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Abstract: The brain-derived neurotrophic factor (BDNF) was initially considered to be neuron-specific.
Meanwhile, this neurotrophin is peripherally also secreted by skeletal muscle cells and increases
due to exercise. Whether BDNF is related to cardiorespiratory fitness (CRF) is currently unclear.
We analyzed the association of serum BDNF levels with CRF in the general population (Study of
Health in Pomerania (SHIP-TREND) from Northeast Germany; n = 1607, 51% female; median age
48 years). Sex-stratified linear regression models adjusted for age, height, smoking, body fat, lean mass,
physical activity, and depression analyzed the association between BDNF and maximal oxygen
consumption (VO2peak), maximal oxygen consumption normalized for body weight (VO2peak/kg),
and oxygen consumption at the anaerobic threshold (VO2@AT). In women, 1 mL/min higher VO2peak,
VO2peak/kg, and VO2@AT were associated with a 2.43 pg/mL (95% confidence interval [CI]: 1.16 to
3.69 pg/mL; p = 0.0002), 150.66 pg/mL (95% CI: 63.42 to 237.90 pg/mL; p = 0.0007), and 2.68 pg/mL
(95% CI: 0.5 to 4.8 pg/mL; p = 0.01) higher BDNF serum concentration, respectively. No significant
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associations were found in men. Further research is needed to understand the sex-specific association
between CRF and BDNF.

Keywords: BDNF; cardiorespiratory exercise capacity; cardiorespiratory fitness

1. Introduction

The brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic family of growth
factors. BDNF is essential for the differentiation, survival, and maintenance of neurons [1]. However,
it is not neuron-specific, but is also found in and synthesized by endothelial [2] and skeletal muscle
cells [3]. In the blood, BDNF is mostly bound and stored in platelets [4]. Furthermore, experimental
studies showed the ability for BDNF to cross the blood–brain barrier in both directions [5].

Recent research demonstrated an association between low BDNF levels and an increased risk
for cardiovascular diseases [6]. Moreover, low BDNF was associated with an increased incidence
of coronary events and mortality in patients with angina pectoris [7], as well as in heart failure
patients [8]. In contrast, higher levels of cardiorespiratory fitness (CRF) seem to be related to a lower
risk of cardiovascular diseases [9]. Specifically, for every metabolic equivalent task increase in CRF,
the hazards ratio for major adverse cardiovascular events decreased by 16% [10]. Since BDNF is
secreted by contracting skeletal muscle cells, exercise and CRF may influence the synthesis of this
neurotrophin [11]. This is supported by earlier studies, which demonstrated increased levels of BDNF
in the peripheral blood after exercise training [12–15]. Thus, exercise training increases circulating
BDNF. In contrast, previous studies reported an inverse correlation between CRF and BDNF [16–19].
A small trial with physically active males (n = 12) showed that step count, daily total energy expenditure,
and movement-related energy expenditure were inversely correlated with BDNF levels [17]. This was
supported by a small cross-sectional study of 44 subjects without overt cardiometabolic disease, which
reported an inverse correlation between BDNF and estimated VO2peak (r = −0.352; p < 0.05) as well
as physical activity (r = −0.428; p < 0.01) [16]. In untrained healthy Korean men, BDNF was also
inversely correlated with VO2peak [18]. However, as far as we know, there is no consensus regarding
the relationship between CRF and BDNF.

Given the paucity of literature discussing this relation, we aimed to analyze the associations
of CRF with serum BDNF levels in a large sample from the population-based Study of Health in
Pomerania (SHIP-Trend). Parameters for CRF were maximal oxygen uptake (VO2peak), VO2peak
adjusted for body weight (VO2peak/kg), and oxygen uptake at the anaerobic threshold (VO2@AT). Age,
smoking, body composition, physical activity, and depression [20,21] influence both BDNF [22–24] and
CRF [25,26]. Hence, these parameters were included as confounders. Further, very recently, BDNF was
identified as sexually dimorphic neurotrophin [27,28].

2. Materials and Methods

2.1. Study Population

SHIP-Trend is a cross-sectional population-based study in Northeast Germany. From 2008 to 2012,
8826 randomly selected individuals aged 20 to 79 years were invited to participate in a comprehensive
health examination [29]. A total of 4420 participants (response: 50.1%) gave informed written consent.
The study was approved by the ethics committee of the University of Greifswald (ethics approval
number BB 39/08) and complies with the Declaration of Helsinki. The study design has been published
elsewhere [30].

Individuals with missing cardiopulmonary exercise testing (CPET) or echo values (n = 2423),
implausible CPET values (n = 4), previous myocardial infarction (MI) (n = 31), atrial fibrillation (n = 84),
left ventricular ejection fraction < 30% (n = 7), cancer (n = 111), chronic lung disease or bronchial
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asthma (n = 99), severe renal (estimated glomerular filtration rate (eGFR) < 30 mL/min/mm2) disease
(n = 19), extreme values for BDNF (n = 32) (< 1st and > 99th percentile), or not answering questions
with regard to depression (n = 3) were excluded (Figure 1). Data from 1607 subjects (785 men and
822 women) were used. The median age was 48 years (25th percentile: 39; 75th percentile: 59 years).
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Figure 1. Flow chart of the analysis sample for this investigation was derived.

2.2. Interview, Medical, and Laboratory Examination

Age, sex, medical history, smoking status, menopause status, and physical inactivity were assessed
by computer-assisted personal interviews. Smoking status was classified either as current smoker or
non-smoker. Study participants were asked whether they exercised more than one hour per week in
the summer or winter. Based on their response, physical inactivity was defined as exercising less than
one hour per week during summer and winter. Body mass index (BMI) was calculated by dividing
height (m) by weight (kg) squared. Bioelectrical impedance analysis (BIA) was used to measure lean
mass and body fat (Nutriguard M, Data Input GmbH, Darmstadt, Germany).

Major depressive disorder (MDD) and recurrent MDD were diagnosed according to DSM-IV
using the Munich-Composite International Diagnostic Interview (M-CIDI). The screening questions for
depressive disorders comprised the following two items: “Feelings of sadness or depressed mood for a
period of at least 2 weeks” and “Lack of interest, tiredness, or loss of energy for a period of at least
2 weeks”.

Diabetes mellitus was defined as a glycosylated hemoglobin A1c level > 6.5%, antidiabetic
medication (anatomic, therapeutic, and chemical [ATC] code: A10), or as self-reported based on the
question of whether a physician had ever diagnosed diabetes mellitus. Systolic and diastolic blood
pressures were assessed after a resting period of 5 min in a sitting position on the right arm. With three
minutes rest in between, the blood pressure measurements were taken three times. The average of the
second and third measurements is reported. Trained and certified staff used a digital blood pressure
monitor (HEM-750CP, Omron Corporation, Tokyo, Japan). Hypertensive patients were identified by
either self-reported antihypertensive medication (ATC: C02, C03, C07, C08, and C09) or a systolic blood
pressure above 140 mmHg and/or a diastolic value of more than 90 mmHg.



Biomolecules 2019, 9, 630 4 of 12

Two-dimensional, M-Mode and Doppler echocardiography were performed using the Vivid-I
system (GE Medical Systems, Waukesha, WI, USA) as described in detail elsewhere [31]. Measurement
of the left ventricular ejection fraction was performed according to the guidelines of the American
Society of Echocardiography [32].

Fasting venous blood samples were collected. Serum samples were subsequently stored at −80 ◦C.
In SHIP-Trend, single-occasion blood samples were drawn from the cubital vein of participants in
the supine position following standardized procedures. The sampling was performed between 7:30
and 13:00. The majority (61.2%) of the study participants provided fasting (>8 h) blood samples, and
the remaining samples (38.8%) were obtained from non-fasting subjects. A maximum of 65.5 mL
of blood was collected in 13 tubes, including EDTA, citrate, serum, and PAXgene tubes. Directly
after sampling, EDTA and serum tubes were cooled down to 4 ◦C, while citrate tubes were stored at
room temperature. Hourly transport to the central laboratory (Institute of Clinical Chemistry and
Laboratory Medicine, University Medicine Greifswald) was arranged. After arrival at the laboratory,
the samples were immediately processed. When necessary, samples were centrifuged at 2550× g
for 15 min at 8 ◦C. Then, the samples were analyzed or stored at −80 ◦C in the Integrated Research
Biobank (LiCONiC, Lichtenstein). BDNF levels were measured in serum with a quantitative sandwich
enzyme immunoassay technique (Quantikine Human Free BDNF Immunoassay, R&D Systems, Inc.,
Abington, Science Park, UK). Two concentrations of control material were measured. The coefficients
of variation for BDNF were 14.95% at low levels (129 pg/mL) and 5.81% at high levels (667 pg/mL) of
control material. The estimated eGFR was calculated: eGFR = 186 × (plasma creatinine concentration
× 0.0113118) − 1.154 × age − 0.203; multiplied by 0.742 for female subjects [mL/min/1.73 m2] [33].
Serum levels of total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL),
and triglycerides were assessed photometrically (Hitachi 704, Roche, Mannheim, Germany).

2.3. Exercise Testing

Cardiopulmonary exercise testing (CPET) was conducted with a calibrated electromagnetically
braked cycle ergometer (Ergoselect 100, Ergoline, Bitz, Germany) according to a modified Jones
protocol [34,35]. After 3 min of rest and 1 min of unloaded cycling (20 Watts) at 60 rpm, the workload
was increased in steps of 16 Watts per minute. The test was terminated by the subject due to exhaustion
or by the physician due to ECG abnormalities.

2.4. Gas Exchange Variables

During CPET, breath-by-breath gas exchanges were measured by using an Oxycon Pro with a
Rudolf’s mask (JÄGER/VIASYS Healthcare System, Hoechberg, Germany). The following parameters
were assessed: tidal volume (VE), oxygen uptake (VO2), and carbon dioxide uptake (VCO2).
Furthermore, CPET is coupled continuously with pulse oximetry, blood pressure, and electrocardiogram.
The maximal oxygen consumption (VO2peak) was defined as the highest 10 s average of VO2 during
late exercise or early recovery. Oxygen consumption at the aerobic threshold (VO2@AT) was detect by
the nonlinear increase of VE in relation to VO2, as described in Wassermann et al. [36]. The VE/VCO2

slope demonstrates the relation between VE (y-axis) and VCO2 (x-Axis). Peak oxygen pulse (O2HRmax)
was defined as VO2peak divided by maximal heart rate. The participants had to have a respiratory
exchange ratio greater than 1.1, blood lactate levels higher than 8 mmol/L, or a BORG rating of perceived
exhaustion larger/equal 18.

2.5. Statistics

The normality and homoscedasticity of residuals were assessed using histograms, kernel density
plots, Q-Q plots, and residuals-vs-fitted plots. Sex and age-specific VO2peak quartiles are used to
describe the study population. For descriptive statistics, we created age and sex-specific quartiles.
We first assessed the interaction between the CPET parameters and sex by including the interaction term
in the fully adjusted multivariable regression mode. Thereafter, sex-specific linear regression models
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were used to relate CRF parameters and serum BDNF. All models were adjusted for age, smoking,
body fat, lean mass, depression, and physical inactivity. Previous research suggested that peripheral
BDNF levels are largely determined by platelet activation [37]. Hence, in a third step, platelets were
added as a potential confounder. Potential nonlinear associations were tested with restricted cubic
splines. Three knots were pre-specified, located at the 5th, 50th, and 95th percentiles [38], resulting
in one component of the spline function. Variance inflation factor (VIF) analysis was used to assess
the potential multicollinearity among the confounders. All the calculations were done in SAS 9.4
(SAS Institute, Cary, NC, USA). Statistical significance was defined as p < 0.05.

3. Results

3.1. General Characteristics

The population description according to VO2peak quartiles for men and women are presented
in Tables 1 and 2, respectively. There were no significant differences between VO2peak quartiles
with regard to hypertension, left ventricular ejection fraction, eGFR, and diabetes mellitus. In males,
the VO2peak quartiles were significantly different considering the prevalence of BMI, smoking, physical
inactivity, major depressive disorders, lean mass, and HDL cholesterol. In females, differences between
quartiles were found for BMI, smoking, physical inactivity, fat mass, lean mass, and HDL cholesterol.

Table 1. Population descriptions according to VO2peak quartiles for males.

VO2peak Quartiles

I II III IV

mL/min 1667–2155 2104–2606 2409.5–2953 2822–3454 p for Trend

n 191 199 196 199
Age (years) 49 (39; 59) 49 (39; 59) 49 (39; 58) 49 (38; 59) 0.9167
BDNF (ng/mL) 21.76 (17.33; 25.86) 21.73 (17.23; 26.77) 20.87 (17.34; 24.58) 21.50 (17.96; 25.63) 0.4102
Risk factors BMI (kg/m2) 27.0 (24.4; 29.5) 27.1 (25.0; 29.6) 27.6 (25.5; 30.7) 27.9 (25.4; 30.4) 0.0236

Hypertension (%) 50 47.47 50.77 41.21 0.2155
Systolic BP (mmHg) 132 (120; 143) 132 (125; 142) 133 (123; 142) 132 (122; 142) 0.8439
Diabetes mellitus (%) 7.9 7.5 7.7 4 0.3654
LVEF (%) 69 (63; 77) 71 (66; 77) 72 (65; 79) 71 (65; 77) 0.2617
Smoking (%) 42.4 25.3 22 10.6 <0.0001
Physical inactivity (%) 31.4 19.1 16.8 10 <0.0001
eGFR (mL/min/1.72 mm2) 103 (89; 115) 106 (96; 115) 106 (97; 114) 106 (95; 113) 0.3049

BIA Fat mass (%) 23.2 (19.2; 26.8) 23.65 (19.6; 26.5) 23.7 (19.6; 27) 22.45 (19; 25.4) 0.1457
Lean mass (kg) 63.3 (57.9; 68.3) 64.7 (60; 69.9) 67.4 (62.8; 72.7) 69.65 (64.9; 74.4) <0.0001
ECM (kg) 29.2 (26.3; 31.9) 28.9 (27.2; 31.6) 30.1 (27.7; 33.2) 30.9 (28.5; 34.0) <0.0001
BCM (kg) 34.3 (30.2; 37.6) 35.2 (32.8; 38.6) 37.0 (34.3; 40.0) 38.6 (35.2; 41.6) <0.0001
BW (L) 46.4 (42.4; 50.0) 47.4 (43.9; 51.2) 49.4 (46.1; 53.2) 50.9 (47.5; 54.5) <0.0001

Lipids Total cholesterol (mmol/L) 5.5 (4.7; 6.4) 5.3 (4.6; 6.1) 5.4 (4.7; 6.2) 5.3 (4.5; 6) 0.1398
TG (mmol/L) 1.4 (1.01; 2.37) 1.35 (0.91; 1.98) 1.43 (0.94; 2.16) 1.25 (0.9; 1.89) 0.0573
LDLC (mmol/L) 3.58 (2.89; 4.19) 3.4 (2.78; 3.98) 3.44 (2.89; 4.0) 3.34 (2.68; 3.92) 0.1653
HDL Chol (mmol/L) 1.22 (1.02; 1.44) 1.3 (1.11; 1.53) 1.25 (1.09; 1.47) 1.33 (1.14; 1.55) 0.0016

Depression
Feelings of sadness/depressed
mood for a period of at least
2 weeks (%)

39.27 32.83 29.08 34.67 0.2003

Lack of interest, tiredness, or
loss of energy for a period of
at least 2 weeks (%)

23.04 20.71 11.22 9.55 0.0002

CPET VO2 peak (mL/min/kg) 22.4 (19.0; 26.6) 27.8 (24.6; 31.6) 29.9 (26.2; 35.7) 34.5 (30.3; 41.2) <0.0001
VO2AT (mL/min) 900 (850; 1050) 1100 (950; 1250) 1200 (1100; 1350) 1400 (1250; 1550) <0.0001
Watt max 164 (132; 180) 196 (164; 228) 212 (180; 244) 244 (212; 276) <0.0001
HR max (/min) 153 (137; 171) 166 (148; 181) 166 (148; 179) 171 (162; 181) <0.0001

Values presented as median (25th and 75th percentile). For categorical variables, percentage is provided. BDNF,
brain-derived neurotrophic factor; BMI, body mass index; systolic BP, systolic blood pressure; eGFR, estimated
glomerular filtration rate; ECM, extracellular mass; BCM, body cell mass; BW, body water; CPET, cardiopulmonary
exercise testing; TG, triglycerides; HDLC, high-density lipoprotein cholesterol; LDLC, low-density lipoprotein
cholesterol; VO2peak, maximal oxygen consumption; VO2@AT, maximal oxygen consumption at the anaerobic
threshold; HR max, maximal heart rate; LVEF, left ventricular ejection fraction; BIA, body impedance analysis.
Bold lettering of the p-value indicates a significance for trend (p < 0.05).
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Table 2. Population descriptions according to VO2peak quartiles for females.

VO2peak Quartiles

I II III IV

mL/min 1118.5–1370 1391–1650 1566–1900 1885–2200 p for Trend

n 204 200 204 214
Age (years) 48 (38; 59) 47 (38; 58) 48 (38; 59) 47 (39; 60) 0.9883
BDNF (ng/mL) 22.09 (18.58; 26.30) 22.65 (18.34; 25.87) 22.3 (18.68; 26.88) 23.34 (19.38; 27.23) 0.1427
Risk factors BMI (kg/m2) 24.4 (21.8; 28.0) 25.5 (23.2; 27.9) 26.3 (23.4; 30.1) 26.9 (24.0; 30.5) <0.0001

Hypertension (%) 31.4 27.6 31.9 31.3 0.7811
Systolic BP (mmHg) 116 (107; 129) 117 (108; 130) 116 (106; 127) 118 (111; 128) 0.1902
Diabetes mellitus (%) 4.9 8 7.4 3.7 0.2139
LVEF (%) 72 (67; 77) 73 (67; 79) 73 (67; 78) 75 (67; 80) 0.5086
Smoking (%) 31.4 24.5 17.7 18.2 0.0211
Physical inactivity (%) 25 16.5 13.7 7.5 <0.0001
eGFR (mL/min/1.72 mm2) 106 (92; 116) 105 (93; 114) 104 (91; 113) 104 (93; 114) 0.2082

BIA Fat mass (kg) 31.75 (26.8; 36.6) 32.6 (28.2; 36.4) 33.75 (28.75; 38.65) 34.4 (28.9; 38.2) 0.0084
Lean mass (kg) 44.45 (41.2; 47.8) 46.4 (43.6; 48.9) 47.3 (44.4; 51.6) 49.4 (46.7; 52.4) <0.0001
ECM (kg) 21.9 (20.1; 23.5) 22.5 (20.9; 24.3) 23.1 (21.5; 25.1) 23.5 (22.0; 25.5) < 0,0001
BCM (kg) 22.5 (20.7; 24.6) 23.6 (21.9; 25.2) 24.6 (22.5; 26.8) 25.7 (24.0; 27.9) <0.0001
BW (L) 32.5 (30.2; 35.0) 34.0 (32.0; 35.8) 34.7 (32.6; 37.8) 36.1 (34.2; 38.4) <0.0001

Lipids Total cholesterol (mmol/L) 5.5 (4.9; 6.3) 5.5 (4.8; 6.2) 5.2 (4.6; 6.0) 5.5 (4.8; 6.3) 0.0467
TG (mmol/L) 1.2 (0.9; 1.8) 1.1 (0.8; 1.6) 1.2 (0.9; 1.6) 1.1 (0.8; 1.5) 0.1023
LDLC (mmol/L) 3.3 (2.8; 4.0) 3.3 (2.7; 4.1) 3.2 (2.6; 3.8) 3.3 (2.7; 3.9) 0.6075
HDL Chol (mmol/L) 1.6 (1.4; 1.9) 1.6 (1.4; 1.9) 1.6 (1.3; 1.8) 1.6 (1.4; 1.8) 0.2558

Depression
Feelings of sadness/depressed
mood for a period of at least
2 weeks (%)

53.43 54.5 51.93 49.07 0.7066

Lack of interest, tiredness, or
loss of energy for a period of
at least 2 weeks (%)

39.22 37.5 38.73 32.71 0.4934

CPET VO2 peak (mL/min/kg) 18.6 (16.0; 22.0) 22.4 (19.4; 25.2) 23.7 (19.8; 28.3) 26.9 (23.1; 31.8) <0.0001
VO2AT (mL/min) 700 (650; 800) 800 (750; 900) 900 (800; 975) 1050 (900; 1150) <0.0001
Watt max 116 (84; 132) 132 (116; 148) 148 (116; 148) 164 (148; 180) <0.0001
HR max (/min) 156 (134; 169) 160 (142; 173) 164 (148; 173) 166 (151; 176) <0.0001

Values presented as median (25th and 75th percentile). For categorical variables, percentage is provided. BMI,
body mass index; systolic BP, systolic blood pressure; eGFR, estimated glomerular filtration rate; ECM, extracellular
mass; BCM, body cell mass; BW, body water; TG, triglycerides; HDLC, high-density lipoprotein cholesterol;
LDLC, low-density lipoprotein cholesterol; VO2peak, maximal oxygen consumption; VO2@AT, maximal oxygen
consumption at the anaerobic threshold; HR max, maximal heart rate; LVEF, left ventricular ejection fraction; BIA,
body impedance analysis. Bold lettering of the p-value indicates a significance for trend (p < 0.05).

3.2. The Association between BDNF and CRF

Figures illustrating that the assumptions for using multivariable linear regression models were
met are presented in the Supplementary Materials, Figures S1–S12. Specifically, the homoscedasticity
of the residuals is shown in residuals-vs-fitted plots (top left caption). Plots that show the normal
distribution of the residuals are shown in the Q-Q plots (middle left caption). The variance inflation
factors for all parameters in the model are shown in the Supplementary Materials, Tables 1 and 2.
We identified significant interactions between VO2peak and sex with regard to the association with
BDNF (β coefficient 1.00 standard error 0.57; p = 0.08). CRF was significantly positively associated with
circulating BDNF serum levels in women, but not men (Figure 2). Specifically, in women, a 1 mL/min
higher VO2peak was associated with a 2.43 pg/mL (95% CI: 1.16 to 3.69 pg/mL; p = 0.0002, R2 = 0.0367)
greater BDNF concentration. A 1 mL/min/kg higher VO2peak/kg was related with a 150.66 pg/mL
(95% CI: 63.42 to 237.90 pg/mL; p = 0.0007, R2 = 0.0335) larger BDNF concentration. A 1 mL/min
higher VO2@AT was associated with an increase of 2.68 pg/mL (95% CI: 0.53 to 4.82 pg/mL; p = 0.015,
R2 = 0.0269) of BDNF.

In men, a 1 mL/min greater VO2peak (β = 0.43; 95% CI: −0.46 to 1.31 pg/mL; p = 0.35, R2 = 0.0166)
and VO2@AT (β = 1.41; 95% CI: −0.20 to 3.02 pg/mL; p = 0.09, R2 = 0.0194) was not significantly
associated with serum BDNF levels. Further, a 1 mL/min/kg increase in VO2peak/kg (β = 18.88; 95% CI:
−56.44 to 94.19 pg/mL; p = 0.62, R2 = 0.0158) was also not related to peripheral BDNF.

We performed a stratified analysis for women before and after menopause, respectively. Before
and after menopause, a 1 mL/min increase in VO2peak was associated with a BDNF increase of
2.07 pg/mL (95% CI: 0.46 to 3.68 pg/mL; p = 0.01) and 2.47 pg/mL (95% CI: 0.41 to 4.53 pg/mL; p = 0.02),
respectively. Further, we assessed whether the differences before and after menopause were different
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by including the interaction for VO2peak and menopause into the model. This was not statistically
significant (p = 0.34).

Additional adjustment for platelet count did not significantly influence our results. In this analysis,
a 1 mL/min higher VO2peak was associated with a 2.35 pg/mL greater BDNF level (95% CI: 1.17 to
3.52 pg/mL; p < 0.01, R2 = 0.1755) in women, but not in men (β = 0.53; 95% CI: −0.28 to 1.35 pg/mL;
p = 0.20, R2 = 0.1649). In men, the association between VO2@AT and BDNF levels became significant
after adjustment for platelet count. VO2@AT was positively associated with BDNF in men (β = 1.69;
95% CI: 0.21 to 3.18 pg/mL; p = 0.03, R2 = 0.1709) and women (β = 2.85; 95% CI: 0.87 to 4.84 pg/mL;
p = 0.01, R2 = 0.1709).Biomolecules 2019, 9, x FOR PEER REVIEW 8 of 13 
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4. Discussion

This investigation explored the relation between CRF and peripheral serum levels of BDNF.
Previous studies demonstrated that acute aerobic exercise and long-term training programs
increase peripheral BDNF levels [12–14,39,40]. However, very few studies have examined whether
cardiorespiratory exercise capacity is related to BDNF. Here, we report that greater values of peak
oxygen uptake, peak oxygen uptake adjusted for body weight, and oxygen uptake at the anaerobic
threshold are associated with higher BDNF serum levels in women, but not men. Further, we report
that this observation was independent of menopause status in women.

A meta-analysis included data of 32 publications investigating the relation between physical
activity and exercise with circulating BDNF in healthy humans [41]. This analysis included nine
observational studies and 15 as well as six studies that explored the relation between acute and chronic
exercise on peripheral BDNF levels, respectively. Of the nine observational investigations, five reported
an inverse relationship between BDNF and habitual physical activity or cardiorespiratory fitness.
A total of 14 out of the 15 experimental studies demonstrated that BDNF concentrations increased in
response to acute aerobic exercise, but returned to baseline immediately after. Four out of six studies
reported that chronic endurance exercise training increased resting BDNF. Hence, aerobic exercise
training that increased cardiorespiratory exercise capacity was associated with elevated BDNF. Thus,
one may speculate that higher levels of CRF are also related with greater BDNF. This hypothesis is
supported by our findings.

To our knowledge, very few studies investigated the relation between CRF and BDNF [16,18,19,42].
In contrast to our findings, the majority of these studies reported inverse associations [16,18,19].
However, merely two studies included both sexes [16,42]. Specifically, in a small cross-sectional
sample (n = 44) of subjects without overt cardiometabolic disease, BDNF concentrations decreased
with increasing levels of physical activity and higher estimated VO2peak [16]. In contrast, a second
cross-sectional study (n = 88) reported a positive association between CRF and BDNF in older,
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largely sedentary patients with coronary artery disease (mean age: 63 years, 85% male) [42]. The small
sample sizes in these studies did not allow sex-specific analyses. In our study of 822 women and
785 men, a positive association between CRF and BDNF was only shown for women.

There are several reasons that might explain why our results differ from some of the previous
reports. The heterogeneous findings may be related to differences regarding the study populations.
For example, earlier studies were based on smaller sample sizes [16], and included individuals
without overt cardiometabolic disease [16,18,19]. In contrast, we were able to use data from the
population-based SHIP, which included individuals with, for example, metabolic (6.4% diabetes
mellitus) and cardiovascular diseases (38.7% hypertension). Moreover, previous reports regarding the
association between physical activity and BDNF were based on studies that included mostly males.
Very few studies included both sexes [12,13,15]. Thus, there was a relevant need to investigate whether
the results obtained from males are also applicable to women. Our results suggest that this is not the
case. The different findings of our study compared to previous investigations may also be related to the
consideration of confounders. While some studies did not make any adjustments at all [16,19], one study
adjusted for age, BMI, triglycerides (TC), and the ratio TC/HDL [18], and another one adjusted for
depression, age, sex, val66met genotype, and serum inflammatory markers [42]. In contrast, we used a
multivariable approach adjusting for several confounders (age, height, lean mass, fat mass, depression,
smoking, and physical activity). In addition, the definition of physical activity differs in many
publications. Currie et al. [16] used a modified Baecke questionnaire, while Nofuji et al. [17] used a
Lifecorder for one week to calculate the basal metabolic consumption, daily total energy expenditure,
and movement-related energy expenditure. We simply defined physically inactive individuals based
on less than one hour of exercise per week. This may have influenced the findings, and could partly
explain the different results.

A biological hypothesis explaining why we observed significant associations in women only may
be related to estrogen (E2). A hypothetical model recently linked E2 and BDNF with peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) synthesis to improve mitochondrial
function [43]. However, in our stratified analysis, higher BDNF levels were related with greater VO2peak
values independent of menopause. Thus, our results do not support the conclusion that the observed
sex-specific differences are driven by E2. However, the BDNF related differences between men and
women may be attributable to sex-specific skeletal muscle composition (i.e., more type I fibers in
women) [44]. Whereas, to the best of our knowledge, no published data are available concerning
variations of BDNF secretion by muscle fiber type, one may speculate that type 1 fibers secrete more
BDNF, since this neurotrophin increases fat oxidation in human C2C12 skeletal muscle cells [11].
Type 1, but not type 2 fibers, mainly utilize fat as an energy substrate. Interestingly, BDNF was recently
identified to regulate and promote a glycolytic muscle fiber phenotype in young male mice [27].
However, in female mice, a lack of BDNF resulted in skeletal muscle metabolic myopathy and insulin
resistance [28]. Further research is required to confirm and fully understand potential sex-specific
associations and their underlying mechanisms between cardiorespiratory fitness, skeletal muscle
function, and BDNF.

Regarding the association of CRF and BDNF levels, another point need to be stressed. Rather than
stating that an increase in CRF is related with a higher BDNF level, the results could also be inferred the
other way around. Then, in women, a 1 mL/min less VO2peak would be related to 2.43 pg/mL lower
BDNF. Since our study population has a very broad age range, we may interpret our findings in the
context of cross-sectional aging. SHIP participants were between 20 and 79 years old. During aging,
over 60 years, the human body loses around 30% of its skeletal muscle mass [45], and cardiorespiratory
fitness decreases by approximately 40% [46]. Further, the number of mitochondria in skeletal muscle as
well as their enzymatic content is reduced [47]. BDNF has been proposed to play an essential function
in the regulation of mitochondrial function [48]. Hence, aging is not only related to a decrease in CRF,
but also in loss of muscle mass as an important secretion site of BDNF. This may explain why lower
CRF is associated with less BDNF (released from less skeletal muscle with advanced age). Despite the
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fact that we adjusted for age, our observations may just be a surrogate for the aging muscle throughout
life. Even though we used BIA measurements to adjust for body composition, we cannot exclude the
possibility that sex-specific skeletal muscle atrophy and sarcopenia may have had an impact of our
results [49,50].

The large number of individuals (n = 1607) and the use of standardized data collection methods
for our analyses are the strengths of this study. However, the results of this study need to be interpreted
in the context of some limitations. Our results are not directly applicable to other ethnicities, because
SHIP consists of Caucasians. Another limitation is that we are unable to ascertain whether changes
in BDNF are also associated with alterations in cardiorespiratory fitness due to the cross-sectional
nature of available data. We acknowledge that our approach for assessing physical inactivity has limits,
and probably underestimates the true number of individuals with a sedentary lifestyle. In addition,
the ELISA used to measure BDNF does not differentiate between mature BDNF and its precursor
proBDNF. Both isoforms have opposite effects via TrkB, and are involved in several physiological
functions [51]. Even though their exact functions are yet not known, we cannot exclude the possibility
that higher CRF shifts the ratio between mature and proBDNF. Future research needs to assess the
association between the different BDNF isoforms with CRF. Lastly, while we used a directed acyclic
graph to identify potential confounders, we cannot exclude the possibility of additional residual
confounding that may have influenced the results of our analysis.

5. Conclusions

This study is the first to show that higher levels of circulating BDNF are associated with greater
cardiorespiratory fitness in women, but not men.
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