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Abstract

We address the linear stability of non-constant base states within the class
of mass conserving free boundary problems for degenerate and non-degenerate
thin film equations. Well-known examples are the finger-instabilities of growing
rims that appear in retracting thin solid and liquid films. Since the base states
are time dependent and do not have a simple travelling wave or self-similar form,
a classical eigenvalue analysis fails to provide the dominant wavelength of the
instability. However, the initial fronts evolve on a slower time-scale than the typ-
ical perturbations. We exploit this time-scale separation and develop a multiple-
scale approach for this class of stability problems. We show that the value of the
dominant wavelength is rapidly attained once the base state has entered an ap-
proximately self-similar scaling. We note that this value is different from the one
obtained by the linear stability analysis with "frozen modes", frequently found in
the literature. Furthermore we show that for the present class of stability problems
the dispersion relation behaves linear for large wavelengths, which is in contrast
to many other instability problems in thin film flows.

1 Introduction

Linear stability analysis is one of the most important tools to predict pattern forma-
tion in many phenomena in nature and technological processes. Historically, this
theory has been developed to explain some of the most fundamental instabilities in
hydrodynamics and other fields, such as Rayleigh-Bénard convection or vortices in
Taylor-Couette flow, to name only two examples. The basic idea is to assume that
the emergence of a pattern is initiated by infinitesimally small perturbations of a typi-
cally uniform base state, which then evolve according to a linearized system of model
equations. If the shape of the base state is constant in time, the coefficients of the lin-
earized problem are time-independent and the general solution can be constructed,
in principle, from the knowledge of the spectrum of the operator that describes the
linearized model. If the spectrum extends into the upper half of the complex plane,
some components of a generic perturbation (arising in practice as noise, for example)
will grow, typically exponentially, thus driving the system into a new state. Moreover,
the part of the spectrum with the largest real part will eventually dominate the evolv-
ing features and e.g. determine the wavelength of periodic patterns. This approach is

1



commonly called normal modes analysis and has shown to be an accurate method
for a vast range of stability problems.

However, this concept has to be reconsidered for problems where the corresponding
eigenvalue problem has non-orthogonal eigenfunctions i.e. the linearized operator is
non-normal. In this case, even if all of the corresponding eigenvalues, or growth rates,
are negative, perturbations may still be amplified arbitrarily large. This is known as
transient growth and has been established as a mechanism that can give sufficiently
large amplitude corrugations to destabilize the system by exciting nonlinear effects
[1–3]. In fact, it was shown in [4] that transient growth can be investigated within the
framework of pseudo-spectra of the corresponding linear system. Since then, these
ideas have been put to fruitful use in many (in)stability problems, e.g. in fingering
problems for thin films [5, 6] or in Rayleigh-Bénard-Marangoni convection [7].

Furthermore, for many stability problems the corresponding base states are not con-
stant and the normal modes analysis fails for that reason. To still get information on
the dominant wavelength of the instability, amplifications of the initial condition can
be computed numerically by solving the linearized system directly, i.e. as an initial
value problem, in some cases combined with an optimal control approach to find the
perturbation that leads to the largest amplification and therefore dominates the fea-
tures of the instability [7–9]. This essentially takes up the idea of transient growth for
non-normal operators. Although, in principle, it is possible to numerically proceed in
this way, it is desirable to recover the type of insight into the mathematical structure of
the instability that is usually provided by spectral analysis for time-independent base
states.

In the literature, a frequently used approach for time-dependent stability problems is
the quasi-stationary or so-called "frozen-modeäpproximation where the time-dependence
appearing in the coefficients of the linearized system is treated as a parameter. For
each value of this parameter, the eigenvalues are inspected with respect to their posi-
tion in the complex plane. This has been described in a series of articles in [10, 11] for
a receding free film problem or [12] for evaporating the solutal Marangoni instability.
Difficulties arise if the system changes significantly during the evolution of the pertur-
bation, for example, if the frozen mode analysis has unstable modes at the beginning
which become stable later on. More generally, the problem with this approach is that
it completely ignores the influence of the changing base state on the history of the
perturbation.

An alternative to this quasi-stationary approach is provided if the base state changes
slowly compared to the time scale of the linearized system. Then a multiple scale
method can be used to incorporate the change into an approximation of the evolu-
tion of the perturbation. In this direction a recent paper by [13] develops an extension
of the multiple-scale method for a parabolic convection-diffusion equation with slowly
and non-periodically changing coefficients and a slowly moving boundary that has
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been derived from a model for Bénard-Marangoni convection in a liquid layer of a
volatile solvent and a non-volatile polymer. There, the connection between the eigen-
values of the momentary system and the amplification of an initial perturbation was
derived via a multiple-scale method making use of the time-scale separation between
the fast diffusive time scale which is relevant for the perturbation and the slow change
of the concentration and thickness of the layer in the base state. The derivation in-
cluded higher corrections in order to assess the validity of the asymptotic expansion.
Alternatively, an asymptotic approximation via a WKB ansatz has been given in [14]
and for the case of Rayleigh-Bénard convection with time dependent heating a similar
approach was investigated in [15].

In this study we focus on the linear stability analysis for the family of thin-film problems
characterized by degenerate or non-degenerate parabolic equations

ht +∇ · (hn∇∆h) = 0, (1.1)

with 0 ≤ n < 3. They arise from mass conserving free boundary problems for the
thin film height h. As a physically relevant example of a dewetting film, (1.1) has been
derived from the Navier-Stokes equation in the limit of small aspect ratios [16]. When
an extended film is deposited onto a partially wettable substrate and then retracts
after an initial rupture event has created a hole, the growing rim of the hole develops
undulations along its spanwise direction [17–20]. The value of n here depends on the
condition imposed at the liquid-solid substrate.

For large slip, which arises at the liquid/solid boundary as a manifestation of the non-
Newtonian flow properties in shearing polymer films, the value is n = 2 [21]. For this
value of n, and in fact for all non-negative n < 3, imposing a fixed contact angle and
a no-flux condition at h = 0 leads to a problem formulation that is consistent with
a moving contact line [22, 23]. For n = 2, undulations evolve into a characteristic
finger–like pattern [24].

Rims of retracting solid films are susceptible to a similar instability which occurs in var-
ious practical applications. It can, for instance, be observed when thin silicon films are
annealed and lead to the formation of fingering instabilities in the 〈100〉 oriented front
[25]. The fingers break down and form nanoislands at regular intervals, a process that
is used in the fabrication of advanced nanodevices [26, 27]. Formation of protrusions
and pinch-off are also observed in experiments with gold films [28]. For interfaces of
solids subject to surface diffusion [29–33], the material flux arises from gradients of
the curvature-dependent chemical potential, leading to a fourth order, nonlinear equa-
tion for the evolution of the solid surface. Despite the different transport mechanism –
surface diffusion [29] – the mathematical model governing the evolution of the height
h again leads to a differential equation of form (1.1) but with n = 0. At the contact line,
a fixed contact angle and no flux are commonly imposed as boundary conditions.

Since the thickness of the flat film into which the rim moves is assumed to be con-

3



stant, while the rim itself grows, the time dependence cannot be removed by a single
choice of self-similar coordinates. Thus, the linearization leads to a problem with time-
dependent coefficients which have been approached by different authors. In [32], the
linear stability of a rim in a solid film retracting under surface diffusion is addressed
by a “frozen mode” analysis where the time dependence of the coefficients in the
linearized problems is treated as a parameter.

Another approach was pursued in [24] for liquid dewetting, where the initial value prob-
lem resulting from the linearization was solved numerically to track the amplification
of a perturbation. On the other hand, for long times, the leading order outer problem
for the rim admits a traveling wave solution [23, 34], since the inflation of the rim is
slow once it has become large compared to the unperturbed film. If this growth is
neglected, the traveling wave solution can be treated as stationary in a suitably cho-
sen comoving frame of reference and a normal-mode ansatz is possible again. Using
scaling arguments to take into account the evolving base state, the amplification of
a perturbation was inferred from the resulting spectrum [34, 35]. A related approach
was followed for a model of anisotropic solid dewetting in [36].

In this study we will develop a systematic WKB analysis to determine the evolution of a
perturbation. The approximation remains valid on the long time scale of the changing
system, and is used to derive in particular the wave number of the most amplified per-
turbation. This wave number is different from the most growing one in a frozen-mode
approach and is rapidly attained once the base state has entered an approximately
self-similar scaling. Moreover the asymptotic solution for the dispersion relation in the
long wave limit reveals that the dependence of the growth rate on the wave number is
linear, whereas in many other capillary instability problems it is quadratic.

The paper is organized as follows. After formulating the free boundary problem for
(1.1) in section 2, we introduce the long-time asymptotics for the base state in section
3. Detailed analytical an numerical results, referring to this and the following sections,
are presented for the cases n = 0 and n = 2, or 3/2 < n < 3 respectively, wherever
possible. In section 4, a WKB approximation for the associated linearized problem
is developed and used to determine the most amplified mode and its wavenumber.
Finally, we summarize our results in section 5.

2 Formulation

We consider an evolution problem for the film profile z = h(x, y, t), given for t > 0 by
the PDE (1.1) on the time-dependent domain Ω = {(x, y); s(y, t) < x < ∞, −∞ <
y <∞} and by appropriate conditions at the free boundary and in the far field, namely
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h = 0 , x = s(y, t) (2.1a)
∇h · ns = θ , x = s(y, t) (2.1b)

hn (∇∆h · ns) = 0 , x = s(y, t) (2.1c)
lim
x→∞

h = 1. (2.1d)

The first three equations represent, respectively, the presence of a contact-line with
fixed slope θ and no flux at x = s(y, t), and the last condition prescribes that we have
a flat film at x→∞, with a thickness that has been scaled to one. Here,

ns = (1,−∂ys)/
(
1 + (∂ys)

2
)1/2

is the normalized normal vector along x = s(y, t) in the (x, y)- plane pointing into Ω,
as sketched in Figure 1. The initial conditions

h(x, y, 0) = hi(x, y), s(y, 0) = si(y), (2.2)

are assumed to be chosen consistent with (2.1). We note that the interval 0 ≤ n < 3
subdivides into essentially three separate cases, n = 0, 0 < n ≤ 3/2, and 3/2 < n <
3. The first one is instructive, because the PDE is linear and therefore the analytic
results can be carried out much further. Whereas it has a simple asymptotic structure,
the rim profile pinches off after a finite time. While for n > 3/2 this does not happen,
the film profile decomposes into different asymptotic scaling regimes that need to
be matched. The intermediate case combines both features and is not pursued here
further since it does not add to the discussion of the stability analysis.

3 Base state

We consider a time-dependent base state hb = hb(x, t) which is constant in the y-
direction and has a straight contact line sb = sb(t). We transform to a coordinate
system moving with the contact line via hb(x, t) = h̃b(x̃, t), x̃ = x− sb(t), so that after
dropping the tilde, we have

∂thb − ṡb ∂xhb + ∂x
(
hnb ∂xxxhb

)
= 0 , for x ≥ 0, (3.1a)

hb = 0 , ∂xhb = θ , hnb ∂xxxhb = 0 , at x = 0, (3.1b)
lim
x→∞

hb = 1 . (3.1c)

Notice that due to mass conservations, hb satisfies∫ ∞
0

hb(x, t)− hb(x, 0) dx = sb(t). (3.2)
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Figure 1: A sketch of a retracting rim with a sinusoidal perturbation in the spanwise
(y-) direction.

In fact, an equivalent formulation of (3.1) that we use as the basis for the numerical
discretization is achieved by replacing the third condition in (3.1b) by (3.2). The do-
main is truncated at x = L∞, where L∞ is chosen large enough so that the growing
rim structure is accommodated up to the desired time, typically much larger than 100.
The resulting system is discretized in space using standard centered finite differences
on an equidistant grid (with a typical grid spacing ∆x = 0.1), and a trapezoidal rule for
(3.2), and in time with a (fully implicit) Euler scheme. The latter is combined with step
doubling and extrapolation for higher accuracy and time step control. For the initial
conditions, we used a smoothed Heaviside profile

sb(0) = 0, hb(x, 0) =

{
1− θ(x− 1)2/2 for 0 ≤ x ≤ 1,

1 for x ≥ 1.
(3.3)

Long time solution

Consistent with the analysis in [21–23, 31], the numerical solutions show that for long
times, t → ∞, the position of the contact line sb and the maximum height of the rim
evolve according to a power law, see figs. 2(b) and 3(b). We briefly summarize and
adapt the previous results to the case studied here and compare with the numerical
results.

To capture the long time behaviour analytically, we rescale t = τ/δ and consider the
limit δ → 0 with τ fixed. The observed power law behaviour suggests rescaling sb by
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δ−σ, where the exponent σ > 0 needs to be determined. Mass conservation (3.2) and
the assumption that height and width of the rim rescale identically then motivates the
choices

sb(t) = δ−σSb(τ) , x = δ−σ/2X, hb = δ−σ/2Hb. (3.4)

Inserting these scalings into (3.1a) reveals that only the second and third terms can be
balanced (the scaling of the term with the time derivative always being much smaller
than the other two), and this balance implies σ = 2/(5 − n). Thus, the rescaled
equations read

δ1/(5−n)∂τHb − Ṡb ∂XHb + ∂X (Hn
b ∂XXXHb) = 0 , for X ≥ 0, (3.5a)

Hb = 0, ∂XHb = θ, Hn
b ∂XXXHb = 0 , at X = 0, (3.5b)

lim
X→∞

Hb = δ1/(5−n) , (3.5c)

where we remark that the dot over Sb now denotes derivatives with respect to τ . Next,
we expand

Hb(X, τ ; δ) = Hb,0(X, τ) +O(δ1/(5−n)), Sb(τ ; δ) = Sb,0(τ) +O(δ1/(5−n)). (3.6)

The leading order problem is given by (3.5a) and (3.5b) after dropping the δ1/(5−n) term
that appears in the ODE. Integrating and using the leading order boundary conditions

Hb,0 = 0, ∂XHb = θ, Hn
b,0∂XXXHb,0 = 0, at X = 0, (3.7)

then yields
Hn−1
b,0 ∂XXXHb,0 = Ṡb,0 . (3.8)

Notice that θ and Ṡb,0 can be removed from (3.7) and (3.8) by rescaling

X = θn/(3−n)
ξ

Ṡ
1/(3−n)
b,0

, Hb,0 = θ3/(3−n)
φb

Ṡ
1/(3−n)
b,0

. (3.9)

Case n = 0

In this case, we simply can use the leading order version of the condition (3.5c) in the
far field,

lim
X→∞

Hb,0 = 0, (3.10)

The boundary value problem (3.7), (3.8) and (3.10) is linear and has the solution

Hb,0(X, τ) =
2√
3

θ

Ṡ
1/3
b,0

exp

(
−
Ṡ
1/3
b,0 X

2

)
sin

(√
3

2
Ṡ
1/3
b,0 X

)
, (3.11)
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Moreover, to leading order, we obtain from (3.2)∫ ∞
0

Hb,0 dx = Sb,0. (3.12)

Inserting the solution for Hb,0 yields a differential equation for Sb,0,

S3
b,0 Ṡ

2
b,0 = Mθ3, (3.13)

where

M ≡
(∫ ∞

0

φb dξ

)3

, (3.14)

and assuming that Sb,0(0) = 0 gives the solution

Sb,0 = (5/2)2/5 θ3/5τ 2/5. (3.15)

Written in the original variables, we have for large t

sb ∼ (5/2)2/5 θ3/5t2/5 = 1.44 θ3/5t2/5. (3.16a)

Furthermore, for the maximum of the base state maxx hb and the value of x = xm(t)
where it is achieved, we obtain

max
x

hb(x, t) ∼ (2/5)−1/5 e−π/
√
27 θ4/5 t1/5 = 0.656 θ4/5 t1/5 (3.16b)

xm(t) ∼ π√
27

24/5 51/5 θ−1/5 t1/5 = 1.45 θ−1/5 t1/5. (3.16c)

The numerical profiles for Hb are shown in fig. 2(a). The film quickly forms a capillary
rim that grows for large times in an approximately self-similar fashion, except in the
far-field which is constant, with approximately the same scaling factor for the height
and the width so it maintains a fixed contact angle. Notice that at some stage, the first
local minimum to the right of the rim touches zero. For the simulations shown here,
with θ = 1, this happens around t = tr ≡ 2.25 × 105, with maxh = 7.96. Physically,
this means that the diffusing film ruptures and sheds material that collects into an
equilibrium shape while the dewetting by solid diffusion resumes with a new contact
line. Nevertheless, the mathematical formulation does allow for solutions that are neg-
ative and in order to understand the long time asymptotic structure, it is convenient
to investigate these solutions beyond tr. Since the rupture occurs for large t, we can
expect the asymptotic solutions to yield reasonable approximations even for a range
of t < tr. Indeed, all three asymptotic approximations (3.16a), (3.16b), (3.16c) agree
well with the numerical results for sufficiently large t, as can be seen in fig. 2(b).
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Figure 2: (a,left) Profiles of the base state for θ = 1 at different times, obtained by
solving (3.1) numerically (using (3.2) instead of the third boundary condition in (3.1b)),
for θ = 1 and n = 0. The initial data (3.3) is shown by a thin solid line, later times by
thicker solid lines, for t = tr/2, t = tr, 2tr, 4tr, where tr ≡ 2.25 × 105 is the time
at which the first minimum of the profile to the right of the rim hits zero. All profiles
are shown in a comoving frame of reference with the contact line fixed at the origin.
(b,right) Evolution of the contact line, sb, the maximum value maxx h and the position
xm where the maximum is achieved. The thin straight lines are the asymptotic results
(3.16). The thin dotted vertical line indicates the rupture time t = tr.
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Case n > 3/2

Note that in this case, the rim decomposes into different scalings where the rim takes
on the role of the outer solution and needs to be matched to further layers on the
right. The details of this matching depend on n and are quite intricate in general [22].
For n = 2, there is just one inner layer and the matching approach for this particular
value of n has been presented in [21, 23]. However the procedure can be generalized
to 3/2 < n < 3, which is carried out in Appendix A, and here we will only give the
matching condition. According to the similar matching behaviour the entire section
refers to the cases where 3/2 < n < 3.
In outer coordinates we have the matching condition

Hb,0(X, τ) ∼
(

n3

3(3− n)(2n− 3)

)1/n

Ṡ
1/n
b,0 (Wb,0 −X)3/n for X → Wb,0 , (3.17)

whereWb,0 = Wb,0(τ) > 0 denotes the leading order expression for the matching point
in between the outer rim and undisturbed film to the right hand side (see Appendix A
for a detailed derivation).

Here, conservation of mass, according to (3.2), turns to leading order into∫ Wb,0(τ)

0

Hb,0 dx = Sb,0 , (3.18)

Inserting the scalings (3.9), we obtain

φn−1b,0 ∂ξξξφb,0 = 1 , for 0 ≤ ξ < db, (3.19a)

φb,0 = 0, ∂ξφb,0 = 1, φnb,0∂ξξξφb,0 = 0 , at ξ = 0, (3.19b)

φb,0 ∼
(

n3

3(3− n)(2n− 3)

)1/n

(db − ξ)3/n , for ξ → db, (3.19c)

where db arises from rescaling Wb,0(τ),

Wb,0(τ) = θn/(3−n)
db

Ṡ
1/(3−n)
b,0

. (3.20)

Moreover we obtain from (3.18) the differential equation

S
(3−n)
b,0 Ṡ2

b,0 = Mθ(3+n), (3.21)

where M is given by

M =

(∫ db

0

φb,0 dξ

)3−n

. (3.22)
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The differential equation (3.21) for Ṡb,0 with Sb,0(0) = 0 has the solution

Sb,0 =

(
5− n

2

)2/(5−n)

M1/(5−n)θ(3+n)/(5−n)τ 2/(5−n). (3.23)

In general, (3.19) has to be solved numerically. For n = 2, the order can be reduced
by one integration and this gives db = 1/2 in the process [21, 23]; numerically, one
finds M = 2.72× 10−2, see [21], and from this,

sb ∼ 0.394 θ5/3 t2/3 (3.24a)

for large t, where we have converted back to the original variables.
Moreover, for the maximum of the base state maxx hb and the value of x = xm(t)
where it is achieved, we obtain

max
x

hb(x, t) ∼ (2/3)−1/3M−1/3 max
ξ
φb θ

4/3 t1/3 = 0.331 θ4/3 t1/3 (3.24b)

xm(t) ∼ (2/3)−1/3M−1/3ξm θ
1/3 t1/3 = 0.765 θ1/3 t1/3, (3.24c)

where maxξ φb = 0.870×10−1 and ξm = 0.201 were obtained from the numerical solu-
tion for (3.19) computed in [21]. The agreement between asymptotical and numerical
results is excellent. Notice that the first dip following the maximum in the profiles re-
mains shallow even as the rims grow, thus showing no indication of a rupture. This is
consistent with predictions that rupture does not occur for n > 3/2, see [22, 23].

4 Linear stability

4.1 Formulation

We first shift the full problem (1.1) into the reference frame moving with the contact
line of the base state sb(t) by using the same change of variables as for the base state
equation, that is, h(x, y, t) = h̃(x̃, ỹ, t), x̃ = x − sb(t), and y = ỹ. After dropping the
tildes, the PDE becomes

∂th− ṡb ∂xh+∇ · (hn∇∆h) = 0,

while the boundary and far-field conditions remain unchanged. We introduce pertur-
bations of the base state hb and sb of the form

h(x, y, t) = hb(x, t) + ε h1(x, y, t), s(y, t) = ε s1(y, t), (4.1)

with 0 < ε� 1 and Fourier transform,

h1(x, y, t) =

∫ ∞
−∞

ĥ1(x, t; q) exp(iqy) dq, s1(y, t) =

∫ ∞
−∞

ŝ1(t; q) exp(iqy) dq. (4.2)
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Figure 3: (a,left) Profiles of the base state for θ = 1 at different times, obtained by
solving (3.1) numerically (using (3.2) instead of the third boundary condition in (3.1b)),
for θ = 1 and n = 2. The initial data (3.3) is shown by a thin solid line, later times by
thicker solid lines, for t = tref/2, t = tref , 2tref , 4tref , where tref ≡ 2.25 × 105. All
profiles are shown in a comoving frame of reference with the contact line fixed at the
origin. (b,right) Evolution of the contact line, sb, the maximum value maxx h and the
position xm where the maximum is achieved. The thin straight lines are the asymptotic
results (3.24), respectively.
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In this way we obtain, to O(ε),

∂tĥ1 − L̂ ĥ1 = 0 , for x ≥ 0, (4.3a)

ĥ1 = −θŝ1 , ∂xĥ1 = −ŝ1∂xxhb , at x = 0, (4.3b)

hnb

(
∂xxxĥ1 − q2∂xĥ1

)
+ nhn−1b ∂xxxhb ĥ1 − ṡbĥ1 = 0 , at x = 0, (4.3c)

lim
x→∞

ĥ1 = 0 , (4.3d)

where

L̂ ĥ1 ≡ ṡb∂xĥ1− ∂x
[
hnb (∂xxxĥ1− q2∂xĥ1) + n(∂xxxhb)h

n−1
b ĥ1

]
+ q2hnb (∂xxĥ1− q2ĥ1) .

(4.3e)
For each value of q, we need to provide an initial perturbation of the Fourier mode
with wavenumber q via

ĥ1(x, t0; q) = ĥ1,t0(x; q), ŝ1(t0; q) = −ĥ1,t0(0; q)/θ, (4.3f)

where, for simplicity, we have chosen the perturbation of the contact line to be consis-
tent with the first boundary condition in (4.3b).

For n = 0, the problem (4.3) was solved with an extension of the numerical scheme
used for the base state problem (3.1), that is, finite differences in space and an ex-
trapolated implicit Euler scheme in time. The initial perturbation ĥ1,t0 was set equal
to the derivative ∂xhb(x, 0) of the initial condition for the base state (3.3). A different
approach was used for n = 2, as explained in the part of subsection 4.3 focusing on
this case. In both cases, the codes were constructed to track the evolution of ĥ1 for
several wave numbers q simultaneously.

4.2 Asymptotic Analysis

Notice that the above problem remains coupled to the base state via the second term
in (4.3a) and coefficients in the right hand sides of the second and third boundary
conditions in (4.3b), and that the base state is time dependent. The problem can
therefore not be approached by normal modes/separation of variables. For time inde-
pendent base states, separation of variables leads to an eigenvalue problem, and the
long time evolution of the perturbation is usually dictated by the top eigenvalue, which
is of often discrete in typical capillary instabilities. We can, however, exploit the fact
that for longer times, the evolution of the base state slows down and the evolution of
the perturbation can be recovered from the eigenvalue information by using a multiple
scales method or WKB approach [15, 37]. We therefore introduce again the slow time
scale τ via t = τ/δ, together with the scalings in (3.4) and corresponding scalings for
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the perturbation variables and for the wavenumber, that is,

ĥ1 = δ−1/(5−n)Φ , ŝ1 = δ−1/(5−n)Ŝ1 , q = δ1/(5−n)Q , (4.4)

such that the stability problem transforms into

δ1/(5−n)∂τΦ− L(τ)Φ = 0 for X ≥ 0, (4.5a)
θ∂XΦ− Φ∂XXHb = 0, at X = 0, (4.5b)

Hn
b

(
∂XXXΦ−Q2∂XΦ

)
+ nHn−1

b ∂XXXHb Φ− ṠbΦ = 0, at X = 0, (4.5c)
lim
X→∞

Φ = 0. (4.5d)

Here

L(τ) Φ ≡ Ṡb∂XΦ− ∂X
[
Hn
b

(
∂XXXΦ−Q2∂XΦ

)
+ n(∂XXXHb)H

n−1
b Φ

]
+Q2Hn

b

(
∂XXΦ−Q2Φ

)
, (4.6)

and we combined the two boundary conditions in (4.3b) into one in (4.5b) .

To exploit the fact that the coefficients in this linear stability problem only change
slowly in time, we make a WKB ansatz by introducing

Φ(X, τ) = Ψ(X, τ) exp

(
σ(τ)

δ1/(5−n)

)
, (4.7)

giving

δ1/(5−n)∂τΨ + Ψ∂τσ = L(τ)Ψ for X ≥ 0, (4.8a)
θ∂XΨ−Ψ∂XXHb = 0, at X = 0, (4.8b)

Hn
b

(
∂XXXΨ−Q2∂XΨ

)
+ nHn−1

b ∂XXXHb Ψ− ṠbΨ = 0, at X = 0, (4.8c)
lim
X→∞

Ψ = 0 , (4.8d)

and then applying the asymptotic expansions

Ψ(X, τ ; δ) = Ψ0(X, τ) +O(δ1/(5−n)), σ(τ ; δ) = σ0(τ) +O(δ1/(5−n)), (4.9)

together with the expansions (3.6) for the base state on which the coefficients of this
system depend.

Exploiting (3.8), the leading order problem is

λ(τ)Ψ0 = L0(τ)Ψ0 for X ≥ 0, (4.10a)
θ∂XΨ0 −Ψ0∂XXHb,0 = 0, at X = 0, (4.10b)

Hn
b,0

(
∂XXXΨ0 −Q2∂XΨ0

)
− (1− n)Ṡb,0Ψ0 = 0, at X = 0, (4.10c)
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where

λ(τ) ≡ ∂τσ0, (4.11)

L0(τ) Ψ0 ≡ (1− n)Ṡb,0∂XΨ0 − ∂X
[
Hn
b,0

(
∂XXXΨ0 −Q2∂XΨ0

) ]
+Q2Hn

b,0

(
∂XXΨ0 −Q2Ψ0

)
. (4.12)

For n = 0, the leading order of (4.8d) provides a condition in the far-field, while for n =
2, the limit δ → 0 is singular and matching conditions arise at X = Wb,0(τ) instead.
The latter will be discussed in detail further below and in the appendix. Our main
attention is directed towards determining the perturbations with largest amplification
and therefore towards the eigenvalue with largest real part, or top eigenvalue.

Rescaling the variables as in (3.9), and (3.20) for n > 0, and introducing appropriate
scales for the single-mode perturbation, wavenumber and eigenvalue

Ψ0 = θ3/(3−n)
φ1

Ṡ
1/(3−n)
b,0

, Q = Ṡ
1/(3−n)
b,0

Q̃

θn/(3−n)
, λ = Ṡ

(4−n)/(3−n)
b,0

λ̃

θn/(3−n)
, (4.13)

leads to the parameter-free eigenvalue problem

λ̃φ1 = L̃φ1 for ξ ≥ 0, (4.14a)
∂ξφ1 − φ1∂ξξφb = 0, at ξ = 0, (4.14b)

φnb

(
∂ξξξφ1 − Q̃2∂ξφ1

)
− (1− n)φ1 = 0, at ξ = 0, (4.14c)

where

L̃φ1 ≡ (1− n)∂ξφ1 − ∂ξ
[
φnb

(
∂ξξξφ1 − Q̃2∂ξφ1

)]
+ Q̃2φnb

(
∂ξξφ1 − Q̃2φ1

)
, (4.14d)

plus the remaining far-field or matching condition.

Case n = 0

For n = 0, the remaining condition is

lim
ξ→∞

φ(ξ) = 0. (4.15)

Moreover, we have

φb(ξ) =
2√
3

exp

(
−ξ

2

)
sin

(√
3

2
ξ

)
(4.16)

and thus we can set
∂ξξφb|η=0 = −1 (4.17)

in (4.14b). Notice that this is the only spot in (4.14) where the solution of the base
state is needed in contrast to the situation for n > 0.
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Case n > 3/2

For n = 2 we have a second contact line near the undisturbed film and hence need
to determine a matching condition for the inner region ahead of the hump. Similar
as in the 1D−case (see Section 3) the matching procedure can be generalized and
consequently this entire section refers to the cases where 3/2 < n < 3.
In outer coordinates we have the behavior

Ψ0(X, τ) ∼ 3 ·
(

n3−n

3(3− n)(2n− 3)

)1/n

Ṡ
1/n
b,0 ·W1,0 · (Wb,0(τ)−X)(3−n)/n , (4.18)

for X → Wb,0(τ), where W1,0(τ) represents the δ-leading order perturbation of the
second contact line. This matches with the inner expansion; for more details, see
Appendix A. Applying the scales (3.9) and (4.13) then reveals

φ1 ∼ 3 ·
(

n3−n

3(3− n)(2n− 3)

)1/n

d1 · (db − ξ)(3−n)/n for ξ → db, (4.19)

where db = Ṡ
1/(3−n)
b,0 /(θn/(3−n)) ·Wb,0 and d1 = Ṡ

1/(3−n)
b,0 /(θn/(3−n)) ·W1,0, which closes

the eigenvalue problem (4.14).

Eigenvalue analysis

Case n = 0

The general solution φ1 of the homogeneous linear differential equation (4.14a) has
the form

φ1(ξ) =
4∑
j=1

cj exp (kjξ), (4.20)

where the kj are the roots of the fourth order polynomial

k4j − 2Q̃2k2j − kj + Q̃4 + λ̃ = 0. (4.21)

We first restrict our situation to the case where the roots have negative real part, such
that the corresponding contributions to (4.20) satisfy the boundary conditions (4.15)
at ξ → ∞. As shown in Appendix B, there are exactly two of these roots, say k1 and
k2 and we note that these solutions arise for all Q̃ ≥ 0 in particular when the real part
of λ̃ is positive, i.e. <(λ̃) > 0, which is the region of the complex plane associated
with unstable modes.
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Restricting our attention to these solutions, we have

φ1(ξ) = c1 exp (k1ξ) + c2 exp (k2ξ). (4.22)

Substituting (4.22) into (4.14b) and (4.14c) gives a homogeneous linear system of
equations for the coefficients c1, c2, with the coefficient matrix

A =

(
k1 + 1 k2 + 1

k31 − Q̃2k1 − 1 k32 − Q̃2k2 − 1

)
, (4.23)

which depends on λ̃ via k1 and k2. The eigenvalues λ̃ are found by solving detA = 0.
Numerically, this can be done by finding the intersection of the level sets <(detA) = 0
and =(detA) = 0 in the (<(λ̃), =(λ̃))-plane. It turns out that for the intersection with
largest real part<(λ̃), the imaginary part=(λ̃) is zero (within the numerical tolerance).
Plotting this λ̃ as a function of Q̃ results in the dispersion relation shown in fig. 4(a).
We also verified that for this λ̃(Q̃) and for all Q̃ > 0, exactly two roots of (4.21) have
non-positive real part, even when, for Q̃ > 1.10, the value of λ̃(Q̃) is negative. Thus,
λ̃ is an isolated eigenvalue.

For λ̃ with sufficiently small real part, more than two roots of the characteristic poly-
nomial can have negative real part. Then imposing (4.14b) and (4.14c) leads to an
undetermined system for the coefficients of the decaying exponentials, i.e. which al-
ways has nontrivial solutions. Therefore, these λ̃ form the essential spectrum of the
operator. Due to our previous remark, the essential spectrum is restricted, for all val-
ues of Q̃, to a subset of the complex plane with <(λ̃) < 0. For Q̃ = 0, the origin
λ̃ = 0 is equal to the previously discussed isolated eigenvalue and also lies on the
boundary of the essential spectrum, which is also the limit for Q̃ → 0 of the isolated
eigenvalue discussed above. Similar situations are observed in the analysis of the
stability of waves in conservation laws [38–41].

Notice that the dispersion relation appears to be approximatively linear for Q̃ < 0.3,
despite the fact that only even powers of Q̃ appear in (4.14). In fact, for long wave-
lengths, the eigenvalues can be approximated in terms of small-Q perturbations of
the translational mode,

φ1 = ∂ηφb + φ1,1|Q̃|+O(Q̃2), λ̃ = λ̃1|Q̃|+O(Q̃2). (4.24)

The expansion proceeds in odd powers of Q̃ because the eigenvalue λ̃ = 0 at Q̃ = 0
is degenerate, i.e. belongs to a Jordan block. This is very similar to the situation found
for dewetting of a liquid in a slip-dominated case [34]. Proceeding as in that reference,
we obtain the value λ̃1 = (3/2)1/2 = 1.22; details are given in Appendix C. Good
agreement with the numerically found eigenvalues up to Q̃ = 0.3 is seen in fig. 4(a)
for the positive value for λ̃1. The long wave analysis also allows for an expansion
where the O(Q̃) term has the reverse sign, but it turns out that this leads to λ̃ in
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Figure 4: (a), left: Top eigenvalue in the case n = 0 for a range of wavenumbers.
Results for the exact numerical results for (4.14) with (4.15) and (4.17) are shown by
a solid line, and for the long wave analysis (4.24) by a dashed lines with symbols.
(b), right: Top eigenvalue in the case n = 2, resulting from solving (4.14), (4.19).
Linestyles carry over from (a).

regions of the complex plane where the characteristic equation (4.21) has more than
two roots with negative real part, i.e. which are in the essential spectrum.

The long wave analysis confirms that as Q̃ → 0, the top eigenvalue decreases to
zero and thus converges to a point on the boundary of the essential spectrum. Since
the expansions for isolated eigenvalues (see for example Hennessy and Münch [37])
may lose validity if two eigenvalues approach each other, we expect that a similar
loss of validity could occur here. This means a separate analysis is needed for the
case where Q̃ is allowed to become small as δ → 0, i.e. for exploring the possibility
of distinguished limits arising between these two parameters. However, we expect
the growth of perturbations with wave numbers larger than these asymptotically small
ones to be more relevant for the question of stability, and will therefore focus on them.
We will verify the accuracy of asymptotic estimates derived from the WKB analysis
by comparison with numerical results for the initial value problem (4.3) and point out
regions of small wave numbers where we observe a reduction in accuracy.

Case n > 3/2

For n = 2, the eigenvalue problem consisting of (4.14) and (4.19) was discussed and
solved in [34], so we only briefly summarize the results. The essence of these results
carries over to the case of general n > 3/2. It turns out that for this problem we have
two discrete eigenvalues that bifurcate out of the λ̃ = 0 eigenvalue at Q̃ = 0. The
dispersion relation for the top eigenvalue, which is the important one for the question
of instability, is shown in fig. 4(b). The long wave analysis for the top eigenvalue yields

φ1 = ∂ηφb + φ1,1|Q̃|+O(Q̃2), λ̃ = λ̃1|Q̃|+O(Q̃2); (4.25)
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with λ̃1 = 2−1/2; see Appendix C where general expressions, considering 0 ≤ n < 3,
for λ̃1 and φ1,1 are derived from an asymptotic long wave analysis. For the second
discrete (“bottom”) eigenvalue, the signs of the O(Q̃) corrections need to be reversed.
As can be seen from fig. 4(b), the asymptotic result accurately captures the top eigen-
value obtained from the numerical computation for small Q̃, in fact up to Q̃ < 1.

4.3 Comparison of asymptotic and numerical solutions

For these comparisons, we confine ourselves to the values n = 0 and n = 2 in this
section .

Case n = 0

If we solve (4.3) for a fixed wavenumber q and a “randomly chosen” initial perturbation
(4.3f), we expect that for long times t = τ/δ, the solution is approximated by (4.4),
(4.7), with the leading order behaviour of Ψ and σ given in the subsequent derivations.
We can check this by obtaining the solution to (4.3) numerically and verifying that

d

dt
ln
[
||ĥ1(·, t; q)||

]
= δ4/5λ(τ ;Q) +O(1), (4.26)

where λ is the eigenvalue obtained via (4.13) and (4.14), and ||−|| a convenient norm
with respect to x. We will use the maximum norm. With (4.13), we can in fact write
this as

d

dt
ln
[
||ĥ1(·, t; q)||

]
= δ4/5Ṡ

4/3
b,0 λ̃(Q̃) +O(δ),

or, applying Ṡb,0 ∼ (2/5)3/5θ3/5(δt)−3/5 ,

d

dt
ln
[
||ĥ1(·, t; q)||

]
∼ t−4/5

(
2

5

)4/5

θ4/5λ̃(Q̃) +O(t−1), (4.27)

with q fixed. We can eliminate the explicit time dependence by using that maxx hb =
δ−1/5 maxX Hb,0 and

max
X

Hb,0 =

(
2

5

)−1/5
exp

(
−π/
√

27
)
θ4/5τ 1/5 +O(δ1/5),

thus

t1/5 ∼ 1.831

(
2

5

)1/5

θ−4/5 max
x

hb,
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Figure 5: (a), left: Comparison of the amplification rates of the solution to the linear
stability problem (4.3) coupled to (3.1) with the dispersion relation λ̃(Q̃), for n = 0. The
dashed line is the top eigenvalue λ̃(Q̃) for (4.14) and (4.24) and is the same disper-
sion relation as in fig. 4(a). The solid lines are the graphs ((1.831 maxx hb) q, ρ(q, t))
for amplification rates ρ determined according to (4.28) for the numerical solutions of
(4.3) coupled to (3.1), for fixed q = 1/16, 1/32, 1/64, 1/128, 1/256. The arrow points
in the direction of decreasing q. Further details are given in the text. (b), right: Com-
parison for n = 2. Dashed line is the dispersion relation as shown in fig. 4(b), solid
lines are the amplification rates for q = 23.7 × 10−3, 14.1 × 10−3, 3.02 × 10−3, ob-
tained from numerical solutions of the linearized initial value problem for a regularized
problem formulation as explained in the main text. The arrow points in the direction of
decreasing q.

where we have evaluated the exponential expression. We choose θ = 1 and compare
the graphs ((1.831 maxx hb) q, ρ) and (Q̃, λ̃(Q̃)), where

ρ(q, t) ≡ (1.831 max
x

hb)
4 d

dt
ln
[
||ĥ1(·, t; q)||

]
. (4.28)

We expect agreement up to an error

ρ(q, t)− λ̃(Q̃) = O((max
x

hb)
−1), (4.29)

where
Q̃ = (1.831 max

x
hb) q. (4.30)

The results are shown in fig. 5. The solid lines with the values for ρ in (4.28) were
obtained from numerical solutions of (4.3) coupled to (3.1), while the dashed line
with the graph for λ̃ is simply the dispersion relation from fig. 4(a). It is visible that
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the graphs of ρ for different q converge to λ̃ as smaller q are chosen, except for
a region close to the origin. To understand the convergence, consider two different
values for q = q1 and q = q2. These values map to (1.831 maxx hb(x, t)) q1 and
(1.831 maxx hb(x, t)) q2, which coincide if we consider different times t1 and t2 so that
maxx hb(x, t1)/maxx hb(x, t2) = q2/q1, that is, if the ridge is proportionally larger for
the smaller wave number. This also means, according to (4.29), that the distance be-
tween ρ(q1, t1) and ρ(q2, t2) and the corresponding λ̃(Q̃) is proportionally smaller, for
example, by a fact of two if q1 and q2 differ by a factor of two. This is approximately
the case in the figure, except for very small Q̃. Moreover, for a fixed q, the value of
maxx hb(x, t) increases as we move to the right in fig. 5, so all curves for ρ are ex-
pected to converge to λ̃ to the right, which is indeed the case. The different behaviour
for small Q̃ is also expected in view of the discussion of the validity of the WKB anal-
ysis for small wavenumbers.

Case n = 2

For n = 2 similar derivations shows that the WKB result implies that

ρ(q, t) ≡
(

maxx hb
θ2 maxξ φb

)2
d

dt
ln
[
||ĥ1(·, t; q)||

]
(4.31)

where Q̃ = (maxx hb/(θmaxξ φb)) q, must approach λ̃(Q̃) for fixed q as
O((maxhb)

−1). We determine ρ(q, t) from numerical solutions of a regularized thin
film equation which includes an intermolecular potential to model the contact line re-
gion. This approach avoids a strict contact line at x = s where h = 0 by stabilizing
a thin precursor of thickness ν � 1 and the degeneracy of the partial differential
equation (1.1) leads to singularities in the solution. The sharp interface model with a
fixed contact angle condition is recovered in the limit where the precursor thickness
becomes small compared to the overall thickness of the film. Details of the model as
well as the derivations and the numerical results have been given in [21, 34], so we
only use and summarize them here.

The values of ρ obtained from the solutions of the regularized problem are shown
by solid lines in fig. 5(b), each one for a different choice of q. The dashed line is the
dispersion relation for (4.14), (4.19) also shown in fig. 4(b). In the same fashion as
for n = 0, the graphs for ρ converge to a single curve which is slightly larger than
the dispersion relation. The deviation is on the order of the precursor thickness, which
was chosen to be ν = 0.04. Also as for n = 0, the convergence is markedly slower for
small values of Q̃.
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4.4 Maximal amplification and dominant wavelength

We now would like to consider a superposition of modes with different wavenumbers,
i.e.

h1(x, y, t) =

∫ ∞
−∞

ĥ1(x, t; q) exp(iqy) dq, (4.32)

in order to determine the dominant wavenumber at a particular time t. Assuming that
the rim is perturbed at a time t0 by an initial perturbation with normalized initial ampli-
tude for all wavenumbers, i.e.

h1,t0(x, y) =

∫ ∞
−∞

h1,t0(x, q) exp(iqy) dq, (4.33)

and applying (4.4) and (4.7) then results to leading order in

h1(x, y, t) ∼
∫ ∞
−∞

Ψ0(X, τ ;Q) exp

(∫ t

t0

λ(τ ;Q) dτ

)
exp(iQy) dQ. (4.34)

The dominant wavenumber Qd at a given time t is now the one for which the inner
integral is maximal. Rewriting the integral according to (3.9) and taking derivatives
with respect to Q yields ∫ t

t0

Ṡb,0 λ̃
′
(
Q̃(τ,Qd)

)
dτ = 0 . (4.35)

Expressing the variables in Q̃(τ,Qd) in the following way (for both cases n = 0 and
n > 3/2)

Q̃(τ,Qd) =
ρn,θQd

c(τ)
, ρn,θ = θn/(3−n) , c(τ) = Ṡ

1/(3−n)
b,0 (4.36)

and observing that Q̃ is monotonically increasing in τ , since c(τ) ∼ τ−1/(5−n), we may
substitute Q̃ as integration variable and obtain

0 =

∫ Q̃(t,Qd)

Q̃(t0,Qd)

− c(τ)5−n

ρn,θQdcτ (τ)
λ̃′(Q̃) dQ̃ ∼

∫ Q̃(t,Qd)

Q̃(t0,Qd)

Q̃λ′(Q̃) dQ̃ . (4.37)

Since Q̃(t0, Qd) = Q̃(t, Qd)c(t)/c(t0) → 0 for t → ∞, we can replace the lower
integration limit by 0 and integrate (4.37) by parts to obtain for the asymptotic value of
Q̃ = Q̃∞ ≡ limt→∞ Q̃(t, Qd) the relation∫ Q̃∞

0

λ̃(Q̃)− λ̃(Q̃∞) dQ̃ = 0. (4.38)

The function λ̃(Q̃) is the time-independent dispersion relation, which we computed in
Section (4.2) for the cases n = 0 and n = 2 so we can determine the asymptotic wave
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number Q̃∞ = Q̃∞(n) from this result. The equation (4.38) has a simple interpretation
in that is says that Q̃∞ is characterized as the value for which the area underneath
the dispersion relation between zero and Q̃∞ is equal to the area of the rectangle with
corners (0, 0) and (Q̃∞, σ̃(Q̃∞)). The numerical values we find are Q̃∞(0) = 0.94 and
Q̃∞(2) = 5.3, both rounded to two digits of accuracy.

The dominant wavenumber in the scalings of the growing rim then isQd = Q̃(t, Qd) c(τ)/ρn,θ.
We compare this to an intrinsic length scale of the growing rim, for example, a suitably
chosen measure of the width, w(t). If the corresponding width for the outer solution
is denoted by ξ0(n), then w(t) ≡ ξ0(n) ρn,θ/c(τ), and we obtain for the dominant
wavelength ld(t) = 2π/Qd(t) the expression

ld(t)

w(t)
=

2π

ξ0(n)Q̃∞
. (4.39)

For n > 0, the outer solution for the base state has two contact lines and it is natural to
chose their distance for ξ0(n) = db, so that in particular for n = 2, we have ξ0(2) = 1/2
and therefore ld/w = 2.4. For n = 0, we choose the distance between the contact
line at ξ = 0 and the first zero crossing of (4.16), which gives ξ0(0) = 3.63, and then
ld/w = 1.8. It is also instructive to compare the wavelength with the height of the rim
maxx hb, which is less ambiguous, and this yields ld/maxx hb = 14 for n = 2 and
ld/maxx hb = 12 for n = 0.

For n = 2, the implications for experiments of this results on the dominant wave num-
ber was discussed in [35], so we focus here on the case n = 0. The first question of
interest is of course the maximum amplification achieved at the time when the base
state ruptures. While it is difficult to set a specific threshold, it is clear that this am-
plification has to be significant for a visibly instability to occur while the rim is moving
into the unperturbed film. The value of q that will lead to the maximum amplification is
the one that, upon rescaling as in (4.30), is equal to Q̃d determined above. Since the
value of maxx hb at the time of rupture was determined in a previous section following
(3.16b), we can find the estimate qd = 1/15.5. We use this value and adjacent values
of q for our numerical solution for (4.3) and track the amplification

A(t; q) =
||ĥ1(·, t; q)||
||ĥ1,t0(·; q)||

. (4.40)

The result is shown in fig. 6. Among the wavenumbers used in fig. 6, the maximum
amplification at t = tr is obtained for q = 1/16, close to the estimate of 1/15.5 given
above for qd.

For q = 1/16, the numerical result gives an amplification of about 2000 at time t = tr
when the base state ruptures and sheds material. The results in fig. 6 were achieved
with a specific choice of the initial perturbation ĥ1,t0 , which was set to be equal to the
derivative of the initial profile for the base state (3.3). We tried other choices, which
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Figure 6: Amplification of perturbations for n = 0 for different wave numbers q as
shown in the legends. For q = 12, the amplification reaches a peak relatively early
and the period of decay leads to an amplification less than 1000 at the time where
the base state ruptures t = tr (vertical dotted line, see also fig. 2). Conversely, for
q = 1/20, the perturbation is still growing and also has an amplification less than
1000 at t = tr. The perturbation with the maximum amplification at t = tr has wave
number q = 1/16 (see inset, which is a zoom of the boxed region) and an amplification
of about 2000. For q < 1/16, a perturbation dominates at a specific time t > tr, and
conversely, a perturbation with q > 1/16 achieves dominance at at time t < tr but is
then overtaken in particular by the perturbation with with q = 1/16.

did not alter the dominant wave number at rupture time, but did have an effect on
the amplification rate. The reason for this is that while for the first choice of initial
data, the perturbation grew monotonically, there was an initial period of decay for the
other choices. This indicates that the initial perturbation contained a higher fraction
of modes that were stable and decayed, until finally the growth of the unstable mode
dominated the evolution. The minimum was usually achieved early, at t = 10 . . . 20.
To take this effect into account, we replaced the denominator in the definition of the
amplification (4.40), and then the final amplification at t = tr was again close to the
value of 2000 stated above.

It is remarkable that a suitable choice of scaling (4.13) leads to a fixed value Q̃∞ for
the dominant wavenumber. This suggests that it could be advantageous to formulate
the WKB ansatz (4.7) with σ0 and τ that depend on Q̃ rather than on Q. This can
be achieved by letting σ0(τ,Q) = σ̃0(τ, Q̃), where we have explicitly included the
dependence on the wavenumber; similarly for Ψ. The chain rule then implies that in
the leading order problem, ∂τσ0 has to be replaced by ∂τ σ̃0−(S̈b,0/Ṡb,0(3−n)) Q̃ ∂Q̃σ̃0,
so that σ̃ is determined from the PDE

∂τ σ̃0 −
1

3− n
S̈b,0

Ṡb,0
Q̃ ∂Q̃σ̃0 = Ṡ

4−n
3−n

b,0 λ̃(Q̃), (4.41)
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Figure 7: (a) Dispersion relation λ̃ (thick solid line), compared to the amplification
(except for prefactors) at large times (r → ∞), Ω∞ (dashed line) and to the amplifi-
cation at intermediate times, Ω(Q̃, r) with r = 1.5, 3, 5, 9 (thin solid lines). The arrow
indicates increasing values of r. (b) Wave number with maximum amplification for
different values of r.

where λ̃ is given, as before, by (4.14). The first order PDE (4.41) requires initial condi-
tions, and we assume that at some moment τ0, perturbations are present with ampli-
fication factor one for all wavenumbers Q̃, i.e., σ̃0(τ0, Q̃) = 0 for all Q̃. A more general
situation could be considered, but this does not lead to an essentially different result.
The solution is then given by

σ̃0 = (5− n)

(
2α

5− n

) 4−n
5−n

τ
1

5−n Ω(Q̃, r), (4.42a)

Ω(Q̃, r) ≡ 1

Q̃

[
Λ(Q̃)− Λ(Q̃/r)

]
, (4.42b)

Λ(Q̃) ≡
∫ Q̃

0

λ̃(z)dz, (4.42c)

where α is a shorthand for the prefactors in (3.23) and r ≡ (τ/τ0)
1/(5−n).

For τ →∞, we have r →∞ and thus the logarithm of the amplification, σ̃, is propor-
tional to

Ω∞ =
1

Q̃

∫ Q̃

0

λ̃(z)dz; (4.43)

this is shown in fig. 7(a) by a dashed line and contrasted with the dispersion relation
λ̃(Q̃). The maximum of the former curve is shifted compared to the dispersion relation,
and in fact, it is equal to Q̃∞ determined earlier. Notice that λ̃ is the eigenvalue that
would have been obtained from a frozen mode analysis of the growing rim, and the
comparison clearly shows that as time goes by (and r increases), the wavenumber
(in self-similar scales) shifts to larger values (shorter wavelengths). For intermediate
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values of r, Ω can be determined from (4.42b). For r → 1, we recover λ̃(Q̃); for
r →∞, the curve quickly converges to Ω∞. Graphs for Ω are shown for different finite
values of r in fig. 7(a).

Correspondingly, the most amplified wave number Qmax of Ω increases from Qm, i.e.
the maximum for λ̃, to Q∞, determined by (4.38), as r increases from one to infinity.
In fact, convergence is nearly complete already for r ≥ 3, see fig. 7(b). Because the
maximum of the ridge scales like S1/2

b,0 and (3.23), the value r can be interpreted as
the ratio of the height of the rim at the current time divided by the height at the time
when the perturbation is introduced. This implies that after a change in the height of
the rim of a factor of three or more is observed as the instability develops, the most
amplified wavenumber must be very close to the asymptotic value Q̃∞, much closer
than to the value Q̃m predicted by the frozen mode analysis.

5 Discussion and Outlook

In this paper, we investigate the instability of non-constant base states for a free
boundary problem of the thin-film equation (1.1), specifically the retracting rim so-
lution that are susceptible to the “finger” instability. We develop a WKB method to
address the multiscale aspects of the linear stability analysis that arise from the time
dependence of the base states. The results are used to estimate the amplification of
the perturbations and the wavenumber for which this amplification is maximal.

This wavenumber converges to a fixed value Q̃∞ scaled with the size of the growing
rim, which is larger than the maximum wavenumber of the “frozen mode” dispersion
relation. It is interesting to note that nevertheless this value is determined by the dis-
persion relation through a simple expression (4.38). It would be interesting to see if
this “shift” in the observed wavenumber can be detected in a physical experiment.
Moreover, for Q̃ → 0, we show that for the present class of stability problems the be-
haviour of the growth rate is linear in Q̃ rather that O(Q̃2) which is the typical leading-
order behaviour observed for the finger instabilities in, e.g. gravity- or Marangoni-
driven thin-film flows.

For n = 0, the evolution of the rim is halted by the rupture of the film, but nevertheless,
by the time the rupture occurs, the wavenumber has converged close to its asymptotic
value. For n = 2, the solution evolves into a spatially multilayered structure, which is
readily accommodated within the WKB approach. The second value corresponds to
the range 3/2 < n < 3. A generalization of the approach as well as some of the
salient results should carry over to the intermediate case 0 < n ≤ 3/2 and also to
appropriate formulations of n ≤ 3, where in addition the contact line singularity needs
to be addressed.
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It would be fruitful to extend our method to a number of further problems with time-
dependent base states such as the retracting soap films or surfactants driven films.

We are currently considering aspects of the nonlinear stability via numerical simula-
tions of (1.1), in particular the onset of finger pinch-off once they have grown suffi-
ciently.
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A Matching conditions for 3/2 < n < 3

Base state

Let wb(t) be the width of the moving rim in (3.1) and let wb(t) = δ−1/(5−n)Wb(τ) be the
corresponding rescaled variable, according to the assumption that width and height
of the rim scale identically. We define the boundary layer by

x = δ−1/(5−n)Wb(τ) + δ−µχ , (A.1)

with χ being the inner variable, where the scaling exponent µ remains to be deter-
mined. Apply (3.4) for sb while in the inner region hb is not rescaled and consequently
the far-field condition remains

lim
x→∞

hb = 1 . (A.2)

Applying (A.1) in (3.1a) we obtain

δ∂τhb − δ(3−n)/(5−n)+µṠb∂χhb − δ(4−n)/(5−n)+µẆb∂χhb

+δ4µ∂χ (hnb ∂χχχhb) = 0 (A.3)

suggesting the dominant balance µ = (3 − n)/(3(5 − n)). Expanding Sb as in (3.6)
and hb,Wb analogously, i.e.

hb(χ, τ ; δ) = hb,0(χ, τ) +O(δ1/(5−n)), Wb(τ ; δ) = Wb,0(τ) +O(δ1/(5−n)), (A.4)

yields the leading order problem

−Ṡb,0∂χhb,0 + ∂χ
(
hnb,0∂χχχhb,0

)
. (A.5)
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Integrating once and rescaling χ = ξ/Ṡ
1/3
b,0 yields

(hb,0 − 1) + hnb,0∂ξξξhb,0 = 0 (A.6)

with solution

hb,0(ξ) ∼
(

n3

3(3− n)(2n− 3)
(−ξ)3

)1/n

, for ξ → −∞ , (A.7)

(in accordance with King and Bowen [22]). Hence in outer coordinates we obtain the
matching condition

Hb,0(X, τ) ∼
(

n3

3(3− n)(2n− 3)

)1/n

Ṡ
1/n
b,0 (Wb,0(τ)−X)3/n (A.8)

for X → Wb,0(τ).

Stability problem

Consider (4.3) and pass over to the inner layer analogously as in (A.6), i.e. rescale
x according to (A.1) and sb according to (3.4) while hb remains unscaled. Rescale ĥ1
according to

ĥ1 = ṡ
1/3
b · w1 · ĥin = δ−n/(3(5−n))Ṡ

1/3
b ·W1 · ĥin , (A.9)

where w1 denotes the perturbation of the second contact line and W1 the correspond-
ing value in outer scalings. Note that this particular scaling results from matching both,
base state plus perturbation. Moreover apply the scales (4.4) for q which altogether
leads to the rescaled stability problem

0 = − Ṡb∂χĥin + ∂χ

[
hnb

(
∂χχχĥin

)
+ n (∂χχχhb)h

n−1
b ĥin

]
− δ1/(5−n)Ẇb∂χĥin

+ δ4n/(3(5−n))Q4hnb ĥin − δ2n/(3(5−n))
[
Q2hnb

(
∂χχĥin

)
+ ∂χ

(
Q2hnb ∂χĥin

)]
+ δ(3+n)/(3(5−n))

(
Ṡ
1/3
b ·W1

)−1
∂τ

(
Ṡ
1/3
b ·W1 · ĥin

)
.

(A.10)

Applying the asymptotic expansions (3.6) and (A.4) as well as

ĥin(χ, τ ; δ) = ĥin,0(χ, τ) +O(δ1/(5−n)) , W1(τ ; δ) = W1,0(τ) +O(δ1/(5−n)) , (A.11)

for ĥ1 and W1, we obtain the leading order equation

0 = −Ṡb,0∂χĥin,0 + ∂χ

[
hnb,0

(
∂χχχĥin,0

)
+ n (∂χχχhb,0)h

n−1
b,0 ĥin,0

]
, (A.12)
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which can be integrated once over [χ,+∞)

0 = −Ṡb,0ĥin,0 + hnb,0

(
∂χχχĥin,0

)
+ n (∂χχχhb,0)h

n−1
b,0 ĥin,0 . (A.13)

Rescaling χ = ξ/Ṡ
1/3
b,0 (analogously as in (A.6)) reveals the ordinary differential equa-

tion
0 = −ĥin,0 + hnb,0

(
∂ξξξĥin,0

)
+ n (∂ξξξhb,0)h

n−1
b,0 ĥin,0 (A.14)

with solution

ĥin,0(ξ) ∼ 3 ·
(

n3−n

3(3− n)(2n− 3)

)1/n

· (−ξ)(3−n)/n , for ξ → −∞ . (A.15)

Matching into the outer problem thus requires µ2 = n/(3(5 − n)) and we obtain the
outer matching condition

Ψ0(X, τ) ∼ 3 ·
(

−n3−n

3(n− 3)(2n− 3)

)1/n

Ṡ
1/n
b,0 ·W1,0 · (Wb,0(τ)−X)(3−n)/n (A.16)

for X → Wb,0(τ).

B Roots of the characteristic polynomial

Consider
f(z) = z4 − 2Q̃2z2 − z + Q̃4 + λ̃ , (B.1)

where z ∈ C and Q̃ ≥ 0. We want to show that, if λ̃ is in the right half of the complex
plane, then f(z) = 0 has exactly two solutions with negative real part. Let λ̃ = λ̃r +
iλ̃i ∈ C, with λ̃i ∈ R and λ̃r > 0.

In the following we will exploit the argument principle in order to prove that f(z) has
two zeros in the left half plane, i.e. with negative real part. The argument principle
states that, provided that there are no zeros on the boundary, the number of zeros
of a polynomial inside a closed curve equals the change in argument over the curve
divided by 2π. The closed curve which we would like to consider here is the left half
circle of Radius R in the second and third quadrant (that is, start at zero, go along the
positive imaginary axis until R, follow the circle of radius R in positive direction until
the negative imaginary axis and then return back to the origin).

First we check that there are no zeros on the boundary. For this purpose we consider
z = ix, x ∈ R, on the imaginary axis, f(z) = 0 implies that

x = λi , and
(
x2 + Q̃2

)2
+ λ̃r = 0 (B.2)
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both must be fulfilled, which is impossible since the left hand side of the second equa-
tions is always positive, i.e. there are no zeros on the imaginary axis.

We are now in the position to apply the argument principle which requires to compute
the change in argument of f(z) in the three segments of our closed curve. For values
z = ix on the imaginary axis we have

f(ix) =
(
x2 + Q̃2

)2
+ λ̃r + i(λ̃i − x) (B.3)

which always has positive real part so that we can use the formula

arg (f(ix)) = 2 arctan

 λ̃i − x√((
x2 + Q̃2

)2
+ λ̃r

)2

+ (λ̃i − x)2 +
(
x2 + Q̃2

)2
+ λ̃r


(B.4)

to calculate the change in argument as x takes values between 0 and R. For x = 0
we consequently have arg(f(0)) = 0 and as R → ∞ we find arg(f(iR)) = 0, which
implies that the argument of f(z) does not change on this part of the path.

On the circular arc, z = Reiθ, with π/2 ≤ θ ≤ 3/2π, we have

f(z) = R4e4iθ − 2Q̃2R2e2iθ −Reiθ + Q̃4 + λ

= R4e4iθ

(
1− 2Q̃2

R2e2iθ
− 1

R3e3iθ
+
Q̃4 + λ

R4e4iθ

)
(B.5)

so as R→∞ we have f(z) = R4e4iθ and as θ goes from π/2 to 3/2π the argument of
f(z) goes from 2π to 6π which gives a change in argument of 4π. Finally the negative
imaginary axis can be treated analogously as the positive one, resulting in a change
in argument of zero. In summary, as R → ∞, the total change in argument is 4π,
which implies that there are two zeros in the left half plane.

C Long wave analysis

Consider the leading order eigenvalue problem (4.14) for 0 ≤ n < 3 and introduce the
expansions

φ1(ξ, Q̃) = φ1,0(ξ, τ) + Q̃ φ1,1(ξ, τ) + Q̃2 φ1,2(ξ, τ) +O(Q̃3),

λ̃(Q̃) = λ̃0 + Q̃ λ̃1(τ) + Q̃2 λ̃2(τ) +O(Q̃3).
(C.1)
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Identifying the parts of L̃0 which are independent of and quadratic in Q̃ with L̃0,0 and
L̃0,2 respectively, i.e.

L̃0,0 ≡ (1− n) ∂ξ − (∂ξφ
n
b ) ∂ξξξ − φnb ∂ξξξξ

L̃0,2 ≡ (∂ξφ
n
b )∂ξ + 2φnb ∂ξξ

(C.2)

we obtain from the leading order problem that λ̃0 = 0 and φ1,0 = ∂ηφb. Proceeding to
O(Q̃) and O(Q̃2) then reveals the problems

L̃0,0φ1,1 = λ̃1∂ξφb, (C.3a)

L̃0,0φ1,2 + L̃0,2∂ξφb = λ̃1φ1,1 + λ̃2∂ξφb . (C.3b)

The O(Q̃) problem (C.3a) implies that φ1,1 must be the λ1 multiple of the generalized
eigenfunction of L0,0 for the eigenvalue λ0 = 0 plus an multiple of Ψ0,0 = ∂XHb,0, and
we obtain

φ1,1 = − λ̃1
3− n

(ξ ∂ξφb − φb) , (C.4)

and substituting this result into (C.3b) and integrating with respect to ξ yields∫ db

0

L̃0,2∂ξφb dξ = − λ̃21
3− n

∫ db

0

ξ ∂ξφb − φb dξ (C.5)

for 0 < n < 3 (note that contributions of L̃0,0φ1,2 and λ̃2∂ηφb vanish due to the bound-
ary conditions for φb and O(Q̃2) boundary conditions for φ1,2) and∫ ∞

0

L̃0,0φ1,2 dξ +

∫ ∞
0

L̃0,2∂ξφb dξ = − λ̃21
3− n

∫ ∞
0

ξ ∂ξφb − φb dξ (C.6)

for n = 0. In each case the integrals on both sides can be solved and we obtain

λ̃1 = ±
√

3− n
2

. (C.7)
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