35, 0:50, 0:35, 0:53ð Þ dB7 13.00 16.42 16.46 22.12 0.9769 0.4335

dL8 1 7.32 16.35 14.88 29.46 0.8376 0.4352

dL9 0.1 12.38 16.71 15.80 23.11 0.9627 0.4338

dK10 1 16.22 17.89 15.40 18.49 0.9970 0.4330

dK11 0.1 16.76 17.53 16.80 16.91 0.9983 0.4326

dE6 17.00 17.00 17.00 17.00 1.0000 0.4325

B½ � [22]; L½ � [13]; K½ � [23]; E½ � Equal allocation design.

Table 3.
Allocation, efficiency, and success ratio for two-period designs.
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subjects. The designs allocate more subjects to better treatment sequences than d1
while maintaining a high level of efficiency.

The designs constructed using the multiple objective response-adaptive method
with GEE are more responsive to the differences in treatments better than
Bandyopadhyay [22] and Li [13], while maintaining a high level of efficiency when
there is a large difference in the treatment effects. The method by Kim [23] assigns
more subjects to the better treatment sequence when the treatment differences are
large. Moreover, the resulting designs are close to the optimal design with an equal
allocations on all four sequences, when the treatment differences are negligible. This
assures that even if the treatment difference is not as large as expected, the multiple
objective response-adaptive method is robust and creates an efficient design.

5. Implementing the adaptive allocations

In Tables 5 and 6, we observed that the decrease in efficiency following the
decrease in λ is not consistent for differing sample sizes. That is, if we wish to
maintain some level of relative efficiency with respect to a known fixed optimal
design while applying the multiple objective adaptive allocation scheme, we must
fully understand the behaviors of this adaptive allocation scheme and find the suitable
λ, which is determined by the true parameters as well as the sample size. The simula-
tions on this scheme may help suggest some λ’s, but is limited to the specific scenarios
being studied. Therefore, we implement a sensible strategy of the multiple-objective-
based allocation scheme without having to precisely know which λ to use.

Themultiple-objective function as in Eq. (10) is now split into two objective functions:

H1, j,k ¼
Δ Î

k

jþ1 βð Þ
� �

Δ Î
k0

jþ1 βð Þ
� � , (11)

N Designs AA AB BA BB Efficiency Success ratio

40 d 0:8ð Þ 22.22 7.60 5.63 4.55 0.7615 0.5420

d 0:9ð Þ 16.63 9.49 7.28 6.60 0.9152 0.5042

d 1ð Þ 10.20 10.01 9.66 10.13 1.0141 0.4534

dAdaptive 21.75 6.11 6.21 5.94 0.8465 0.5319

80 d 0:9ð Þ 45.08 16.64 10.56 7.72 0.7582 0.5507

d 0:95ð Þ 33.68 18.98 13.95 13.39 0.9368 0.5048

d 1ð Þ 20.35 19.81 18.96 20.88 1.0076 0.4532

dAdaptive 43.58 12.35 12.24 11.83 0.8430 0.5309

100 d 0:9ð Þ 61.75 19.36 11.01 7.89 0.7096 0.5638

d 0:95ð Þ 45.77 23.49 16.30 14.44 0.8957 0.5168

d 1ð Þ 25.41 24.40 23.66 26.54 1.0258 0.4525

dAdaptive 57.09 14.42 14.12 14.37 0.7972 0.5391

Table 4.
Comparison of new revised response-adaptive two-period design with the results from Table 5.
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H2, j,k ¼
f j,k

f j,k0
0
, (12)

which are the first and second terms of the Eq. (10). The allocation scheme takes
the following steps.

1.Determine a desirable relative efficiency r ∗ , e.g., 80%.

2.Acquire a small number of subjects to each sequence and obtain the
quasi-likelihood estimates of the parameters, μ, πi’s, τ, γ from a logistic model.

3.Generate another set of data with the same number of total subjects as the
current dataset with allocations according to the optimal design dopt,p2. Obtain
estimates of the parameters and sandwich covariance matrices of the estimated
parameters from the new data and compare the efficiencies of two designs, r ¼

var τ̂opt
� �

=var τ̂Adaptive
� �

.

4. If r< r ∗ , then use H1, j,k as the allocation function for subject jþ 1, otherwise use

H2, j,k as the allocation function for subject jþ 1.

5.Return to step 2 until all subjects are allocated.

N λ AA AB BA BB Efficiency Success ratio

40 0 26.97 4.37 4.51 4.15 0.5679 0.5635

0.3 26.46 4.40 4.94 4.20 0.5696 0.5596

0.7 25.42 5.46 4.89 4.23 0.6378 0.5576

0.8 22.22 7.60 5.63 4.55 0.7615 0.5420

0.9 16.63 9.49 7.28 6.60 0.9152 0.5042

1 10.20 10.01 9.66 10.13 1.0141 0.4534

80 0 65.81 4.53 5.46 4.20 0.2998 0.6046

0.3 66.05 4.65 5.13 4.17 0.3012 0.6055

0.7 64.37 5.95 5.43 4.26 0.3554 0.6020

0.8 59.16 9.95 6.28 4.60 0.4844 0.5896

0.9 45.08 16.64 10.56 7.72 0.7582 0.5507

0.95 33.68 18.98 13.95 13.39 0.9368 0.5048

1 20.35 19.81 18.96 20.88 1.0076 0.4532

100 0 85.14 4.71 5.85 4.31 0.2859 0.6126

0.3 85.84 4.56 5.45 4.15 0.2773 0.6136

0.7 84.57 6.03 5.25 4.16 0.3184 0.6114

0.9 61.75 19.36 11.01 7.89 0.7096 0.5638

0.95 45.77 23.49 16.30 14.44 0.8957 0.5168

1 25.41 24.40 23.66 26.54 1.0258 0.4525

Table 5.
Allocation, efficiency, and success ratio for two-period designs using the multiple objective criteria in Eq. (10).
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To illustrate, we apply the above strategy to the parameters in Table 1with the aim
of constructing a response-adaptive design with a relative efficiency around r ∗ >0:8.
First, we construct two-period two-treatment response-adaptive designs with n ¼ 40,
80, and 100. We present the results for three-period two-treatment designs with n ¼
80 and 100. The case for n ¼ 40 was excluded as all adaptive designs constructed
using Eq. (10) with any λ have relative efficiencies >0:9.

From Table 4, we can see that the designs constructed using the adaptive
allocation method by Kim [23], denoted as dAdaptive, have relative efficiencies close to

0.8 or slightly larger than that while the success ratios are increased by 9% compared
with the designs for λ ¼ 1. For n ¼ 40, the adaptive design follows the pattern of
changes in the allocations, efficiency, and success ratio so that we can find one
between d 0:8ð Þ and d 0:9ð Þ. For example, the allocation to the treatment sequence AA is

21.75 (dAdaptive), which is between 16.63 (d 0:8ð Þ) and 22.22 (d 0:9ð Þ). This pattern is also

the case for all other columns in the table for n ¼ 80 and 100. Our adaptive designs
appear to be constructed in a similar manner as the multiple objective response-
adaptive designs as if they were constructed with the λ in the suggested range of

N λ AAA AAB ABA ABB BAA BAB BBA BBB Efficiency Success ratio

40 0 11.98 4.00 4.01 4.00 4.00 4.00 4.01 4.00 0.9603 0.4797

0.3 11.95 4.02 4.00 4.00 4.01 4.00 4.02 4.00 0.9631 0.4785

0.7 10.97 4.77 4.12 4.12 4.11 4.01 4.00 4.00 0.9891 0.4767

0.8 9.24 5.62 4.73 4.56 5.01 4.55 4.36 4.23 0.9931 0.4678

0.9 6.94 5.62 4.73 4.56 5.01 4.55 4.36 4.23 1.0075 0.4566

1 5.04 5.03 4.73 4.96 4.98 4.93 4.97 5.36 1.0302 0.4377

80 0 51.98 4.01 4.00 4.00 4.00 4.00 4.01 4.00 0.5793 0.5647

0.3 51.95 4.00 4.01 4.00 4.01 4.00 4.00 4.00 0.5848 0.5656

0.7 49.58 5.91 4.24 4.01 4.23 4.01 4.02 4.00 0.6043 0.5619

0.8 41.09 10.41 6.07 4.24 5.89 4.24 4.06 4.00 0.7223 0.5458

0.85 33.85 12.40 7.48 5.14 7.47 5.20 4.39 4.07 0.8133 0.5290

0.9 25.20 13.16 8.67 6.74 9.10 6.94 5.63 4.56 0.9220 0.5050

0.95 16.76 12.06 9.02 8.48 10.27 8.61 7.94 6.86 1.0055 0.4708

1 10.09 9.97 8.58 9.95 9.83 9.75 9.91 11.92 1.0370 0.4323

100 0 71.97 4.01 4.00 4.00 4.00 4.00 4.02 4.00 0.4972 0.5817

0.3 71.98 4.01 4.00 4.00 4.01 4.00 4.00 4.01 0.5081 0.5805

0.7 69.41 6.03 4.28 4.02 4.25 4.01 4.00 4.00 0.5379 0.5812

0.8 57.12 6.09 5.56 6.20 6.01 5.95 6.18 6.90 0.6345 0.5445

0.85 54.13 12.65 7.646 4.94 7.32 5.00 4.28 4.05 0.6951 0.5553

0.9 37.37 16.65 10.20 7.39 10.46 7.62 5.80 4.50 0.8696 0.5231

0.95 23.93 15.91 10.85 10.17 12.35 10.44 9.17 7.19 0.9858 0.4794

1 12.45 12.50 10.38 12.57 12.10 12.18 12.49 15.32 1.0435 0.4315

Table 6.
Allocation, efficiency, and success ratio for three-period design using the multiple objective criteria in Eq. (10).
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0:8, 0:9ð Þ. Similarly, the dAdaptive designs for n ¼ 80 and n ¼ 100 fall right in between

d 0:9ð Þ and d 0:95ð Þ.

From Table 7, the relative efficiencies of our adaptive three-period designs are
0.7999 and 0.7854 for n ¼ 80 and n ¼ 100, respectively. These efficiencies are very
close to our target r ∗ ¼ 0:8 while the success ratios are improved by approximately
9%. We can see that the allocation for treatment sequence AAA, relative efficiency,
and the success ratio for the new adaptive designs dAdaptive follow the same pattern as

the multiple objective response-adaptive designs. The allocations to the other
sequences are relatively small and do not seem to affect the efficiency much as long as
the allocation to AAA is well controlled. The above strategy successfully leads us to
obtain desired success ratios and maintain efficiency to a prespecified level without
having to determine what the ideal λ is.

6. Conclusion

This chapter discussed practical and nearly optimal designs for clinical trials. One
of the major concerns is that response-adaptive designs have so much potential to
complement the traditional experimental designs. The use of the data acquired during
the trial may benefit the trial in numerous ways such as improving the statistical
power, reducing the cost of the trial by recalculating the required sample size,
assigning more subjects to a better treatment or treatment sequences, or utilizing the
information acquired from the covariates to improve efficiency. The multiple objec-
tive criteria may incorporate more components or select various other sets of compo-
nents such as cost efficiency versus statistical efficiency and many others.

To achieve any efficiency in trials with binary responses, we start by recognizing
that they have distinct properties that are different from continuous responses in that
their means and variances are functions of the outcomes. As a result, binary response
designs are response-dependent. Due to this characteristic, the construction of

N Designs AAA AAB ABA ABB BAA BAB BBA BBB Efficiency Success ratio

80 d 0:8ð Þ 41.09 10.41 6.07 4.24 5.89 4.24 4.06 4.00 0.7223 0.5458

d 0:9ð Þ 25.20 13.16 8.67 6.74 9.10 6.94 5.63 4.56 0.9220 0.5050

d 0:95ð Þ 16.76 12.06 9.02 8.48 10.27 8.61 7.94 6.86 1.0055 0.4708

d 1ð Þ 10.09 9.97 8.58 9.95 9.83 9.75 9.91 11.92 1.0370 0.4323

dAdaptive 39.49 5.25 7.35 5.42 4.98 5.02 6.88 5.61 0.7999 0.5267

100 d 0:7ð Þ 69.41 6.03 4.28 4.02 4.25 4.01 4.00 4.00 0.5379 0.5812

d 0:8ð Þ 57.12 6.09 5.56 6.20 6.01 5.95 6.18 6.90 0.6345 0.5445

d 0:9ð Þ 37.37 16.65 10.20 7.39 10.46 7.62 5.80 4.50 0.8696 0.5231

d 0:95ð Þ 23.93 15.91 10.85 10.17 12.35 10.44 9.17 7.19 0.9858 0.4794

d 1ð Þ 12.45 12.50 10.38 12.57 12.10 12.18 12.49 15.32 1.0435 0.4315

dAdaptive 50.48 5.93 9.52 6.45 5.65 5.78 9.11 7.08 0.7854 0.5278

Table 7.
Comparison of our new revised response-adaptive three-period design with the results from Table 6.
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optimal designs for binary responses requires special attention. Due in part to these
difficulty, there are limited studies on response-adaptive designs and optimal designs
in the literature for binary outcome data. In this chapter, we compared approaches of
constructing response-adaptive designs. Also, we conducted a simulation study based
on an actual data example to investigate the performance of the multiple objective
response-adaptive designs using the GEE over the other two methods.

We demonstrated by constructing response-adaptive designs using an objective
function, namely the multiple objective function. The designs constructed using the
multiple objective function were highly efficient, successful with respect to desirable
or beneficial treatment outcomes. In Tables 5 and 6, we observed that the choice of λ
for an efficient and successful design would depend on the sample size and the true
values of μ, π0is, τ, and γ. The efficiencies drop significantly when n increases or λ
decreases. These designs may have significantly higher success ratios but may also
have significantly low efficiency (<0.6), which is undesirable.

We then compared the approach by Kim [23] to other multiple objective adaptive
designs using the GEE to the response-adaptive design by Mukhopadhyay [20] and
multiple objective adaptive designs using binary probability modeling approach by Li
[13] for two-period two-treatment crossover designs. The proposed designs
responded to the differences in the treatment effects in a rather robust manner. When
the treatment difference is very small, the proposed designs were very close to the
optimal design with an equal allocation on four treatment sequences, AA=AB=BA=BB,
as expected. On the other hand, the other two methods assign too large a proportion of
subjects to treatment sequences BB and lose efficiencies for very small gain in suc-
cessful outcome ratios. When the treatment difference is large, the design with λ ¼ 1
assigns more subjects to a better treatment sequences compared with the other two
designs considered by Bandyopadhyay et al. [5] and Li [13].

We observed that the choice of λ was very important in finding a balance between
the relative efficiency and a success ratio. One may suggest some appropriate range of
λ, but it is valid for only a certain set of parameters and sample size, and the true
parameters are usually unknown. To overcome this challenge, Kim [23] devised a
multiple objective response-adaptive scheme, which utilizes all of the two compo-
nents of Eq. (10), not simultaneously but in a sequential manner. The simulation
results show that this adaptive scheme can construct designs with desired relative
ratios without having to select the weight parameter λ. The scheme by Kim [23] allows
researchers to run an adaptive trial knowing that their design would find the balance
between two important components of the trial—statistically efficiency and higher
allocation to a beneficial treatment.
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