
Management Services: A Magazine of Planning, Systems, and Management Services: A Magazine of Planning, Systems, and 

Controls Controls 

Volume 5 Number 3 Article 6 

5-1968 

Statistical Decision Theory Statistical Decision Theory 

Benny R. Copeland 

Follow this and additional works at: https://egrove.olemiss.edu/mgmtservices 

 Part of the Accounting Commons 

Recommended Citation Recommended Citation 
Copeland, Benny R. (1968) "Statistical Decision Theory," Management Services: A Magazine of Planning, 
Systems, and Controls: Vol. 5: No. 3, Article 6. 
Available at: https://egrove.olemiss.edu/mgmtservices/vol5/iss3/6 

This Article is brought to you for free and open access by eGrove. It has been accepted for inclusion in 
Management Services: A Magazine of Planning, Systems, and Controls by an authorized editor of eGrove. For more 
information, please contact egrove@olemiss.edu. 

https://egrove.olemiss.edu/mgmtservices
https://egrove.olemiss.edu/mgmtservices
https://egrove.olemiss.edu/mgmtservices/vol5
https://egrove.olemiss.edu/mgmtservices/vol5/iss3
https://egrove.olemiss.edu/mgmtservices/vol5/iss3/6
https://egrove.olemiss.edu/mgmtservices?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol5%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/625?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol5%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/mgmtservices/vol5/iss3/6?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol5%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu


This new approach to problem solving can lead to 
better decisions if properly applied. However, the 
technique can only complement, not replace, the ex­
ecutive’s own knowledge and experience.

STATISTICAL DECISION THEORY

by Benny R. Copeland
North Texas State University

Business theoreticians—and in a 
few cases hard-headed busi­

nessmen—until a few years ago 
employed scientific approaches only 
to very specific problems, such as 
inventory level. In recent years, 
however, a general decision making 
algorithm (methodology) has been 
developed which has quite wide ap­
plication to business problems. As 
a matter of fact, it is the generality 
or universal applicability of this 
algorithm that makes it so very 
significant.

Basically, the very essence of the 
management process is decision 

making. Thus a decision making 
algorithm—a rule which can be ex­
pressed in mathematical terms—in 
effect is a description of this aspect 
of the management process. As 
such, it should serve to complete 
the philosophical theory necessary 
for truly scientific management.

The title of this article empha­
sizes statistical decision theory. This 
modifier was added in recognition 
of the fact that quantitative meth­
ods are today essential to the stated 
expression of business methods and 
policies. Certainly this does not 
make the algorithm less general.

Nothing within our universe is 
more general than mathematics. 
The purpose of this article is to ex­
amine the essence of statistical de­
cision theory and to indicate its 
application by means of an illus­
trative example.

The methodology

An appropriate place to begin 
our investigation of decision theory 
would seem to be with a definition 
of the term. By “decision theory” 
we shall mean an algorithm which 
results in the selection of the proper
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A decision
is characterized by 

a goal, 
the availability of 

several possible 
actions, 
and the environment 

of the outcomes 
of the actions 
(certainty, uncertainty, 
risk, conflict, 
ignorance).

action to be taken in a decision 
situation from among many alterna­
tive actions. By implication we have 
also defined what is meant by “de­
cision making,” i.e., selecting the 
best alternative action.

Defining a term properly is not 
easily accomplished. Let us ex­
amine the algorithm in detail:

The Decision Making Algorithm
A. Define the problem.
B. Develop the appropriate 

decision criteria.
C. Determine the environmen­

tal situation.
D. Describe all possible ac­

tions.
E. Develop the decision model.
F. Solve the model.
G. Make the decision.

Each step of this methodology will 
be explored in detail below.

Define the problem
A decision problem is character­

ized by:
A. The desire to attain a cer­

tain goal
B. The availability of several 

actions which can be taken, 
some of which will not be 
as effective as others  

C. The particular type of en­
vironment which exists with 
respect to the action out­
comes (certainty, uncer­
tainty, risk, conflict, ignor­
ance)

It is of prime importance that the 
decision maker analyze his problem 
in terms of each of the above char­
acteristics. By gaining a better 
understanding of his problem he 
simplifies its solution.

For illustrative purposes the fol­
lowing discussion of decision theory 
will be built around a highly simpli­
fied inventory problem. Especially 
note that the problem statement is 
directed toward the attainment of a 
particular goal.

During summer vacation a 
high school student sells cut 
roses by the dozen at a road­
side stand. The roses cost the 
student $1 a dozen and sell 
for $3 a dozen. Because the 
stand has no refrigeration fa­

cilities the roses must be pur­
chased fresh each day from the 
wholesaler. What is the most 
economic order quantity for 
the student? Upon inquiry he 
supplies the following data on 
past demand:

Demand 
(in dozens) 

0 
1 
2 
3

Days 
(of demand)

2
3
4
1

Analyzing this problem in terms 
of the characteristics set forth 
above we find:

A. The goal—how many dozen 
roses should the student pur­
chase each morning? (The de­
cision maker will generally 
find it useful to state the 
problem as a question.)

B. The set of actions which the 
student can take corresponds 
to the various inventory levels 
he should stock: 0, 1, 2, or 3 
dozen roses.

C. Comparison of the problem 
situation with the various 
classes of environment indi­
cates that the problem in­
volves decision making under 
risk (because past experience 
provides a useful probability 
distribution of outcomes for 
each action.)

Develop criteria
A decision criterion is an indi­

cator or index that would serve as 
an appropriate means of measuring 
attainment of the goal. For the 
problem at hand we might ask our­
selves, “What measure denotes the
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proper inventory level?” The pos­
sible criteria might include the fol­
lowing:

A. We sell all inventory every 
day.

B. We never have to turn down 
a sale for lack of inventory.

C. We maximize short-run profit. 
D. We maximize long-run profit. 
Selection of a decision criterion 

involves the making of a subjective 
or “value” judgment. By nature, 
value judgments are of a short-term 
or ad hoc nature, and therefore they 
tend to vary with the nature of the 
problem. Some of the more com­
monly applied criteria for business 
decision problems which have been 
explored in the literature of de­
cision theory are:

A. Maximum absolute gain
B. Maximum expected gain
C. Minimum expected loss
D. Minimum absolute loss
E. Maximum expected net value
“Maximum absolute gain” is the 

criterion of the complete optimist 
(and of the complete gambler), 
that individual who must always 
“go for broke.” This criterion con­
siders only the magnitude of the 
profits of each action and would re­
sult in selecting that action with 
the largest absolute profit—regard­
less of the probability of attaining 
that profit. (Maximize Pj.)

“Maximum expected gain” as a 
criterion considers not only the 
absolute size of the potential profit 
for each action but also the related 
probability of attainment. Thus a 
$10,000 profit with a 50 per cent 
probability of attainment would be 
exactly as desirable as a $20,000 
profit with a 25 per cent probability 
of attainment. (Maximize EPj.)

“Minimum expected loss,” as 
might be anticipated from the pre­
vious discussion, involves selecting 
the action with the smallest ELj*  
or expected loss. This criterion in­
volves the consideration of possible 

* The symbol E is read “expected value 
of,” thus EPj is read “expected value of 
the various profits.” The subscript j is 
read for the level of inventory. See Ex­
hibit A on page 50 for a discussion of 
this concept.

losses and their related probabilities 
of occurrence. On the other hand, 
the following criterion, “minimum 
absolute loss,” considers only the 
absolute magnitude of the possible 
losses and selects the smallest. This 
criterion will minimize losses if the 
worst possible event occurs. Be­
cause the measurement is absolute 
it gives no consideration to the 
probabilities of occurrence of the 
losses; the smallest Lj is chosen 
because it represents the smallest 
loss, and no attempt is made to 
calculate the probability of its oc­
currence.

“Maximum expected net value” 
is defined as the expected value of 
the profits minus the expected value 
of the losses. This criterion con­
siders all possible elements of the 
problem and is thus probably the 
most comprehensive measure. Sup­
pose that a particular action has 
60 per cent probability of producing 
a profit of $12,000 and a 40 per cent 
probability of producing a loss of 
$5,000; the expected net value of 
this action is computed as follows:

E.N.V. = EPj - ELj
= .6($12,000) - .4($5,000) 
= $7,200 - $2,000   
= $5,200.

Throughout the present discus­
sion of decision criteria we have 
considered their measurement only 
in terms of dollars. Certain value 
judgments, however, cannot readily 
be stated in dollars, such as crite­
rion B in our example which stated, 
with respect to the illustrative prob­
lem, that we desired to carry a level 
of inventory such that we would 
never have to turn down a sale for 
lack of inventory. For non-monetary 
criteria such as this, or for measur­
ing those instances when the firm’s 
utility function for money is not 
linear, it becomes necessary to set 
criteria in “utiles” rather than dol­
lars (i.e., to weight dollars before 
taking them into consideration). 
This area is known as “utility 
theory” and falls outside the scope 
of this paper. The bibliography will 
refer the reader to selected refer­
ences if he wishes to pursue the

Selection of 
a decision criterion 
involves the making of 
a subjective or “value” 

judgment.
By nature, 
value judgments are of 
a short-term 

or ad hoc nature 
and tend to vary with 
the nature 
of the problem.
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The introduction of 
intuitive or 

“subjective” probabilities 
(as opposed to 
“objective” or 

empirical probabilities) 
into the 
decision making algorithm 

has precipitated 
long and heated argument 
among statisticians.

study of this topic. (See the listing 
on page 51.)

Determine the environment

If we define decision making as 
the selection of one alternative from 
among several, we may then iden­
tify the specific decision making 
situations typical for the business 
executive:

A. Certainty—The set of all alter­
native actions is known, and 
the outcome of each action is 
known with certainty.

B. Risk—The set of all alternative 
actions is known, but the out­
come of each action can be 
stored only in terms of a prob­
ability distribution.

C. Uncertainty—The set of all al­
ternative actions is known, 
but the outcome of each ac­
tion is uncertain.

D. Conflict—The set of all alter­
native actions is known, but 
the outcome of each is de­
pendent upon the reaction of 
a knowledgeable opponent.

E. Ignorance—The set of all al­
ternative actions is unknown.

The above list of decision situa­
tions is in the order of desirability. 
Ideally we would like to operate 
always under the condition of cer­
tainty. Yet very rarely is this con­
dition faced by the executive. When 
the situation is encountered by the 
executive it is usually in the area 
of production management. One ex­
ample of decision making under 
certainty is the problem of setting 
product mix so as to maximize the 
allocation of capital goods. Linear 
programing is a statistical tech­
nique applicable to problems of this 
class.

Decision making under risk is 
characterized by the availability of 
historical probability distributions 
for the outcomes of the various ac­
tions. For example, if we take a par­
ticular action with respect to adjust­
ing a machine we know that the 
outcome will be 5 per cent defec­
tives and 95 per cent non-defec­
tives. For this information to be 
available it is necessary, of course, 
that the decision situation be of a 

repetitive nature. Many types of 
business decision situations are of 
this nature.

When the situation is one of de­
cision making under uncertainty the 
first determining characteristic is 
that historical probabilities are not 
available to the decision maker. 
This may be because the process is 
of a non-repetitive nature, or, it 
may simply be because no data 
have been collected. The second 
characteristic is that the decision 
maker has, or can obtain, an in­
tuitive concept of the situational 
probabilities. Unless this can be 
done the situation becomes one of 
“ignorance,” and a logical solution 
becomes impossible to approach.

The admission of intuitive or 
“subjective” probabilities (as op­
posed to “objective” or empirical 
probabilities) into the decision 
making algorithm has instigated a 
long and heated argument among 
statisticians. Those in favor of ad­
mitting the subjective probabilities 
are referred to as “Bayesians,” 
named after Thomas Bayes (1702- 
1761), a Presbyterian minister at 
Tunbridge Wells in England. An 
essay of Bayes, published posthu­
mously in 1763, offered a theorem 
for finding the inverse probability 
of an event. Although this theorem, 
as developed, was directed toward 
classical probability theory, it has 
since been adopted by “Bayesians” 
for purposes of merging subjective 
probabilities with subsequently ob­
tained sampling information. In its 
classical form Bayes’ Theorem is:

P(X/A) = [P(X) • P(A/X)] 

divided by 

[P(X) . P(A/X) 
+ P(X) • P(A/X)] 

= [P(X) • P(A/X)] 

divided by

P(A X) + P(A X) 

= [P(X) • P(A/X)] 

divided by P(A)

48 Management Services 4

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 5 [1968], No. 3, Art. 6

https://egrove.olemiss.edu/mgmtservices/vol5/iss3/6



The classical function of this 
theorem was to find P(X/A) given 
P(A/X), thus we sometimes find 
this theorem referred to as the 
“theorem of inverse probability.” 
As adopted by Bayesians, the 
theorem becomes:

Posterior Probabilities = [Sub­
jective Probabilities 

times Sample Problems} 
divided by 

[Subjective Prob­
abilities times 

sample Problems]

The purpose of Bayes’ Theorem 
when applied by the Bayesians is 
to provide a formal algorithm for 
adjusting one’s opinion in light of 
additional data. It has been 
charged, and perhaps with some 
justification, that the revision (Bay­
esian ) methodology has little or 
nothing to do with Bayes’ Theorem, 
that in effect the process in actuality 
produces a weighted arithmetic 
mean of the form:

Pj = [Pj • Specific Weight]

divided by
N
∑ [Pj • Specific Weight] 

j = 1

Regardless of the methodology, the 
“non-Bayesian” or “classical” statis­
tician recoils with horror from ad­
mitting subjective probabilities into 
a statistical process. His position is: 
“If historical probabilities are not 
available, there is nothing for the 
statistician to work with; he can 
(and should) do nothing.”

This article does not intend to 
take a position either way on the 
Bayesian question. An attempt has 
been made to identify the area 
of disagreement—nothing more. It 
is only fair to note, however, that 
if subjective probabilities are not 
allowed to be considered then it be­
comes impossible for the executive 
to make rational decisions under 

conditions of uncertainty. And, this 
position also denies that experi­
enced business executives have de­
veloped a general “feeling” for their 
job.

For some reason “decision theory” 
seems, by usage, to have become 
somewhat synonymous with “de­
cision making under uncertainty.” 
This is not the meaning of “decision 
theory” as used within this article, 
and this trend should perhaps be 
resisted. Otherwise we will have no 
simple term to refer to all of the 
decision situations described above, 
and we shall have to go to the 
trouble of inventing a new term to 
refer to the generic process.

Describe possible actions
The importance of step C., “de­

scribe all possible actions which 
can be taken,” is patently obvious— 
it alerts the decision maker to his 
entire set of alternatives. The neces­
sity for having this list as complete 
as possible cannot be stressed too 
much, for if the most appropriate 
action is excluded from this list 
whatever decision is reached may 
not be the most efficient solution.

The difficulty of describing the 
universe of actions will of necessity 
vary with the problem. In the illus­
trative problem under present con­
sideration the actions open to the 
decision maker are particularly 
simple to develop:

Action Order Quantity
A 0
B 1
C 2
D 3

The reader must be cautioned 
that this simplicity is unusual. De­
veloping the universal set of actions 
for most real-world problems is 
generally of a more complex nature.

Describe the outcomes
Given the selected decision cri­

terion and the universe of available 
actions, the next step of the deci­
sion maker is to evaluate alternative 
actions. This evaluation is accom­

plished by means of a mathematical 
model designed to express the rela­
tionship between the environment 
and the actions in terms of the pre­
selected decision criterion. Each 
problem situation is unique and re­
quires development of the appro­
priate model. Thus, no generaliza­
tion can be made as to appropriate 
models.

The illustrative example concerns 
the determination of the most effi­
cient economic order quantity as 
measured by maximum expected 
net value. The appropriate decision 
model for this situation is:

Maximize E (Pj - Lj)
Where; Pj = the gross profit of 

jth level of in­
ventory, i.e., the 
sales prices of 
the roses sold 
less the cost of 
all roses pur­
chased.

Lj = the opportunity 
losses associated 
with each jth 
stock level.

This model may not be completely 
clear at the moment. We shall re­
turn to its meaning at length a bit 
later. At the present the important 
factor to note is that the model is 
developed by the decision maker 
from his knowledge of the problem 
area. Unfortunately, statistics can­
not remove the need for the de­
cision maker to know the problem 
area thoroughly. At best the ad­
dition of statistical techniques 
serves to make consideration of the 
problem more precise.

It is well to note at this point that 
there may be more than just one 
satisfactory decision model. The 
model is a conceptualization of the 
relationship between the actions 
and the environment. It is possible 
to examine this relationship from 
various points of view. Develop­
ment and selection of the model are 
an expression of a value judgment 
as much as selection of the decision 
criterion. Various models will re­
sult in different “answers,” i.e., the 
selection of different actions. Each 
“answer” is “correct” when viewed 
in terms of the model used. Again
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The decision theory algorithm leads to a best solution only if . . .

the point should be made that the 
decision maker must have a thor­
ough knowledge of the problem 
area in order to apply statistical 
decision theory.

Solving the model
The decision model previously 

determined was:

Maximize: E(Pj - Lj)

The P subscript, j, refers to the 
various profits in the model—one 
for each inventory level. Thus P1 
is the profit from stocking one unit, 
P2 is the profit from stocking two 
units, etc. Lj is to be read in a sim­
ilar fashion. The E is read “ex­
pected value” as previously explain­
ed. The computations indicated by 
the model will be made clear as 
the solution progresses.

The first step in the solution is to 
compute Pj or gross profit for each 
inventory level. Because this gross 
profit is dependent upon the inven­
tory level, it is referred to as “con­
ditional” gross profit. When the Pj 
values are inserted into a table or 
“matrix” of the form below they are 
referred to as a “pay-off” matrix.

Pay-Off Matrix Showing 
Conditional Gross Profit (Pj) 

(in dollars)

Demand Inventory level
(0) 0 1 2 3

0 0-1 — 2 -3
0 0+2 + 1 0
2 0+2 + 4 +3
3 0+2 + 4 +6

Values in the pay-off matrix were
computed in this way:

Situation: Demand, two dozen- 
Stock, three dozen

Gross revenue (2 x $3) $6.00
Cost of sales (3 x $1) 3.00
Gross profit $3.00

The model requires that we also 
consider opportunity losses, how­
ever. Before we can begin to com­
pute these values we must first de­
fine what we mean by the term 
“opportunity loss.”

By “opportunity loss” we shall 
mean “a foregone benefit.”

Following this definition we shall 
measure opportunity loss by “fore­
gone profit,” i.e., the $2 gross profit 
lost each time a demanded product 
unit is not on hand. Applying this 
measurement the following matrix 
is obtained:

Matrix Showing Conditional 
Opportunity Loss (Lj) 

(in dollars)

Demand Inventory level
(D) 0 1 2 3

0 0 0 0 0
1 --2 0 0 0
2 --4 -2 0 0
3 --6 -4 —2 0

EXHIBIT A

Mathematical expectation can 
most easily be described by means 
of a simple example. Suppose we 
play this game: We agree to flip 
a perfectly balanced coin. If 
“heads” comes up, we receive $1.00, 
but if “tails” comes up, we lose

PrS(S) — PrF(F) = Expected Value

(.50) ($1.00) - (.50 ($2.00) =

$.50 - $1.00 = -$.50

This value, —$.50, is the average 
benefit we should expect to obtain 
if we repeated this game many 
times. Conceptually, mathematical 
expectation is a postulate which 
states the philosophical assumption 
that absolute values and probabili­
ties may be joined through multipli­

The model is based upon the con­
cept (Pj - Lj). Thus far we have the 
conditional values computed but 
have not yet merged them to form 
the conditional net value. Simple 
subtraction is applied to derive the 
following matrix showing the con­
ditional value (Pj - Lj).

Matrix Showing the Conditional 
Value (Pj - Lj) 

(in dollars)

Demand Inventory level
(D) 0 1 2 3

0 0 -1 -2 -3
1 --2 + 2 + 1 0
2 --4 0 + 4 +3
3 --6 -2 + 2 +6

The final step in solving the
model is to convert the conditional
(absolute) values into expected 
values by multiplying through by 
the respective probabilities of each 
level of demand. It was previously

$2.00. The expected value of this 
game is found by multiplying the 
value of success times the probabil­
ity of success and subtracting the 
product obtained by multiplying 
the value of failure times the prob­
ability of failure. Mathematically: 

cation to produce meaningful 
values. Perhaps it might be useful, 
in addition, to think of expected 
value as a “weighted average,” 
where the weights are probabilities 
and the denominator is the implicit 
sum of the probabilities, unity or 
one.
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. . . complex value judgments have been properly made.

determined that the historical 
probabilities would be used. These 
were:

Demand Probability 
(D) (P)
0 .20
1 .30
2 .40
3 .10

1.00

If we multiply the (Pj - Lj) matrix 
by the probability distribution we 
obtain the final solution matrix of 
the form E (Pj - Lj), shown in Ex­
hibit B on this page.

This matrix shows that the ex­
pected value (Pj - Lj), as defined, 
is maximized by stocking two dozen 
roses each day. However, before we 
advise the student to act accord­
ingly, let us note the appropriate 
characteristics of this solution:

A. The problem situation was 
characterized as a “risk” en­
vironment, and empirical 
probabilities were used. Just 
how good were these figures? 
Do they still apply?

B. The criterion was a value 
judgment in view of society’s 
demands, long-run profit 
needs, short-run cash needs, 
firm objectives, etc.

C. The decision model was a 
conceptualization of the ap­
propriate relationship be­
tween environment and ac­
tions. Was it valid?

D. For the decision to be max­
imally effective the list of 
alternative actions must con­
tain the “best” action. Did it?

If the decision maker is satisfied 
regarding all the above character­
istics, then the decision theory algo­
rithm gave a “best” answer.

Conclusion
An attempt was made to define 

the generic decision theory process 
and to note its relevance to the

Solution Matrix Showing the 
Expected Value of 

(Pj-Lj) 
(in dollars)

EXHIBIT B

Demand 
(D)

Inventory level
0 1 2 3

0 0 -.20 - .40 — .60
1 - .60 0 + .30 0
2 — 1.60 + .60 + 1.60 + 1.20
3 - .60 -.20 + .20 + .60

E(P1-L1)
E(P2-L2)
E(P3-L3)
E(P4-L4)

-2.80
+ .20

+ 1.70
+ 1.20

solution of business problems. The 
major points in this thesis may be 
summarized as follows:

A. Decision theory is a broad 
discipline which includes de­
cision making under certainty, 
risk, uncertainty, conflict, and 
ignorance.

B. The decision theory algorithm 
leads to a best solution only
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