
PHYSICAL REVIEW RESEARCH 3, L042017 (2021)
Letter

Chirality flip of Weyl nodes and its manifestation in strained MoTe2

Viktor Könye ,1 Adrien Bouhon ,2 Ion Cosma Fulga ,1 Robert-Jan Slager ,3 Jeroen van den Brink ,1,4

and Jorge I. Facio 1

1Institute for Theoretical Solid State Physics, IFW Dresden and Würzburg-Dresden Cluster of Excellence ct.qmat,
Helmholtzstr. 20, 01069 Dresden, Germany

2Nordic Institute for Theoretical Physics (NORDITA), Hannes Alfvéns väg 12, 106 91 Stockholm, Sweden
3TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

4Institute for Theoretical Physics, TU Dresden, 01069 Dresden, Germany

(Received 9 July 2021; accepted 15 October 2021; published 5 November 2021)

Due to their topological charge, or chirality, the Weyl cones present in topological semimetals are considered
robust against arbitrary perturbations. One well-understood exception to this robustness is the pairwise creation
or annihilation of Weyl cones, which involves the overlap in energy and momentum of two oppositely charged
nodes. Here we show that the topological charge can in fact change sign, in a process that involves the merging of
not two, but three Weyl nodes. This is facilitated by the presence of rotation and time-reversal symmetries, which
constrain the relative positions of Weyl cones in momentum space. We analyze the chirality flip process, showing
that transport properties distinguish it from the conventional, double Weyl merging. Moreover, we predict that
the chirality flip occurs in MoTe2, where experimentally accessible strain leads to the merging of three Weyl
cones close to the Fermi level. Our work sets the stage to further investigate and observe such chirality flipping
processes in different topological materials.

DOI: 10.1103/PhysRevResearch.3.L042017

Introduction. Weyl semimetals are arguably the most ro-
bust form of gapless topological matter [1–9]. They host
pointlike degeneracies of their energy bands, called Weyl
nodes (or cones), whose low energy, linear dispersion relation
is similar to that of elementary particles called Weyl fermions
[10]. These band touching points are not accidental, but are
a manifestation of the topologically nontrivial character of
the semimetal phase. Each node has a chirality associated to
it, a topological charge given by its Chern number, which
means that an isolated Weyl cone cannot be gapped out
by any perturbation. Instead, it can only be moved in en-
ergy and momentum space, or tilted [11]. This property sets
Weyl semimetals apart from the many other types of gapless
topological matter, in which degenerate points [12–17] (or
lines [5,18]) require additional symmetries in order to remain
protected.

Provided that Weyl cones are not isolated, it is possible
to change their number: they can be created or annihilated
pairwise when they overlap in energy and momentum. Similar
to electrodynamics, these two-node processes require “topo-
logical charge conservation,” meaning that the total Chern
number of all band touching points in the Brillouin zone
(BZ) must vanish [1]. The pairwise creation and annihilation
of Weyl cones has been studied extensively, especially as a
method to engineer Weyl semimetal phases by applying per-
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turbations such as strain [19–22], magnetic field or changes in
magnetization direction [23–26], disorder [27–30], phonons
[31], or high-frequency illumination [32,33] to real materials.

In theory, there is no constraint limiting the number of
Weyl nodes that can merge at a given point in the BZ. In prac-
tice, however, processes involving the simultaneous overlap of
three or more cones of different chirality are highly improba-
ble, especially when each node is allowed to occupy any point
in energy and momentum space. To date, multi-Weyl merging
has been studied mainly in the context of rather exotic types
of topological semimetals [14,34], hosting “unconventional
fermions.” There, the symmetry-protected band degeneracies
may split into multiple Weyl nodes if very particular symme-
tries are broken [14,35,36].

Here we study simple three-node processes occurring
purely inside a Weyl semimetal phase, without unconventional
fermions: a single Weyl cone overlaps with a pair of oppo-
sitely charged ones, causing the latter to disappear from the
band structure. By topological charge conservation, the result
is a single node with a flipped chirality. Interestingly, while
lattice symmetries are not responsible for the existence of the
degeneracy points, they play a fundamental role in enabling
the three-node process to occur. This is because they restrict
the relative positions and charges of the nodes in the BZ
(for instance, to planes or lines). Throughout the following,
we will focus on systems obeying a combination of twofold
rotation and time-reversal symmetry.

One of the advantages of studying multinode processes in
Weyl semimetals as opposed to more exotic types of gapless
topological matter is that Weyl semimetal phases are much
more abundant in real materials [37]. In fact, we find that one
of the earliest predicted Weyl materials, MoTe2 [38], hosts
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very close to the Fermi level a three-node process upon apply-
ing small uniaxial strain. As a result of this process, a Weyl
node in a high-symmetry plane flips its chirality. This shows
that the three-node process is within reach of photoemission
experiments. Further, it shows that strain in real materials can
act as a “chirality switch,” allowing one to tune the transport
properties associated with gapless topological systems.

Chirality flip process in simple models. We start by dis-
cussing how the chirality of a Weyl node can flip using toy
models. Given the requirement of topological charge conser-
vation and considering only simple Weyl cones, chirality flips
are only possible if at least two other, oppositely charged Weyl
nodes are involved. For concreteness, we consider processes
that start from three Weyl nodes with Chern numbers C = +1,
−1, −1, and end with a single Weyl node having C = −1 [39].
We find that there are two scenarios through which this can
happen: one that involves a three-node process and one that
only involves two-node processes.

We begin by discussing the first scenario, corresponding
to a three-node process, meaning that all three Weyl cones
simultaneously overlap at the same point in the BZ. While
this merging could in principle occur at generic momenta,
its likelihood can be greatly increased when symmetries con-
strain the relative positions and charges of the band touching
points. As mentioned above, we will consider a continuum
model invariant under the combination of twofold rotation and
time-reversal symmetries, with Hamiltonian

H1(k) = kxσx + (
αkz + k3

z

)
σy + kyσz. (1)

Here, k = (kx, ky, kz ) is the quasimomentum and σi are Pauli
matrices encoding the degree of freedom associated with the
two bands. For simplicity, we will set units such that the
Hamiltonian and the quasimomentum are dimensionless.

The Hamiltonian Eq. (1) obeys a twofold rotation sym-
metry along the kx = ky = 0 axis, with operator C2 = −iσy,
as well as time-reversal symmetry T = iσyK (where K is
complex conjugation), such that

T H1 (k)T † = H1 (−k), (2)

C2 H1 (k)C†
2 = H1 (−kx,−ky, kz ). (3)

Their combination C2T = K implies that

H∗
1 (kx, ky, kz ) = H1 (kx, ky,−kz ), (4)

and that the Hamiltonian is real for kz = 0.
The constraint Eq. (4) means that, if a Weyl cone is present

in the C2T invariant plane, kz = 0, then it cannot exit the
plane, due to topological charge conservation. Further, if there
is a Weyl node at kz > 0, another one must be positioned
symmetrically at kz < 0. Note that pairs of out-of-plane cones
must have the same Chern number, since both time-reversal
and twofold rotation are charge preserving.

For α < 0, H1 hosts three Weyl cones, a positive chirality
node at the � point, k = 0, and two negative chirality nodes
at k = (0, 0,±√|α|). In contrast, for α > 0 there is a single
Weyl node with negative chirality at �. As shown in Figs. 1(a)
and 1(b), changing the parameter α continuously from nega-
tive to positive values causes the three nodes to merge at the
same point, such that the central node flips its chirality.
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FIG. 1. Schematic representation of the Weyl node processes.
The red (blue) points represent positive (negative) chirality Weyl
nodes, the arrows represent their trajectories upon increasing α, and
the C2T -invariant plane is marked in blue. (a) Band structure of
Eq. (1) plotted at kx = ky = 0 for three values of α. (b) Chirality flip
with a three-node process, as occurring in H1. (c) Chirality flip with
two-node processes, as happens in the Hamiltonian H2.

The three-node process occurring in the band structure of
H1 is protected by symmetry: the Weyl merging must involve
all three nodes simultaneously. This is because the Hamilto-
nian obeys C2 and T separately, and because all Weyl nodes
are located on the twofold rotation axis. The band touching
points cannot move away from kx,y = 0 without breaking the
rotation symmetry, and they must be positioned symmetrically
with respect to kz due to time-reversal symmetry. The only
allowed overlap is thus at �.

The presence of a chirality flip in H1 is also related
to topological quantities. Due to the presence of C2T , the
Hamiltonian is real at kz = 0. Therefore, a closed momentum-
space loop in this plane will be characterized by a π -quantized
Berry phase, provided that the loop encircles the central node.
This Z2 topological invariant indicates that the parity of nodes
inside the loop must be conserved [40,41]. Therefore, the
central node is not allowed to leave the plane, but it is allowed
to reverse its chirality.

If the system instead hosts Weyl cones away from the
rotation axis, or if it obeys only the combined C2T symmetry
but not its individual components, the three-node process is
not symmetry protected anymore. This does not mean that it
is forbidden. Even if it is not forced to occur, it still can, and
as we show later actually does happen in real materials.

We now move on to discuss the second scenario for the
chirality flip, one that does not involve a three-node process.
We illustrate this scenario in Fig. 1(c), which shows the Weyl
points of the Hamiltonian

H2(k) = kyσx + kxkzσy + (
k2

x + k3
x − k2

z − α
)
σz. (5)

Note that H2 obeys the same constraint as H1 in Eq. (4), but
has neither rotation nor time-reversal symmetries.

For α < 0 there are three Weyl nodes in the band structure
of H2: one in the C2T invariant plane kc = (k0, 0, 0), where
k0 is the single real solution of k3 + k2 = −|α|, and two away
from the C2T plane at ks = (0, 0,±√|α|). Due to C2T , the
outside nodes can only enter the plane at the same point, as
before. However, now they can meet without the third node,
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thus forming a double Weyl point. In H2, the double Weyl
point occurs at kz = 0 when α = 0. For α � 0 the overlapping
nodes separate again, and all three cones are in the C2T plane,
located at (ki, 0, 0), where ki are the real solutions of k3 +
k2 = |α|. The three nodes remain until α = 4/27, at which
point two of the opposite chirality Weyl points annihilate. At
α > 4/27, we are left with a single Weyl node. The trajectory
of all three Weyl cones is shown schematically in Fig. 1(c).
Similar to the behavior of nodes in the spectrum of H1, going
from negative to positive α converts a positive chirality Weyl
point into a negative chirality one.

As before, considering a momentum-space loop in the C2T
plane that encloses the projections of all nodes in Fig. 1(c), we
find a π -quantized Berry phase for all α. This indicates that
the two-node and three-node process cannot be distinguished
topologically by using the Berry phase. This is expected, as
one can imagine continuously moving the meeting point of
the out-of-plane nodes until this point overlaps with the kz =
0 node. However, when considering an infinitesimally small
loop around the initial red node, a blue node will have to cross
this loop for some α, thus ensuring a discontinuity in the Berry
phase.

We note that C2T symmetry also relates to the Euler class
[42–48], which quantifies the obstruction for pairs of Weyl
nodes to leave the C2T plane. For a generic, multiband system
obeying C2T symmetry, this obstruction is expressed by an ad-
ditional set of topological invariants, independent of the Chern
numbers, which characterize Weyl nodes inside the kz = 0
plane. These additional invariants are called “non-Abelian
frame charges,” and we denote them by q. A pair of nodes
with opposite non-Abelian charges have a Euler class of zero,
and a pair of nodes with the same non-Abelian charge carry a
nonzero Euler class. Importantly, if the Euler class is nonzero,
then the two nodes are not allowed to exit the plane, neither
by merging and moving away from kz = 0 nor by annihilating
with each other.

In our two-band models, these additional invariants q are
given simply by the winding number of the vector multiplying
the σ matrices [45], and take values q = ±1. For the two-
node process shown in Fig. 1(c), the Euler class has several
consequences. First, the out-of-plane nodes (blue) must ac-
quire opposite non-Abelian charges (q = +1 and q = −1)
once they enter the plane, reflecting the fact that this pair is
allowed to leave the C2T plane again, through the reversed
process. Further, the annihilation of the initial in-plane node
(red) with one of two nodes that entered the plane tells us
that they must have opposite non-Abelian charges. Therefore,
the non-Abelian charge q of the remaining node must be the
same as that of the initial in-plane node at the beginning of
the process. In other words, even though the Weyl cone flips
its chirality, the non-Abelian charge associated to it remains
conserved. There could be no annihilation if the nodes of
equal chirality (blue) were swapped, since the two merging
nodes would then have the same value of q.

Transport properties. The initial and final stages of both
chirality flipping processes are the same. This means that the
observables for large |α| have the same qualitative behavior
for the two processes. The difference in the two scenarios is
prominent close to α = 0, where the two Weyl nodes outside
of the C2T invariant plane reach the plane.
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FIG. 2. Ratio of conductivities in the plane of the three Weyl
nodes as a function of the parameter α for different chemical po-
tentials μ. Panel (a) shows the three-node process and (b) shows the
two-node process.

We study the differences between the two processes by
computing the conductivity using semiclassical Boltzmann
transport theory in the constant relaxation time approxi-
mation. The details of the calculations are shown in the
Supplemental Material (SM) [49]. At large |α| and low en-
ergies, both systems show a similar behavior: the conductivity
of isolated Weyl nodes is σ j j ∝ μ2 [50], with j = x, y, z and
μ the chemical potential measured relative to the Weyl node
energy. At α = 0, however, the two systems are significantly
different. In the three-node process we have a C = −1 node,
with linear dispersion in kx and ky and cubic dispersion in
the kz direction. In the two-node process we have a double
Weyl point with C = −2 and with quadratic dispersion in
kx and kz, but linear dispersion in ky. This difference in the
dispersion at low energies results in different conductivities
as a function of chemical potential. At α = 0 the three-node
process is characterized by

σxx ∝ μ4/3, σyy ∝ μ4/3, σzz ∝ μ8/3, (6)

whereas the two-node process shows

σxx ∝ μ2, σyy ∝ μ, σzz ∝ μ2. (7)

Note that in the latter case we only focused on the double Weyl
node forming at kz = 0. The third Weyl node will contribute
additively to the conductivity (see SM [49]).

These differences are prominent when looking at the con-
ductivities in the plane of the three nodes (σxx and σzz). In
Fig. 2 we plot the ratio σxx/σzz as a function of α for different
chemical potential values. Panel (a) shows the three-node
process, in which the ratio is enhanced close to μ = 0 and
α = 0, which is due to the different dispersions in the two
directions. On the contrary, panel (b) shows that σxx/σzz = 1
at α = 0 for the two-node process, because of the identical
dispersion relations in the two directions.

Weyl nodes in strained MoTe2. Many materials reported
to host Weyl cones have C2T symmetry, and in several cases
Weyl nodes are placed inside the C2T -invariant plane, includ-
ing {W,Mo}Te2 [38,51], Ta{Ir,Rh}Te4 [52], and ZrTe [53].
Under a suitable external perturbation, these compounds are
natural candidates for the three-node process described above.
As an example, we show based on density-functional calcu-
lations that uniaxial strain in MoTe2 controls a process of
the type sketched in Fig. 1(b). We perform fully relativistic
calculations as implemented in the FPLO code [54]. We use
as equilibrium lattice parameters those reported in Ref. [38]
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FIG. 3. (a) Band structure of MoTe2. W v,c
1 (W v,c

2 ) is a Weyl node
outside (inside) the kz = 0 plane, and connects valence and con-
ducting bands. Analogously, W v,v

1 and W v,v
2 connect the two upper

valence bands. Blue (red) corresponds to negative (positive) chirality.
(b) Brillouin zone including the Weyl nodes W v,v

1 and W v,v
2 having

positive kx, ky coordinates. The kz = 0 plane is indicated in blue.
(c),(d) Energy and momentum trajectories of W v,v

1 and W v,v
2 as a

function of tensile strain. Green arrows indicate the trajectories upon
increasing the tensile strain.

at 100 K (a = 3.468 Å, b = 6.31 Å, and c = 13.861 Å). We
focus on uniaxial strain such that the lattice parameter a is
enlarged. For a fixed deformation δa (measured in percent
of the original value of a), we determine the deformations
of b and c according to the Poisson ratios γab = 0.19 and
γac = 0.96 reported in Ref. [55]. Previous works have shown
that treating the Mo-4d shell with the GGA+U method im-
proves the description of photoemission experiments provided
by GGA [31,51,56,57]. Thus we use here the former method
with J = 0 and U = 2.6 eV. Further details, including the
robustness of our results to all these choices, are presented
in the SM [49].

Figure 3(a) shows the band structure of MoTe2 without
strain (δa = 0) along a path that includes Weyl nodes con-
necting the higher valence and lower conducting bands (W v,c

1
and W v,c

2 ) and nodes between the two upper valence bands
(W v,v

1 and W v,v
2 ). The results of interest in this work originate

in the latter two which are found 25 meV (W v,v
1 ) and 34 meV

(W v,v
2 ) above the Fermi level. Note that both are type II, or

overtilted nodes, unlike the band touching points of the toy
models presented above. W v,v

1 has seven other partners in
the BZ, which together form a set of eight nodes at generic
momentum coordinates, which are related to each other by the
reflection symmetries Mx and My, the twofold rotation around
the c axis, C2, and time reversal T . On the other hand, there are
only four nodes of the type W v,v

2 , all of which are positioned
inside the C2T -invariant plane [Fig. 3(b)]. As δa increases,
the energy difference between W v,v

1 and W v,v
2 decreases and

vanishes at the critical point δa
c ≈ 0.5 % [Fig. 3(c)].

Within our numerical precision, at δa
c the Weyl nodes W v,v

1
are annihilated, while the nodes W v,v

2 change their chiral-
ity. There are a total of four such processes throughout the

entire BZ, one at each quadrant of the (kx, ky) plane, due
to the presence of reflection symmetries. In a given quad-
rant, before the Weyl merging, one finds a pair of nodes
at finite kz and Chern number C = −1, and a single node
having kz = 0 and C = 1. After the merging, only a single
Weyl node having C = −1 and kz = 0 exists [Fig. 3(d)]. Thus
MoTe2 realizes a three-node process of the type discussed
previously.

Note that none of the nodes are on the twofold rotation axis,
so the triple-Weyl merging is not forced to occur, i.e., it is not
protected by symmetry. Instead, our results suggest that the
three-node process is favored energetically, since it involves
a smaller change in the local gap between the bands forming
the Weyl cones (see SM [49]).

Conclusion. We have shown that the topological charge
associated to Weyl cones can change sign. This chirality
flip involves three nodes and may occur generically in Weyl
semimetal phases. We discussed the two generic mechanisms
by which this can happen: a three-node process, where a triplet
of Weyl cones merge at the same point in the BZ, and a
two-node process, which occurs by means of successive, pair-
wise mergings of nodes. Additional symmetries, in our case
time-reversal and twofold rotation, increase the likelihood
of chirality flips by constraining the positions and relative
charges of Weyl nodes. In some cases, symmetries may even
enforce the occurrence of the three-node process.

Our results indicate that the chirality flip occurs in one of
the most well-studied Weyl materials, MoTe2, where moder-
ate uniaxial strain leads to a simultaneous merging of three
nodes close to the Fermi level. Depending on the doping
level of different MoTe2 samples, this indicates that chirality
flips are within reach of photoemission and transport experi-
ments. It could be interesting to extend our study of electronic
transport to models relevant to MoTe2, in particular to magne-
totransport properties sensitive to the chiral anomaly.

More generally, our work sets the stage for further inves-
tigating such chirality converting processes in a wide range
of materials and scenarios. As we have mentioned, there
is an abundance of Weyl materials obeying C2T symmetry,
many of which host Weyl cones pinned to the C2T -invariant
plane. Furthermore, similar processes could be also observed
in topological metamaterials that host Weyl nodes such as
interacting spin systems [58,59] or multiterminal Josephson
junctions [60,61].

An interesting direction for future work could be to exam-
ine the behavior of chiral topological metals, which may obey
time-reversal and rotation symmetries, but in which inver-
sion symmetry is strongly broken. In these systems, Kramers’
theorem guarantees the presence of Weyl points at the time-
reversal invariant momenta (TRIM) of the BZ. When TRIM
points lie on a rotation axis, we have shown that chirality flips
must occur via a three-node process.
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