

ISSN: 2716-3865 (Print), 2721-1290 (Online)

Copyright © 2022, Journal La Multiapp, Under the license CC BY-SA 4.0

104

JOURNAL LA MULTIAPP

VOL. 03, ISSUE 03 (104-112), 2022
DOI: 10.37899/journallamultiapp.v3i3.648

Review of Software Testing Methods

Yasmin Makki Mohialden1, Nadia Mahmood Hussien1, Sundos Abdulameer Hameed1

1Computer Science Department, Collage of Science, Mustansiriyah University, Baghdad,

Iraq

*Corresponding Author: Yasmin Makki Mohialden

Email: ymmiraq2009@uomustansiriyah.edu.iq

Article Info

Article history:

Received 5 May 2022

Received in revised form 14

June 2022

Accepted 18 June 2022

Keywords:

Test Driven Development,

Software,

Automation Testing,

Test Optimization,

S Software Testing,

Black Box Testing,

White-Box Testing

 Abstract

With the increasing complexity of programs comes an increased focus

on ensuring the quality of these programs. Essentially, it depends on

improving the methods of testing the quality of these programs in the two

phases of building these programs and after their operation. Therefore,

we are developing software testing methods and methodologies. This

paper aims to discuss software testing methods and their classifications

according to their main properties and any software that suits each

method. The majority of the literature on software testing methods and

techniques is also included.

Introduction

Testing is the process of assessing whether or not a system satisfies the criteria that were first

outlined for it. The process of verifying that the produced system satisfies the criteria given by

the user is referred to as validation. In this specific situation, the actual results and the expected

results are different from one another. Throughout the process of testing software, deficiencies,

errors, and prerequisites are found in the application or system that has been produced.

Inquiring about the quality of the product is one way to gather information that is particular to

the product.

Testing software is exactly the same as any other endeavour that involves taking risks. In order

to accomplish this goal, testers need to be capable of handling large numbers of tests while also

making decisions on whether or not risks need further investigation. One of the goals of

efficient testing is to complete the fewest feasible tests in order to get as much information as

possible. Testing software is an essential part of both ensuring the quality of software and

controlling its quality. Due to the possibility of schedule delays, cost overruns, and

cancellations, software testing for mission-critical applications might end up being rather

expensive (Jamil et al., 2016).

The process of testing is divided up into a number of different levels and stages, and the tester

will go from one level to the next as they proceed through the process. System testing may be

broken down into three primary stages: testing at the unit level, testing at the integration level,

and testing at the system level.

A software developer and a software tester will each give each of these stages their full attention

before considering any of them to have reached their respective completion points. Testing the

mailto:ymmiraq2009@uomustansiriyah.edu.iq

ISSN: 2716-3865 (Print), 2721-1290 (Online)

Copyright © 2022, Journal La Multiapp, Under the license CC BY-SA 4.0

105

program is one of the many stages that must be taken in order to develop a dependable software

system. There are two distinct categories, which are referred to respectively as static and

dynamic sorts.

The practice of visually reviewing program code and accompanying documentation is referred

to as static testing. This kind of testing does not include actually running the program being

tested. The usage of symbolic execution is a common approach that is used while carrying out

the process of static testing.

The purpose of dynamic testing, on the other hand, is to validate the software by seeing how it

reacts when subjected to a variety of inputs. This is done to guarantee that the program is

operating as intended (Korel, 1990; Guo et al., 2022). The software development lifecycle

includes iterative testing as one of its components (SDLC). In order to successfully build

software, it is necessary to organize separate teams for each module (unit testing).

Software architectures that only include a single module are called single-module systems.

After integration, it is not unusual for there to be errors. System testing, which encompasses

evaluating the program in its whole, is the last test in the software development life cycle

(SDLC). The programming procedure is not hindered in any way by the integrated units'

absence of complications. It is possible for testing complex systems on a large scale or in depth

to require a substantial amount of both time and resources. Having more components than

necessary makes it more difficult to test each possible combination and state of affairs, which

is another another downside of having more components than necessary.

The practice of testing may be used to many different kinds of development activities across

many different types of businesses. In spite of the fact that there is a vast variety of testing

scenarios and applications, there is still a relationship between the goals. All initiatives

pertaining to the expansion of the company are put through exhaustive testing to guarantee that

they will not wind up costing more than was originally estimated or falling through entirely.

This primary motivator presents four exam objectives that are associated with one another.

Determine the extent of the development risks and the causes of those risks that may be reduced

by testing and experimentation. The identified risk might potentially be mitigated by the use of

testing. When will the last phase of testing take place? Check to see that the testing is under

control throughout the whole of the development process (Dwivedi et al., 2022; Everett &

McLeod, 2007).

The remaining parts of the paper have the following organizational format: The previous

research on software testing is analyzed and discussed in Section 2 of this study. Techniques

for testing software are covered in Section three, and the conclusion is presented in Section

four.

A Review of the Literature on Software Testing

Jovanovi (2006) provides a concise overview of the most important testing techniques and

methods. The concepts of black box testing and white box testing are presented, together with

the accompanying testing procedures, in the context of a discussion on generic classification.

The following are some examples of these: (Comparative Testing, Equivalent Partitioning,

Boundary Value Analysis, and Graphing of Cause and Effect)

Roshan et al. (2012) conducted an analysis of the many search-based software testing

approaches, made projections on future research trends, and took a peek into the future of

software testing. This paper includes an in-depth summary of Search-Based Software Testing

(SBST) as well as other contemporary computing fields that overlap with SBST.

Within the scope of this study, we investigate recent advancements in search-based software

testing. In the context of contemporary software testing, the area establishes a new field.

ISSN: 2716-3865 (Print), 2721-1290 (Online)

Copyright © 2022, Journal La Multiapp, Under the license CC BY-SA 4.0

106

Search-based software testing is more efficient than other techniques of software testing, which

results in time and financial savings. The search-based method of software testing is adaptable

enough to be used in either a white-box or a black-box setting.

Other methods of contemporary computing, such as genetic algorithms and finite state

machines, may be implemented using it (FSM). It is clear that the scientific world is becoming

more interested in the very promising branch of software testing that is Search-Based Software

Testing as seen by the rising number of articles devoted to this topic.

Sawant et al. (2012) examines the value of doing software quality assurance testing. The goals

and fundamental tenets of software testing are also scrutinized in this study. They discuss a

variety of testing procedures and approaches for different types of software. The last benefit is

that it makes the line between software testing and debugging more clearer.

According to Gautam et al. (2022), software testing automation is an approach that can be

successfully used in software engineering. On the other hand, they discovered 48 main research

papers for each different machine learning-based software testing approach. This demonstrates

how the model uses the data to inform its learning and prediction processes. They made the

discovery that the most common use of machine learning was for the purpose of developing,

improving, and evaluating test cases. In addition to that, the expenses of using the Oracle

database have been estimated using machine learning.

The subject of object-oriented software testing is investigated in Raza et al (2022)'s study.

Object-oriented software testing makes use of a variety of methods and methodologies, some

of which include UML diagrams, evolutionary testing, genetic algorithms, black-box testing,

and white-box testing. In order to figure out what was going on, our research conducted a

review of the most current relevant literature.

Umar and Zhanfang, in their research from 2020, examine and compared a number of different

dynamic software testing approaches. In this post, we will talk about some of the most common

testing approaches that are utilized in situations that are constantly changing. A comparison of

different dynamic testing approaches is carried out as the last step in an effort to enhance testing

and, as a result, the quality of software. On the other hand, this article analyzes and contrasts

the dynamic software testing methodologies that are used most often. In software development,

the use of these dynamic software testing methodologies may assist testers perform a good job

of testing, which in turn improves the quality and reliability of the program.

A literature study on the application of test levels, test sorts, test design methodologies, and

test automation/tools was carried out by Backstrom (2022). With the exception of unit testing,

the findings vary quite a bit depending on the demography that was researched. In descending

order of popularity, the most common tests are functional ones. Testing for security is

performed less often than testing for regression, performance, and usability respectively.

Methods that are considered to be black boxes, such as use case testing and boundary value

analysis, as well as exploratory testing and error guessing, are all helpful approaches to get an

understanding of how things operate. White-box approaches are not nearly as widespread as

their black-box counterparts. The fact that just a small proportion of tests are often automated,

on the other hand, indicates that total utilization is not very high. Testing that is performed by

hand plays a vital role in the business.

Ahuja et al. (2022) present a summary of several software testing approaches, such as

differential, metamorphic, mutation, and combinatorial testing, as well as adversarial

perturbation testing, and discuss some challenges in their deployment for augmenting

perception systems that are used in VBS. Specifically, the authors focus on the application of

these testing methods.

ISSN: 2716-3865 (Print), 2721-1290 (Online)

Copyright © 2022, Journal La Multiapp, Under the license CC BY-SA 4.0

107

In addition to this, we provide and discuss the findings of a preliminary experimental

comparison to an established benchmark that is used in VBS. In this study, they discussed

several testing methodologies for DL models. For instance, we discovered that integrating

testing approaches is an effective way to handle problems like as the quality of models and

training datasets, the identification of oracles, and the selection of test inputs.

In spite of the fact that DL models have their own unique issues, we have come to the

realization that conventional approaches to software testing may be combined to test these

models. Aspects such as differential testing, metamorphic testing, and adversarial perturbation

testing are desired because they reduce the test oracle issue and detect adversarial assaults.

Other examples of testing include metamorphic testing and adversarial perturbation testing.

The fault-revealing metamorphic relations are not categorized, but the pictures and objects

themselves are. The purpose of mutation testing is to determine whether or not there is variation

in the output of a model when given inputs that are otherwise identical.

In spite of the challenges involved in designing mutation operators, the possibility of using

them to test DL models is quite interesting. You won't have to manually create new test cases

thanks to this feature, so you can analyze the model as well as the datasets. DL models may be

placed through adversarial perturbation tests, which is an intriguing feature of these models

since it enables them to be evaluated for their resistance to change as well as their level of

safety.

On the basis of the author's research and experience, Wang and Li (2022) provide a summary

of testing strategies that are appropriate for large-scale information software. Article: This

study may be useful in the testing of large-scale information software, as well as the author's

own work, which may be improved as a result.

The Techniques of Software Testing

This section provides an overview of the many software testing approaches that are currently

available. The following are the two categories that are used to classify methods to software

testing:

Manual testing, often known as static testing: The process of testing is one that is drawn out

and laborious. In terms of statistics, it is carried out at an earlier stage in the life cycle. In certain

circles, it is also referred to as "static testing." Analysts, developers, and testers are the ones

who carry it out. The following are just a few of the various manual testing approaches that are

available: A look at the information, a tour of the facility, a study of the technical aspects, and

an examination (Sawant et al., 2012).

Testing that is dynamic (also known as automated testing): This tester does the testing by

executing the script on the testing tool and carrying out the procedures. There are a few

different types of automated testing, and one of them is called dynamic testing. Additional

types of automated testing include the following categories and subtypes: Testing to determine

whether or not it is accurate, how quickly it can be done, how safe it is, and how long it can

keep going. Testing for correctness, performance, security, and reliability are the names given

to these different kinds (Sawant et al., 2012).

Testing for correctness requires that software at least fulfill the fundamental level of accuracy

expectations. When testing for correctness, it will be necessary to consult an oracle in order to

differentiate between permissible and undesirable forms of behavior. The tester could have

previous knowledge of the inner workings of the software module that is now being tested,

although this is not guaranteed. As a consequence of this, testing strategies such as black-box,

white-box, or grey-box might be used (Khan, 2010).

ISSN: 2716-3865 (Print), 2721-1290 (Online)

Copyright © 2022, Journal La Multiapp, Under the license CC BY-SA 4.0

108

White box testing examines not just how well the program performs its intended functions but

also how well it adheres to its design specifications. Testing in a white box environment

demands a strong understanding of programming. White box tests are also often referred to as

"transparent boxes" or "glass boxes" testing. This methodology may be used for testing at the

unit, integration, and system levels. In other words, it establishes whether or not data is

protected by information systems and whether or not they operate effectively. As a result, it is

able to test the individual pathways that a module may take. All loops and data structures are

put through their paces in the testing process.

White box testing is a complex testing method that also requires programming. It is conducted

by testing professionals. It does a thorough inspection and examination of the code by

examining the module. In the event that the output does not conform to the prerequisites, it will

be recompiled and examined again. The pure code of an application is evaluated, not its user

interface or its visual presentation.

This kind of testing examines how a software is put together on the inside. It involves providing

input to a system and seeing it while it processes that data in order to create an output. A tester

has to be familiar with the source code. Testing in a white-box environment is essential for all

other types of testing, including integration, unit, and system testing. It guarantees that all test

objects and components are executed in the correct manner (Bourque et al., 2002; Andriyadi et

al., 2022; Khan, 2010; De Troyer & Leune, 1998).

The testing of the black box: It is based on an analysis of the specifications of a piece of

software rather than taking into account how the program really works on the inside. The

purpose of this test is to determine how effectively the component satisfies the criteria that have

been established for the component.

It gives the system's underlying logical structure either very little or no attention at all, instead

concentrating entirely on the system's most important characteristics. It ensures that the input

is successfully received and that the output is generated correctly. The integrity of the external

data is preserved during the black box testing.

"Black box" testing may refer to a variety of different types of testing, including exploratory

testing, functional testing, stress testing, load testing, exploratory testing, usability testing,

smoke testing, recovery testing, and volume testing.

Tests and evaluations (alpha and beta) Some of the alternatives to traditional black box testing

include graph-based testing and equivalence partitioning, boundary value analysis and

comparison testing, orthogonal array and comparison testing, specialized testing, fuzz testing,

and traceability metrics (Sawant et al., 2012; Jiang & Hassan, 2015).

Testing Using Grey Boxes Grey box testing is a hybrid approach that involves both white box

and black box testing. The purpose of grey box testing is to ensure that software complies with

its specifications while also providing insight into its inner workings. This involves using

reverse engineering to discover error messages or boundary values.

The method of evaluating software while being aware of the code or logic that lies under the

surface is known as grey box testing. When compared to black-box testing, grey-box testing

calls for a more comprehensive knowledge of the program's inner workings. Tests conducted

in a black box or gray box do not provide examination of all of the system's internal components

(Sachtleben & Peleska, 2022).

Performance Testing

This kind of testing is used to assess whether or not a system or component satisfies a certain

requirement for its level of performance. This comprises the amount of resources used, the

amount of work done, and the amount of time it takes to react to stimuli. Performance testing

ISSN: 2716-3865 (Print), 2721-1290 (Online)

Copyright © 2022, Journal La Multiapp, Under the license CC BY-SA 4.0

109

is a method that may be used to assess an application's level of functionality. It works hard to

keep a website's latency, throughput, and utilization rate as low as it can while still meeting its

goals. It is a single field of study that encompasses all aspects of business operations, including

planning, design, implementation, analysis, and reporting. It does not consist of any individual

components. there are two different kinds of performance tests:

Testing under load: It is necessary for several huge software systems to execute hundreds of

thousands or perhaps millions of inquiries concurrently. These systems need extensive testing

to guarantee that they will function at their highest potential (i.e., how quickly requests come

in). The maximum capacity of a computer, peripheral, server, or network, as well as an

application, may be determined via a procedure known as load testing.

You may use load testing to analyze the capabilities of a single system in great detail, or you

can use it to compare and contrast the capabilities of numerous systems. By analyzing the

results of this test, one may evaluate whether or not the program is able to handle a high number

of users (Sawant et al., 2012; Jiang & Hassan, 2015).

The term "stress testing" refers to a kind of testing in which random processes are carried out

at a larger volume, speed, and for a longer period of time than is typical. It is an approach that

will speed up the process of discovering problems and assessing the product's durability. Stress

testing is one kind of testing that may be done. It is the process of testing a system or component

beyond the limitations that have been claimed for it in order to determine how it fails. More

stress testing is required as the user base continues to increase.

A huge number of inputs, questions, and other types of information are obtained during stress

testing (Khan, 2010). It is used to establish how a system or component breaks down when

subjected to strain (Khan, 2010). Consider doing a stress test to see how the responsiveness of

the user interface shifts in response to changes in the CPU, RAM, storage, and network

workloads (Fu et al., 2022).

Testing for security purposes guarantees that only people with appropriate permissions may

access the software. Any developed system or one that is still in the development stage is

susceptible to suffering severe damage if key security flaws and vulnerabilities are exploited.

Testing for security helps find problems and find solutions to those problems. It assures that

the system will continue to function normally over the long term. Additionally, it protects

systems against intrusions that were not allowed. Testing for security vulnerabilities is

beneficial to the organization as a whole (Khan, 2010). There is a direct correlation between

quality, reliability, and safety. Software vulnerabilities make it possible for hackers to bypass

security.

The program and its features are only accessible to people who have been given permission to

use them. Firewalls are used to detect data leakage. This is accomplished by encrypting the

application and using a variety of software and hardware (Sawant et al., 2012). Testing for

software security aims to uncover software faults and vulnerabilities in an effort to prevent the

loss of data (Haridas, 2007). Finding software's flaws and potential dangers is an important

step in protecting it from being misused.

It is possible to either make the software function or make it not operate if it is exploited in an

effective manner. The purpose of software security testing might vary greatly from one

organization to the next (Arkin et al., 2005; Yimer & Gizachew, 2022). The security testing

methods that are used the most often are expensive and, at times, excessively complicated in

the activities and phases that they include. Because of the difficulty, many developers have a

tendency to disregard software testing for security (Yimer & Gizachew, 2022).

Testing Reliability Early on in the design phase, reliability testing is carried out in order to

ensure that the system satisfies the reliability criteria that were established for it.

ISSN: 2716-3865 (Print), 2721-1290 (Online)

Copyright © 2022, Journal La Multiapp, Under the license CC BY-SA 4.0

110

The testing of reliability involves a lot of interconnected parts. This testing uses software that

already has a mechanism for testing built into it. It is an effective method for determining the

reliability of software. The reliability of a system is determined after the software has been

developed. Methods of either analyzing or fixing may be used in the testing of the software

(Sawant et al., 2012). Testing, estimating, and predicting the reliability of a system also

demonstrates how to create test plans that provide data on failure and/or deterioration in a very

short amount of time.

A comparison of test plans that have reliability estimates that are comparable is also included

in this discussion. This article discusses the use of degradation data for the purpose of reliability

estimate and maintenance decision making (Elsayed, 2012).

Conclusion

Even while the infrastructure for the creation and testing of software is always being improved,

its importance to the process cannot be overstated. Testing, on the other hand, is often

performed as the very last stage in the process of developing software. This research presents

the most essential prior works linked to the study of software testing techniques as well as the

most important ways for testing existing software based on current sources. Additionally, the

most important methods for testing new software are also discussed. Each procedure was

broken down into its component parts, along with the parameters for how it should be carried

out and the allotted amount of time for it to be completed. testing until later in the system's life

cycle, and not only until the late stages, because the system's testing process occurs late in the

life cycle of all software systems, and not only in the late stages. system's financial resources

and lost time by delaying testing until later in the system's life cycle, and not only until the late

stages.

Acknowledgement

the Authors would like to thank Mustansiriyah University (https://uomustansiriyah.edu.iq/)

Baghdad -Iraq for its support in the present work.

References

Ahuja, M. K., Gotlieb, A., & Spieker, H. (2022, April). Testing Deep Learning Models: A First

Comparative Study of Multiple Testing Techniques. In 2022 IEEE International

Conference on Software Testing, Verification and Validation Workshops (ICSTW)

(pp. 130-137). IEEE.

Andriyadi, A., Fikri, R. R. N., & Saputri, E. F. (2022). Evaluasi Sistem Informasi Perpustakaan

Institut Informatika Darmajaya Dengan Whitebox Testing. Journal of Innovation

Research and Knowledge, 1(8), 743-746.

Arkin, B., Stender, S., & McGraw, G. (2005). Software penetration testing. IEEE Security &

Privacy, 3(1), 84-87.

Bäckström, K. (2022). Industrial Surveys on Software Testing Practices: A Literature Review

[Thesis]. University of Helsinki.

Bourque, P., Lavoie, J. M., Lee, A., Trudel, S., & Lethbridge, T. C. (2002, October). Guide to

the software engineering body of knowledge (swebok) and the software engineering

education knowledge (seek)-a preliminary mapping. In Proceedings 10th

International Workshop on Software Technology and Engineering Practice (pp. 8-8).

IEEE Computer Society.

De Troyer, O. M. F., & Leune, C. J. (1998). WSDM: a user centered design method for Web

sites. Computer Networks and ISDN systems, 30(1-7), 85-94.

ISSN: 2716-3865 (Print), 2721-1290 (Online)

Copyright © 2022, Journal La Multiapp, Under the license CC BY-SA 4.0

111

Dwivedi, N., Katiyar, D., & Goel, G. (2022). A Comparative Study of Various Software

Development Life Cycle (SDLC) Models. International Journal of Research in

Engineering, Science and Management, 5(3), 141-144.

Elsayed, E. A. (2012). Overview of reliability testing. IEEE Transactions on Reliability, 61(2),

282-291.

Everett, G. D., & McLeod, R. (2007). The Software Development Life Cycle. Wiley-IEEE

Press. https://doi.org/10.1002/9780470146354.ch2

Fu, J., Wang, Y., Zhou, Y., & Wang, X. (2022). How resource utilization influences UI

responsiveness of Android software. Information and Software Technology, 141,

106728.

Gautam, S., Khunteta, A., & Sharma, P. (2022). A Review on Software Testing Using Machine

Learning Techniques. ECS Transactions, 107(1), 3393.

Guo, X., Okamura, H., & Dohi, T. (2022). Automated Software Test Data Generation With

Generative Adversarial Networks. IEEE Access, 10, 20690-20700.

https://doi.org/10.1109/ACCESS.2022.3153347

Haridas, N. (2007). Software Engineering-Security as a Process in the SDLC. SANS Institute,

29.

Jamil, M. A., Arif, M., Abubakar, N. S. A., & Ahmad, A. (2016, November). Software testing

techniques: A literature review. In 2016 6th international conference on information

and communication technology for the Muslim world (ICT4M) (pp. 177-182). IEEE.

https://doi.org/10.1109/ICT4M.2016.045

Jiang, Z. M., & Hassan, A. E. (2015). A survey on load testing of large-scale software systems.

IEEE Transactions on Software Engineering, 41(11), 1091-1118.

Jovanović, I. (2006). Software testing methods and techniques. The IPSI BgD Transactions on

Internet Research, 5(1) 30-41.

Khan, M. E. (2010). Different forms of software testing techniques for finding errors.

International Journal of Computer Science Issues (IJCSI), 7(3), 24.

Korel, B. (1990). Automated software test data generation. IEEE Transactions on software

engineering, 16(8), 870-879. https://doi.org/10.1109/32.57624

Raza, A., Shah, B., Ashraf, M., & Ilyas, M. (2022). Object-Oriented Software Testing: A

Review. In Proceedings of International Conference on Information Technology and

Applications (pp. 461-467). Springer, Singapore.

Roshan, R., Porwal, R., & Sharma, C. M. (2012). Review of search based techniques in

software testing. International Journal of Computer Applications, 51(6).

Sachtleben, R., & Peleska, J. (2022). Effective grey‐box testing with partial FSM models.

Software Testing, Verification and Reliability, 32(2), e1806.

Sawant, A. A., Bari, P. H., & Chawan, P. M. (2012). Software testing techniques and strategies.

International Journal of Engineering Research and Applications (IJERA), 2(3), 980-

986.

Umar, M. A., & Zhanfang, C. (2020). A Comparative Study of Dynamic Software Testing

Techniques. International Journal of Advanced Networking and Applications, 12(3),

4575-4584.

Wang, B., & Li, H. (2022). Analysis of Testing Methods of Large-scale Information Software.

Academic Journal of Computing & Information Science, 5(1).

https://doi.org/10.1002/9780470146354.ch2
https://doi.org/10.1109/ACCESS.2022.3153347
https://doi.org/10.1109/ICT4M.2016.045
https://doi.org/10.1109/32.57624

ISSN: 2716-3865 (Print), 2721-1290 (Online)

Copyright © 2022, Journal La Multiapp, Under the license CC BY-SA 4.0

112

Yimer, S., & Gizachew, B. (2022). The Development of a Web-Based Application Security

Testing Framework in Addis Ababa, Ethiopia. Global Journal of Computer Sciences:

Theory and Research, 12(1), 12-22.

Yimer, S., & Gizachew, B. (2022). The Development of a Web-Based Application Security

Testing Framework in Addis Ababa, Ethiopia. Global Journal of Computer Sciences:

Theory and Research, 12(1), 12-22.

