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Abstract. Stochastic point sets are considered that display a diffraction spectrum of

mixed type, with special emphasis on explicitly computable cases together with a uni-

fied approach of reasonable generality. Several pairs of autocorrelation and diffraction

measures are discussed that show a duality structure that may be viewed as analogues

of the Poisson summation formula for lattice Dirac combs.

1. Introduction

The discoveries of quasicrystals [44], aperiodic tilings [39, 34], and complex metallic alloys

[49] have greatly increased our awareness that there is a substantial difference between the

notions of periodicity and long-range order. Although pinning an exact definition to the

concept of long-range order is not yet possible (nor perhaps desirable at this intermediate

stage, compare the discussion in [47]), there is still some general agreement that the

appearance of a substantial point-like component in the diffraction of a structure is a

strong, though not necessary, indicator of the phenomenon.

Mathematically, the diffraction – say of a point set Λ in R3 – is the measure γ̂ on R3 which

is the Fourier transform of the volume averaged autocorrelation γ of Λ (or, more precisely,

of its Dirac comb δΛ =
∑

x∈Λ δx). Over the past 20 years or so, considerable effort has

been put into understanding the mathematics of diffraction, especially conditions under

which Λ is pure point diffractive, in the sense that γ̂ is a pure point measure, compare

[27, 14, 46, 2, 8, 24]. At this point in time, we have a good number of models for producing

pure point diffraction, particularly the cut and project sets (or model sets) and, under

certain types of discreteness conditions, one can even go as far as to say that these types

of sets essentially characterise the pure point diffractive point sets [6].

But the reality is that real life structures are not perfectly pure point diffractive, and in

order to gain further insight into the possible structures of materials, and more generally

into the whole concept of long-range order, it is necessary to widen the scope of this study

to include mixed diffraction spectra – i.e., to consider structures whose diffraction measure

contains at least some continuous part.

When it comes to mixed spectra, much less is known, although there are many particular

examples [18, 13, 4, 28, 35, 25, 51, 17]. Even deterministic sets can have mixed diffraction

spectra, and once any randomness is introduced, this is the norm. Determining the exact

nature of the diffraction is usually difficult and often simply not known. No doubt the

possibilities, both in Nature and in mathematics, for structures with long-range order

is well beyond what we have presently imagined. This is also apparent by systems like

the pinwheel tiling, compare [41] and references therein, which looks like an amorphous

structure in spite of being completely regular.

It would seem desirable then, as a first step, to establish methods, capable of being exactly

computable, that would cover many of these examples and also suggest ways in which to

generalise what is known, and even move into yet unexplored territory. This is the purpose

of this paper. As already suggested, it is based on the approach to diffraction set out by

A. Hof in [27, 28], namely via autocorrelations and their measures. The paper is primarily

guided by examples, set in as great a generality as we can manage, with the consistent
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theme that they are exactly computable. Briefly, the types of situations that we consider

are these:

(i) renewal processes on the real line (Sec. 3);

(ii) randomisation of an arbitrary pre-given point set Λ whose diffraction is known, by

identically distributed random complex finite measures, which are independently

centred at each point of Λ (Sec. 4);

(iii) randomisation of a random point process Φ whose law is known by indentically

distributed random finite measures (positive or signed) which are independently

centred at each point of each realisation of Φ (Sec. 5.1–5.4);

(iv) equilibria of critical branching Brownian motions (Sec. 5.5).

2. Some recollections from Fourier analysis

Let µ be a finite regular (complex) Borel measure on Rd. Its Fourier (or Fourier-Stieltjes)

transform is a uniformly continuous function on Rd, defined by

µ̂(k) =

∫

Rd

e−2πikx dµ(x),

see [43] for details. This definition includes the Fourier transform of Schwartz functions

and continuous functions of compact support (the corresponding spaces being denoted by

S(Rd) and Cc(R
d)) by viewing them as Radon-Nikodym densities for Lebesgue measure

λ, hence as a finite measure. If µ is an unbounded measure that still defines a tempered

distribution, via µ(ϕ) =
∫

Rd ϕdµ for ϕ ∈ S(Rd), it is called a tempered measure. Its

Fourier transform is then defined via µ̂(ϕ) = µ(ϕ̂) as usual [42], so that µ̂ is a tempered

distribution. Below, we only consider situations where µ̂ is also a measure, meaning

a linear functional on Cc(R
d). Recall that a (complex) measure µ is called translation

bounded when, for arbitrary compact sets K ⊂ Rd and for all t ∈ Rd, |µ|(t + K) ≤ cK
with constants cK that depend only on K. Here, |µ| denotes the total variation measure

of µ. Translation boundedness is a sufficient criterion for a measure to be tempered, see

[42] for details.

If Γ ⊂ Rd is a lattice (meaning a discrete subgroup of Rd with compact factor group Rd/Γ ),

we write δΓ :=
∑

x∈Γ δx for the corresponding Dirac comb, with δx the normalised point

measure at x. It is well-known that δΓ is a tempered measure, whose Fourier transform

is again a tempered measure. The latter is explicitly given by the Poisson summation

formula (PSF) in its version for lattice Dirac combs [11, Ex. 6.22],

(1) δ̂Γ = dens(Γ ) δΓ ∗ ,

where Γ ∗ := {x ∈ Rd | x · y ∈ Z for all y ∈ Γ} is the dual lattice of Γ , see [14] for

details. The density of Γ is well-defined and given by dens(Γ ) = 1/|det(Γ )|, where det(Γ )

is the oriented volume of a (measurable) fundamental domain of Γ . It can most easily be

calculated as the determinant of a lattice basis. Observing |det(Γ ∗)| = 1/|det(Γ )|, a more

symmetric version of the PSF reads

(2)
(√

|det(Γ )| δΓ
)b

=
√

|det(Γ ∗)| δΓ ∗ .

In particular, one has δ̂Zd = δZd , so that the lattice Dirac comb of Zd is self-dual in this

sense.
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As a result of independent interest, let us recall the following related formula for a radially

symmetric situation in Rd, which emerges from a simplified model of powder diffraction

[3]. Let Γ and Γ ∗ be as before, and let ηΓ (r) and ηΓ ∗(r) denote the numbers of points of

Γ and Γ ∗ on centred spheres ∂Br(0) of radius r. The (non-zero) numbers ηΓ (r) are also

called the shelling numbers of the lattice Γ . If µr denotes the uniform probability measure

on ∂Br(0), one has the following radial analogue of the PSF in (1),

(3)
(∑

r∈D
Γ

ηΓ (r)µr

)b

= dens(Γ )
∑

r∈D
Γ∗

ηΓ ∗(r)µr,

where DΓ = {r ≥ 0 | ηΓ (r) > 0} and analogously for DΓ ∗ , see [3] for a proof and further

details. Clearly, the formula can again be brought to a more symmetric form, as in Eq. (2).

Another simple, but important example of a dual pair of mutual Fourier transforms follows

from the relations δ̂0 = λ and λ̂ = δ0, with λ being Lebesgue measure, so that we have

(4)
(
δ0 + λ

)b
= δ0 + λ.

We shall meet this self-dual pair of measures below in Examples 1 and 9.

A little less obvious is the following result.

Lemma 1. Let λ denote Lebesgue measure on Rd and 0 < α < d. The function x 7→
1/|x|d−α is locally integrable and, when seen as a Radon-Nikodym density for λ, defines

an absolutely continuous and translation bounded measure on Rd. This measure satisfies

the identity
(

Γ
(

d−α
2

)

π
d−α

2

λ

|x|d−α

)b

=
Γ
(

α
2

)

π
α
2

λ

|k|α ,

where the transformed measure is again translation bounded and absolutely continuous.

Moreover, both measures are positive and positive definite.

Proof. Local integrability of both measures on Rd rests upon that of their densities

around 0, which follows from rewriting the volume element in polar coordinates, dλ(x) =

rd−1 dr dΩ, with dΩ the standard surface element of the unit sphere in Rd. Absolute

continuity and translation boundedness are then clear, while the Fourier identity follows

from a calculation with the heat kernel, see [40, Sec. 2.2.3]. As both measures are clearly

positive, they are also positive definite by the Bochner-Schwartz theorem, compare [42,

Thm. IX.10]. �

Incidentally, dividing the identity in Lemma 1 by Γ(α/2)/πα/2 shows that

Γ
(

d−α
2

)
π

α
2

Γ
(

α
2

)
π

d−α
2

λ

|x|d−α

α→0−−−→ δ0

in the vague topology, which follows from the corresponding Fourier transforms converging

vaguely to λ.
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3. Renewal processes in one dimension

An interesting class of examples is provided by the classical renewal process on the real

line, defined by a probability measure ̺ on R+ of finite mean as follows. Starting from

some initial point, at an arbitrary position, a machine moves to the right with constant

speed and drops another point on the line with a random waiting time that is distributed

according to ̺. When this happens, the clock is reset and the process resumes. In what

follows, we assume that both the velocity of the machine and the expectation value of ̺

are 1, so that we end up (in the limit that we let the initial point move to −∞) with

realisations that are almost surely point sets in R of density 1.

Clearly, this defines a stationary Markov process, which can be analysed by considering

all realisations which contain the point 0. Moreover, there is a clear symmetry around

this point, so that we can determine the autocorrelation of almost all realisations from

studying what happens to the right of 0. Indeed, if we want to know what the frequency

per unit length of the occurrence of two points with distance x is (or the corresponding

density), we need to sum the contributions that x is the first point after 0, the second

point and so on. In other words, we almost surely obtain the autocorrelation

(5) γ = δ0 + ν + ν̃

with ν = ̺ + ̺ ∗̺ + ̺ ∗̺ ∗̺ + . . . and ν̃(g) := ν(g̃), where g̃(x) = g(−x) for continuous

functions of compact support, provided that the sum in Eq. (5) converges properly. Note

that the point measure at 0 simply reflects that the almost sure density of the resulting

point set is 1.

Lemma 2. Let ̺ be a probability measure on R+ ∪ {0}, with ̺(R+) > 0. Then, νn :=

̺ + ̺ ∗̺ + . . . + ̺∗n with n ∈ N defines a sequence of positive measures that converges

towards a translation bounded measure ν in the vague topology.

Proof. Note that the condition ̺(R+) > 0 implies 0 ≤ ̺({0}) < 1, hence excludes the case

̺ = δ0. It is thus possible to choose some a ∈ R+ with ̺({a}) = 0 and 0 < ̺([0, a)) = p <

1, so that also ̺([a,∞)) = 1− p < 1. Since the sequence νn is monotonically increasing, it

suffices to show that lim supn→∞ νn([0, x)) is bounded by C1 +C2x for some constants C1,

C2, as this implies both vague convergence of the sequence and translation boundedness

of the limit. As there are at most countably many points y with ̺({y}) > 0, it is sufficient

to establish this property for all x ∈ R+ with ̺({x}) = 0.

If (Xi)i∈N
denotes a family of i.i.d. random variables, with common distribution according

to ̺ (and thus values in R+ ∪ {0}), one has

P
(
X1 + . . . +Xm < x

)
= ̺∗m([0, x)).

On the other hand, for the a chosen above, one has the inequality

P(X1 + . . .+Xm < x) ≤ P
(
card{1 ≤ i ≤ m | Xi ≥ a} ≤ x/a

)
=

[x/a]∑

ℓ=0

(
m

ℓ

)
(1− p)ℓ pm−ℓ,

where
(m

ℓ

)
= 0 whenever ℓ > m. Observing

∑∞
m=1 p

m = p/(1 − p) and

∞∑

m=1

(
m

ℓ

)
(1 − p)ℓ pm−ℓ = (1 − p)ℓ

1

ℓ!

dℓ

dpℓ

∞∑

m=0

pm =
1

1 − p
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for all ℓ ≥ 1, the previous inequality implies, for arbitrary n ∈ N,

νn([0, x)) ≤
∞∑

m=1

[x/a]∑

ℓ=0

(
m

ℓ

)
(1 − p)ℓ pm−ℓ =

p+ [x/a]

1 − p
≤ p

1 − p
+

1

a(1 − p)
x,

which establishes the claim. �

Proposition 1. Consider the renewal process on the real line, defined by a probability

measure ̺ of mean 1 on R+. This is a stationary stochastic process, whose realisations

are point sets that almost surely possess the autocorrelation measure γ = δ0 +ν+ ν̃ of (5).

Here, ν =
∑∞

n=1 ̺
∗n is a translation bounded positive measure. It satisfies the renewal

equations

ν = ̺+ ̺ ∗ ν and (1 − ̺̂) ν̂ = ̺̂,
where ̺̂ is a uniformly continuous function on R. In this setting, the measure γ is both

positive and positive definite.

Proof. The renewal process is a classic stochastic process on the real line which is known to

be stationary and ergodic, compare [20, Ch. VI.6] for details. Consequently, the measure

of occurrence of a pair of points at distance x+ dx (or the corresponding density) can be

calculated by fixing one point at 0 (due to stationarity) and then determining the ensemble

average for another point at x + dx (due to ergodicity). This is the justification for the

heuristic reasoning given above, prior to Eq. 5.

By Lemma 2, ν is a translation bounded measure, so that the convolution ̺ ∗ ν is well

defined, see [11, Prop. 1.13]. The first renewal identity is then clear from the structure of

ν as a limit, while the second follows by Fourier transform and the convolution theorem.

The autocorrelation is a positive definite measure by construction, though this is not

immediate here on the basis of its form as a sum, see [1] for a related discussion. It follows

from the previous argument how to determine it. �

The autocorrelation γ is an important intermediate step in the calculation of the diffraction

measure, which is γ̂. The latter is a well-defined translation bounded positive measure,

provided that γ is translation bounded and positive definite. It is then an interesting

first question what the spectral type of γ̂ is, i.e., what one can say about the spectral

decomposition

(6) γ̂ =
(
γ̂
)
pp

+
(
γ̂
)
sc

+
(
γ̂
)
ac

of γ̂ into its pure point, singular continuous and absolutely continuous parts relative to λ.

For the class of point sets generated by a renewal process, this requires a distinction on

the basis of the support of ̺.

The second identity of Proposition 1 is helpful here, because one has

(7) ν̂(k) =
̺̂(k)

1 − ̺̂(k)
at all positions k with ̺̂(k) 6= 1. This is in line with summing ν̂ as a geometric series,

which gives the same formula for ν̂(k) for all k with |̺̂(k)| < 1 and has (7) as the unique

continuous extension to all k with |̺̂(k)| = 1 6= ̺̂(k). In fact, one sees that ν̂(k) is a
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continuous function on the complement of the set {k ∈ R | ̺̂(k) = 1}. For most ̺, the

latter set happens to be the singleton set {0}.
In general, a probability measure µ on R is called lattice-like when its support is a subset

of a translate of a lattice, see [22] for details. We need a slightly stronger property here,

and call µ strictly lattice-like when its support is a subset of a lattice. So, the difference

is that we do not allow any translates here, see [2] for related results.

Lemma 3. If µ is a probability measure on R, its Fourier transform, µ̂(k), is a uniformly

continuous and positive definite function on R, with |µ̂(k)| ≤ µ̂(0) = 1.

Moreover, the following three properties are equivalent.

(i) card{k ∈ R | µ̂(k) = 1} > 1;

(ii) card{k ∈ R | µ̂(k) = 1} = ∞;

(iii) supp(µ) is contained in a lattice.

Proof. One has µ̂(k) =
∫

R
e−2πikx dµ(x), whence the first claims are standard consequences

of Fourier analysis, compare [40, Prop. 5.2.1] and [43, Sec. 1.3.3].

If µ =
∑

x∈Γ p(x)δx for a lattice Γ ⊂ R, with p(x) ≥ 0 and
∑

x∈Γ p(x) = 1, one has

µ̂(k) =
∑

x∈Γ

p(x) e−2πikx,

so that µ̂(k) = 1 for any k ∈ Γ ∗. In particular, Γ ∗ ⊂ {k ∈ R | µ̂(k) = 1}, so that we have

the implications (iii) ⇒ (ii) ⇒ (i).

Conversely, if µ̂(k) = 1 for some k 6= 0, one has
∫

R
e−2πikx dµ(x) = 1 and hence

(8)

∫

R

(
1 − cos(2πkx)

)
dµ(x) =

∫

supp(µ)

(
1 − cos(2πkx)

)
dµ(x) = 0,

where supp(µ), the support of the probability measure µ, is a closed subset of R and

measurable. The integrand is a continuous non-negative function that, due to k 6= 0,

vanishes precisely on the set 1
kZ, which is a lattice.

Write supp(µ) = A∪̇B as a disjoint union of measurable sets, with A = supp(µ) ∩ 1
kZ

and B = supp(µ) ∩ (R \ 1
kZ). We can now split the second integral in (8) into an integral

over A, which vanishes because the integrand does, and one over the set B, which would

give a positive contribution by standard arguments, unless B = ∅. But this means

supp(µ) = A ⊂ 1
kZ, so that (i) ⇒ (iii), which establishes the result. �

Theorem 1. Let ̺ be a probability measure on R+ with mean 1, and assume that ̺ is

not strictly lattice-like. Assume further, that a moment of ̺ of order 1 + ε exists for some

0 < ε < 1. Then, the point sets obtained from the stationary renewal process based on ̺

almost surely has a diffraction measure of the form

γ̂ = δ0 +
(
γ̂
)
ac

= δ0 + (1 − h)λ,

where h is a continuous function on R \ {0} that is locally integrable. It is given by

h(k) =
2
(
|̺̂(k)|2 − Re(̺̂(k))

)

|1 − ̺̂(k)|2 .
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Proof. As usual, the central peak of intensity 1 reflects the fact that the point set almost

surely has density 1. Due to the assumption that supp(̺) is not contained in a lattice,

we may invoke Lemma 3 to see that ̺̂(k) 6= 1 whenever k 6= 0, so that we have pointwise

convergence

ν̂n(k)
n→∞−−−→ ν̂(k) =

̺̂(k)
1 − ̺̂(k)

on R \ {0}, and similarly for ̂̃ν. Since ̺̂ is uniformly continuous on R and ̺̂(k) 6= 1 on

R\{0}, both ν and ν̃ are represented, on R\{0}, by continuous Radon-Nikodym densities.

As 1−h is the sum of the Fourier transforms of these two densities, the formula for h now

follows from ̂̃ν = ν̂.

It remains to show that 1 − h is locally integrable near 0. Let X be a random variable

with distribution ̺. Since the latter has mean 1 and our assumption guarantees that

〈X1+ε〉 =
∫∞
0 x1+ε d̺(x) <∞, we have the Taylor series expansion

̺̂(k) = 1 − 2πik + O
(
|k|1+ε

)
, as |k| → 0,

by an application of [50, Thm. 1.5.4]. Inserting this into the expression for h results in

h(k) = 2 + O(k−1+ε), as |k| → 0,

which establishes integrability around 0, and thus absolute continuity of the measure

(1 − h)λ.

As the contribution to the central peak is already completely accounted for by the term

δ0, the claim follows. �

Remark 1. When, under the general assumptions of Theorem 1, the second moment of

̺ exists, one obtains from [50, Thm. 1.5.3] the slightly stronger expansion

̺̂(k) = 1 − 2πik − 2π2〈X2〉 k2 + O
(
|k|2
)
, as |k| → 0.

This leads to the asymptotic behaviour

h(k) = 2 − 〈X2〉 + O(1), as |k| → 0,

which implies that h is bounded and can continuously be extended to h(0) = 2 − 〈X2〉 =

1 − σ2, where σ2 is the variance of ̺. Clearly, the existence of higher moments implies

stronger smoothness properties. ♦

The following examples permit a simpler formulation by means of the Heavyside function,

(9) Θ(x) :=





1, if x > 0,
1
2 , if x = 0,

0, if x < 0.

This formulation of Θ has some advantage for formal calculations around generalised

functions and their Fourier transforms.

Example 1. Poisson process on the real line. The probably best-known stochastic

process is the classical (homogeneous) Poisson process on the line, with intensity 1, where

̺ = fλ is given by the density

f(x) = e−xΘ(x).



8

It is easy to check that the convolution of n copies of this function yields e−xxnΘ(x)/n!,

which results in ν = Θλ. As the intensity is 1, this results in the autocorrelation

γ = δ0 + ν + ν̃ = δ0 + λ

and thus in the diffraction γ̂ = γ, compare Eq. (4). ♦

Remark 2. Let N denote a homogeneous Poisson process on the real line, so that, for any

measurable A ⊂ R, N(A) is the number of renewal points that fall into A. It is well-known

that N(A) is then Poisson-(λ(A))-distributed, i.e.,

P(N(A) = k) =
e−λ(A) (λ(A))k

k!

with k ∈ N0, and that, for any collection of pairwise disjoint sets A1, A2, . . . , Am, the

random numbers N(A1), . . . , N(Am) are independent. In fact, this property characterises

the Poisson process (compare [16, Ch. 2.1]), and it can serve as a definition in higher

dimensions or in more general measure spaces, to which the renewal process cannot be

extended. ♦

Example 2. Renewal process with repulsion. A perhaps more interesting example

in this spirit is given by the density

f(x) = 4x e−2xΘ(x).

It is normalised and has mean 1, as in Example 1, but models a repulsion of points for

small distances. Note that this distribution can be realised out of Example 1 by taking

only every second point, followed by a rescaling of time.

By induction (or by using well-known properties of the gamma distributions, compare [20,

Sec. II.2]), one checks that

f∗n(x) = 4n

(2n−1)! x
2n−1 e−2xΘ(x),

which finally results in the autocorrelation

γ = δ0 + (1 − e−4|x|)λ = δ0 + λ− e−4|x| λ

and in the diffraction measure

γ̂ = δ0 +
2 + (πk)2

4 + (πk)2
λ = δ0 + λ− 2λ

4 + (πk)2
.

This is illustrated in Figure 1. The “dip” in the absolutely continuous part around 0, and

thus the deviation from the previous example, reflects the effectively repulsive nature of

the stochastic process when viewed from the perspective of neighbouring points. ♦

Example 3. Renewal process with gamma law of mean 1. The previous two

examples are special cases of the gamma family of measures. For fixed mean 1, they are

parametrised with a real number α > 0 via ̺α = fαλ and the density

(10) fα(x) :=
αα

Γ(α)
xα−1 e−αxΘ(x).

While α = 1 is the “interaction-free” Poisson process, the density implies an effectively

attractive (repulsive) nature of the process for 0 < α < 1 (for α > 1).
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Figure 1. Absolutely continuous part of the diffraction measure from Ex-

ample 3, for α = 0.7 (upmost curve), α = 1 (horizontal line, which also

represents Example 1), α = 2 (see also Example 2) and α = 8 (overshooting

curve).

Observing f∗nα (x) = αnα

Γ(nα) x
nα−1 e−αxΘ(x), for n ∈ N, this leads to the measure

(11) να = gαΘλ with gα(x) = αe−αx
∞∑

n=1

(αx)nα−1

Γ(nα)
.

Note that, for fixed α, one has limx→∞ gα(x) = 1. The calculations result in the autocor-

relation

γα = δ0 + gα(|x|)λ
and in the diffraction γ̂α = δ0 + (1−hα)λ, where hα is the symmetric function defined by

hα(k) =
2
(
1 − Re((1 + 2πik/α)α)

)
∣∣1 − (1 + 2πik/α)α

∣∣2 .

The latter follows from the general form of h in Theorem 1, together with the observation

that f̂α(k) = (1 + 2πik/α)−α.

It is easy to see that limk→±∞ hα(k) = 0, for any fixed α > 0, which makes the role of

hα as the deviation from the Poisson process diffraction more transparent, where α = 1

and h1 ≡ 0. Note also that limα→∞ γ̂α = δZ in the vague topology, in line with the limits

mentioned before. This can nicely be studied in a series of plots of the diffraction with

growing value of the parameter α. Figure 1 shows some initial cases. ♦

Remark 3. Of particular interest in the applications are Delone sets, because points

(representing atoms, say) should neither be too close nor too far apart. Such sets can also

arise from a renewal process. In fact, if one considers a probability measure ̺ on R+, the

resulting point sets are always Delone sets when supp(̺) ⊂ [a, b] with 0 < a ≤ b <∞, and

conversely. This equivalence does not depend on the nature of ̺ on [a, b], while the local

complexity of the resulting point sets does. In particular, if ̺ is absolutely continuous,

the point sets will not have finite local complexity (see below for a definition). ♦
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It is clear that no absolutely continuous ̺ is lattice-like, hence certainly not strictly lattice-

like, so that all these examples match Theorem 1. But also for probability measures ̺

with supp(̺) contained in a lattice more can be said. They are of interest because they

form a link to tilings of finite local complexity. Let us consider some examples.

Example 4. Deterministic lattice case. The simplest case is ̺ = δ1. From δ1 ∗ δ1 =

δ2, one sees that ν = δ
N

and hence

γ = δ0 + δN + δ−N = δZ ,

which is a lattice Dirac comb, with Fourier transform

γ̂ = δZ

according to the Poisson summation formula (1). This is the deterministic case of the

integer lattice, covered in this setting. ♦

Remark 4. Example 4 can also be seen as a limiting case of the measure ̺α defined by

Eq. (10). In particular, one has limα→∞ ̺α = δ1 and limα→∞ να = δN, with να as in (11)

and both limits to be understood in the vague topology. This can also be seen by means

of the strong law of large numbers. For each n ∈ N, by well-known divisibility properties

of the family of Gamma distributions, ̺n is the distribution of

1

n

n∑

i=1

Xi ,

where the Xi are independent and exponentially distributed random variables with mean

1. This sum then concentrates around 1, with a variance of order 1/
√
n. ♦

Example 5. Random tilings with finitely many prototiles. Consider the measure

̺ = αδa + (1−α)δb,

with α ∈ (0, 1) and a, b > 0, subject to the restriction αa+ (1−α)b = 1 to ensure density

1. Each realisation of the corresponding renewal process results in a point set that can

also be viewed as a random tiling on the line with two prototiles, of lengths a and b.

As before, place a normalised point measure at each point of the realisation. Then, the

diffraction (almost surely) has a pure point and an absolutely continuous part, but no

singular continuous one. The pure point part can be just δ0 (when b/a is irrational) or a

lattice comb, the details are given in [4], including an explicit formula for the AC part.

This has a straight-forward generalisation to any finite number of proto-tiles, with a similar

result. Also in this case, there is an explicit formula for the diffraction measure, which

was derived in [4] by a direct method, without using the renewal process. ♦

Remark 5. Looking back at Lemma 3, one realises that Example 5 revolves around the

lattice condition in an interesting way. Namely, even if ̺ is not strictly lattice-like, the

supp(̺) for a random tiling example with finitely many prototiles is a finite set, and thus

a subset of a Meyer set. We then know from the harmonic analysis of Meyer sets, compare

[37] and references therein, that ̺̂(k) will come ε-close to 1 with bounded gaps in k. This

means that the diffraction measure, though it is absolutely continuous apart from the

central peak at k = 0, will develop sharp “needles” that are close to point measures in the

vague topology — a phenomenon that was also observed in [4] on the basis of the explicit

solution. ♦
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4. Arbitrary dimensions: Elementary approach

Let us now develop some intuition for the influence of randomness on the diffraction

of point sets and certain structures derived from them in Euclidean spaces of arbitrary

dimension. In this section, our point of view is from a single point set Λ ⊂ Rd that is

being modified randomly, while Section 5 revisits this situation coming from a stationary

ergodic point process approach, which treats almost all of its realisations at once.

Let Λ ⊂ Rd be a fixed point set, which we assume to be of finite local complexity (FLC).

This property is equivalent to saying that the difference set Λ − Λ is locally finite [46].

In particular, Λ is uniformly discrete. Attached to Λ is its Dirac comb δΛ =
∑

x∈Λ δx,

which is a translation bounded measure. In order to introduce a diffraction measure for

δΛ, we need to define an autocorrelation measure first. As this requires a volume weighted

limiting process, we fix an averaging sequence A = {An | n ∈ N} of relatively compact

open sets An subject to the conditions An ⊂ An+1 and
⋃

n∈N
An = Rd. In addition, we

require that A is also a van Hove sequence, which essentially means that the surface to

volume ratio of An tends to 0 as n → ∞, see [46] for details on this. Such sequences

clearly exist, and natural ones could be of the form An = Brn(0), with Br(0) denoting the

open ball of radius r around 0, for a non-decreasing series of radii with rn
n→∞−−−→ ∞, or

similarly with nested cubes.

Set Λn = Λ ∩ An (so that Λn
րΛ in the obvious local topology [46]) and consider the

measure

γΛ,n :=
δΛn ∗ δ̃Λ
vol(An)

=
∑

x∈Λn

∑

y∈Λ

δx−y =
∑

z∈Λ−Λ

( 1

vol(An)

∑

x∈Λn, y∈Λ
x−y=z

1
)
δz

=
∑

z∈Λ−Λ

card{x ∈ Λn | x− z ∈ Λ}
vol(An)

δz =:
∑

z∈Λ−Λ

ηn(z) δz ,

which is well-defined by [11, Prop. 1.13]. This also defines the approximating autocorre-

lation coefficients ηn(z). We now make the assumption that the limit

(12) lim
n→∞

γΛ,n =: γΛ

exists in the vague topology, which means that limn→∞ γΛ,n(g) = γΛ(g) for all continuous

functions g with compact support. Due to the van Hove property of A, one also has

(13) lim
n→∞

1

vol(An)
δΛn ∗ δ̃Λn = γΛ,

see [46, Lemma 1.2] for a proof. The difference between the two approximating measures

in (12) and (13) is a “surface term” that vanishes in the infinite volume limit n→ ∞. The

formulation in (13) explicitly shows that the measure γΛ is positive definite.

Since Λ−Λ is locally finite by assumption, and thus countable, Eq. (12) implies that also

all the limits

(14) lim
n→∞

ηn(z) =: η(z)

exist. Clearly, the measure γΛ as well as the coefficients η(z) may (and generally will)

depend on the averaging sequence, though we suppress this dependence in the notation.

The measure γΛ is positive definite, and hence Fourier transformable [11]. The measure
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γ̂Λ is then a translation bounded, positive measure on Rd, which is called the diffraction

measure of Λ, relative to the averaging sequence A.

Remark 6. Since δΛ is translation bounded, the sequence of measures γΛ,n always has

points of accumulation, by [27, Prop. 2.2]. Consequently, one can always select a subse-

quence of A for which the assumption (12) is satisfied. In this sense, when the autocor-

relation is not unique, we have simply selected one of the possible autocorrelations by a

suitable choice of A. This is now fixed, and our results below apply to any autocorrela-

tion of this kind separately. In this sense, the assumption made in (12) or in (13) is not

restrictive. ♦

The next step consists in modifying Λ by a random process in a local way. To come to

a reasonably general formulation that includes several notions of randomness known from

lattice theory, compare [25, 51], we employ a formulation with finite random complex

measures. Let Ω denote a measure-valued random variable, and Q the corresponding law,

which is itself a probability measure on Mbd = Mbd(R
d), the space of finite complex

measures on Rd. It is viewed as the continuous linear functionals on the space of bounded

continuous functions, and coincides with the finite Borel measures by the Riesz-Markov

representation theorem [42, Thm. IV.18].

To keep the notation compact, we use the symbol EQ for the various expectation values.

In particular, we write EQ(Ω) =
∫
Mbd

ω dQ(ω), where ω refers to the realisations of Ω as

usual.

To proceed, we need a version of the strong law of large numbers (SLLN) for measures.

Lemma 4. Let (Ωi)i∈N be a sequence of integrable finite i.i.d. random measures, with

common law Q. Then, with probability 1, one has

1

n

n∑

i=1

Ωi
n→∞−−−→ EQ(Ω1)

in the vague topology.

Proof. Integrability means that EQ(|Ωi|), which is independent of i ∈ N, is a finite measure.

As the space of continuous functions is separable, the almost sure convergence of the

measures follows from the almost sure convergence of 1
n

∑n
i=1Ωi(ϕ) for an arbitrary, but

fixed bounded continuous function ϕ. This, in turn, follows from the conventional SLLN

[19], possibly after splitting the sums into their real and imaginary parts and applying the

SLLN twice. �

Recall that ω̃ is the measure defined by ω̃(ϕ) = ω(ϕ̃). Let Ω and Ω ′ be two independent

random measures, with the same law Q, and such that EQ(|Ω|) is a finite measure, together

with the second moment condition EQ(|Ω(Rd)|2) < ∞. Then, the convolution Ω ∗Ω ′ is

well defined, and one obtains the important relations

(15) EQ(Ω̃) = ẼQ(Ω) and EQ(Ω ∗Ω̃ ′) = EQ(Ω) ∗ ẼQ(Ω ′),

which follow from elementary calculations, the second due to the assumed independence.

Let us now consider the random measure δ
(Ω)
Λ =

∑
x∈ΛΩx ∗ δx derived from the fixed

point set Λ introduced above, where the Ωx are integrable finite i.i.d. complex random
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measures, with common law Q and the restrictions mentioned above. When Ω is any

of these measures, EQ(|Ω|) is a finite measure by assumption, and the measure-valued

expectations EQ(Ω) and EQ(Ω ∗Ω̃) exist (note that also EQ(|Ω ∗Ω̃|) is a finite measure,

due to the condition on the second moment). Observing

δ̃
(Ω)
Λ =

∑

y∈Λ

Ω̃y∗ δ−y,

it is easy to see that the modified autocorrelation approximant reads

γ
(Ω)
Λ,n =

1

vol(An)

(∑

x∈Λn

Ωx ∗δx
)
∗
(∑

y∈Λ

Ω̃y ∗δ−y

)

=
∑

z∈Λ−Λ

( 1

vol(An)

∑

x∈Λn
x−z∈Λ

Ωx ∗Ω̃x−z

)
∗ δz =:

∑

z∈Λ−Λ

ζ(Ω)
z,n ∗ δz ,

(16)

where we now need to analyse the behaviour of the random measures ζ
(Ω)
z,n .

Let us first look at z = 0, where we obtain

ζ
(Ω)
0,n =

card(Λn)

vol(An)

1

card(Λn)

∑

x∈Λn

Ωx ∗ Ω̃x
n→∞−−−→ dens(Λ) · EQ(Ω ∗ Ω̃) (a.s.)

by an application of Lemma 4. Note that dens(Λ) = η(0) as introduced in (14). Next,

assume z ∈ Λ− Λ with z 6= 0. Then, we split ζ
(Ω)
z,n into 2 sums,

ζ(Ω)
z,n =

1

vol(An)

( ∑

x∈Λn
x−z∈Λ

(1)
Ωx ∗ Ω̃x−z +

∑

y∈Λn

y−z∈Λ

(2)
Ωy ∗ Ω̃y−z

)
,

where the upper index stands for the following additional restriction. For a fixed n, the

total summation set is partitioned into maximal linear chains of the form (x, x − z, x −
2z, . . . , x − kz), k ∈ N, with all points lying in Λ and all except possibly the last one

lying in Λn. The k random measures Ωx−(m−1)z ∗ Ω̃x−mz, for 1 ≤ m ≤ k, are identically

distributed, but not independent (due to the index overlap). However, those with m odd

(type (1)) are mutually independent, as are those with m even (type (2)). Consequently,

we alternatingly distribute them to the two sums, according to their type. Now, we split

card{x ∈ Λn | x− z ∈ Λ} = N (1)
n +N (2)

n

accordingly, where we then have that N
(1)
n ≥ N

(2)
n (note that all chains with k odd con-

tribute one term more to sum (1) than to sum (2), which applies to k = 1 in particular).

With this, we can now rewrite our previous expression as

ζ(Ω)
z,n =

card{x ∈ Λn | x− z ∈ Λ}
vol(An)

( N
(1)
n

N
(1)
n +N

(2)
n

∑(1)

N
(1)
n

+
N

(2)
n

N
(1)
n +N

(2)
n

∑(2)

N
(2)
n

)
,

where the term in brackets is the convex combination of two random measures. By (14),

the factor in front of the bracket converges to η(z). When this limit is non-zero, we know

that N
(1)
n

n→∞−−−→ ∞, so that

(17)
1

N
(1)
n

∑(1) n→∞−−−→ EQ(Ω) ∗ ẼQ(Ω) (a.s.)

by Lemma 4 and Eq. (15).
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Now, since An ⊂ An+1, we can see that the sequence
(
N

(2)
n

)
n∈N

is non-decreasing. Thus,

either N
(2)
n stays bounded (whence we can forget the contribution from

∑(2)/N
(2)
n because

it stays a.s. bounded, while its prefactor converges to 0), or we also have N
(2)
n

n→∞−−−→ ∞, in

which case Lemma 4 gives us the almost sure convergence of the second random measure

to the same limit as in (17). In this case, though we do not know whether the rational

prefactors converge, we have a convex combination of two sequences that each almost

surely converge to the same limit, which must then also be the limit of their convex

combination. Put together, this gives

ζ(Ω)
z,n

n→∞−−−→ η(z) · EQ(Ω) ∗ ẼQ(Ω) (a.s.)

for all z ∈ Λ− Λ with z 6= 0.

Theorem 2. Let Λ ⊂ Rd be an FLC point set, so that its Dirac comb δΛ possesses the

autocorrelation measure γΛ of (12), relative to the fixed averaging sequence A, and thus

the diffraction measure γ̂Λ. Let (Ωx)x∈Λ be a family of finite, integrable, complex i.i.d.

random measures with common law Q and finite second moment measure, with Ω being

any representative of this family, and consider the random measure δ
(Ω)
Λ :=

∑
x∈ΛΩx∗ δx.

Then, the sequence of approximating measures γ
(Ω)
Λ,n of (16) almost surely converges, as

n→ ∞, to the positive definite translation bounded autocorrelation measure

γ
(Q)
Λ =

(
EQ(Ω) ∗ ẼQ(Ω)

)
∗ γΛ + dens(Λ)

(
EQ(Ω ∗Ω̃) − EQ(Ω) ∗ ẼQ(Ω)

)
∗ δ0.

This measure has the Fourier transform

γ̂
(Q)
Λ =

∣∣ÊQ(Ω)
∣∣2 · γ̂Λ + dens(Λ)

(
EQ(Ω ∗Ω̃) − EQ(Ω) ∗ ẼQ(Ω)

)b · λ,

which is the almost sure diffraction measure of the random measure δ
(Ω)
Λ .

Proof. The previous calculations showed the individual almost sure convergence of the

measures ζ
(Ω)
z,n . Since Λ− Λ is locally finite and countable, this is sufficient for the almost

sure convergence of the measures γ
(Ω)
Λ,n as well, because they are almost surely uniformly

translation bounded by construction. The explicit formula for the autocorrelation measure

γ
(Q)
Λ now follows from elementary calculations.

The measure γ
(Q)
Λ is positive definite, and its Fourier transform has the form claimed

as a result of the convolution theorem [11, Ex. 4.18]. It is applicable here because all

expectation measures involved are finite measures, so that their Fourier transforms are

represented by uniformly continuous functions on Rd. �

Let us look at consequences of Theorem 2 in terms of some examples.

Example 6. Deterministic clusters. Let S ⊂ Rd be a finite point set, and consider

Ω ≡ δS =
∑

x∈S δx. Clearly, this completely deterministic case gives EQ(|Ω|) = EQ(Ω) =

δS and EQ(Ω ∗ Ω̃) = δS ∗ δ̃S , so that Theorem 2 results in γ
(Ω)
Λ =

(
δS ∗ δ̃S

)
∗ γΛ and

γ̂
(Ω)
Λ = |δ̂S |2 · γ̂Λ, which is always true in this case. A particularly simple instance of this

emerges from S = {a}, which effectively means a global translation by a. This leads to

the relations γ
(Ω)
Λ = γΛ and γ̂

(Ω)
Λ = γ̂Λ, as it must. ♦
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Example 7. Random weight model. Here, we consider Ω = Hδ0, where H is a

complex-valued random variable with a law µ that satisfies Eµ(|H|2) < ∞ (hence also

Eµ(|H|) < ∞). Clearly, this gives EQ(Ω) = Eµ(H) δ0 and EQ(Ω ∗Ω̃) = Eµ(|H|2) δ0, so

that Theorem 2 results in the following diffraction formula:

γ̂
(Ω)
Λ = |Eµ(H)|2 · γ̂Λ + dens(Λ)

(
Eµ(|H|2) − |Eµ(H)|2

)
· λ (a.s.).

The autocorrelation is clear from taking the inverse Fourier transform. ♦

Remark 7. A widely used special case of Example 7 is the random occupation model, or

“Λ-gas”. Here, Ω may take the value δ0 (with probability p, for “occupied”) or 0 (with

probability 1 − p, for “empty”). This almost surely gives the diffraction

γ̂
(Ω)
Λ = p2 · γ̂Λ + dens(Λ) · p(1 − p) · λ,

which was derived in this setting in [7], and later generalised to Bernoulli and Markov

systems [4] and significantly beyond [35, 36]. ♦

The results of Examples 6 and 7 can be extended in many ways, some of which will be met

later on. One further possibility consists in replacing a point by a “profile”, as described

by an integrable function, or by a finite collection of such profiles, which could represent

different types of atoms. The corresponding formulas for the autocorrelation and the

diffraction are then easy analogues of the ones given so far.

Example 8. Random displacement model. Consider the random measure Ω = δX ,

where X is an Rd-valued random variable with law ν. So, ν is a probability measure on

Rd, assumed to have bounded mean. If A ⊂ Rd is a Borel set, one has

EQ(Ω)(A) =

∫

Rd

δx(A) dν(x) =

∫

Rd

1A(x) dν(x) = ν(A),

which shows that EQ(Ω) = ν. Similarly, one finds EQ(Ω ∗Ω̃) = ν(Rd) δ0 = δ0. Then,

Theorem 2 results in the equations

γ
(Ω)
Λ = (ν ∗ν̃) ∗ γΛ + dens(Λ) (δ0 − ν ∗ν̃) (a.s.),

γ̂
(Ω)
Λ = |ν̂|2 · γ̂Λ + dens(Λ) (1 − |ν̂|2) · λ (a.s.),

which recovers Hof’s result on the diffraction at high temperature [28]. ♦

In fact, Hof’s approach, which also uses the SLLN, does not require the FLC property,

though it then needs some ergodicity assumption on the underlying point set instead.

Nevertheless, it is clear that the formulas of Theorem 2 should be robust, and also hold

for other point sets, such as those coming from a homogeneous Poisson process. So, to

complement our approach of this section, let us now consider ergodic point processes

instead, meaning that also the set Λ becomes part of the random structure.

5. Arbitrary dimensions: Point process approach

Here, we are interested in the diffraction of certain random subsets of Rd, where we restrict

ourselves to the situation that these subsets are self-averaging in a suitable way. This will

be guaranteed by the ergodicity of the underlying stochastic process. It is convenient to

start by putting ourselves in the context of random counting measures, which we now

summarise in a way that is tailored to diffraction theory.
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5.1. Random measures and point processes. Let M+ denote the set of all locally

finite positive measures φ on Rd (where we mean to include the 0 measure). That φ is

locally finite (some authors say φ is boundedly finite or that φ is a Radon measure) means

that, for all bounded Borel sets A, φ(A) < ∞. The space M+ is closed in the topology

of vague convergence of measures (in fact, M+ is a complete separable metric space, see

[16, A 2.6]). We let ΣM+ denote the σ-algebra of Borel sets of M+. The latter can be

described as the σ-algebra of subsets of M+ generated by the requirement that, for all

Borel sets A ⊂ Rd, the mapping φ 7→ φ(A) is measurable (compare [32, Chs. 1.1 and 1.2]

for background).

A random measure on Rd is a random variable Φ from a probability space (Θ,F , π) into

(M+, ΣM+). Let us write P(M+) for the convex set of probability measures on M+.

The distribution of a random measure Φ is the probability measure P = PΦ ∈ P(M+),

defined by P = π ◦ Φ−1. In other words, P is the law of Φ, written as L(Φ) = P . Note

that, as soon as P is given or determined, one can ignore the underlying probability space

for most considerations.

For each t ∈ Rd, let Tt denote the translation operator on Rd, as defined by the mapping

x 7→ t+ x. Clearly, one has TtTs = Tt+s, and the inverse of Tt is given by T−1
t = T−t. For

functions f on Rd, the corresponding translation action is defined via Ttf = f ◦ T−t, so

that Ttf(x) = f(x− t). Similarly, for φ ∈ M+, let Txφ := φ ◦ T−x be the image measure

under the translation, i.e., (Txφ)(A) = φ(T−x(A)) = φ(A − x) for any measurable subset

A ⊂ Rd, and
∫

Rd f(y) d(Txφ)(y) =
∫

Rd f(x+ z) dφ(z) for functions. This means that there

is a translation action of Rd on M+. Finally, we also have a translation action on P(M+),

via (TxQ)(φ) = Q(T−xφ).

Our primary interest is in random counting measures. A measure φ on Rd is called a

counting measure if φ(A) ∈ N0 for all bounded Borel sets A. These are positive integer-

valued measures of the form φ =
∑

i∈I δxi
, where the index set I is (at most) countable

and the support of φ is a locally finite subset of Rd. The (positive) counting measures

form a subset N+ ⊂ M+. We can repeat the above discussion of M+ by restricting

everything to N+. The vague topology on N+ is the same as its topology inherited from

M+, and its σ-algebra of Borel sets ΣN+ consists of the intersections of the elements of

ΣM+ with N+. The concepts of the law of a random measure and the translation action

by Rd carry over. In particular, for x ∈ supp(φ) with φ ∈ N+, T−xφ corresponds to the

counting measure obtained from φ by translating its support so that x is shifted to the

origin.

A point process on Rd is a random variable Φ from a probability space (Θ,F , π) into

(N+, ΣN+). Alternatively, a point process is a random measure for which π-almost all

θ ∈ Θ are counting measures. Furthermore, it is called simple when, for π-almost all

θ ∈ Θ, the atoms of φ = Φ(θ) have weight (or multiplicity) 1.

In the sequel, when we are dealing with point processes, we only use simple point processes,

whence we feel free to identify point measures with their supports. In this case, the

measures are Dirac combs of the form φ = δS with S ⊂ Rd locally finite. Later on,

we create compound processes in which an underlying point process is decorated with a

random finite measure, and this will take us from N+ to M+, which is also the reason

why we introduced random measures above.
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A random measure (or a point process) Φ is called stationary when its distribution P is

translation invariant, i.e., when TtP = P ◦ T−t = P holds for all t ∈ Rd. For Φ with

distribution P , the expectation measure EP (Φ), defined by

(18) EP (Φ)(A) = EP (Φ(A)) =

∫

N+

φ(A) dP (φ), for A ⊂ Rd Borel,

is a measure on Rd which gives the expected mass (or number of points) that Φ has in A.

In terms of the underlying probability space (Θ,F , π), one has

EP (Φ(A)) =

∫

Θ
Φ(θ)(A) dπ(θ) =

∫

N+

Φ(A) dP (Φ),

where the latter expression is a slight abuse of notation, which we nevertheless adopt

(as is common practice in the probability literature), because it suppresses the explicit

dependence on (Θ,F , π).

Remark 8. If P is stationary, we have TtEP (Φ) = EP (Φ) for all t ∈ Rd, whence EP (Φ)

must be a multiple of Lebesgue measure (the latter being Haar measure on Rd). Conse-

quently,

IP (Φ) = EP (Φ) = ρλ,

where ρ∈ [0,∞] is usually called the intensity of P . In the setting of point processes, it

also has the meaning of a point density, averaged over all realisations of the process. In

the ergodic case (see below for a definition), it is then almost surely the density of a given

realisation in the usual sense. We thus prefer to call ρ the point density of the simple

point process or the density of the random measure. ♦

Let Φ : (Θ,F , π) −→ (X , ΣX ) be a stationary random measure (where X = M+) or point

process (X = N+), with law P . Then, (X , ΣX , P ) is a probability space with translation

invariant probability measure P . The random measure or point process Φ is called ergodic

when (X , ΣX , P ) is ergodic, see below for more.

5.2. Palm distribution and autocorrelation. Let P ∈ P(N+) be stationary with

finite point density ρ <∞. Let 1B, as usual, denote the characteristic function of the set

B, and choose a Borel set A ⊂ Rd with 0 < λ(A) < ∞. The Palm distribution P0 is the

probability measure on N+ that satisfies

(19) P0(B) =
1

EP (Φ(A))

∫

N+

∑

x∈A∩supp(Φ)

Φ({x})1B

(
T−xΦ

)
dP (Φ)

for any B ∈ ΣN+, compare [48, Ch. 4.4] or [33, Ch. 3] for background. Due to stationarity,

Remark 8 applies to EP (Φ(A)), whence the prefactor simplifies to (ρλ(A))−1. Note that the

sum under the integral runs over at most countably many points. Moreover, the definition

does not depend on the actual choice of A. Intuitively, P0 describes the configuration Φ as

seen from a typical point in supp(Φ), with that point translated to the origin. Alternatively,

in the case of simple random measures, one can think of P0 as the distribution of Φ,

conditioned on having a point measure at 0. This actually amounts to properly condition

on an event of probability 0, which might need some further explanation.

The first point of view can be made precise, at least in the ergodic case, as a limit, via

sampling points in Φ over larger and larger balls, see [33, Thm. 3.6.6] or [16, Prop. 12.2.VI

and Prop. 12.4.I] as well as Eq. (21) below. The second interpretation can be corroborated
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by conditioning Φ to have a point in a small ball around 0 and then again taking a limit,

see [16, Thm. 12.3.V]. In more precise terms, P0 would be called the Palm distribution

with respect to 0 ∈ Rd, compare [31, Ch. 10] or [16, Ch. 12.1]. Since we will mostly be

dealing with the stationary scenario, we refrain from spelling out the full name.

There is an alternative approach to the Palm distribution, which also applies to the random

measure case, compare [16, Chs. 12.1 and 12.2]. Let Φ : (Θ,F , π) −→ (M+, ΣM+) be a

stationary random measure with law P and finite mean density ρ < ∞. Then, the Palm

measure is the unique probability measure P0 on M+ that satisfies

(20) EP

(∫

Rd

g(x,Φ) dΦ(x)

)
= ρ

∫

Rd

∫

M+

g(x, Txψ) dP0(ψ) dx

for all non-negative functions g on Rd × M+ for which
∫

Rd

∫
M+ g(x, φ) dφ(x) dP (φ) is

finite. When dealing with point processes, all this reduces to N+ by simply replacing M+

with N+ throughout Eq. (20), compare [16, Ch. 2.2 and Eq. 12.2.3].

If Φ is an ergodic stationary random measure, an application of the ergodic theorem implies

that, almost surely,

(21)
1

λ(Bn)

∫

Bn

F (T−xΦ) dΦ(x)
n→∞−−−→ ρ

∫

M+

F (Ψ) dP0(Ψ) ,

for any non-negative measurable function F : M+ → R, see [16, Prop. 12.2.VI] or the

proof of [33, Thm. 3.6.6]. Here and below, we write λ(Bn) for vol(Bn(0)).

In the literature, the probability measure P0 is sometimes called the Palm distribution of

P (with respect to 0), while the term ‘Palm measure’ is also in use for the unnormalised

version ρP0. The intensity measure of the latter coincides with the autocorrelation measure

of the underlying process (a notion that we also adopt here) and is denoted by γP . This is

motivated by the following result on the autocorrelation γ
(Φ)
P of a given realisation, which

is somewhat implicit in the literature. Its importance in our present context was first

emphasised by Goueré in [23].

Theorem 3. Let Φ be a stationary and ergodic random measure with distribution P .

Assume that P has finite density ρ, and that P has finite second moments in the sense

that EP (Φ(A)2) <∞ for any bounded A ⊂ Rd (this follows for instance from the condition

EP (Φ(Br(x))
2) < ∞ for some open ball Br). Let Φn := Φ|Bn(0) denote the restriction of

Φ to the ball of radius n around 0. Then, the natural autocorrelation γ
(Φ)
P of Φ, which is

defined via an averaging sequence of centred nested balls, almost surely exists and satisfies

γ
(Φ)
P := lim

n→∞

Φn∗ Φ̃n

vol(Bn(0))
= lim

n→∞

Φn∗ Φ̃
vol(Bn(0))

= ρIP0
= γP ,

where the limit refers to the vague topology on M+. Here, IP0
is the first moment measure

of the Palm distribution,

IP0
(A) =

∫

M+

Ψ(A) dP0(Ψ), for A ⊂ Rd Borel.
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Proof. Fix a test function, i.e., a bounded non-negative continuous function g : Rd →
[0,∞) with compact support. Using Eq. (21) and Bc

n := Rd\Bn, we have

1

λ(Bn)

∫

Rd

g(x) d
(
Φn ∗ Φ̃n

)
(x) =

1

λ(Bn)

∫

Bn×Bn

g(x− y) dΦ(x) dΦ(y)

=
1

λ(Bn)

∫

Bn

(∫

Rd

g(x − y) dΦ(y) −
∫

Bc
n

g(x− y) dΦ(y)

)
dΦ(x)

=
1

λ(Bn)

∫

Bn

Fg

(
T−xΦ

)
dΦ(x) − Rn(g)

(note that both integrals inside the big brackets in the second line are finite because g has

compact support), where φ 7→ Fg(φ) =
∫

Rd g(z) dφ(z) defines a measurable function, and

the remainder is given by

Rn(g) =
1

λ(Bn)

∫

Bn

∫

Bc
n

g(x− y) dΦ(y) dΦ(x) .

Note that Rn, which is a random measure, is precisely the difference between the elements

of the two approximating sequences of random measures in the claim. In view of (21), it

thus remains to show that limn→∞Rn = 0 almost surely. Choose k so that g(x) = 0 for

|x| > k, and fix some ε > 0. We then have, for n > k/ε,

Rn(g) ≤ ‖g‖∞
λ(Bn)

∫

Bn

Φ
(
Bc

n ∩ (x+Bk)
)
dΦ(x) ≤ ‖g‖∞

λ(Bn)

∫

Bn\B(1−ε)n

Φ(x+Bk) dΦ(x) ,

where φ 7→ G(φ) := φ(Bk) is again measurable. Hence we obtain

Rn(g) ≤ ‖g‖∞
λ(Bn)

∫

Bn

G
(
T−xΦ

)
dΦ(x) −

λ(B(1−ε)n)

λ(Bn)

‖g‖∞
λ(B(1−ε)n)

∫

B(1−ε)n

G
(
T−yΦ

)
dΦ(y)

n→∞−−−→
(
1 − (1 − ε)d

)
‖g‖∞ ρ

∫

M+

G(Ψ) dP0(Ψ) =
(
1 − (1 − ε)d

)
‖g‖∞ ρ IP0

(Bk)

almost surely by (21). Now take εց 0 to conclude. �

Our assumption guarantees that the second moment measure µ(2) of P , defined on cylinder

sets A× A′ ⊂ Rd × Rd via µ(2)(A × A′) =
∫
N Φ(A)Φ(A′) dP (Φ), is locally finite. This is

necessary and sufficient for the existence of the intensity measure of the Palm distribution

(as a locally finite measure). In fact, in the stationary scenario, the autocorrelation of

the process, denoted by γP , satisfies γP = µ
(2)
red, where µ

(2)
red is the so-called reduced second

moment measure of P , and this, in turn, is the same as the intensity of the Palm measure.

We offer a brief explanation of this (for more details, see [16, Prop. 12.2.V] or [48, Ch. 4.5]).

First, µ
(2)
red is obtained from µ(2) by disintegration, i.e., by factoring out the translation

invariance. More precisely, following [16], µ
(2)
red is the unique positive measure on Rd such

that

(22)

∫

Rd×Rd

h(x, y) dµ(2)(x, y) =

∫

Rd

∫

Rd

h(u, u+ v) dµ
(2)
red(v) dλ(u) ,

for all (real) functions h ∈ Cc(R
d × Rd). In passing, we note that, when h = f ⊗ g is a

product function (meaning that h(x, y) := f(x)g(y)), one finds

µ(2)(f ⊗ g) = µ
(2)
red(f̃ ∗ g)
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after an application of Fubini’s theorem. Choosing g = f , it is clear that the measure µ
(2)
red

is positive definite. More generally, when dealing with complex-valued functions, one has

to consider

µ(2)(f̄ ⊗ g) = µ
(2)
red(f̃ ∗ g),

which leads to some technical complications later on. Since we consider real-valued com-

ponent processes only, we can stick to the simpler case of real-valued functions.

The connection of the reduced second moment to the intensity measure of the Palm mea-

sure comes through applying (20) to a function on Rd ×M+ defined by

(23) (x, φ) 7→ g(x)

∫

Rd

Txh(y) dφ(y) ,

where g, h are arbitrary but fixed non-negative measurable functions on Rd. The left hand

side of (20) then reads

EP

(∫

Rd

g(x)

∫

Rd

h(y − x) dΦ(y) dΦ(x)

)
= EP

(∫

Rd

∫

Rd

g(x)h(y − x) dΦ(y) dΦ(x)

)

=

∫

Rd×Rd

g(x)h(y − x) dµ(2)(x, y) = λ(g) · µ(2)
red(h) ,

where we employed Fubini’s theorem and (22), while the right hand side reads

ρ

∫

Rd

∫

M+

g(x)

∫

Rd

(Txh)(y) d(Txφ)(y) dP0(φ) dλ(x)

= ρ

∫

Rd

∫

M+

g(x)

∫

Rd

h(y) dφ(y) dP0(φ) dλ(x) = λ(g) · ρIP0(h) .

Here, we used the notation of the intensity of the Palm measure for its first moment.

Comparing these two calculations gives

µ
(2)
red = ρIP0 = γP .

Remark 9. There are several different ways to define a reduced measure via disintegration.

In particular, one could use h(u, u±v) as well as h(u±v, u) in Eq. (22). Using translation

invariance of Lebesgue measure, this boils down to just two different possibilities, the one

with h(u, u + v) introduced above and the one with h(u, u − v), which is used in [32,

Prop. I.60]. Observing the relation

f̃ ∗ g̃ = f̃ ∗ g
together with µ̃(2) = µ(2), one can check that both versions define the same measure, as

the process is restricted to positive (and thus real) random measures, so that no complex

conjugation shows up in the .̃ -operation. Alternatively, one can use commutativity of the

convolution together with the symmetry of µ(2), which implies µ(2)(f ⊗ g) = µ(2)(g ⊗ f).

♦

To formulate the standard Poisson process in this setting, let us start with an intuitive

picture. Imagine independently putting single points on the sites of εZd ⊂ Rd, each with

probability ρεd, and imagine a process that arises from this construction in the limit ε→ 0.

For a rigorous construction, one can start from a tiling of Rd with translates of [0, 1)d and

then proceed, independently for each cell, as follows: Put a Poisson-(ρ) distributed number

of points in the cell, with their locations independently and uniformly distributed over the
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given cell, see [48, Sec. 2.4.1] for details. Such a more elaborate approach is needed when

d > 1 as there is no analogue of the renewal process we used for d = 1.

Example 9. Homogeneous Poisson process. This process on Rd, with point density ρ

(compare Remark 2), is a random counting measure Φ (with distribution P ) such that Φ(A)

is Poisson-(ρλ(A))-distributed for any measurable A ⊂ Rd and that the random variables

Φ(A1), . . . , Φ(Am) are independent for any collection of pairwise disjoint A1, . . . , Am ⊂ Rd.

With this setting, the expectation measure of the process is given by EP (Φ) = ρλ.

It is well-known that, under the Palm distribution, a Poisson process looks like the same

Poisson process augmented by an additional point at 0, so that

(24) P0(B) =

∫
1B(Φ+ δ0) dP (Φ), for B ⊂ N

(alternatively, write L(Φ+ δ0) = P0, or P ∗ δδ0 = P0), by a theorem of Slivnyak, compare

[48, Example 4.3]. This is intuitively obvious from the approximation via independent

coin flips on εZd and the idea of obtaining the Palm distribution via conditioning on the

presence of a point at 0. In our particular case, this results in IP0
= δ0+IP = δ0+ρλ. Since

homogeneous Poisson processes are stationary and ergodic with respect to the translation

action of Rd, we can now apply Theorem 3.

Consequently, for almost all realisations Φ of a homogeneous Poisson process with point

density ρ, the autocorrelation measure and the diffraction measure are given by

(25) γP = ρ δ0 + ρ2λ and γ̂P = ρ2 δ0 + ρλ ,

by an application of Eq. (4). This also extends Example 1 to arbitrary finite values of the

intensity ρ. ♦

5.3. Compound processes. Let us now go one step further by adding random clusters to

the picture. To this end, let a stationary ergodic point process Φ be given, with law P , point

density ρ, and locally finite expectation measure EP (Φ). This is called the centre process

from now on. Moreover, let Ψ ∈ M+ be a positive random measure with law Q, subject

to the condition that both its expected total number of points, m := EQ

(
Ψ(Rd)

)
> 0,

and the second moment, EQ

((
Ψ(Rd)

)2)
, are finite. This is the component process. We

will also consider signed component processes Ψ with values in M, in which case we will

assume that the second moment of the total variation measure is finite; see the appendix

for some details on the required notions and modifications for signed measures.

A combined cluster process, or cluster process for short, is a combination of a centre

process and a component process of cluster type, and is obtained by replacing each point

x ∈ supp(Φ) by an independent copy of Ψ , translated to that point x. We denote such

a process by the pair (ΦP , ΨQ). As before, we restrict ourselves to finite clusters here.

Formally, let Ψ1, Ψ2, . . . be independent copies of Ψ (these are the individual clusters).

When Φ =
∑

i δXi
, we put

Φcl :=
∑

i

TXi
Ψi =

∑

i

δXi
∗ Ψi ,

and denote its distribution by Pcl. Note that, when Ψ ≡ δ0 is deterministic and concen-

trated to one point, we simply obtain L(ΦP , ΨQ) = L(Φ), and the cluster process coincides

with the centre process.
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If Ψ is a counting measure, the cluster process (ΦP , ΨQ) is again stationary and ergodic, and

its expected point density is given by mρ, by [16, Prop. 10.3.IX]. This property actually

holds in larger generality, which we need later on.

Proposition 2. Let Φ be a stationary and ergodic point process with law P , finite point

density ρ and locally finite second moments. Let Ψ be a random measure with law Q, finite

mean and finite second moment. Then, the combined cluster process, which is a random

measure, is again ergodic.

Proof. If the component process is a (positive) point process as well, this result is stated

and proved in [16]. The necessary modifications for an extension to a (possibly signed)

random measure as component process, which seem to be well-known but which we could

not explicitly trace in the literature, are sketched in the appendix. �

The second moment measures of the three processes are connected in a way that permits

an explicit calculation of the autocorrelation γPcl
in terms of γP and various expectation

measures of the component process governed by Q. To make use of this powerful connec-

tion, we recall another disintegration formula, this time for any random variable Ξ of the

cluster process:

(26) EPcl
(Ξ) = EP

(
EQ(Ξ | given the centres)

)
,

which follows from the standard theorems on conditional expectation.

We are now in the position to use Eq. (22) in conjunction with Theorem 3 and Eq. (26)

to calculate µ
(2)
cl , and thus the autocorrelation of almost all realisations of the cluster

process, where we first concentrate on positive random measures. The extension to signed

measures follows in Section 5.4.

Given a measure µ ∈ M+ and a µ-measurable function g on Rd (possibly complex-valued),

we define a new function gµ on Rd via

(27) gµ(x) := (Txµ)(g) ,

which is again measurable. It is easy to check that gµ satisfies

(28) g̃µ = g̃µ̃ .

Lemma 5. Let µ ∈ M+ and let γ be a positive translation bounded measure on Rd. Then,

one has the identity (
µ ∗ µ̃ ∗ γ

)
(f ∗ g̃) = γ(fµ ∗ g̃µ) .

This identity also holds when both µ and γ are signed measures.

Proof. Let f and g be µ-measurable real-valued functions such that f ∗ g̃ is a continuous

function with compact support. One then finds

(
µ ∗ µ̃ ∗ γ

)
(f ∗ g̃) =

∫ ∫ (∫
f(x+ z + ξ) dµ(x)

)(∫
g̃(y − ξ) dµ̃(y)

)
dλ(ξ) dγ(z)

=

∫ ∫ (
Tz+ξµ

)
(f)
(
T−ξµ̃

)
(g̃) dλ(ξ) dγ(z)

=

∫ ∫
fµ(z + ξ) g̃µ̃(−ξ) dλ(ξ) dγ(z) = γ(fµ ∗ g̃µ) ,

where all integrals are over Rd and (28) was used in the last step. �
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Lemma 6. Let λ be Lebesgue measure on Rd, as before, and µ a finite Borel measure.

Then, one has µ ∗ λ = cλ with c = µ(Rd).

Proof. Let g be a continuous function on Rd with compact support and observe that, for

all x ∈ Rd, λ(T−xg) = (Txλ)(g) = λ(g) due to translation invariance of λ. The convolution

µ∗λ is well-defined as µ is finite while λ is translation bounded [11, Prop. 1.13]. One thus

has
(
µ ∗ λ

)
(g) =

∫

Rd×Rd

g(x+ y) dλ(y) dµ(x) =

∫

Rd

λ(T−xg) dµ(x)

=

∫

Rd

λ(g) dµ(x) = µ(Rd)λ(g).

Since g was arbitrary, the claim follows. �

Lemma 7. Under the general assumptions on the component process, one has

EQ

(
Ψ ∗ Ψ̃

)
(f ∗ g̃) = λ

(
EQ(fΨ gΨ )

)
and

(
EQ(Ψ)∗ ẼQ(Ψ)

)
(f ∗ g̃) = λ

(
f

EQ(Ψ) gEQ(Ψ)

)
,

where f and g are possibly complex-valued.

Proof. Let f and g be chosen as in the previous proofs, with complex-valued functions

permitted. The two claims can now be established by the following calculations. For the

first one, observe

EQ

(
Ψ ∗ Ψ̃

)
(f ∗ g̃) = EQ

(∫

Rd

( ∫

Rd

f(x− ξ) dΨ(x)
)( ∫

Rd

g̃(y + ξ) dΨ̃(y)
)

dλ(ξ)
)

= EQ

(∫

Rd

(
T−ξΨ(f)

) (
Tξ Ψ̃(g̃)

)
dλ(ξ)

)

=

∫

Rd

EQ

((
TsΨ(f)

) (
T−sΨ̃(g̃)

))
dλ(s) = λ

(
EQ(fΨ gΨ )

)
,

where we have used the fact that g̃
eΨ

= g̃Ψ in the last equality. The second claim follows

from
(
EQ(Ψ)∗ ẼQ(Ψ)

)
(f ∗ g̃) =

∫

Rd

(
TsEQΨ(f)

)(
TsEQΨ(g)

)
dλ(s)

=

∫

Rd

f
EQ(Ψ)(s) gEQ(Ψ)(s) dλ(s) = λ

(
f

EQ(Ψ) gEQ(Ψ)

)
,

where intermediate steps for the first equality here, which are similar to those of the

previous calculation, have not been repeated. �

Recall that the covariance of two real-valued random variables X and Y related to the

law Q is defined as

(29) covQ(X,Y ) := EQ(X Y ) − EQ(X) EQ(Y ) .

Proposition 3. Let (Ξ,Pcl) be a combined cluster process with stationary centre point

process (Φ,P ) and real component process (Ψ,Q), both with the usual assumptions on

means and second moments as used above. Then, one has the reduction formula

µ
(2)
Pcl

(f ⊗ g) = µ
(2)
P

(
f

EQ(Ψ) ⊗ g
EQ(Ψ)

)
+ ρλ

(
covQ(fΨ , gΨ )

)
,
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where ρ is the point density of the centre process and the covariance is defined as in (29).

Proof. By assumption and the disintegration formula (26), one finds

µ
(2)
Pcl

(f ⊗ g) =

∫

M+

Ξ(f)Ξ(g) dPcl(Ξ)

=

∫

N+

EQ

( ∑

x,y∈supp(Φ)

Ψx(T−xf)Ψy(T−yg)
)

dP (Φ) ,

where Ψx denotes the random measure at centre x. Since Ψx and Ψy are independent for

x 6= y, the double sum over the support is split into a sum over the diagonal (x = y) and

a sum over all remaining terms (x 6= y). Using the linearity of the expectation operator,

the integrand can now be rewritten as a sum over two contributions, namely
∑

x,y

EQ

(
Ψ(T−xf)

)
EQ

(
Ψ(T−yg)

)
and

∑

x

(
EQ

(
Ψ(T−xf)Ψ(T−xg)

)
− EQ

(
Ψ(T−xf)

)
EQ

(
Ψ(T−xg)

))
.

Inserting the first term into the previous calculation leads to the contribution

µ
(2)
P

(
EQ(fΨ ) ⊗ EQ(gΨ )

)
= µ

(2)
P

(
f

EQ(Ψ) ⊗ g
EQ(Ψ)

)

while the second results in

EP (Φ)
(
covQ(fΨ , gΨ )

)
= ρλ

(
covQ(fΨ , gΨ )

)
,

where the last step follows from the stationarity of (Φ,P ). �

Theorem 4. Let Φ be a stationary and ergodic point process with law P , finite point

density ρ and locally finite second moments. Let Ψ be a random measure with law Q,

finite expectation measure and finite second moments. If (Ξ,R) denotes the combined

cluster process built from the centre process (Φ,P ) and the component process (Ψ,Q), it is

also stationary and ergodic.

Moreover, the autocorrelation of the combined process satisfies

γ(R) =
(
EQ(Ψ) ∗ ẼQ(Ψ)

)
∗ γP + ρ

(
EQ(Ψ ∗ Ψ̃) − EQ(Ψ) ∗ ẼQ(Ψ)

)
,

and this is almost surely the natural autocorrelation of a given realisation of the cluster

process.

Proof. Choose two measurable functions f and g such that f ∗ g̃ exists and is a continuous

function with compact support. Then, one finds

γPcl
(f ∗ g̃) = µ

(2)
Pcl

(f ⊗ g) = µ
(2)
P

(
f

EQ(Ψ) ⊗ g
EQ(Ψ)

)
+ ρλ

(
covQ(fΨ , gΨ )

)

= γP

(
f

EQ(Ψ) ∗ g̃EQ(Ψ)

)
+ ρ

(
EQ(Ψ ∗ Ψ̃) − EQ(Ψ)∗ ẼQ(Ψ)

)
(f ∗ g̃) ,

where EP (Φ) = ρλ due to stationarity of (Φ,P ). The second step makes use of Lemma 7.

The formula for the autocorrelation now follows from the observation that

γP

(
f

EQ(Ψ) ∗ g̃EQ(Ψ)

)
=
(
EQ(Ψ)∗ ẼQ(Ψ)∗ γP

)
(f ∗ g̃),

which is an application of Lemma 5. The remaining claims are clear due to the assumed

ergodicity, via an application of Proposition 2. �
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An application of the convolution theorem gives the following consequence, where also the

identity ÊQ(Ψ) = EQ(Ψ̂) was used to highlight the structure of the result.

Corollary 1. Under the assumption of Theorem 4, the diffraction measure of the combined

cluster process is given by

γ̂R =
∣∣EQ(Ψ̂ )

∣∣2 · γ̂P + ρ
(
EQ(|Ψ̂ |2) − |EQ(Ψ̂)|2

)
λ

which is then almost surely also the diffraction measure of a given realisation. �

The result resembles our previous formulas, as was to be expected. Before we discuss

possible generalisations beyond the case of positive random measures, let us look at some

examples.

Example 10. Poisson cluster process. An important special case emerges when the

centre process is the homogeneous Poisson process of Example 9, with point density ρ. Let

γP and γ̂P be the corresponding measures. If we couple a cluster component process Ψ to

it, with law Q and m := EQ(Ψ)(Rd) its expected number of points, our general formula

for the compound process (ΦP , ΨQ) applies. With Lemma 6, the convolution formula can

be simplified, and the result reads as follows.

For almost all realisations of a Poisson cluster process (ΦP , ΨQ), the natural autocorrelation

measure exists and is given by

γ
(Q)
P = (mρ)2λ+ ρ EQ(Ψ∗Ψ̃) ,

where EQ(Ψ∗ Ψ̃) is a finite positive measure (of expected total mass ≥ m2), due to our

general assumption that EQ

(
(Ψ(Rd))2

)
is finite. Consequently, the diffraction measure is

almost surely given by

γ̂
(Q)
P = (mρ)2δ0 + ρ

(
EQ(Ψ∗Ψ̃)

)b· λ,

where
(
EQ(Ψ∗ Ψ̃)

)b
is a uniformly continuous Radon-Nikodym density for Lebesgue mea-

sure. These formulas include the case of deterministic clusters, compare Example 6. ♦

Remark 10. An interesting pair of processes is the combination of the homogeneous

Poisson process from Example 9 with Hof’s random displacement model from Example 8.

A simple calculation shows that γ
(ν)
P = γP and γ̂

(ν)
P = γ̂P in this case (and, in fact, Pcl and

P have the same law here). From a physical point of view, this is in line with the behaviour

of an ideal gas at high temperatures. When the Poisson process is a good model for the

gas, and random displacement one for the disorder due to high temperature, compare the

discussion in [28], the combination should still be an ideal gas – and this is precisely what

happens, and is reflected by the two identities. ♦

Example 11. Neyman-Scott processes. Let K be a non-negative random integer

with law L(K) = µ, mean m := Eµ(K) and finite second moment, Eµ(K2) < ∞. Now,

let Y1, Y2, . . . be a family of Rd-valued i.i.d. random variables with common distribution

ν, and independent of K. Define the cluster distribution via

Ψ :=

K∑

j=1

δYj
,
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i.e., a cluster has a random size K, while the positions of its atoms are independently

drawn from the probability distribution ν. The induced distribution for Ψ is again called

Q. With a calculation similar to the one in Example 8, one finds

EQ(Ψ)(A) = EQ

( K∑

i=1

1A(Xi)
)

= Eµ

( K∑

i=1

∫

Rd

1A(Xi) dν(Xi)
)

= Eµ

(
K·ν(A)

)
= mν(A)

for A ⊂ Rd Borel, so that EQ(Ψ) = mν and EQ(Ψ) ∗ EQ(Ψ̃) = m2(ν ∗ ν̃). Moreover, one

has

EQ(Ψ ∗ Ψ̃)(A) = EQ

( K∑

k,ℓ=1

1A(Xk −Xℓ)
)

= mδ0(A) + Eµ

(
K(K − 1)

)
(ν ∗ ν̃)(A),

which gives EQ(Ψ ∗ Ψ̃) = mδ0 + Eµ

(
K(K − 1)

)
(ν ∗ ν̃), so that the general formulas from

Theorem 2 can now again be applied. Note that Eµ

(
K(K − 1)

)
= Eµ(K2) −m.

If the centre process is once more the homogeneous Poisson process with mean point

density ρ, Lemma 6 gives similar simplifications as in Example 10. Consequently, the

autocorrelation is almost surely given by

γ
(Q)
P = (mρ)2λ+mρδ0 + ρ

(
Eµ(K2) −m

)
(ν ∗ ν̃) ,

whence the corresponding diffraction measure is given by

γ̂
(Q)
P = (mρ)2 δ0 + ρ

(
m+ (Eµ(K2) −m)|ν̂|2

)
λ ,

which is an interesting extension of the Poisson process. ♦

5.4. Autocorrelation for signed (ergodic) processes. It is intuitively clear that the

results of this section are not really restricted to point processes or positive measures

for the clusters. Here, we sketch how they can be adapted to the situation of signed

random measures. Consider a stationary, possibly signed, random measure Ψ (with law

Q and “finite second moments”, meaning that EQ

(
|Ψ(A)|2

)
< ∞ holds for any bounded

A ⊂ Rd), with second moment measure µ(2), defined as before via
∫

Rd×Rd

f(x, y) dµ(2)(x, y) = EQ

(∫

M

∫

M
f(x, y) dΨ(x) dΨ(y)

)
,

say for bounded f with compact support. The reduced second moment measure µ
(2)
red on

Rd with the property

(30) µ
(2)
red(f ∗ g̃) = µ(2)(f ⊗ g)

is defined in complete analogy to the positive case. The analogue of Theorem 3 is:

Theorem 5. Let Φ be a stationary and ergodic random signed measure with distribution

P . Assume that Φ has finite second moments in the sense that EP

(
|Φ(A)|2

)
<∞ for any

bounded measurable set A ⊂ Rd (which follows for example from EP

(
|Φ(Br(x))|2

)
< ∞

for some open ball Br). Let Φn := Φ|Bn denote the restriction of Φ to the ball of radius

n around 0. Then, the natural autocorrelation of Φ, which is defined with an averaging

sequence of nested balls, almost surely exists and satisfies

γ(P ) := lim
n→∞

Φn∗ Φ̃n

λ(Bn)
= lim

n→∞

Φn∗ Φ̃
λ(Bn)

= µ
(2)
red ,
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where the limit refers to the vague topology on N . Here, µ
(2)
red is the reduced second moment

measure of P according to (30).

Proof. The proof is a variation of the proof of Theorem 3. Fix a continuous function

h : Rd → R with compact support. We have to check that

(31)
1

λ(Bn)

(
Φn∗ Φ̃n

)
(h) −→ µ

(2)
red(h) almost surely as n→ ∞.

Let Φ be an ergodic random signed measure as above and F an ergodic random function

on Rd, the latter with the property that

(32) EP

(∫

A
|F (x)|d|Φ|(x)

)
< ∞

for any bounded measurable A ⊂ Rd. We can then define an additive covariant spatial

process XA in the sense of [38], indexed by bounded measurable subsets A via

XA :=

∫

A
F (x) dΦ(x).

Note that ergodicity of Φ and F implies that (XA) is again ergodic, meaning that the

shift-invariant σ-field is trivial. Now, [38, Cor. 4.9] yields

lim
n→∞

1

λ(Bn)
XBn = EP

( 1

λ(B1)
XB1

)
(a.s.)

Applying this to Φ as in the theorem and together with F (x) :=
∫

Rd h(x− y) dΦ(y) yields

lim
n→∞

1

λ(Bn)

∫

Bn

F (x) dΦ(x) = lim
n→∞

1

λ(Bn)

(
Φn ∗ Φ̃

)
(h)

= EP

( 1

λ(B1)

∫

B1

∫

Rd

h(x− y) dΦ(y) dΦ(x)
)

=
1

λ(B1)

∫

Rd×Rd

1B1(x)h(x − y) dµ(2)(x, y)

=
1

λ(B1)

∫

Rd

∫

Rd

1B1(x)h(z) dµ
(2)
red(z) dx =

∫

Rd

hdµ
(2)
red

almost surely, which is almost the claim. The difference between Φn ∗ Φ̃ and Φn ∗ Φ̃n can

be treated as in the proof of Theorem 3. �

Combining Proposition 4 and Theorem 5, and observing that the calculations in the proof

of Proposition 3 carry over literally to the signed case, we obtain

Corollary 2. The statements of Theorem 4 and Corollary 1 remain true for cluster pro-

cesses with signed clusters. �

5.5. Equilibria of critical branching Brownian motions in d ≥ 3. Consider a system

of particles performing independent Brownian motions in Rd, d ≥ 3 (for ease of comparison

with the cited literature, we assume that the variance parameter is σ2 = 2).

Additionally, each particle, after an exponentially distributed lifetime with parameter V ,

either doubles or dies, where each possibility occurs with probability 1/2. In the situation

of a birth event, the daughter particles appear at the position of the mother. Note that if
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we start with a finite number of particles, the expected number of particles is preserved

for all time, as the expected number of offspring equals 1. This is what “critical” in the

name refers to. Imagine we start such a system from a homogeneous Poisson process with

point density ρ, denote by Φt the random configuration observed at time t ≥ 0, and its

distribution by Pt. Pt is stationary with point density ρ, see [26] and the references given

there for background.

It follows from [26, Thm. 2.3] that the intensity measure of the Palm distribution of Pt is

given by

(33) I(Pt)0 = δ0 + (ρ+ ft)λ ,

where

ft(x) = V

∫ t

0

∫

Rd

ps(0, y) ps(y, x) dy ds =
V

2

∫ 2t

0
pu(0, x) du ,

with pt(x, y) = (4πt)−d/2 exp
(
−|x−y|2/(4t)

)
the d-dimensional Brownian transition den-

sity (with variance parameter 2). As explained in [26], there is a genealogical interpretation

behind (33): In view of the interpretation of the Palm distribution as the configuration

around a typical individual, δ0 is the contribution of this individual, ft λ that from its

relatives in the family decomposition of the branching process, and ρλ is the contribution

from unrelated individuals.

Furthermore, by [26, Thm. 2.2], Pt converges (vaguely) towards P∞, which is the unique

ergodic equilibrium distribution with point density ρ (cf [13] for uniqueness), and the limit

t→ ∞ can be taken in (33) to obtain

I(P∞)0 = δ0 + (ρ+ f∞)λ ,

where

f∞(x) =
V

2

∫ ∞

0
pu(0, x) du =

V

2

Γ
(

d−2
2

)

4πd/2

1

|x|d−2

is (up to the prefactor V/2) the Green function of Brownian motion. Thus, using Lemma 1,

we have

Corollary 3. Let Φ∞ be a realisation of the critical branching Brownian motion, from

the equilibrium distribution P∞. The autocorrelation is then almost surely given by

γ = ρδ0 + ρ(ρ+ f∞)λ ,

while the corresponding diffraction measure is then

γ̂ = ρ2δ0 + ρ
(
1 +

V

2

1

4π2|k|2
)
λ .

Remark 11. One can also consider the scenario where, instead of Brownian motion,

particles move during their lifetime according to a symmetric stable process of index α ∈
(0, 2] in Rd (α = 2 corresponds to Brownian motion). Such processes have discontinuous

paths, and their transition density p
(α)
t (x, y) = p

(α)
t (0, y − x) satisfies

∫

Rd

eik·xp
(α)
t (0, x) dx = exp(−t|k|α)

(in general, no explicit form of p
(α)
t is known). By [26, Thm. 2.2], non-trivial equilibria

exist if the spatial dimension d satisfies d > α. In this case, a reasoning analogous to that

above yields the following: The autocorrelation of a realisation Φ
(α)
∞ of the equilibrium
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of a system of critical branching symmetric α-stable processes (with density ρ) is almost

surely given by

γ = δ0 + (ρ+ f (α)
∞ )λ ,

where

f (α)
∞ (x) =

V

2

∫ ∞

0
p(α)

u (0, x) du =
V

2

Γ((d− α)/2)

2απd/2Γ(α/2)

1

|x|d−α

(for the form of the Green function of the symmetric α-stable process, see [12, Ex. 1.7]).

Hence, the diffraction measure is almost surely given by

γ̂ = ρ2δ0 + ρ
(
1 +

V

2

1

(2π)α|k|α
)
λ ,

by another application of Lemma 1. ♦

Note that, due to the independence properties of the branching mechanism, these equilibria

can also be considered as Poisson cluster processes. In contrast to the scenario considered

above, clusters in Φ∞ are infinite, and the spatial correlation decays only algebraically

(without being integrable).

6. Outlook

This article demonstrates that various aspects of mathematical diffraction theory for ran-

dom point sets and measures can be approached systematically with methods from point

process theory, as was originally suggested in [23]. At the same time, the approach is suf-

ficiently concrete to allow for many explicitly computable examples, several of which were

presented above. They comprise many formulas from the somewhat scattered literature

on this subject in a unified setting. There are, of course, many more examples, but we

hope that the probabilistic platform advertised here will prove useful for them as well.

The next step in this development needs to consider point processes and random measures

with interactions, such as those governed by Gibbs measures. First steps are contained in

[28, 4, 23, 35, 36, 9, 17, 10] and indicate that both qualitative and quantitative results are

possible, though some further development of the theory is needed.

A continuation along this path would also make the results more suitable for real appli-

cations in physics and crystallography, though it is largely unclear at the moment what

surprises the corresponding inverse problem might have to offer here.

Appendix: Ergodicity for cluster processes with signed random measures

Let M = M(Rd) be the space of (locally finite) real or signed measures on Rd, equipped

with the topology of vague convergence, with M+ = M+(Rd) denoting the subspace of

positive measures. Let ΣM denote the Borel-σ-algebra of Rd. Note that the latter is also

generated by the mappings M ∋ µ 7→ µ(A), for bounded and measurable sets A ⊂ Rd.

Recall that any µ ∈ M admits a unique Hahn-Jordan decomposition

µ = µ+ − µ− with µ+, µ− ∈ M+ mutually singular.

The mappings µ 7→ µ+, µ 7→ µ− are ΣM-measurable. We write |µ| := µ+ + µ− ∈ M+ for

the total variation measure of µ. A random signed measure Φ is a random variable with
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values in (M, ΣM). In the context of signed random measures, it is convenient to work

with the characteristic functional

(34) ϕΦ(h) := E
[
exp
(
i
∫
hdΦ

)]
,

which is defined for any h : Rd → R bounded measurable with compact support. In

analogy to the Laplace functional for positive random measures, the distribution of Φ is

determined by ϕΦ.

Here, we are interested in signed cluster processes: Let Φ be a stationary counting process

with finite intensity ρ, and Ψj, j = 1, 2, . . . independent (and independent from Φ), iden-

tically distributed random signed measures such that E
[
|Ψ1|

]
is a finite measure. Then,

given a realisation Φ =
∑

j δXj
, where Xj are the positions of the atoms of Φ (in some

enumeration), the cluster process is defined as

(35) Ξ :=
∑

j

TXj
Ψj .

Note that for any bounded B ⊂ Rd,

E
[
|Ξ(B)|

]
≤ E

[∑

j

|Ψj |(B −Xj)
]

= ρ

∫

Rd

∫

B−x
dE
[
|Ψ1|

]
dx = ρ

(
E
[
|Ψ1|

]
∗λ
)
(B) < ∞ ,

so that (35) is indeed well-defined.

Let Bn be the (closed) ball of radius n around 0 ∈ Rd.

Lemma 8. Let Ψ be a signed random measure on Rd. The following are equivalent:

(1) Ψ is ergodic.

(2) For any U, V ∈ ΣM,,

lim
n→∞

1

λ(Bn)

∫

Bn

(
P
(
Ψ ∈ U ∩ TxV

)
− P(Ψ ∈ U) P(Ψ ∈ V )

)
dx = 0 .

(3) For any g, h : Rd → R measurable with compact support,

lim
n→∞

1

λ(Bn)

∫

Bn

(
ϕΨ (g + Txh) − ϕΨ (g)ϕΨ (h)

)
dx = 0 .

Furthermore, it suffices to restict to U, V to a semiring which generates ΣM in (2), and

it suffices to restrict to continuous g, h with compact support in (3).

Proof. This is a straightforward adaptation of the proofs of Propositions 10.3.III and

10.3.VI and Lemma 10.3.II of [16] to the signed case. �

The following result is an analogue [16, Prop. 10.3.IX] for the signed measure case. Since

we have not been able to find a proof in the literature, we provide a sketch.

Proposition 4. Let Φ, Ψj, and Ξ :=
∑

j TXj
Ψj be as above. If Φ is ergodic, then Ξ is

ergodic as well.
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Sketch of proof. We will verify condition (3) from Lemma 8. Observe that for any f :

Rd → R with compact support and any ε > 0, we can find R <∞ such that

(36) P

(
∑

j : |Xj |≥R

∣∣∣∣
∫
f d(TXj

Ψj)

∣∣∣∣ ≥ ε

)
≤ ε .

To check (36), let R′ be large enough so that supp(f) ⊂ [−R′, R′]d, and note that for

R > R′, the lefthand side of (36) is bounded by

P

(
∑

j : ||Xj ||∞≥R

|Ψj|
(
[−R′, R′]d +Xj

)
≥ ε

||f ||∞

)
≤ ||f ||∞

ε
E

[
∑

j : ||Xj ||∞≥R

|TXj
Ψj|
(
[−R′, R′]d

)
]
.

The expectation on the righthand side above equals

ρ

∫

Rd\[−R,R]d

∫

Rd

1[−R′,R′]d(x− y) dE
[
|Ψ1|

]
(y) dx

≤ ρ(2R′)d E
[
|Ψ1|

](
Rd \ [−(R−R′), (R −R′)]d

)
,

which converges to 0 as R→ ∞ because E
[
|Ψ1|

]
is a finite measure.

Let g, h : Rd → R continuous with compact support and define

G(Φ) := E
[
exp
(
i
∫
g dΞ

) ∣∣∣Φ
]
, H(Φ) := E

[
exp
(
i
∫
hdΞ

) ∣∣∣Φ
]
.

Decompose
∫

(g + Txh) dΞ =
∑

j : Xj∈[−R,R]d

∫
TXj

g dΨj +
∑

j : Xj 6∈[−R,R]d

∫
TXj

g dΨj

+
∑

j : Xj∈[−R,R]d−x

∫
TXj+xhdΨj +

∑

j :Xj 6∈[−R,R]d−x

∫
TXj+xhdΨj ,

and choose R so large that (36) is fulfilled for f = g and f = h. Recall that for any

real-valued random variables X, Y with P(|Y | ≥ ε) ≤ ε, we have

∣∣∣E ei(X+Y ) − E eiX
∣∣∣ ≤ E

∣∣∣ei(X+Y ) − eiX
∣∣∣ ≤ E

[∣∣eiX
∣∣ ∣∣eiY − 1

∣∣
]
≤ ε+ P(|Y | ≥ ε) ≤ 2ε.

For A ⊂ Rd, write ΞA :=
∑

j : Xj∈A TXj
Ψj for the random measure which consists of

clusters with centres in A. For x ∈ Rd \ [−2R, 2R]d, we then have

∣∣∣E
[
exp

(
i
∫

(g + Txh) dΞ
)]

− E [G(Φ)H(TxΦ)]
∣∣∣

≤
∣∣∣E
[
exp

(
i
∫

(g + Txh) dΞ
)]

− E
[
exp

(
i
∫
g dΞ[−R,R]d + i

∫
TxhdΞ[−R,R]d−x

)] ∣∣∣

+
∣∣∣E
[
E
[
exp

(
i
∫
g dΞ[−R,R]d + i

∫
TxhdΞ[−R,R]d−x

)∣∣∣Φ
]]

− E [G(Φ)H(TxΦ)]
∣∣∣.

The first term on the righthand side is bounded by 2ε. Observing that the conditional

expectation in the second term is in fact a product because clusters with centres in disjoint
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regions are (conditionally) independent, we can bound the second term from above by
∣∣∣E
[
E
[
exp

(
i
∫
g dΞ[−R,R]d

)∣∣∣Φ
] (

E
[
exp

(
i
∫
TxhdΞ[−R,R]d−x

)∣∣∣Φ
]
−H(TxΦ)

)] ∣∣∣

+
∣∣∣E
[(

E
[
exp

(
i
∫
g dΞ[−R,R]d

)∣∣∣Φ
]
−G(Φ)

)
H(TxΦ)

] ∣∣∣

≤ E
∣∣∣exp

(
i
∫
TxhdΞ[−R,R]d−x

)
− exp

(
i
∫
TxhdΞ

)∣∣∣

+ E
∣∣∣exp

(
i
∫
g dΞ[−R,R]d

)
− exp

(
i
∫
g dΞ

)∣∣∣ ,

which is not more than 2ε.

Thus, using the relations E
[
E
[
exp

(
i
∫

(g + Txh) dΞ
) ∣∣Φ

]]
= ϕΞ(g + Txh), EG(Φ) =

ϕΞ(g), and EH(Φ) = EH(TxΦ) = ϕΞ(h), we obtain

(37)

lim sup
n→∞

1

λ(Bn)

∣∣∣∣
∫

Bn

(
ϕΨ (g + Txh) − ϕΨ (g)ϕΨ (h)

)
dx

∣∣∣∣

≤ lim sup
n→∞

1

λ(Bn)

∣∣∣∣
∫

Bn

(
E
[
G(Φ)H(TxΦ)

]
− E

[
G(Φ)

]
E
[
H(Φ)

])
dx

∣∣∣∣+ 4ε = 4ε

by ergodicity of Φ (in order to deduce this literally from statement (2) in Lemma 8, one can

for instance discretise the support of g and h and approximate G(Φ), H(Φ) with functions

depending only on the random vector (Φ(ci))1≤i≤N , where {ci | 1 ≤ i ≤ N} is a collection

of disjoint (small) cubes). Finally, take ε→ 0 to conclude. �
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