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A facile procedure for the synthesis of ultra-fine silicon
nanoparticles without the need for a Schlenk vacuum line is
presented. The process consists of the production of a
(HSiO1.5)n sol–gel precursor based on the polycondensation of
low-cost trichlorosilane (HSiCl3), followed by its annealing and
etching. The obtained materials were thoroughly characterized
after each preparation step by electron microscopy, Fourier
transform and Raman spectroscopy, X-ray dispersion
spectroscopy, diffraction methods and photoluminescence
spectroscopy. The data confirm the formation of ultra-fine
silicon nanoparticles with controllable average diameters
between 1 and 5 nm depending on the etching time.
1. Introduction
For almost 30 years, silicon nanoparticles (Si NPs) have attracted
the interest of scientists due to their unique optoelectronic
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properties, as well as their stable and diverse chemistry [1,2]. The advantages of silicon nanoparticles also

include high natural abundance and their lack of biological toxicity [3]. Currently, one of the more
desirable Si NPs in the technology industry is ultra-fine silicon nanoparticles (with diameters of less
than 10 nm). They are attractive in microelectronic devices, for the conversion of solar energy, in light-
emitting diodes (LEDs), photopumped tunable lasers and in sensors [3–9]. Ultra-fine silicon
nanoparticles are also promising candidates as anode active material for lithium-ion batteries [10,11].

There are a number of methods for obtaining silicon nanoparticles. They include: purely physical
processes such as pulsed laser ablation, heating degradation and ball milling [4,12]. Physico-chemical
methods such as chemical techniques and the widely used electrochemical etching strategy are also
possible [4]. These approaches typically usually yield nominal particle size along with narrow size
distribution, scalable production and well-controlled surface chemistry [4,12].

Chemical synthesis routes are among the earliest reported strategies [13]. Ultra-fine silicon
nanoparticles can be produced by reducing silicon halide SiCl4 through reducing agents such as
sodium, Zintl salts (ASi; A = K, Na, Mg), sodium naphthalenide and lithium aluminium hydride
(LiAlH4) in various surfactant solvents [2,4,7,8,13–20]. It has also been suggested that the use of
inverse micelles, high-pressure and high-temperature bomb reactors or sonication are necessary to
obtain ultra-fine Si nanoparticles [7,11,13,21,22]. Liu et al. developed a synthesis process based on the
reaction of metal silicide (Mg2Si, NaSi) with Br2 or NH4Br, also in the presence of a surfactant
[9,23,24]. Brus et al. and Biesuz et al. based the production of crystalline silicon nanoparticles on a
pyrolysis process [5,25]. There are also approaches based on solutions involving the reduction of a
precursor or starting material, usually involving annealing and/or etching. Examples of starting
materials for such a synthesis route are silicon monoxide (SiO) powders or sol–gel polymeric silicon
precursors (silicates, polysiloxanes and silsesquioxanes) [1,3,10,26–29]. Silsesquioxanes are commercially
widely available and easily processed in solution. Structurally, they are well-defined molecules composed
of silicon–oxygen skeletons with the empirical formula (RSiO1.5), in which R represents a variety of
functional groups (e.g. H, alkyl, silyl and aromatic compounds). These functional groups have been
widely studied and their chemistry is well established. In particular, hydrogen silsesquioxane (HSQ,
[HSiO3/2]n), which can be easily processed and is stable, has gained considerable attention because of its
earlier application as a spin-on dielectric in the microelectronics industry. The HSQ polymer precursor
can be produced by the hydrolysis and polycondensation of trialkoxy- or trichlorosilane [3,6,26,27,30,31].

In this work, we present the production of ultra-fine silicon nanoparticles using a novel and
economical technique using low-cost trichlorosilane (HSiCl3) as the feedstock and without the need
for a Schlenk vacuum line, which simplifies the process and is safer. The application of trichlorosilane
(HSiCl3) as a precursor allows one to obtain ultra-fine nanoparticles of controlled size, terminated by
hydrogen bonding. This process is a scalable. The obtained final product matches the quality of Si
nanoparticles prepared in similar synthetic routes by Veinot et al. [6,27] and Jaumann et al. [10].
Veinot et al. [27] obtained free-standing hydrogen-terminated silicon nanocrystals, as evidenced by the
characteristic stretching and scissoring frequencies at ca 2100 and 910 cm–1, respectively, from IR
spectroscopic investigations. While, Jaumann et al. [10] obtained crystalline silicon nanoparticles with
a size of 2–5 nm. They also noticed the tendency for the nanoparticles to agglomerate. Both groups
also showed a small presence of oxygen in the obtained final product, which was attributed to
residues and limited surface oxidation after sample preparation [6,10,27].
2. Experimental procedure
2.1. Chemicals
Trichlorosilane (HSiCl3, 99%) and hydrofluoric acid for analysis (HF, 48–51% in water solution) were
purchased from Acros Organics. Trichlorosilane (HSiCl3) was stored at a temperature below 0°C.
Ethyl alcohol absolute (C2H5OH, 99.8%) and hydrochloric acid (HCl, 35–38%) were purchased from
POCH. All stock solutions were used as received.

2.2. Procedure
Before starting the synthesis, a Pyrex flask with a magnetic stirrer was sealed with a septum and flushed
with argon for 2 h. Fifteen minutes before the end the flask was placed in an ice bath (salt was added to
ice to help maintain a lower temperature) and cooled to a temperature of −20°C. After that, 20 ml of
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trichlorosilane (HSiCl3) was slowly added to a three-neck round-bottom flask. The flask was purged with

argon continuously. The system was equipped with a simple exhaust to neutralize the evolving HCl
through an NaOH solution-filled gas-wash bottle. Then, 0.6 ml of pure ethanol was added. After
10 min, deionized (DI) water (15 ml) was very carefully injected while vigorously stirring into the
cooled HSiCl3 through a septum. After 1 h, the ice bath was removed and the flask was allowed to
warm to room temperature under an argon flow and was maintained for 3 h to evaporate any side
products away. The pre-dry final product—(HSiO1.5)n precursor was transferred to an oven and dried
at 80°C under vacuum for at least 12 h.

The white solid and dry precursor was then ground in agate mortar and then annealed at 1150°C in
an argon atmosphere (flow: 1 l min−1) for 2 h (heating rate: 50°C min−1 to 800°C, then 12.5°C min−1).

In the etching procedure, 1.5 g of silicon-silica composite obtain after annealing process was placed
into a Teflon beaker with magnetic stirrer. In total, 15 ml of dionized (DI) water and 3 ml of HCl (35–
38%) were added. After 5 min stirring, 7.5 ml of HF (48–51%) was added. The entire solution was
vigorously stirred for 25 min in the dark. The solution was filtered and rinsed two times with water
(2 × 10 ml) and once with ethanol (10 ml). The obtained material was dried overnight in vacuum oven
and store under argon atmosphere. The etching procedure is fully scalable.

2.3. Characterization
The obtained products were studied using Fourier transform infrared spectroscopy (FTIR) measured
with a Thermo Scientific Nicolet 6700 spectrometer with suppressed total reflection (ATR). A Smart
Orbit with a diamond crystal was used for this purpose. Intensities of the spectra were normalized
relative to the maximum recorded peak. Raman spectra were measured using a WITec Confocal
Raman Microscope (532 nm, 4 mW). Scanning electron microscopy (SEM) was performed using FEI
Quanta 250 at an accelerating voltage of 20 kV, equipped with an EDS detector (EDAX).
Photoluminescence (PL) spectroscopy was measured using the Hitachi F-2500 spectrofluorometer.
X-ray diffraction measurements were carried out with a Bruker D8 Advance diffractometer with Cu
Kα1 radiation, 1.5418 Å. The measurements were made in the range of 10–90° 2θ. In addition,
transmission electron microscopy (TEM, FEI Titan3) was used.
3. Results and discussion
The synthesis strategy of ultra-fine Si nanoparticles is based on the previously reported method by Veinot
et al. [27] and the modified route by Jaumann et al. [10] in which the production of (HSiO1.5)n sol-gel
polymer used as the precursor is obtained by the polycondensation of trichlorosilane (HSiCl3) and the
addition of water and ethanol. The next step involves annealing of the (HSiO1.5)n precursor at 1150°C
to obtain a silica matrix. The ultra-fine silicon nanoparticles are then obtained by chemical etching of
the resulting oxide matrix (figure 1d ).

In this study, by avoiding the use of a Schlenk vacuum line during the first step of the process, we
simplify synthesis apparatus, which not only reduces cost but also minimizes the risk of implosion or
explosion without compromising the quality or quantity of the obtained ultra-fine Si nanoparticles.
Moreover, the implementation of argon both during the precursor synthesis as well as in the
annealing step is a significant safety advantage. The developed system is presented in figure 1a–c.

As a result of the SiNP production steps, we obtain two intermediate materials: a (HSiO1.5)n polymer
precursor and a silicon-silica composite, and ultimately ultra-fine silicon nanoparticles. The (HSiO1.5)n
polymer precursor in the form of a white powder as a result of thermal processing, is transformed
into a dark brown solid. After the etching process, the material’s colour changes to light brown
(figure 2a). Structural changes are also confirmed by SEM imaging studies (figure 2b). The ‘fluffy’
structure of the (HSiO1.5)n powder is sintered and yields a uniform silica matrix after annealing. HF
acid etching modification affects the release of the nanocrystalline silicon particles and size. Higher
magnification images (right-most panel of figure 2a) show the powder nature of the final SiNP
product and under SEM at higher magnifications (right-most panel of figure 2b) a ‘fluffy’ product is
seen and indicates agglomerated SiNPs.

The structure and composition of the obtained materials at each step of preparation were studied and
compared using FTIR spectroscopy (figure 3a), and with Raman spectroscopy measurements. For the
(HSiO1.5)n precursor the FTIR spectrum shows a characteristic vibration at ca 2252 cm−1, which
corresponds to the Si-H stretching vibration [27]. Peaks were also recorded in the range 950–1250 cm−1,
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Figure 1. The SiNP preparation process consists of three steps: (a) (HSiO1.5)n condensation sol-gel polymer preparation; (b) annealing
of (HSiO1.5)n precursor; (c) etching the oxide matrix to obtain free-standing silicon nanoparticles. (d ) SiNP preparation strategy.
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Figure 2. (a) Photos and (b) SEM images of materials after every production step. The right-most panels show higher optical
magnifications (a) illustrating the powder nature of the SiNP product while the lower right-most panel (b) shows a fluffy
material, indicating agglomerated SiNPs. Note: HM indicates higher magnification.
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which we attribute to Si-O-Si bonds and recorded H-Si-O hybrid vibrations, whose centre is located at
about 835 cm−1 [27,32]. After the precursor heating process at 1150°C, the following changes were
observed: the Si-H stretching band (approx. 2252 cm−1) disappeared, the H-Si-O peak (approx.
835 cm−1) was significantly reduced, and the Si-O-Si vibration band (approx. 950–1250 cm−1) become
sharper. These changes indicate the presence of a silicon-silica composite. For the ultra-fine Si
nanoparticles obtained after etching (25 min), an Si-O-Si vibration band (approx. 950–1250 cm−1) is also
observed, but its narrower peak width as compared with this peak for the silicon-silica composite
suggests minor residual surface oxidation or incomplete etching [26,27]. The peak attributed to the H-Si-
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O bond (approx. 835 cm−1) increased and a weak noisy signal can be observed in the range of Si-H bond
(approx. 2252 cm−1), which may indicate partial hydrogen termination at silicon nanoparticle surface
which would provide them with a degree of environmental stability [26,27]. Complementary data were
found from the Raman spectroscopy (figure 3b). Peaks in the region of 500–550, 700 and 2440 cm−1

were recorded for the (HSiO1.5)n precursor, which can be attributed to Si-O-Si, H-Si-O and Si-H bonding
configurations, respectively [33]. A sharp Si-O-Si peak at ca 505 cm−1 is observed for the silicon
nanoparticles [33,34]. EDX analysis also confirmed the presence of silicon (1.75 keV) and a weak oxygen
peak (0.5 keV) (figure 3c). The presence of oxygen in the final product can be due in part to minute
surface oxide formation and trapped oxygen species. This matches observations by others [6,10,27].

Figure 3d shows the X-ray powder diffraction pattern of silicon nanoparticles obtained after a 25 min
etching period. The intense (2θ) diffraction peaks at approximately 28°, 47° and 56° can be easily
attributed to the (111), (220) and (311) orientations, respectively, which are typical for crystalline cubic
silicon [10,27,35]. Higher-order crystal orientations can also be observed [10,35–37]. These results agree
with the published data and further confirm the formation of ultra-fine silicon nanocrystals [10,26,35,36].

Figure 4 shows low-magnification TEM micrographs of the ultra-fine silicon nanoparticles after
25 min, 85 min, 115 min and 135 min etching time in panels a, d, e and f, respectively. The TEM data
show that the ultra-fine silicon nanoparticles tend to form agglomerates. This we attribute to the
strong hydrophobic character of silicon hydride termination and their high surface energy [10].
Figures 4c and 5c show a high magnification micrographs of silicon nanoparticles, they show clear
lattice fringes with a d spacing of approximately 0.3 and 0.24 nm corresponding to the (111) and (100)
orientation of crystalline silicon [10,11,16,38]. The TEM studies also show that the SiNPs agglomerate
easily; however, careful examination of the particles reveals that they are not faceted and are
somewhat spherical in form as, for example, shown in false colour in figure 5c,d.

The mean size and size distribution of the as-produced ultra-fine Si nanoparticles was determined by
measuring 500 nanoparticles from different regions on the grid. The average diameter of silicon
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Figure 4. TEM images of SiNP after (a) 25 min, (d ) 85 min, (e) 115 min and ( f ) 135 min of etching in low magnification; (b)
medium and (c) high magnification of SiNP after 25 min of etching.
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nanoparticles after 25 min of etching is 4.7 nm (±1.5 nm), which coincides with the Scherrer analysis from
the X-ray diffractometry studies. The average size of the obtained crystallites after 25 min etching was
estimated to be 4.8 nm (±0.9 nm) after the Scherrer analysis. Particle-size distribution histograms are
shown in electronic supplementary material, figure S1. We also explored adjustment of the ultra-fine
Si NPs mean size through etching time control. The size of nanoparticles decreases with longer
etching times. Figure 6a shows the average size decrease for etching times of 25, 85, 115 and 135 min.
The inset shows the full width at half maximum (FWHM) for the Si NPs size distributions for the
different etching times. One sees a narrowing of the FWHM with increased etching time. The ultra-
fine Si nanoparticles after different etching times still remain crystalline, as confirmed by XRD, FTIR
and EDS measurements (electronic supplementary material, figure S2). Regarding the etching
mechanisms, the processes involved have not yet been fully elucidated. To date, studies show that
diluted HF digests the silicon, while concentrated HF (49%) leaves the crystalline silicon untouched
[39]. The easiest approach to remove any native surface oxide is to rapidly immerse the material in
diluted HF, which should not significantly change the surface morphology of the silicon [39]. HF acid
attacks polarized Si-O bonds, thereby removing the oxide and leaving a passivated hydrogenated
silicon surface. Raghavachari et al. in their research proposed a model in which some of the surface
atoms are fluorinated, which allows for continuous digestion/etching of crystalline silicon [40–42].
Jacob et al. suggested that OH– ions present in pH-enhanced etching solutions play an essential role in
etching the Si (111) surface and probably limit the rate of silicon digestion [42,43].

PL measurements were carried out for the silicon nanoparticles after 25, 85, 115 and 135 min etching
times. The PL spectra of Si nanoparticles suspended in toluene are shown in figure 6b [44]. The
measurements were performed at room temperature using an excitation wavelength of 220 nm. For
the tested samples, similar spectra with a peak in the 390–392 nm (± 1 nm) range were observed. This
suggests that small changes in diameter from the ultra-fine Si NPs do not significantly alter their PL
properties. The position of the PL peaks in the violet region of the spectrum is consistent with
previous reports of silicon nanocrystals of similar size [7,8,19,22]. Wilcoxon et al. [22] for silicon
nanoparticles in the size range 2–10 nm received the most intense PL with a peak centred at
approximately 365 nm (excitation wavelength 245 nm), and Tilley et al. [7] for nanoparticles 1.8 nm ±
0.2 nm at an excitation wave of 290 nm observed a peak with a maximum at 335 nm. Both research
groups attributed the obtained PL results to direct electron-hole recombination in the silicon
nanocrystals, which can also be attributed to the lack of PL from defect or trap state recombination,
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which usually occurs around 600 nm [7]. Different solvents, differences in the size range of the
nanoparticles or their termination may also cause slight differences in the range of the PL peak
[1,8,26,27,44].

We also noted that PL intensity depends on the concentration and time of sample preparation using
ultrasonication. The following concentrations were tested: 0.25%, 0.1%, 0.05% and sonication times: 1, 5,
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10, 20, 30 min. The strongest peak intensities were found for a 0.1% concentration and after 10 min of

sonication, which is probably related to the disintegration of the silicon nanoparticle agglomerates
[17,21,28].
 lsocietypublishing.org/journal/rsos
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4. Conclusion
In summary, we have successfully demonstrated a simplified synthesis protocol for ultra-fine silicon
nanoparticles which has the advantage of being safer and cheaper than most other approaches. The
technique could easily be scaled up. Spectroscopic and microscopy characterizations as well as
diffractometric studies confirm the formation of crystalline ultra-fine SINPs with controllable mean
diameters ranging from 1 to 5 nm. PL studies were conducted. The PL results point to direct electron-
hole recombination in the silicon nanocrystals, which can also be attributed to the lack of PL from
defect or trap state recombination. The presented synthesis approach for ultra-fine silicon
nanoparticles helps advance their fabrication, which can be useful for applications, for example, SiNP
as active anode material in lithium-ion batteries.
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