
Management Services: A Magazine of Planning, Systems, and Management Services: A Magazine of Planning, Systems, and

Controls Controls

Volume 3 Number 3 Article 7

5-1966

Problem-Oriented Languages: FORTRAN vs. COBOL Problem-Oriented Languages: FORTRAN vs. COBOL

Wayne S. Boutell

Follow this and additional works at: https://egrove.olemiss.edu/mgmtservices

 Part of the Accounting Commons

Recommended Citation Recommended Citation
Boutell, Wayne S. (1966) "Problem-Oriented Languages: FORTRAN vs. COBOL," Management Services: A
Magazine of Planning, Systems, and Controls: Vol. 3: No. 3, Article 7.
Available at: https://egrove.olemiss.edu/mgmtservices/vol3/iss3/7

This Article is brought to you for free and open access by eGrove. It has been accepted for inclusion in
Management Services: A Magazine of Planning, Systems, and Controls by an authorized editor of eGrove. For more
information, please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/mgmtservices
https://egrove.olemiss.edu/mgmtservices
https://egrove.olemiss.edu/mgmtservices/vol3
https://egrove.olemiss.edu/mgmtservices/vol3/iss3
https://egrove.olemiss.edu/mgmtservices/vol3/iss3/7
https://egrove.olemiss.edu/mgmtservices?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol3%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/625?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol3%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/mgmtservices/vol3/iss3/7?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol3%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

“Software” is rapidly becoming the most pressing

problem in the data processing world. This article
 discusses the pros and cons of two of the most com
mon of the new—

PROBLEM - ORIENTED LANGUAGES:
FORTRAN VS. COBOL

by Wayne S. Boutell

University of California

One of the most significant de

velopments in the computer
 revolution during the last five years

 has been the use of problem-or
iented languages. These languages

 have opened the door to vastly in
creased opportunities for utiliza

tion of the computer, and they have
 greatly reduced the programing ef
fort required to accomplish de
sired objectives.

Since most businessmen have

never had a course in computer

 programing and since the computer
 is becoming increasingly important

in business applications, it has be

come mandatory for accountants,
 production managers, operations

 researchers, and other personnel in
 business firms to acquire some un

derstanding of the potential of
 these problem-oriented languages.
 This understanding should further

 an appreciation of the problems
 faced by data processing per

sonnel and promote more satisfac
tory communication between the

 technical experts and the business
 managers at all levels of the busi

ness firms. Because of the relative

simplicity of problem-oriented lan

guages, it is possible to obtain a
 grasp of the basic concepts of these
 languages in fifteen to twenty

 hours of study.
A major reason for the use of

problem-oriented languages is the

 increasing shortage of qualified pro
gramers at all levels. Since these

 languages can be mastered within a
 relatively short span of time, pro

gramers can be trained more read
ily. The use of problem-oriented

 languages not only facilitates train
ing but also reduces the program-

May-June, 1966 411

Boutell: Problem-Oriented Languages: FORTRAN vs. COBOL

Published by eGrove, 1966

It has become almost mandatory for

business managers to acquire a
working knowledge of one of the problem

 languages. Fortunately, they are so
 simple that a grasp of basic concepts
 can be gained in fifteen to twenty

 hours of study.

ing effort necessary to obtain ac

ceptable programs by as much as
 80 per cent. The expert programers
 claim that this gain is at least par

tially offset by a certain sacrifice
 in the efficiency of the machine

 language program, and this point
 would certainly have to be granted;
 but, on balance, the bulk of the

 evidence indicates that eventually
 problem-oriented languages will re

place the so-called machine-or
iented languages both in business

 data processing applications and
in scientific research.

Problem-oriented languages

What is a problem-oriented lan

guage? In essence, it is a language
 that approximates the language

of the problem that is to be solved by
 the computer. Since the language

 of the problem bears little resem
blance to the instructions required

 by the computer to process the
 data, it is necessary to provide the
 computer with a translator that will

 convert the problem-oriented lan
guage to machine-oriented lan
guage that can be interpreted by

 the computer circuitry. This trans
lator is itself a computer program,

 and it is generally referred to as a
 compiler.

Each computer manufacturer has

the responsibility of providing

 these compiler programs, thus free
ing the programer from many con

ventions and restrictions inherent
 in machine-oriented languages. The

 compiler, in addition to the trans
lating function, also scans the prob
lem-oriented language program for

 syntactical errors and provides er
ror messages (sometimes called
 diagnostics) to the programer to
 ease the debugging of the program.

It should be noted that a more

recent development is the intro

duction of PL/1 (Programing
 Language — First Version) for the

 IBM System/360 line of computers.
 PL/1 is a problem-oriented lan
guage that incorporates the basic
 features of COBOL, FORTRAN,

 and ALGOL within a single sche
ma. It is modular in character. A

 relatively inexperienced user can
 learn that subset of the language

which is suited to his particular

programing requirements, yet the
 language is sufficiently general so
 that it is useful to any computer
 user. In view of the fact that PL/

 1 is not yet fully developed, the
 subsequent discussion will be lim

ited to those languages that are
 in use at the present time.

The principal problem-oriented

languages that are in general use

 today are illustrated in the follow
ing diagram:

Basic

Language

Corresponding

Problem-oriented
 Language

Verbalization as

represented by
 the English Language

Quantification

as

represented by
 mathematical

 notation

COBOL

FORTRAN

ALGOL

Characteristics of COBOL

If the problem, such as a busi

ness transaction, can be stated in
 ordinary English, then the most

 suitable problem-oriented language
 is probably COBOL. COBOL is an
 abbreviation for “COmmon Busi

ness Oriented Language.” This lan
guage was developed in 1959 by a

 committee composed of govern
ment users and computer manu

facturers.1 The COBOL-61 version
 of this language is the one that is
 most widely used today although

 various manufacturers have made
 changes since COBOL-61 was

 adopted. For example, IBM 7094
 COBOL is in its thirteenth version.

Nature of FORTRAN

FORTRAN is the oldest of the

problem-oriented languages, hav
ing been developed originally in

 1956 by IBM for use with the IBM
 704 computer. FORTRAN is an ab
breviation for “FORmula TRANs

lation” and has been primarily used
 for scientific and mathematical pro

graming problems. However, there
 is an increasing conviction that
 FORTRAN may also be adaptable

 to business problems, and it has

42 Management Services 2

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 3 [1966], No. 3, Art. 7

https://egrove.olemiss.edu/mgmtservices/vol3/iss3/7

Before the development of machine translators, communication was difficult between

the problem language of the programer and the machine language of
the

 data processor.

been used successfully in a num

ber of situations.2

Characteristics of ALGOL

The problem-oriented language

that is closest to the symbolism em
ployed in mathematical and statis

tical notation is ALGOL. ALGOL,
 which stands for ALGOrithmic
 Language, is exactly what its name

 implies: a language for expressing
 algorithms.3 ALGOL was devel

oped originally to standardize com
munication among mathematicians

 of the world and to provide a basis
 for common understanding and a

 precision of exposition.

Best business languages

Since this article is primarily

concerned with the potential
of problem-oriented languages in

busi

ness-type problems, the remainder
 of the discussion will center around

 the various aspects of FORTRAN
 and COBOL. ALGOL appears to

 be primarily suited to problems
 that either do not exist in business

 situations or can be expressed
in FORTRAN.

The IBM System/360 provides

the facility for compiling programs

written in either FORTRAN or
 COBOL. Apparently, IBM feels

 that the announced purpose of the
 System/360, that of meeting the
 requirements of scientifically ori
ented users as well

as
 business-

oriented users within the frame
work of one set of hardware com
ponents, can be accomplished by

 utilizing these two problem-orient
ed languages. This development,

of course, does not imply any com
mitment as to which language

 would be used for which type
of application. It is

also
 interesting to

note that IBM has apparently de-

WAYNE S. BOUTELL,

Ph.D., CPA, is the asso
ciate dean of the School

 of Business Administra
tion and associate pro
fessor of accounting at
 the University of Califor

nia, Berkeley. Mr. Bou
tell is a member of the

 American Institute of
Certified Public Accountants and the Ameri

can Accounting Association. He has contrib

uted two books to the field of accounting:
 Auditing With the Computer and Fortran and
 Business Data Processing. In addition, he has
 contributed articles to The Journal of Ac

countancy and The Accounting Review.

emphasized the symbolic-type in

termediate languages that are used
 in business today.4 The Burroughs

 B-5000
also

 de-emphasizes the use
of machine-oriented languages.

Pros and cons

Before examining the differences

between FORTRAN and COBOL,
 it is well to review certain basic

 characteristics of a problem-or
iented language. As mentioned ear

lier, the use of a compiler (trans
lator) is essential to the implemen

tation of any problem-oriented
 language. Therefore, the efficiency
 of any problem-oriented language

 depends in large measure on the
 efficiency of the compiler that was

 written by the computer manufac
turer to translate the problem-

 oriented language. Understandably,
 the efficiency of compiler programs

 varies among the several computer
 manufacturers. Therefore, the com

parison between two languages
 such as FORTRAN and COBOL

 is a measure both of the language
 itself and of the efficiency of the

 compiler. These two aspects of the
 problem are not separable. There

fore, conflicting conclusions may be

May-June, 1966 433

Boutell: Problem-Oriented Languages: FORTRAN vs. COBOL

Published by eGrove, 1966

THE ORIGINS OF " AUTOMATIC PROGRAMING"

One of the reasons for the grow

ing use of computers by industry—
 and perhaps the most important

 reason for their widespread use
 today—is the simplifications that

 have been made in the task of
 programing the machines. Basic

ally a computer recognizes only
 two impulses, on and off, which can
 represent the symbols 1 and 0 used

 in binary notation. By use of the
 two symbols and a binary number

ing system, any decimal number
 can be represented,

as
 well as a

number of alphabetic words. (See
 “Electronic Data Processor,” M/S,

 March-April, ’64.)
This series of binary numbers is

the machine language, the code

 which the computer can work with.
When computers were first intro

duced it was necessary for human

 programers to translate each of the
 steps in a carefully designed com

puter program into its computer
 code equivalent in binary num

bers. Thus, the instruction “load
 address” might have been written
 as 01000001.

The first step toward what is

sometimes euphemistically called

 “automatic programing” came with
 the development of an assembly

 program which the machine could
 use to translate symbols or Arabic

 letters into their binary equivalents.
 In effect, the machine was helping

 create its own programs by trans
lating each command into the nec

essary binary number and punch
ing it on a card. These cards, pro

duced by the computer, could then
 be fed back into the computer

 with cards containing the raw data
 of the problem to be solved. “Load

 address” could now be LA instead
 of 01000001 as far as the human

 programer was concerned.
Further refinements have all

stemmed from this first great sim

plification. They have in effect
 been further developments of the

44

computer’s ability to help in the

simple clerical task of creating its
 own programs in all their detail as
 long as the actual operations that

 must be performed are first spelled
 out for the machine by the human

 programer. The next step after the
 development of the first rudimen
tary assembly programs was allow

ing the computer to assign loca
tions within its memory for instruc

tions that had to be stored.
So far, writing a program, though

infinitely simpler than it had been

 in the days when the program had
 to be prepared in the machine’s

 language, was still complicated by
 the fact that the computer re

quired one written instruction for
 each of its operations. With the de

velopment of macro instructions
 this problem too was greatly eased.

 Every computer program has cer
tain common instructions which

 are repeated several times during
 the course of the program. These
 instructions — read a card or tape,
 store for print — although simple

 in English, require detailed instruc
tions to the computer as to just
 what actions must be taken.

 Through macro instructions, the
 detailed sequential steps the com

puter must take to execute one
of these simple commands were pro

gramed into the computer itself, so
 that one simple command in sym

bolic language could trigger a
 whole series of machine-language

 instructions for the computer.
It was as though instructions

were given first — after the phase

 when the human programer had
 to put every instruction in machine
 language — in a type of pidgin

 English where every command
 had to be spelled out in detail.
 Then as programers grew more

 skilled and machines more sophis
ticated, a higher type of language

 evolved in which the machine per
formed a whole series of actions —

or rather programmed itself to per

form a whole series of actions —
 on the basis of one instruction.

A very rough and imperfect

analogy would lie in the instruc

tions given a small child asked to
 do something for the first time. At

 first they would be extremely de
tailed, telling him exactly what to

 do and how to do it. As the child
 grew older, though, the detailed in

structions could contract to one
 sentence. The difference with the
 computer was that detailed ma

chine instructions were still neces
sary, but the machine could pro

duce them itself, given the one
 overriding instruction.

The effect of macro instructions,

of course, was tremendous. Pro

gramers could be trained more
 quickly and easily, and, most im
portant of

all,
 the time required to

write programs was reduced. Since
 even today the short supply of

 programers represents a bad bottle
neck in electronic data processing,

 it can be imagined how much more
 critical this would be if it took as

 long to train programers as it once
 did, and as long to write a pro
gram.

In the time interval since the in

troduction of macro instructions,

 programing languages have grown
 immensely more sophisticated and

 versatile. Pidgin English has
 evolved into a fairly respectable

 form of Basic English, with its own
 rigid rules of grammar and syntax.

The two programing languages

discussed in this article, FORT

RAN and COBOL, were devel
oped, respectively, by IBM and the

 Department of Defense. COBOL
 is a language acceptable to

all major computers; it was developed
 as a common language. But many

 manufacturers have their own spe
cialized languages as well, which

 in most cases are more efficient on
 their machines than COBOL.

Management Services4

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 3 [1966], No. 3, Art. 7

https://egrove.olemiss.edu/mgmtservices/vol3/iss3/7

reached by two people carrying

out the comparison on different
 equipment, utilizing different com

piler programs.

Advantages and disadvantages

However, although these differ

ences may be difficult to quantify,
 it is certain that, in general, the

 use of a problem-oriented language
 inherently contains the following

 advantages:
Reduces programer training

cycle

Reduces programing effort to

accomplish a given objective

Provides an instructional me

dium that de-emphasizes technical

 rules.
It is certainly true that the use

of problem-oriented languages con

tains certain concomitant disad
vantages also:

Resulting machine-language pro

grams are relatively inefficient as

 compared to symbolic or absolute
 machine-language coding.

The programs written in prob

lem-oriented languages are difficult

 to relate to the computer hardware
 and may complicate debugging.

FORTRAN

What is the basic structure

of

FORTRAN? FORTRAN is com
posed of a relatively highly for
malized set of rules primarily

 adaptable to statements that ap
proach mathematical formulations.
 Rut it is also true that many busi

ness transactions are reducible
to precise mathematical expressions.

 For example, the computational
 algorithm normally used in connec

tion with payroll can be quantified
 rather readily. The basic structure

 of the computation (in the case of
 hourly payroll) involves a multi

plication of an hourly rate by a
 weekly total of hours in order to

 obtain a gross pay amount. Addi
tional complications may be visual

ized, such as overtime pay or night
 shift differential, which might com

plicate the algorithm.
Let us assume that the base pay

rate is $1.50 per hour. Let us

 further assume that the employee

The language of

the

 problem to be solved has little resemblance
to the numerical language of the computer which must solve it.

worked 42 hours during the week,

that there was no night shift dif
ferential involved in the calcula

tion, and, finally, that overtime is
 paid for hours worked in excess

of 40 hours. Our manual calculation
 might be somewhat as follows:

1.50 X 42 = 63.00

0.75 X 2 = 1.50

Gross Pay 64.50

If we were to present a similar

statement as a part of a FORTRAN
 computer program, it might look

 something like this:

GROSS = (RATE X HOURS) +

(HOURS - 40.0) X RATE/2.0

Arithmetical operations can be

precisely stated in FORTRAN in a
 completely general way. The pri

mary difficulty with FORTRAN is
 in the more complicated programs

 where the significance of the arith
metic statements is not readily de

terminable from the context. There
 may be need for interpretative com
ments

to
 accompany the FOR

TRAN program. Additional com
plications may develop because of

 the relative formality of the input/

output instructions and the restric

tiveness of quantifying precisely
 certain business transactions.

COBOL

What is COBOL? COBOL is a

highly structured subset of English.
 As already mentioned, COBOL is
 closer to plain English than is
 FORTRAN. For example, the state

ment noted above might be stated
 in COBOL:

MULTIPLY RATE BY HOURS GIVING STRAIGHT-

TIME ROUNDED. DIVIDE RATE BY 2 GIVING
 OVERTIME-PREMIUM. SUBTRACT 40 FROM

 HOURS GIVING OVERTIME-HOURS. MULTI
PLY OVERTIME-HOURS BY OVERTIME-PRE
MIUM GIVING OVERTIME ROUNDED. ADD
 STRAIGHT-TIME AND OVERTIME GIVING

 GROSS-PAY.

It is obvious from the foregoing

COBOL statements that such a set
 of instructions would be just as
 readable to a payroll clerk un

skilled in computer fundamentals
 as it would be to a highly trained

 programer. There are certain diffi
culties presented by COBOL in its
 present state of development. Be

cause it is relatively new, there
 are few standardized programs

May-June, 1966 455

Boutell: Problem-Oriented Languages: FORTRAN vs. COBOL

Published by eGrove, 1966

EXHIBIT I

Number of Cards

in Source
 Program

Compilation

Times

(in
 minutes)

% Increase in

Compilation
 of COBOL

 Over

Type of Problem FORTRAN COBOL FORTRAN COBOL FORTRAN
Job Order Cost Calculation 18 72 0.5007 0.7989 59.6
Sort Routine 25 56 0.4890 0.8108 65.8
Hourly Payroll Computation 35 115 0.5099 0.8390 64.5
Order Processing Cycle 22 288* 0.5040 1.1111* 120.46*

*lncludes additional output report on rejected orders.

Since COBOL is further

removed than FORTRAN

 from the precise statements

 required by the conventions

 of machine-type languages,

 it is natural to expect longer

 compilation time for COBOL

 programs than for those

 written in FORTRAN,

which have been worked out and

are available to COBOL users.
 Each installation must develop its

 own programs. Because of the rudi
mentary nature of COBOL each

 manufacturer attempts to add spe
cial subprograms to provide addi
tional service for his customers.

 Consequently, one of the an
nounced objectives of COBOL,

 that of allowing the same programs
 to be run on computers produced

 by different manufacturers, is abro
gated and its flexibility correspond

ingly reduced.
Finally, COBOL in its present

state has been designed

as
 a lan

guage to be used in connection
 with batch-controlled systems.5

 This further limits the flexibility of
 COBOL.

Efficiency test

The difficulties considered in

connection with FORTRAN and
 COBOL so far stem largely from

 an investigation of the structure of
 the language and from comparison

 of the syntactical rules. In order to
 gain some additional understand

ing of FORTRAN and COBOL,
 four relatively simple programs

 were written in FORTRAN and
 COBOL in order to determine the
 relative merits of the two lan

guages. These programs were com
piled on the IBM 7090 (operating

 under the
IBSYS

6 system, which
provides for comparable compila

tion of both FORTRAN and CO
BOL programs). Exhibit 1 above

sets forth the results of the test.
The substantial difference in the

length of the programs is readily
 apparent from this summary. Since

 COBOL is further removed than
 FORTRAN from the precise state

ments required by the conventions
 of machine-type languages, it is

 natural to expect longer compila
tion times for COBOL programs.

 As indicated in Exhibit 1, the CO
BOL programs take approximately

 60 to 65 per cent longer to compile
 on the IBM 7090 computer. The

 results of the test lend strong sup
port to the argument that FOR

TRAN is a more efficient language
 than COBOL, both in the amount

 of preparation required by the pro
gramer and in the amount of com
puter time necessary to compile

 identical programs.
Additional conclusions reached

as a result of preparing and run

ning these programs are summar
ized in Exhibit 2 on page 47.

Trend to COBOL
Another current controversy is

between the use of an intermediate
 symbolic-type language that is ma

chine-oriented and a problem-or
iented language such

as
 COBOL.

Although it is not possible to gen
eralize from a few specific cases,

 the arguments are fairly clear. The
 advocates of the machine-oriented

 languages maintain that the maxi
mum efficiency can be obtained

 through using essentially one-to-
 one correspondence between the

46 Management Services 6

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 3 [1966], No. 3, Art. 7

https://egrove.olemiss.edu/mgmtservices/vol3/iss3/7

programer’s coding and the abso

lute machine-language that pro
vides the instructions to the com

puter. The advocates of the prob
lem-oriented languages maintain

 that this advantage of machine-
 oriented languages is more than

 offset by the reduction in pro
gramer training time and program

 writing and debugging. Several of
 the large companies are either pro

graming in COBOL at the present
 time or are in the process of switch

ing from machine-oriented to prob
lem-oriented languages. The trend

 is definitely toward problem-or
iented languages and, in the case

 of business firms, COBOL seems
 to be the choice.7

A COBOL drawback
One of the major complaints

about the COBOL language has
 been its relatively elementary

 structure, requiring extensive pro
graming to accomplish relatively

simple tasks such as sorting, report

generation, and preparing internal
 subprograms for computing loga

rithms, absolute values, square
 roots, and similar repetitive-type

 mathematical algorithms. A partial
 answer to this problem has been

 provided by IBM with the COBOL
 compiler for the IBM System/360.

 Five major innovations are in
cluded in the COBOL manual for
 this system:8

A report writer facility that al

lows considerable flexibility in de

signing reports
A sort option that allows internal

sorting of an intermediate file

 through a single command
A source program library facility

that provides a badly needed

 means of obtaining recurring pro
grams from an alternate input unit

A means of adapting COBOL, a

basic batch-controlled system lan

guage, to a system employing some
 type of mass storage facility

Supplementary options necessary

EXHIBIT 2

RELATIVE ADVANTAGES

OF

TWO PROBLEM-ORIENTED LANGUAGES

One of the major complaints

about the COBOL language

 has been its relatively

 elementary structure,

 requiring extensive

 programing to accomplish

 relatively simple tasks.

FORTRAN

COBOL

1.

Availability of mathematical sub

routines (internal functions)
simplifies

program preparation.

2.

Availability of the SHARE* library
increases the flexibilty of programing.**

3.

FORTRAN is more readily adaptable
to statistical and operations research

type business problems.

4.

Internally generated variables need
not be defined

in
 a format statement.

5.

Very few words are reserved in
FORTRAN, allowing the programer

 greater freedom
in

 the choice of vari
able names.

1.

Programs are easier to prepare, to
keypunch, and to read.

2.

Output editing features are better.

3.

Use of longer data-names (maximum
of 30 characters) allows more detailed

 descriptions of the data.

4.

The logical structure of files, rec
ords, and elements approximates busi

ness practice.

5.

COBOL is more readily adaptable to

batch-controlled accounting-type appli
cations.

*This is an organization of IBM users of large-scale computers

in

 the scientific and
engineering fields. They hold regular meetings, the purpose of which is to share

 programs and information.
**This may be only a temporary advantage pending the development of standardized

subprograms

in
 COBOL.

May-June, 1966 477

Boutell: Problem-Oriented Languages: FORTRAN vs. COBOL

Published by eGrove, 1966

In the time since the introduction of macro

instructions,

 computers have progressed
from accepting crude, detailed instructions in a form of "pidgin" English into an

 immensely more sophisticated and versatile understanding of a form of Basic English.

for employing telecommunication

equipment as an integral part of
 the computer system.

Conclusions

Even though the swing seems to

be in the direction of COBOL for
 business, it seems useful at least to
 suggest possible alternative pro

graming languages that might be
 useful. The only other programing

 language in general use that seems
 to have any chance of succeeding

 is FORTRAN. It is not the purpose

of this paper to make a judgment

as to which language should, or
 will, prevail or whether PL/1 will

 eventually supersede both FOR
TRAN and COBOL. As a matter

 of fact, it is possible that all three
 languages will maintain an estab

lished place in the programing
 repertory of forward-looking busi

nesses. However, certain conclu
sions can be drawn from this dis

cussion:
There is a definite trend from

machine-oriented languages to

 problem-oriented languages.

It is almost essential, given the

present state of technology and
 programing languages, that any
 computers purchased should have

 sufficient flexibility to accept FOR
TRAN as well as COBOL programs

 with equal facility.
Strong pressures should be ex

erted to maintain uniformity in

 further developments in COBOL so
 that the language maintains the

 flexibility necessary for it to be
 translated by compiler programs
 written by each and every comput

er manufacturer.

1

The organizations participating in the
original development were the follow

ing:
Air Materiel Command, United States

Air Force

Bureau of Standards, Department of

Commerce

David Taylor Model Basin, Bureau of

Ships, United States Navy

Electronic Data Processing Division,

Honeywell, Inc.

Burroughs Corporation
International Business Machines Cor

poration
Radio Corporation of America

Sylvania Electric Products, Inc.
Univac Division of Sperry-Rand Cor

poration
2

See, for example, R. Clay Sprowls, Edi
tor, “Electronic Computers in Education

 for Business,” published by Western
 Data Processing Center, University of

California, Los Angeles, 1963,

and

Wayne S. Boutell, Auditing with the
 Computer, University of California Press,

 1965.
3

An algorithm may be defined as a
series of well defined arithmetic steps

 that are followed in order to obtain a
 desired result.

4

These languages are commonly referred
to as machine-oriented languages al

though mnemonic operation codes and
 relative addressing distinguish these lan
guages from absolute machine-language

 coding. For example, the SPS (Symbolic
 Programing

System)
 and Auto-coder lan

guages are intermediate-type
languages used in

connection
 with the IBM 1401

computer.
5

A batch-controlled system may be de
fined as a system in which it is neces

sary to accumulate related data input

(usually in sequential order) and to proc
ess this data at one time, usually updat

ing a master file at the same time. A
 batch processing operation which is most

 familiar is the processing of
a

 payroll.
6

IBSYS is an abbreviation for IBM sys

tem and is
a

 supervisory system which
does the following:

a.

In response to user requests (in
the form of control cards), it brings a

 specific compiler into memory.
b.

In response to user and program
requests, it controls input-output opera

tions.
7

For example, Westinghouse, Kaiser
Aluminum, and Republic Aviation
8

IBM Systems Reference Library, IBM
System/360 Operating System, COBOL

 Language, File No. S360-24, Form C28-
 6516-0.

48 Management

Services

8

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 3 [1966], No. 3, Art. 7

https://egrove.olemiss.edu/mgmtservices/vol3/iss3/7

	Problem-Oriented Languages: FORTRAN vs. COBOL
	Recommended Citation

	Mangagement Services, May-June 1966

