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geometries, was applied to a num-
ber of biophotonic tasks and has
achieved state-of-the-art perfor-
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mances. Therefore, deep learning
in the biophotonic field is rapidly growing and it will be utilized in the next
years to obtain real-time biophotonic decision-making systems and to analyze
biophotonic data in general. In this contribution, we discuss the possibilities of
deep learning in the biophotonic field including image classification, segmen-
tation, registration, pseudostaining and resolution enhancement. Additionally,
we discuss the potential use of deep learning for spectroscopic data including
spectral data preprocessing and spectral classification. We conclude this review
by addressing the potential applications and challenges of using deep learning
for biophotonic data.
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1 | INTRODUCTION

medical instrument suppliers and pharmaceutical manu-
facturers. For instance, laser-based therapy is an impor-

Biophotonics is a rapidly growing multidisciplinary field
that utilizes the interaction of light with biological sys-
tems and investigates these biological systems at the cel-
lular, molecular and tissue level. Since the past decade,
these biophotonic technologies are globally established in
biotechnology companies, healthcare organizations,

tant part of medical sciences today, and is used for light-
guided therapies in various organs. Other light-based
technologies like multiphoton microscopy (MPM), optical
coherence tomography (OCT), Raman spectroscopy,
infrared spectroscopy (IR), photoacoustic imaging (PAI)
and fluorescence life-time imaging microscopy (FLIM)
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are further useful tools in biomedical and biophotonic
research [1, 2]. For example, nonlinear multimodal imag-
ing which includes two-photon excited fluorescence
microscopy (TPEF), second-harmonic generation (SHG)
and coherent anti-stokes Raman scattering (CARS), is
widely used in dermatology, physiology, neurobiology
and embryology. Similarly, technologies like OCT are
mainly used in ophthalmology and cardiology, while
spectroscopic techniques have various clinical and phar-
maceutical applications.

Nowadays, biophotonic technologies are witnessing a
rapid development in the instrumentation of the optical
devices which is fastening the imaging speed, increasing
the penetration depth and enhancing the resolution of
the optical images. These developments make it possible
to measure label-free molecular information of samples
like cells or tissue. As all of the biophotonic technologies
are label-free, the spectral and image data is untargeted.
That means it is difficult to interpret a specific contrast
associated to a chemical structure or a biomolecule in
biophotonic data. Therefore, the interpretation of bio-
photonic data has to be generated using appropriate anal-
ysis techniques like statistics, chemometrics or machine
learning. Additionally, the technical improvement of
these biophotonic technologies has given rise to large
datasets, which require big data analysis methods to be
applied to biophotonic data [3]. Overall, interpreting and
handling biophotonic data are two obvious challenges for
the biophotonic community (Table 1).

TABLE 1 List of mathematical symbols
Symbol Explanation
X An input as a scalar (integer or real)
b4 An input vector or 1D data
X An input matrix or 2D data
(€] A set of trainable parameters
w A set of weights
B A set of biases
L Number of layers in a model
l Index of L layers
n Learning rate
IRP A D dimensional set of real numbers
IRY A N dimensional set of real numbers
T An index for iteration
P A probability distribution over discrete variable
X An input space representation
F A latent space representation
E Loss function
Eyy[f(x)] Expectation of f{x) with respect to P(ylx)

In this context, the well-established statistical
pattern-recognition methods are employed which
extract “features” or “patterns” from the biophotonic
data. These techniques are called “feature extraction”
methods. Feature extraction is a process of dimension
reduction used to transform high dimensional data to
low dimensional data. Subsequently, the low dimen-
sional data commonly called “features” can be used to
construct learning algorithms. This procedure is shared
by most of the machine learning algorithms where fea-
ture extraction is followed by prediction of the outcome
or probabilities [4]. Classification or regression models
are common examples of machine learning algorithms
where features from images (like shape, texture, color
features) or features of spectra (like intensity values at
specific wavenumbers in Raman spectroscopy) are
extracted to construct a predictive model. These
machine-learning algorithms in combination with a
high computational power can be utilized to interpret
the biophotonic data. A subset of machine learning algo-
rithms is called “deep learning,” which requires least
manual intervention for feature extraction and can be
employed as a decision-making algorithm with high
accuracy. Since a decade, deep learning algorithms have
achieved promising results in clinical radiology covering
a wide range of applications from cancer diagnosis to
personalized therapies [5]. Similar to clinical radiology,
introduction of deep learning algorithms in bio-
photonics has also revolutionized the data analysis in
this field. The respective research will be further dis-
cussed in this article.

This review article aims to give an overview of deep
learning techniques for spectroscopic data intended for
the multidisciplinary readership of J. Biophotonics. We
aim to stimulate the interest of researchers and data sci-
entists to foster applications of deep learning in bio-
photonics by discussing the ongoing evolution in the
field of biophotonics and deep learning. Additionally, we
emphasize potential applications and challenges encoun-
tered while applying deep learning for biophotonic data.
We structure our article in the following manner:
section 2 discusses the commonly used deep learning
architectures to analyze biophotonic data. Section 3 pre-
sents the applications of deep learning for preprocessing,
classifying and segmenting microscopic imaging data.
Section 4 presents the preprocessing and analysis for
spectroscopic data using deep learning. Further, section 5
addresses the challenges faced by a researcher while ana-
lyzing biophotonic data using deep learning and we
introduce the approaches for overcoming these chal-
lenges. Lastly, we conclude our review in section 6 by
answering the question “Is deep learning a boon for
biophotonics?”



PRADHAN ET AL.

OURNAL OF

2 | DEEP LEARNING—AN
OVERVIEW

With rising complexity of spectroscopic datasets and the
need to achieve good decision-making systems, more
advanced machine learning algorithms are required.
Briefly, a machine-learning algorithm is an algorithm
that is able to learn from data. A special kind of machine
learning algorithms is deep learning algorithm. A deep
learning algorithm is based on four major components
which are an optimization algorithm, a cost function, a
dataset and a deep learning model. Shortly, an optimiza-
tion algorithm is an iterative method to compare various
solutions for a problem until an optimal solution is
obtained. A cost function is a mathematical formula used
to evaluate the performance of a deep learning model. A
dataset is one of the major components for training the
deep learning models and can be split into three parts:
training, validation and testing dataset. The training
dataset is used for training the deep learning model, the
validation dataset is used to tune the hyperparameters of
the deep learning model and the independent test dataset
or holdout set is used to evaluate the performance of the
model in an unbiased manner [4, 6-8]. The last necessary
component is a deep learning model which is made of a
series of layers and hyperparameters depending on vari-
ous architectures, which are discussed in the further
course of the section.

Deep learning algorithms have widespread applica-
tions in speech recognition, natural language processing,
healthcare and so on. Particularly in healthcare, deep
learning is often applied to radiology data. Similar to clin-
ical radiology, traditional artificial neural networks [9]
were applied since the 1990s to biophotonic data [10, 11]
the recently developed deep learning models especially
convolutional neural networks have achieved state-of-the
art performance in the biophotonic field. This
section summarizes a few deep learning models that are
commonly used to analyze spectroscopic data. Each sub-
section gives a brief overview of a specific deep learning
architecture combined with an illustration of how to
apply these deep learning architectures for image and
spectral data.

2.1 | Feed-forward neural network

Feed-forward neural network commonly called artificial
neural network (ANN) or multilayer perceptron (MLP)
[9, 12, 13] are the basis of most of the deep learning
models utilized today. MLPs are loosely inspired by the
human neural system. These models are called feed-
forward neural network as the input flows only in the
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forward direction without a feedback from the output
into the model. Specifically, a feed-forward neural net-
work passes the input x = {x;}€IR”, through a series of
neurons with an activation a and a set of trainable
parameters © = {W, %} to obtain an output y. An activa-
tion function a = o(w’'x + b) introduces an elementwise
nonlinearity o(.) to the output of a neuron, which is a lin-
ear combination of the neuron's input and the parame-
ters ® (see Figure 1). A composition of many such
transformations forms the basis of a feed-forward neural
network where the input is passed through a series of
“hidden layers” to obtain the output. A neuron output y;
of an MLP with M and D neurons in two hidden layers
l'and [ — 1 respectively, can be represented as

ye(x:0) = (ENL Who! ™! (S, Wi x4+ b7 +B} )
(1)

where O is the set of trainable parameters, W); is a weight
matrix of size j X i, with i inputs and j activations of (I
— 1)th layer. During the training of a feed-forward neural
network, the model parameters ® are iteratively updated
using an optimizer until convergence is achieved. A sto-
chastic gradient descent (SGD) optimizer is commonly
used in the literature [15, 16], which performs typically
the minimization of a loss or a cost function E by the

output layers

hidden layers

input layers | X: X3 X3 Xg | X5 | X

FIGURE 1 A feed-forward neural network or a multilayer
perceptron with an input x € IR?, D = 6 and output y € IRY, N=4
is shown. The input to the network (depicted in yellow) can be
features (like histogram features, local binary patterns [14])
obtained from an image or features (like intensity values of
different wavenumbers) obtained from a spectrum which passes
through the neurons of the hidden layer depicted in blue. The
connections between the neurons are weighted by W and the data
is further passed through the layers with activation function a to
obtain an output shown in red. The weights are updated using
back-propagation as explained in Section 2.1
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back-propagation method [17, 18]. Back-propagation
minimizes the loss function in the parameter space ® by
computing a gradient of the loss function E(®) [17].
Based on the gradient of the loss function VE(®) com-
puted for all the layers, the model parameters
©={W, &} can be updated in each iteration 7 using the
formula given below:

e+ =0 —yVE®©)" . (2)

Here, 7 represents an iteration index and # is the
learning rate. In addition to the SGD optimizer, other
optimizers like Adam [19], Adadelta [20] and Adagrad
[21] have also been reported in the literature.

MLPs have widespread applications in image and
spectral classification as illustrated in Figure 2. The figure
shows an MLP that utilizes image features or spectral fea-
tures as the input. These features are further propagated
through the network to emerge at the output neuron as
class outputs (see Figure 2). The class outputs can be
tumor/normal for a diagnostic task, disease stages for a
disease assessment task or the type of pollen grains for a
classification task of pollen grains. Mostly MLPs require
the extraction of features from image or spectral data,
which is one of the limitations of these basic neural net-
works. Therefore, more advanced deep learning architec-
tures like convolutional neural networks are required.

2.2 | Convolutional neural network

A convolutional neural network (CNN) [22] is a variant
of a MLP, which can work on grid data, for instance spec-
tra or images. Unlike MLPs, CNNs consider the spatial

information of an image or temporal/spectral informa-
tion of a signal directly. This is achieved by convolving
the input, like an image X, with trainable kernels or
weights W, to generate a feature map X,. Mathemati-
cally, a feature map Xy for the Ith layer of a CNN is
given by

X, =o(WhXiT + b7, (3)

where W= {W;,W,,..,Wg} are K trainable kernels and
B = {by,b,,...,bx} are the biases. The illustration of a
CNN architecture in Figure 3 shows a kernel W, of size
3% 3, which is convolved with an image X in a raster pat-
tern with a stride value of 1 pixel (first layer). This forms
a feature map or a linearly convolved image X;. The line-
arly convolved image is further subjected to an
elementwise nonlinear transformation ¢ which is typi-
cally a rectified linear unit (ReLU) [23], tanh [24] and sig-
moid [25] function. The activation function ¢ is
important in CNNs to introduce a nonlinearity to the
model. Generally, a softmax activation function [6] in the
last layer of a model utilized for classification tasks is
used. The softmax activation layer maps the activations
of the final layer to a probability distribution of classes P
(yIX;0) given as

(W) X+

P(y|X;0) = softmax(X;0) = 4)

T

where W! and b! are the kernel and bias of the Ith layer
leading to a normalized probability distribution of class i.
In contrast to other traditional activation functions, the
output of a softmax activation function is normalized

Application: Spectral and Image classification

extraction

LT

Class 1
Class 2
Class 3
Class 4

FIGURE 2 Applications of MLPs are shown, where each input neuron utilizes the features obtained from a Raman spectrum (top) and

nonlinear multimodal image (bottom). The nonlinear multimodal image is composed of CARS signal as red channel, TPEF signal as green

channel and SHG signal as blue channel. The input vector at the first layer is a vector of image features or spectral features. The output

neuron of the MLP is a label or a class probability of the input spectrum or of the input image. CARS, coherent anti-stokes Raman

scattering; MLP, multilayer perceptron; SHG, second-harmonic generation; TPEF, two-photon excited fluorescence microscopy
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FIGURE 3 A general structure
of a convolution neural network
(CNN) is shown. The input image

X or a feature map of a layer is
convolved by two kernels W, and
W,. Each kernel of size 3 X 3 is
convolved with a small section of the
input image and is shifted with a
stride of 1 pixel (first layer) in a
raster pattern to obtain a whole
feature map X; and X,. The figure
also shows a pooling layer of a CNN,
which condenses the spatial
information of the feature maps
making CNNs computationally
efficient

between 0 and 1, and the sum of all outputs is equal to
1. A softmax activation function can be used as a last
layer for both CNN and MLP in classification tasks. Simi-
lar to MLPs, back-propagation in CNNs is performed to
update the weights in each kernel, which are computed
using the gradients of the loss function determined in
forward pass.

Unlike MLPs, CNNs utilize three other important
concepts including weight sharing, pooling layers and
receptive field (see Figure 3). A weight sharing reduces
the number of parameters by sharing weights for all neu-
rons in a feature map. Pooling layers aggregate the neigh-
boring pixel values to reduce the spatial dimension of the
input images or the feature maps. A receptive field is a
region in the input space that is affected by a kernel. The
pixels of an image closer to the center of the receptive
field contribute more to the output feature [6].

CNNs are immensely used in biophotonics for image
and spectrum classification (see Figure 4), disease char-
acterization and microorganism identification. These
applications are further explained in section 3 and
section 4. CNNs are also used in other deep learning
architectures like auto-encoders and generative adver-
sarial networks explained in section 2.4 and section 2.5,
respectively.

2.3 | Recurrent neural network

Standard neural networks like MLPs have certain limita-
tions while working with sequence data like spectro-
scopic data or time series. One of the limitations is that

Input image X or
feature map of a layer

5o0f24
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Two feature maps

pooling

layer

stride size:1 X, stride size:3
kernel size:3 kernel size:3

MLPs fail to consider the entire history of a sequenced
input vector for obtaining an output [28] whereas, recur-
rent neural networks (RNNs) [17] incorporate neurons
that span the input over time. Moreover, RNNs have hid-
den layers that add memory to the network over time.

RNNSs can have three types of architectures to solve
the sequence data problem: (a) the one-to-many RNN
architecture has one input neuron and a sequenced or
many output neurons, which are used for image cap-
tioning [29], (b) the many-to-one RNN architecture com-
prises a sequenced or many input neurons and one output
neuron, which is used for text classification [30] and lastly
(c) the many-to-many RNN architecture has a sequenced
or many input neurons and a sequenced or many output
neurons, which is mostly used for machine translation
[31]. In addition to the earlier mentioned applications,
RNNs have obtained promising results in natural language
processing, speech recognition and machine translation
tasks [32]. Moreover, a recent study reported the use of
RNNs for the analysis of genetic data [33]. Despite the
enormous development of RNNs, they are underexplored
in the field of biophotonics as compared to MLPs and
CNNs. Nevertheless, RNNs can build intelligent systems
and its use in spectrum preprocessing, wavenumber cali-
bration or intensity calibration, spectrum classification,
decoding biomolecular markers from bio-spectroscopic
data, learning spatial-spectral-temporal features for spec-
tral data and phase retrieval of nonlinear optical
spectroscopic data can be investigated in the future.

A typical many-to-many RNN structure is shown in
Figure 5. The figure shows three unit types, an input vec-
tor, a hidden state vector and an output vector. For
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Application: Image classification

well
— 5 differentiated
(G1)
moderately
— differentiated
(G2)

poorly
—» differentiated
(G3)

£

.
.
A
3,

Application: Cell localization and segmentation

FIGURE 4 This figure shows application of CNNs like image classification (upper panel), localization and segmentation (lower panel).

For image classification, a multiphoton image is used for classifying three grades of hepatocellular carcinoma (upper panel). For cell

localization task, a leukocyte mask was generated using a CNN to localize and segment leukocytes in blood smear images (lower panel).

These images are reproduced and modified from references [26, 27]. CNN, convolution neural network

sequenced input data (X, X, X3,..., X7), an RNN can have
many outputs (y;, Y2, ¥a,---» Y7 + n) OF the same number of
outputs like the input data (yy, y, V3., Y1) OF just one
output unit y. The intermediate layer represents the hid-
den state of the RNN. The hidden state h; is the memory
of the network and is calculated using the hidden state of
the previous step h, _ 1y and the input vector at the cur-
rent step x;. The hidden state at the first time step is ini-
tialized with zeros

h;=0fort=0. (5)

The hidden state for the intermediate time steps is
calculated by

h[:U(WXt‘}‘Uht_l +b) fOI‘t;ﬁO (6)

Here, U is the weight vector of the hidden layer, W is
the weight vector of the input layer and V is the weight
vector of the output layer shared over time (see Figure 5).
Applications of many-to-many RNNs for spectra
preprocessing, where the input vector for the many-to-
many RNN is a raw spectrum and the output vector is a
preprocessed spectrum, still requires investigation.

However, many-to-one and many-to-many RNNs can
also be used for classification purposes. In such cases, a
softmax activation layer is added to the output sequence
of the RNN model in order to achieve posterior probabili-
ties for the classes.

Nevertheless, standard RNNs report some shortcom-
ings. Firstly, RNNs require higher computational power
and larger training data than usual CNNs. A standard
RNN calculates an output at each time step utilizing just
the past and the present element of the input vector. For
spectroscopic data, the past, present and future states
(or wavenumbers) of the spectra influence the output at
a particular time step, and the application of bidirec-
tional RNNs can be investigated. A bidirectional RNN
utilizes hidden states from opposite directions to update
the output sequence at a particular time step. Another
shortcoming of RNNs is the problem of vanishing gradi-
ents, which occurs due to the deep structure of RNNs.
To circumvent this problem, other variations of RNN
including long short-term memory (LSTM) and gated
recurrent unit (GRU) networks are used and have
achieved better performances [34]. A comprehensive
discussion of the variations of RNNs is out of scope of
this review.
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24 | Auto-encoder

Auto-encoders (AE) [35, 36] are ANNSs consisting of two
parts: an encoder and a decoder. The encoder transforms
a D dimensional input x €IR” = y to a N dimensional
hidden states h € IRY = F, N < D, where y is the input
space and F is the latent space representation. The latent
space F is represented by the bottleneck of the model
(see Figure 6). The bottleneck layer compresses the input
space representation y to capture the most salient fea-
tures of the input data. The representation of the hidden
states h in the bottleneck layer can be written as

h=c(Wx+b). (7)

v A%
U U u u
—_—>» ht{ —— 3 Nt —m ht4] ———
w w w
Xt-1 Xt Xt+1

FIGURE 5 A structure of recurrent neural network is shown.
A set of sequenced data x with T time steps is given as an input
(yellow) to reconstruct a sequenced output vector y (red) with equal
number of time steps. The hidden states (blue) store the features or
act as memory unit of the RNN network. The weight matrices W,U,
V are updated during the training of RNNs

encoder

FIGURE 6 An auto-encoder
(AE) structure with two parts, an
encoder and a decoder, is shown.
An encoder transforms the input
information (shown in yellow) into
a latent space representation (shown
in cyan) F, which is transferred by
the decoder to reconstruct an output
(shown in red) in the same space
representation as the input. Both
the parts can be constructed using a
CNN or an MLP. CNN, convolution
neural network; MLP, multilayer
perceptron

7 of 24
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The dimension of the bottleneck layer is smaller as
compared to the dimensions of the input layer to avoid
the encoder from learning an identity function.

A decoder transforms the bottleneck features of the
hidden states h back to a reconstructed input x' of the
same dimension as x. The reconstructed input x’ can be
given as

X =o(Wh+b). 8)

Here, W’ and b’ are the weight matrix and bias of the
decoder respectively. The training of an auto-encoder is
performed through back-propagation of reconstruction
error calculated between the original and the
reconstructed input.

Traditionally, auto-encoders were used for dimen-
sionality reduction [6]. Simple auto-encoders find its
application for denoising, image deblurring and semantic
segmentation (see Figure 7), which will be discussed in
section 3 [39]. Additionally, variations of auto-encoders
like stacking auto-encoder, sparse auto-encoder, den-
oising auto-encoder, convolutional auto-encoder, varia-
tional auto-encoder and contractive auto-encoder are
used to prevent the learning of an identity function by
the encoder, as stated earlier [40]. Moreover, auto-
encoders can be a part of adversarial networks discussed
in section 2.5.

2.5 | Generative adversarial network

A generative adversarial network (GAN) [41] is a spe-
cial type of ANN that consists of two networks: a gener-
ator and a discriminator, which are trained
simultaneously. The input to the generator is either a
random noise vector z or a real data, like an image X,
sampled from a prior distribution pg,¢,. The generator is

decoder

latent space
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Application

: Segmentation

prediction

FIGURE 7 Applications of auto-encoders are shown in this figure. The upper panel shows a segmentation of a Drosophila heart, where
optical coherence tomography images are used as an input to the AE model and the output is a segmented drosophila heart. Similarly, the
lower panel shows a segmented crypt in a nonlinear multimodal image. The nonlinear multimodal image is used as an input to the AE
model to obtain a false-color image with four distinct regions (crypt region in red) at the output. Similar to Figure 2, the nonlinear
multimodal image is composed of CARS, TPEF and SHG signal. The images are reprinted from references [37, 38] with permissions. AE,
auto-encoder; CARS, coherent anti-stokes Raman scattering; SHG, second-harmonic generation; TPEF, two-photon excited fluorescence

microscopy

a differentiable function represented by an MLP (or an
AE) that maps this input to an output y;, such that
G(x;0¢):{X,z} —y; . The generator G(x;0g) aims to
learn the distribution p; to approximate the prior distri-
bution of the real data pg,, from where the input X was
drawn. The output y; of the generator has visual similar-
ity with the real data, e.g. images. In addition to the out-
put from the generator, a real input image is also fed to
the discriminator D . The output of the discriminator
D(yg;0p) :yp — [0,1] represents a probability that y; is
retrieved from pg,., rather than p; (see Figure 8). Both
the networks G and D follow a min-max game where D
minimizes the probability of y; belonging to pga., and
simultaneously ¢ maximizes this probability by generat-
ing more realistic images that cannot be distinguished by
D. This adversarial training is achieved by optimizing the
loss function

E(G, D) =Ey,, [logD(x,y5)] +

. ©
xallog(1~D(x,9(x,2)

with back-propagation technique. During back-propa-
gation, the gradient calculated over the loss function
is back-propagated from the discriminator to the gen-
erator, in order to update the parameters of the gen-
erator. While training a GAN network certain
challenges are encountered. Foremost, it is difficult
to obtain convergence of both the networks due to

simultaneous training of the networks. Additionally,
an early convergence of the discriminator network
can cause the generated images to be easily distin-
guished from the true images. This is a consequence
of the gradient of the discriminator reaching zero
and thus providing no guidance to the generator for
further training. After a few iterations, when conver-
gence between the two networks is achieved,
(Pg =Pdata @and D(x) =1) the generator can produce real-
istic images, which are difficult to identify as “fake”
images [41] by the discriminator.

Such an adversarial training of GANs have gained
popularity in industrial and academic research due to
their capability of domain adaptation and generating new
images. Generative adversarial networks (GANs) are
potentially used for biophotonic applications including
denoising of images, correcting stitching artifacts in
microscopic images, increasing spatial resolution [42, 43],
virtual H&E staining of fluorescence images [44] and bio-
logical image synthesis of fluorescence images [45, 46]
(see Figure 9). The applications of GANs are elaborated
in chapter 3.

All the above mentioned deep learning architectures
are huge and have many layers. With increasing architec-
ture and dataset size, the memory requirements increases
as well. Therefore, high computational power and effi-
cient software are needed. A detailed explanation of the
hardware requirements and commonly used software is
given in the section 2.6.
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FIGURE 8 Generative adversarial network shows two adversaries, a generator and a discriminator. A generator's input is either
random noise z or an image X. The output from a generator yg, is fed to the discriminator D which distinguishes the generated output as
real or fake. Both the networks are adversaries of each other as both the networks optimize different objective functions

Application: pseudo-staining

x

Application: super resolution

ey -

FIGURE 9 The two common applications of GANs including pseudostaining (upper panel) and resolution enhancing (lower panel) are
shown. The image in the upper panel utilizes an autofluorescence image as an input and the GAN network produces H&E stained image at
the output. Similarly, the image in the lower panel shows that a GAN model was used to enhance the resolution of a Masson's trichrome
stained lung tissue section. The images are reprinted from earlier researches [42, 44] with permission. GAN, generative adversarial network
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2.6 | Hardware throughput and software
libraries

Deep learning algorithms perform complex matrix multi-
plications of millions of parameters in the hidden layers.
This limits the performance of deep learning models due
to the need for higher computational power and memory
size. The recently introduced GPUs provide higher com-
putational power as compared to conventional CPUs,
thereby, accelerating the training of deep learning models
to a greater extent.

In addition to the hardware, the availability of vari-
ous software packages can facilitate the use of deep
learning models in biophotonics. A range of open-source
deep learning libraries like Caffe [47], Torch [48],
Theano [49], Tensorflow [50], Keras [51] and Lasagne
[52] are developed along with their interfaces in C++,
Python and Lua programming languages. These pack-
ages can be efficiently implemented with GPUs, thus
accelerating the training of deep learning models. Vari-
ous researches using these libraries have been con-
ducted for spectroscopic data which is discussed in
section 3 and section 4.

2.7 | Educational resources

The above sections provide brief information about deep
learning and various architectures. However, to make
deep learning algorithms profitable for the biophotonic
community, various educational resources are mentioned
in this section.

In this context, books by Nielsen [53], Ripley [7],
Russel and Norvig [8], Bishop [54], Goodfellow [6] and
many more [55-58] are recommended sources for deep
learning. Additionally, there are several online courses for
deep learning which can give an overall hands-on experi-
ence of using various deep learning models with Python
and R programming languages. Some of them are listed
here: Coursera (https://www.coursera.org), deeplearning.
ai (https://www.deeplearning.ai) and others (https://www.
datacamp.com, https://machinelearningmastery.com,
https://www.pyimagesearch.com).

Furthermore, applications of deep learning are show-
cased at a number of international conferences dedicated
to biophotonics. A few of them include, but are not lim-
ited to, SPIE conferences, OSA conferences, IEEE confer-
ences and FACCS conferences. Likewise, many peer-
reviewed journals fully dedicated to the field of bio-
photonics have embraced the applications of deep learn-
ing and attracted interdisciplinary readership.

In the next two sections, applications of deep learning
are elaborated.

3 | DEEP LEARNING FOR
BIOPHOTONIC IMAGING

In the past decade, biomedical optical imaging has
witnessed a vast development ranging from fast scanning
systems to automated image analysis algorithms. In addi-
tion, developments like increased penetration depth,
molecular specificity, faster image acquisition and high
spatial resolution are advantageous for bed-side patient
monitoring and diagnostics for personalized treatments.
However, due to practical limitations of optical systems,
certain challenges are encountered with the fast acquisi-
tion of highly resolved and noise-free data. Recently,
deep learning algorithms have been used to address these
unmet needs in biophotonic imaging and has shown
overwhelming results for a broad range of applications.
These applications will be further discussed in this
section.

3.1 | Image denoising/deblurring

Deep neural networks can be designed for virtually any
kind of input-output combination. One way to employ
deep neural networks is to feed noisy or low-resolution
images to the input of a generative network and use the
images with desired resolution or noise level as an out-
put. The generative network, which learns features from
the high-resolution images, can be subsequently used for
image enhancement. Generative networks using mean
square error or similar type of loss function often lead to
overly smoothed images at the output. A common way to
preserve high-frequency features is to build a generative
adversarial network (GAN), which was described in more
details in section 2.5. Shortly, the GAN network contains
a generative network to produce an image and a discrimi-
nator network to estimate the quality of the image pro-
duced by the generator. A variation of this architecture,
called Wasserstein generative adversarial network
(WGAN), which uses Wasserstein distance as a loss func-
tion, was recently utilized for resolution enhancement of
OCT images [59]. An alternative, edge-sensitive condi-
tional generative adversarial network (cGAN) was
reported efficient against speckle noise. This speckle
noise reduction was demonstrated for OCT images which
utilized an edge-sensitive cGAN [60]. Another implemen-
tation of the GAN approach with additional content loss
metrics was proposed for simultaneous denoising and
super-resolution generation of optical coherence tomog-
raphy [61]. This content loss was calculated from the dif-
ference between features extracted from the true image
and the generated image. Besides OCT images, the GAN
approach was successfully applied for fluorescence
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microscopic images, making a cross-modality super-
resolution possible without employing overly sophisti-
cated setups [43]. The approach of achieving super-
resolution by deep learning is additionally discussed in
section 3.7.

In all above examples, deep neural networks learned
patterns from the data, which makes it possible to
increase the resolution and the signal-to-noise ratio
simultaneously. This makes these methods advantageous
in comparison with classical image enhancement
methods, which usually improve one of the two quality
parameters at the expense of the other parameter.

3.2 | Semantic segmentation

Semantic segmentation is a pixel classification task,
where every pixel of an image represents a class. Seman-
tic segmentation is widely used in digital pathology for
applications, like tissue segmentation, nuclei segmenta-
tion and lesion detection [62]. Similarly, semantic seg-
mentation of microscopic images, like nonlinear
multimodal images [37, 63], OCT images [64] and fluo-
rescence images, using auto-encoders (see section 2.4) is
gathering researcher's interest. The above-mentioned
works utilize U-net [65] type networks, which is an auto-
encoder architecture with special connections between
the encoder and the decoder network. Another striking
feature of U-net is the weighted loss function, which
heavily penalizes the misclassification of boundary pixels
of an object, thus allowing to segment closely located
objects efficiently. Previous research showed the seman-
tic segmentation of nonlinear multimodal images (CARS,
TPEF, SHG) of lung tissue using the U-net [63] architec-
ture and of gastrointestinal tissue regions using the
SegNet architecture (see Figure 7 bottom) [37, 66],
respectively. Similarly, the authors of a recent research
article [38] segmented a Drosophila heart in optical com-
puted tomography images based on an U-net architecture
(see Figure 7 top). Furthermore, it is shown in a recent
work [37] that CNN based semantic segmentation
achieved better performances as compared to traditional
machine learning methods.

In addition to CNNSs, recurrent neural networks have
also shown promising results for semantic segmentation
of the CamVid dataset [67, 68]. A recent work [69] used
RNNs for perimysium segmentation in H&E stained skel-
etal microscopic images and achieved better performance
as compared to the U-net architecture. RNNs can retrieve
global spatial information of an image, which improves
the semantic segmentation performance [69]. However,
training a RNN can be computationally expensive and
therefore it is underexplored in biophotonics.

3.3 | Disease recognition

Disease recognition using MLPs and CNNs is a very com-
mon application in the field of biophotonics. Out of all
deep learning architectures discussed in section 2, MLPs
are widely used for disease recognition and assessment.
For example, MLPs were used to classify FLIM data of
cervical neoplasmic tissue sections, which achieved a sig-
nificant discrimination between the normal and the pre-
cancerous group as well as between the low-risk group
and the high-risk group [70]. Another application of
MLPs was reported using Raman spectroscopic data for
classification of patients with Alzheimer's disease, other
types of dementia and healthy individuals. Comparison
of MLP results with conventional classifiers, like the
radial basis function (RBF) classifier, showed that MLPs
outperformed the conventional classifiers for the tested
classification tasks [71]. In addition to MLPs, CNNs are
the second most widely used deep learning architectures
for disease classification. A recently proposed CNN appli-
cation [72], classified malaria infected blood smear from
healthy controls using Leishman stained images. The
malaria-infected images were further used to segment the
infected RBCs. Similarly, a very recent research reported
the use of CNNs to assign cervical cancer into three
stages using CARS, SHG, TPEF microscopic data [73].

Mostly, the data acquired by spectroscopic techniques
is small, due to larger acquisition times. Therefore, the
training of MLPs or CNNs is always challenging due to the
small datasets available. In such cases, deep learning net-
works using transfer learning strategies can be applied [26,
74-76). Transfer learning utilizes CNN models pretrained
on a (large) source dataset and transfer the learned features
to classify a (small) target dataset. For example, pretrained
CNN models including GoogleNet [77], Inceptionv3 [78]
and VGG16 [79] were used to classify breast cancer in OCT
images [75], head and neck cancer in 3-D OCT images [80],
lung cancer in CARS images [74] and hepatocellular carci-
noma in multiphoton microscopic images [26] (see
Figure 4 top), respectively. Here, the CNN models are first
trained on large nonbiological datasets like ImageNet [81]
and the parameters of these pretrained models are fine-
tuned on the new biophotonic dataset.

To summarize, MLPs and CNNs are majorly used for
disease classification. Recently reported transfer learning
strategies [26, 74, 75] using CNNs have worked best for
small datasets, which are accounted in biophotonic studies.

3.4 | Cell or organ localization

In addition to the segmentation tasks described in
section 3.2, there is a specific segmentation application
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known as the “localization” task. In biomedical imaging,
localization can be used for counting cells of a specific
type within the sample or its image. Subsequently, the
localized cells can be segmented and analyzed through
descriptive statistics over cell sizes, shapes and the cell
morphology. Alternatively, segmented cells can be auto-
matically classified or investigated manually by patholo-
gists. It was shown that leukocytes can be localized
within blood smear images and segmented using deep
neural networks efficiently [27]. For the leukocyte locali-
zation, a multistep workflow that included a feature
extraction by a feature pyramid network inspired by the
ResNet architecture [82] was utilized. This was followed
by the determination of a region of interest. Thereafter, a
localization box was predicted and the leukocytes were
segmented (see Figure 4 bottom). On every step of this
workflow, convolutional or fully connected layers were
used instead of user-defined features.

Another biomedical application of deep learning is
organ localization within 3D computed tomography
(CT) scans, which is an essential preprocessing step for
the analysis of the scans. Recently, the organ localization
and segmentation within 3D scans was demonstrated
using a 3D U-net approach [83] and a 2D multichannel
SegNet model [84].

3.5 | Pseudostaining

In imaging of biological tissue and cell samples often his-
tological staining needs to be applied in order to enhance
the contrast and highlight tissue features. This staining is
usually performed during the sample preparation prior to
the microscopic investigation of the sample. Both manual
and automated microscopic image analysis often require
such stained images. Some stains, like the hematoxylin
and eosin (H&E) stain are used over many decades as
“gold-standard” techniques in pathology. The main draw-
back of the conventional staining techniques is that they
require additional time and effort. Recent studies showed
that in certain cases deep learning can be employed
instead of the actual sample staining. It was shown that
cGAN architecture can be used to generate H&E stained
images from hyperspectral microscopic images of
unstained samples [85]. Another study employed a CNN-
GAN approach in order to obtain H&E stained images
from unlabeled tissue autofluorescence images (see
Figure 9 top) [44]. Both studies performed virtual H&E
staining by using different imaging techniques in a com-
bination with deep learning instead of actual staining the
sample. On the other side, it was shown that deep learn-
ing makes it possible to restain H&E stained microscopic

images into immunohistochemical (IHC) stained
images [86]. The advantage of such approach is that H&E
is a conventional and simple staining but the IHC
staining is more costly and labor intensive. For such
restaining, a conditional CycleGAN (cCGAN) architec-
ture was used. Oversimplified, this CycleGAN approach
is a combination of two generators (encoder and decoder)
and discriminators. The first generator produces an IHC
stained image from a H&E stained image, subsequently,
the second generator transforms the generated IHC
image into a virtually stained H&E image. This cycle
makes it possible to introduce cycle identity loss and clas-
sification cycle loss in the network architecture.

In prospect, deep learning in combination with vari-
ous imaging techniques may provide a fast and flexible
alternative to the histological staining, making it possible
to switch between virtual stains without additional sam-
ple preparation and measurements.

3.6 | Image registration

Nowadays, it is a common practice to measure one sam-
ple with multiple modalities in order to achieve a com-
prehensive characterization of the biological tissue
specimen. For the joint analysis of the images obtained
from two or more modalities, a perfect overlay of the
two images is required. This is termed as image registra-
tion. The basic idea of the image registration methodol-
ogy is to minimize or maximize an objective or a cost
function computed on the overlapping region of the two
(moving and fixed) images. The optimization of the
objective function is achieved by iteratively searching a
geometric transformation for the moving image. Various
semiautomatic approaches have been proposed by
researchers to register secondary ion mass spectrometry
images with optical image [87], Raman microscopic
images with mass spectrometric MALDI-TOF
images [88] and FTIR images of tissue microarray
(TMA) cores against H&E images [89]. However, these
methods are not fully automated and require manual
intervention. A recently developed automatic approach
based on a sparse search strategy deals with sub region
registration of FTIR microscopic images in whole-slide
histopathological staining images. Additionally, the
FTIR imaged cores of tissue microarrays were registered
with their histopathologically stained counterparts. This
work also presented the registration of CARS images
within histopathological staining images [90]. Although
this approach is robust and reliable for diverse micro-
scopic technologies, it requires preprocessing of the
samples acquired from various modalities. In such cases,
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CNN based registration can potentially register images
obtained from different modalities without the need of
image preprocessing.

Recently, CNN based registration methods have
been reported in radiology, which learn geometric trans-
formation parameters for registering MRI and CT
images [91, 92]. The results from the CNN based regis-
tration have shown surprisingly good results and are
efficiently applied in a multiresolution scenario. How-
ever, a CNN based image registration of spectroscopic
images is still under-explored and requires further
investigation.

3.7 | Image super-resolution

An earlier section (see section 3.1) discussed that GAN
architectures can be employed for both image denoising
and resolution enhancement. Although the improvement
of the signal-to-noise ratio is very important for the inter-
pretation of the images, it can also be improved by
increasing the number of collected images. On the other
side, the resolution of the obtained image is often limited
due to the technical properties, like the diffraction limit.
There are various sophisticated technical solutions,
which allow an imaging below the diffraction limit. A
class of such techniques is called super-resolution
imaging.

Besides technical solutions, overcoming the diffrac-
tion limit is also possible by employing image processing
techniques, and in particular, deep learning. Studies
showed that CNN can be applied to effectively improve
the resolution of the stained tissue section (see Figure 9
bottom) [42]. A fully convolutional encoder-decoder net-
work was successfully constructed for imaging of quan-
tum dots and microtubes wusing single-molecule
localization microscopy [93]. Another imaging limitation
was pushed by deep learning in the area of lens-free holo-
graphic microscopy (LFHM). Due to the absence of the
lens, the resolution is limited by the pixel size of the
detector. To overcome this issue a CNN network, inspired
by an U-net architecture was employed for LFHM, which
made it possible to perform pixel super-resolution imag-
ing [94]. Another example of generating super-resolution
images was implemented for OCT images using a GAN-
based approach [61]. Besides achieving super-resolution,
this GAN-based approach decreased the image noise
simultaneously.

In addition to the above-mentioned applications, deep
learning is vastly applied for vibrational spectroscopic
data including applications like preprocessing and classi-
fication of spectra. These applications are discussed in
the following section.
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4 | DEEP LEARNING FOR
VIBRATIONAL SPECTROSCOPY

Until recently, data analysis in vibrational spectroscopy
employed well-established classical machine learning
techniques adapted to the structures of specific spectro-
scopic data. The general workflow in these scenarios is
composed of preprocessing, feature extraction or feature
selection and statistical modeling [95]. In contrast to the
widespread use of artificial neural networks in spectral
analysis [96-98], the application of deep learning in this
field is growing but still in the early stage. This is
because, on the one hand, classical machine learning
does a great job in most cases, and on the other hand,
deep learning in spectral analysis encounters many diffi-
culties. Most of the existent deep neural networks were
developed for image analysis or speech recognition and
cannot be directly transferred to spectral analysis. Build-
ing a deep neural network for spectral analysis from
scratch requires a lot of hyperparameter tuning and is
tedious. Unlike in image analysis, there is rarely a pre-
trained deep learning model for spectral data. The lack of
large spectral datasets forms another difficulty to apply
deep learning in spectral analysis. Nevertheless, the spec-
tral analysis does see benefits from deep learning, which
will be discussed in the following section from the per-

spectives of spectral preprocessing and statistical
analysis.
41 | Preprocessing

Spectral preprocessing aims to remove corrupting contri-
butions from the measured spectra, which is often done
by smoothing, baseline correction, standardization, and
so on. Preprocessing is a burden, not only because of the
computation time, but also because it is not straightfor-
ward to select the preprocessing techniques that perform
best on each specific dataset [99]. Deep learning can be a
time saver assuming that the deep neural network is
powerful enough to tolerate the corrupting effects and
can be trained on raw data without any preprocessing to
reach a satisfying performance. This has been shown in
references utilizing convolutional neural networks or sta-
cked contractive auto-encoders [100-104]. The kernels of
the trained network were shown to work as smoothing,
derivative/slope recognizers, thresholding and spectral
region selection, which are basically preprocessing steps
[101]. Unlike conventional preprocessing approaches,
however, the outputs of the kernels are not necessarily
physically meaningful, but rather a mathematical repre-
sentation of preprocessing for the given data. This repre-
sentation is best suited for the following regression or
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classification models. Nevertheless, a close inspection of
the outputs of the kernels does give a hint about the fea-
tures that are the most significant for the regression or
classification [101, 103].

While most investigations are engaged to construct
deep learning methods utilizing the raw data and skip
preprocessing, there are indeed efforts to apply deep
learning as a preprocessing approach, especially for
issues that cannot be solved easily with conventional
preprocessing methods. As it is widely known, a suffi-
ciently long integration time is normally needed for a
usable spectrum, especially for Raman spectroscopy con-
sidering the small Raman cross-section. The slow mea-
surement, especially in the case of Raman imaging, has
hindered Raman spectroscopy to be applied for the inves-
tigations of dynamic processes. In such cases, fast mea-
surements are needed but they suffer from bad data
quality, such as extremely high noise or low spectral/spa-
tial resolution. Deep learning has shown its capability of
handling this issue in recent publications [105, 106]. For
example, an U-net was applied to stimulated Raman
spectra to reduce noise in the data and hence improve
the sensitivity, which helps shorten the spectral acquisi-
tion time down to 20 ps without losing sensitivity [105].
In another investigation [106] the authors applied a deep
convolutional neural network to improve the spatial reso-
lution of the Raman hyperspectral data. In this way, the
line-scan Raman measurement was largely accelerated.

Following the spectral preprocessing, investigating
the spectral data by using multivariate statistics and clas-
sification models is commonly performed. The next
section discusses the statistical modeling of spectral data
using deep neural networks.

4.2 | Statistical modeling

It is commonly hypothesized that deep neural networks
are capable of feature learning [107], that is, they do not
require hand-engineered features, which are needed to
apply conventional classifiers. With multiple layers of lin-
ear and/or nonlinear units, deep neural networks show
huge potential to learn hierarchical representations of
features from complex data. It is thus advantageous to
apply deep neural networks for the analysis of vibrational
spectra, which are a complex superposition of all vibra-
tional information within the sample. Applications of
deep learning were reported for both infrared and Raman
spectroscopy in order to achieve tasks like brain function
investigations [108, 109], biological diagnostics [102, 110,
111], cytopathology [112], microbial identification [113],
pathogenic bacteria identification [113], food science
investigations [114, 115], tobacco leaves characterization

[116] and mineral analysis [117]. Furthermore, it was
reported in references that deep learning can perform
better than classical machine learning methods [100,
103]. A deep convolutional neural network was also used
for an un-mixing tasks, i.e., to resolve pure components
and their abundances from mixture spectra. Thereby,
N one-component identification models were trained
with data composed of spectra of a pure component, neg-
ative and positive samples in terms of this pure compo-
nent. The N models could successfully solve the un-
mixing task at the end [118].

In addition to the different applications discussed
above, strategies were reported to improve the perfor-
mance of deep learning. In particular, a hierarchical deep
convolutional neural network was employed on Raman
microscopic data, in which neighboring spectral pixels
were merged hierarchically in order to combine the spa-
tial information with spectral information. This combina-
tion finally led to a better classification between healthy
and cancer cells [112]. In addition, different searching
algorithms such as grid search [103], particle swarm opti-
mization (PSO) [114] and artificial bee colony algorithm
(ABC) [117] have been utilized to automatically find the
optimal hyperparameters of a deep neural network. A
combination of a CNN and an extreme learning machine
(ELM) was reported to speed up the training and improve
the generalization performance of the trained network.
The optimal values of ELM were sought by an artificial
bee colony algorithm (ABC) [117].

Despite the investigations included in previous para-
graphs, deep learning is far less developed in vibrational
spectral analysis in comparison with image analysis and
speech recognition. One of the reasons is that the deep
neural networks are extremely data starving, but measur-
ing spectral data from a large number of samples is lim-
ited by practical reasons, especially for biological
samples. Data augmentation can be utilized to solve this
issue, which is normally done by randomly shifting the
wavenumber axis, adding random noise and/or (linearly)
combining multiple spectra [100, 101]. However, these
data augmentation techniques can introduce unknown
(spectral) features into the data, especially if the varia-
tions of interest are very subtle. This is perhaps the rea-
son, why the best model achieved in reference [101] was
trained by utilizing an additional EMSC after data aug-
mentation. A generative adversarial network may play a
role for better data augmentation, but there is yet no
application reported to the authors’ best knowledge.

Besides the intrinsic complexity of the spectra and
limited sample size, vibrational spectroscopy is remark-
ably sensitive to measurement conditions and there exist
significant variations among multiple measurements.
Hence, it is important during spectral analysis to learn
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features of interest but not those related to the measure-
ment in order to achieve an optimal prediction on new
measurements. Deep learning can play a role in this con-
text as it was reported in previous research [101]. Therein
a CNN was used to predict a test dataset comprising of
drug concentrations higher than the concentrations of
the training dataset. In this case, the test performance of
the CNN can be improved, only if the hyperparameters of
the network was tuned based on the validation set. Tun-
ing with a randomly selected validation set did not pro-
vide significantly better predictions. In fact, it is more
than difficult to build a deep neural network, which tol-
erates unwanted variations and generalizing well
between measurements. Data augmentation can help in
this situation, as it was discussed in reference [101], but
the improvement was limited. Another strategy is trans-
fer learning, which has been discussed in the previous
section. Its capability for dealing with unwanted spectral
variations was shown in reference [102] where the deep
network was pretrained on embedded tissues and fine-
tuned to classify fresh frozen tissues.

Another important issue of applying deep learning for
vibrational spectral analysis is a proper validation. As it
was mentioned in the last paragraph, vibrational spectra
often vary from measurement to measurement and
device to device. It is thus important and necessary to val-
idate a deep neural network using measurements inde-
pendent to the training data. A random separation
between training and testing data should be avoided. In
addition, the testing data cannot be included in any pro-
cedure that affects the final modeling, including model-
based preprocessing such as EMSC [119]. Otherwise, an
overestimation of the network is highly possible. Similar
challenges and issues related to deep learning methods
are discussed in the next section.

5 | DISCUSSIONS AND CRITICAL
ISSUES

Deep learning was already applied several times in bio-
photonic data analysis, but its potential is much larger.
To use this potential an immense amount of data for
training is needed. If such large datasets are not available,
then increasing the dataset size by data augmentation or
using transfer learning methods to achieve good model
performances are commonly used approaches. Further-
more, class imbalances are predominantly seen in clinical
studies, which affect the training of deep neural net-
works. Another issue about using deep learning methods
is the lack of interpretability of model predictions, which
restricts the use of deep learning methods for newly
developed measurement modalities in the biophotonic
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field. Additionally, proper model validation techniques
are needed, which will be elaborated in this section.

5.1 | Current challenges

This subsection elaborates the challenges which are
related to the dataset, training and understanding of the
deep neural network encountered by data scientists in
biophotonics.

5.1.1 | Lack of data

Biophotonic technologies are emerging techniques with
restricted use in clinical practice as compared to other
radiological and conventional histopathological tech-
niques. Therefore, the dataset size is often limited. More-
over, the systematic accessibility of data and open
repositories is limited in the biophotonics field. This leads
to one of the major challenges to use deep learning for
biophotonic data, which is the shortage of data. Deep
learning models are data-driven and require a large
amount of data depending on the task and the number of
parameters in the model [120, 121] (Table 2).

Small datasets can easily lead to over-fitting causing
poor generalizability on a new dataset. The problem of
small datasets can be overcome by increasing datasets
using data augmentation techniques. The basic idea of
data augmentation is to artificially expand the training
dataset by creating modified versions of the original
dataset. For example, commonly used data augmentation
techniques for image data are translation, rotation,
shifting, increasing or decreasing brightness and magnifi-
cation of the images. Other commonly used data aug-
mentation techniques for images are adding Gaussian
noise and transforming the color space of the
images [122]. Likewise, data augmentation of spectral
data can also be performed by adding noise to the spec-
tral data or shifting the wavenumber axis for spectro-
scopic data [100, 101]. However, it is worth noting that
slight perturbations in the images or the spectra can also
degrade the model performance [123]. To prevent the
degradation of the model performance and also to avoid
too large dataset sizes, we discuss some practical consid-
erations with the perspective of data augmentation in
section 5.2.1.

In addition to data augmentation, transfer learning is
another alternative technique to train deep learning
models on small datasets. This technique focuses on
transferring features of a deep neural network learned on
a larger dataset to a small dataset. Research has shown
that transfer-learning strategies lead to promising results
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TABLE 2 Abbreviation in alphabetical order

Acronym  Explanation

ABC Artificial bee colony algorithm

AE Auto-encoders

ANN Artificial neural network

BRNN Bidirectional recurrent neural network

CARS Coherent anti-stokes Raman scattering

cGAN Conditional generative adversarial network

cCGAN Conditional cycle GAN

CGAN Cycle GAN

CNN Convolutional neural network

CPU Central processing unit

DBN Deep belief network

ELM Extreme learning machine

EMSC Extended multiplicative signal correction

GAN Generative adversarial network

GPU Graphical processing unit

GRU Gated recurrent unit

H&E Hematoxylin and eosin

IHC Immunohistochemical

FLIM Fluorescence life-time imaging

FTIR Fourier-transform infrared spectroscopy

LFHM Lens-free holographic microscopy

LSTM Long short-term memory

MALDI- Matrix assisted laser desorption-ionization (time
TOF of flight)

MLP Multilayer perceptron

MPM Multiphoton microscopy

OCT Optical coherence tomography

PAI Photoacoustic imaging

PSO Particle swarm optimization

RBF Radial basis function

RBM Restricted Boltzmann machine

ReLU Rectified linear unit

RNN Recurrent neural network

SAE Stacked auto-encoder

SERS Surface enhanced Raman spectroscopy

SGD Stochastic gradient descent

SHG Second harmonic generation

SMOTE Synthetic minority over-sampling technique

TPEF Two-photon excitation fluorescence

WGAN Wasserstein generative adversarial network

when applied for small spectroscopic dataset [26, 74, 75].
However, transferring features of a deep neural network
which is pretrained on a dataset like ImageNet, to

perform classification or regression tasks on spectro-
scopic data, is debatable. Prior research has shown that
with increase in the distance of the tasks (like classifica-
tion, regression) and domains (like biological, non-
biological), the transfer of the specific features learned in
the last layers of a deep neural network can negatively
affect the model performance. Thus, leading to “negative
transfer learning” [124]. A practical advice on applying
transfer learning approaches on small dataset is given in
section 5.2.2.

5.1.2 | Imbalanced dataset

A second challenge in training deep learning models is
an imbalanced data distribution, which is a key issue in
all biological datasets. Training a deep neural network
with unbalanced datasets affects the sensitivity of the loss
function towards the majority class. To circumvent such
biases, data-level and method-level approaches are used.
Data-level methods address the class imbalance problem
by random over-sampling the minority class or under-
sampling the majority class. Although data-level methods
are simple, over-sampling can introduce over-fitting of
the model and under-sampling can cause loss of impor-
tant information. Another complex sampling method is
synthetic minority over-sampling technique (SMOTE),
which creates synthetic data for the minority class. How-
ever, this method is limited due to the issue of generaliz-
ability and variance [125]. Also, creating synthetic
spectral data is not straight forward due to the complexity
of the spectral features.

An alternative to this imbalance issue are model-level
methods, which have significantly improved the training
results of deep learning models. In these cases, the loss
function is penalized by the weight of the classes, which
is defined by the number of samples in each class. How-
ever, sometimes it is difficult to define a customized loss
function for a multiclass classification task. Many
researchers have reported the use of a hybrid approach,
where data-level and model-level methods are combined.
Furthermore, other methods dealing with the loss func-
tion to overcome class imbalances have also been
reported in the literature [126, 127].

5.1.3 | Bias-variance trade off

The third challenge encountered while constructing any
machine learning method is the bias-variance trade off.
There is always a competition to find a perfect balance
between high bias (under-fitting) and high variance
(over-fitting) for complex models. Model complexity can
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be defined as the number of trainable parameters in a
model and an increase in number of trainable parameters
also increases the model complexity. With increasing
model complexity, like encountered in deep neural net-
works, the increase of variance is more likely. A high var-
iance in deep learning models can be due to three major
reasons: the first reason is the sampling variance, the sec-
ond reason is the model complexity variance and lastly is
the model initialization variance. Sampling variance is a
consequence of a high biological variance between the
samples and within a sample (eg, the variance between
biological replicates and within the replicates). Therefore,
acquiring more balanced data and maintaining a consis-
tent data acquisition protocol is essential. Additionally,
comparison of the data acquired in different laboratories
and devices should be encouraged in order to avoid such
biases.

Model complexity and model initialization variance is
controlled by the depth and width of the deep neural net-
works. Research has shown that an increasing the depth
of a deep neural network by adding layers to a neural
network can be a source of over-fitting, whereas increas-
ing the width of the deep neural network decreases the
model-related variance [128]. Therefore, designing a deep
neural network should be done with focus on the gener-
alization capabilities of the model. Even though, bias-
variance trade-off is also observed in classical machine
learning models, research shows that deep learning
methods can efficiently find a balance between the bias
and variance [129, 130].

5.1.4 | Interpretability of the “black-box”
Deep learning models have achieved breakthrough per-
formance in various domains of medical imaging includ-
ing biophotonics (see section 3 and section 4). As these
models are intended to be utilized in modern healthcare
systems, the interpretation of their decision-making is a
key issue. It is important to know if deep neural networks
make their predictions based on the biomolecular infor-
mation instead of some background effect or noise in the
spectroscopic data. An example of missing interpretabil-
ity of the “black-box” models can be seen in a recent
research [37] where an auto-encoder like model was used
to segment nonlinear multimodal images of CARS, TPEF
and SHG into four tissue regions. The segmentation
results from the auto-encoder were satisfactory compared
to the classical machine learning approach using hand-
engineered texture features. However, the contribution of
the three modalities CARS, TPEF and SHG for the seg-
mentation of crypts was unknown. Similarly, by using
deep learning models the contributions of spectral
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features to a prediction, like the presence or absence of a
disease, is difficult to interpret. This drawback hinders
the usage of deep learning models especially in newly
developed biophotonic technologies. Nevertheless,
researchers are now developing various decomposition
techniques for understanding complex deep learning
models [131-135].

A recent research [136] utilizes Taylor series expan-
sion for interpreting the output function of nonlinear
models like ANNs on Raman spectroscopic data. Within
this approach, the degree of nonlinearity of ANN model
was realized using a second-order Taylor expansion. This
allowed an interpretation of the patterns learned by ANN
models based on wavenumber combinations to predict a
particular class. Another approach [131] uses the layer-
wise decomposition of features from hidden layers to
understand the contribution of all pixels in an image to
detect a particular class. While all these techniques are
mostly developed for computer vision tasks, its utility can
be expanded for spectroscopic data and this needs further
investigations.

5.1.5 | Standardization for biophotonics
Biophotonics has an outstanding potential for clinical
healthcare. However, in contrast to the well-established
radiological or histopathological techniques, biophotonic
technologies lack the adoption of standard procedures.
There are no international consensus of assessing the
performance of biophotonic devices which largely affects
the reproducibility of data. Subsequently, the machine
learning models trained on such data are less reliable. In
this regard, several publications [137-139] have pres-
ented standardization procedures for various biophotonic
technologies.

Improving the quality of clinical studies, comparing
data from different laboratories and systems, facilitating
the use of open databases, allowing quantitative compari-
sons between different models are critical factors for
developing the best computational models. Validating the
strength of these machine-learning models is also impor-
tant and is further discussed in section 5.2.4.

5.2 | Practical considerations: do’s and

dont's

Researchers often encounter challenges as it was dis-
cussed in section 5.1 while training a deep learning
model. To overcome these challenges, various approaches
including data augmentation, transfer learning and
model validation are established. However, these
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approaches have pitfalls that can generate poor deep
learning models, increase the training time and cause
memory issues. Thus, it is important that developers cir-
cumvent common pitfalls while constructing deep learn-
ing models. In the following section a practical advice for
constructing these models and avoiding common mis-
takes are given.

5.21 | Data augmentation

The choice of data augmentation should be made
depending on the dataset. Data augmentation strategies
like horizontal flips, random rotations, scaling and shear-
ing are simple to implement, however these strategies fail
to add new information or patterns into the training
dataset [140, 141]. Moreover, random rotations and trans-
lation can introduce zero values in the corners of the
image, which causes a bias in training the deep neural
network. Therefore, the image regions with zero values
are removed or filled with a reflection of the original
image. In addition to geometric transformations, adding
noise like jitter or Gaussian noise has improved regulari-
zation properties of the deep neural network for medical
image classification [140, 142]. For fluorescence images,
Gaussian and Poisson noise are commonly observed.
These can be simulated to generate synthetic fluores-
cence images. Another data augmentation technique is
the style transformation using GANs, commonly known
as style transfer. In style transfer methods, the color and
texture information from one image is transferred to
another image to generate a completely new image [141,
143]. However, style transfer in biophotonics requires
systematic investigation, as it may cause subtle alter-
ations in the color and texture of the newly generated
image which are associated to the biomolecular informa-
tion under investigation. Thus, data augmentation tech-
niques like style transfer should be performed cautiously
for medical imaging, because it may also require chang-
ing the labels respectively. Another method to create
large datasets from small dataset is the extraction of pat-
ches of the images. This method was implemented in a
recent research [37] for semantic segmentation of
nonlinear multimodal images. Utilizing patches for data
augmentation not only increases the dataset size but also
retains the biomolecular information of the images with-
out the need to change labels. However, extracting pat-
ches of large spectroscopic images fails to generate new
independent data and contrarily increases the dataset
size. This can cause memory requirement issues. In such
cases, large images should be down sampled and non-
informative patches should be removed.

As mentioned above, data augmentation can increase
the dataset size and memory requirement depending on
the data augmentation scheme applied. To tackle this
issue, online and offline data augmentation strategies can
be chosen. If the dataset is relatively small, offline data
augmentation can be performed. Offline data augmenta-
tion increases the dataset size by a factor equal to the
number of transformations performed. If the whole aug-
mented dataset is used for model construction, it can
increase the memory requirements. The second option is
online data augmentation which performs transforma-
tions of the mini-batches used while training the deep
neural network model. This approach reduces the mem-
ory requirements but increases the training time.

In addition to the above-mentioned points, there are
further important considerations for data augmentation.
First, data augmentation should be performed for the
training dataset only. Moreover, all the images should be
rescaled to the same size before adding any kind of noise
and various levels of noise can be tested to achieve the
best validation accuracy. Overall, the benefit of data aug-
mentation in biophotonics is an open issue that should
be investigated systematically.

5.2.2 | Transfer learning

The previous section explains that data augmentation is
an effective method to work with small datasets and this
section introduces transfer learning as a strategy for small
datasets. There are two transfer learning strategies which
are commonly followed: first, a pretrained deep neural
network are used as feature extractor and those features
are utilized to build an easy model for classification or
regression. The second strategy is to fine-tune the weights
of a pretrained deep neural network using the new
dataset. Fine-tuning of the weights can be conducted for
all the layers of the network or restricted only to the last
layers where most specific features are learned. Based on
the two transfer learning strategies, the size of the
dataset, the similarity between the datasets and the simi-
larity between the tasks (classification or regression)
involved, four major approaches can be utilized [144]:

« If the new dataset is small and similar to the original
dataset, then the generic features from the top layers of
a pretrained deep neural network will be relevant for
the new dataset and thus these generic features can be
used to train an easy classifier.

« If the new dataset is large and similar to the original
dataset, then fine-tuning of the whole pretrained deep
neural network can be performed.
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« If the new dataset is small and different from the origi-
nal dataset, then it is best to train a linear classifier
(linear discriminant analysis or support vector
machine) by using activations from the top and inter-
mediate layers of a pretrained deep neural network.
Previous research reported that this method works best
for small spectroscopic datasets [26, 74, 75]. However,
for biophotonics this needs proper investigation
depending on the dataset.

« If the new dataset is large and different from the origi-
nal dataset, then it is beneficial to train a deep neural
network from scratch and initialize the weights using
a similar pretrained deep neural network model.

5.2.3 | Splitting the dataset

Splitting of the dataset depends on the dataset size. In
many machine-learning applications, large datasets are
divided into two parts: 80% training dataset and 20% test
dataset. A classifier or a regressor will be fitted using the
80% training dataset and the performance of the model
will be evaluated on the remaining test dataset. For
small datasets, k-fold cross validation techniques are
generally used, where the whole dataset is resampled
k times to train the model k times and evaluate its per-
formance on the unused fold. Although the cross valida-
tion techniques allow a proper estimation of the
generalization performance of the constructed model, its
use in deep learning is limited due to the large training
time and memory requirement. Thus, in deep learning
applications the dataset is mostly divided into three
parts: training, test and validation dataset. The training
dataset is used to fit the deep learning model. The vali-
dation dataset provides an unbiased evaluation of the
fitted deep learning model and simultaneously opti-
mizes the hyperparameters of the model. And finally,
the test dataset is used for evaluating the performance of
the final model fitted on the training dataset. The divi-
sion of the dataset into parts should be made at the
highest hierarchical level. For instance, in a clinical set-
ting, the highest hierarchical level is at the patient-level
or device-level. Images or spectra obtained from the
same patient should be a part of either the training, vali-
dation or the test dataset, to avoid any training bias
[145]. A training bias is introduced when both the train-
ing and validation dataset originate from the same
source (patient or device), thus reaching a high training
and validation accuracy but a poor test accuracy. In
prospect, splitting the dataset plays a major role in train-
ing deep learning models. Thus, it is beneficial for the
biophotonic community to encourage proper model
validation.
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5.2.4 | Model validation and assessment
of model performance

Establishing common procedures for model validation is
important for biophotonics as explained in section 5.1.5.
This facilitates a fair comparison between different
models and systems. It is a common practice to test a
final model on a third “independent test set” (also
referred to as “holdout set”) beside the “training set” and
the “validation set.” The latter mainly serves the purpose
of model selection and hyperparameter optimization [4,
7, 8]. However, this requires a lot of data which repre-
sents the whole underlying population. To deal with
small datasets cross-validation using the k-fold strategy is
a commonly used approach. [145]

While training a deep neural network, the accuracy
on training and validation dataset rises gradually with
the number of iterations. If not, then several possibilities
are responsible to lower the performance including over-
fitting of the model on the training dataset, a small
dataset size, a noisy dataset, the choice of hyper-
parameters and the depth of the model. In such cases,
increasing the dataset by data-augmentation techniques,
removing redundant data by filtering noisy images or
spectra, optimizing the hyperparameters and performing
cross validation can be considered. Nevertheless, reduc-
ing over-fitting requires systematic studies depending on
the dataset.

In addition to the above-mentioned techniques, early-
stopping of the model training can also be utilized to
improve the generalization performance [146, 147]. Early
stopping is a regularization technique that stops the
training of the deep learning models before the perfor-
mance on the validation dataset begins to decline. In
cross validation of deep learning the model with the best
validation accuracy can be used to predict the test data.
In the case of comparison of two or more models, the per-
formances on test dataset should be reported.

5.2.5 | Reduce over-fitting

As explained earlier (see section 5.1.3), a deep learning
model trained with high variance can predict well on the
training data but shows a poor generalizability to the test
data. Adjusting the generalizability and constructing
robust models is done by reducing over-fitting. This is
often termed as “regularization” [6, 142] and can be
achieved by several methods. Augmentation of training
data explained in section 5.2.1 is often considered as one
of the regularization methods [148]. Another method is
to add dropout layers to the model. Adding dropout layer
is based on the principle: “learn less to learn better.” In
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this regularization technique, the outputs of some neu-
rons in the hidden layers are ignored, thereby, forcing
the remaining neurons to learn a sparse representation of
the data [149, 150]. Several variations of the dropout
method reported in the literature have shown to improve
model performances [151-154]. In addition to the drop-
out methods, early stopping (explained in section 5.2.4)
and weight regularization techniques are other regulari-
zation methods for reducing over-fitting.

Weight regularization like L1 and L2 regularization
penalizes the model during training based on the magni-
tude of the learned weights [155, 156], because large
weights of a deep neural network can be a sign of an
unstable network [157]. Regularization techniques
encourage the sum of absolute values of the weights
(L1) or sum of squared values of the weights (L2) to be
minimum and thereby generating sparse weights that
reduce over-fitting. Another method to check over-fitting
is to reduce the capacity of deep learning models by
decreasing the number of layers in the model or number
of parameters in each layer [4].

Besides these regularization techniques, batch nor-
malization technique is a well-known method to over-
come over-fitting of deep neural networks [158]. This
technique standardizes the inputs to a layer of deep neu-
ral network for each mini-batch. In this way, training of
the deep neural network is stabilized and the training
process is accelerated [159].

In summary, all the earlier explained topics are com-
plementary to each other with a common goal of reduc-
ing over-fitting and constructing robust deep learning
models. However, the effects of each of these regulariza-
tion methods on biophotonic data need systematic
investigation.

6 | CONCLUSION AND FUTURE
OUTLOOK

Biophotonics is a rapidly growing field with a great
potential to be a part of clinical practice. Current tech-
nological advancements in biophotonics are pushing
the limits by increasing the resolution of optical sys-
tems, achieving larger penetration depths and faster
scanning speeds. Additionally, current optical systems
are capable of probing from micro to macroscopic
scales, detectors are becoming more specific and efforts
for miniaturizing devices using fibers are observed [3,
160]. All these technological advancements are
enriching the information content of the biophotonic
data and advanced data analysis methods, like deep
learning techniques, are needed. In this regard,
researchers are developing deep learning methods for

various biophotonic applications, which were elabo-
rated in this review article.

Out of all the contributions discussed in this review
article, a majority of work includes deep learning
methods for biophotonic image data, whereas deep learn-
ing for spectral data is still underexplored. Almost 60% of
the research used image data for early detection of dis-
eases and assessment of disease stages. The remaining
work majorly focused on virtual staining, increasing the
resolution of fluorescence images and segmentation of
cells, tissues and organs in spectroscopic images. In addi-
tion, a small part of the reviewed papers focused on
preprocessing and classification of vibrational spectro-
scopic data. Although deep learning methods are under-
explored for spectral data, we foresee that its
development for vibrational spectroscopic data can trans-
form the biophotonics field. Therefore, we discuss some
potential applications of deep learning to analyze image
and spectral data in this review.

Deep learning architectures can be used for spectral
classification without the need of complex preprocessing
steps [100]. On the other side, architectures like RNNs
can be used for spectral preprocessing including den-
oising or despiking. Due to the basic similarities in the
shape of the spectra, classification models can be trained
with spectral data obtained from different domains using
transfer-learning methods [100]. We speculate that trans-
fer learning can complement the model-transfer methods
[161] built for spectroscopic data by transferring high-
level features of training data obtained in one domain to
new data acquired in another domain. Until now, trans-
fer learning methods have proven beneficial for fluores-
cence imaging data especially for cases where large
datasets were not available [26, 74, 75].

Deep learning for vibrational spectroscopy has some
challenges like the lack of data, the complexity of spectra,
inter and intra-class-variances within the spectra and
interpretability of the deep learning models. The issue of
lack of data can be addressed by creating and facilitating
access to large databases of spectroscopic data and efforts
have already been initialized in this direction. Recent
studies have reported large databases comprising images
of three modalities including confocal, two-photon and
wide-field fluorescence microscopy depicting biological
samples [162-164]. Along with creating large databases,
it is equally important to adopt standardized data acquisi-
tion protocols, acquire balanced datasets and reliable
annotations to increase the current state-of-the-art per-
formances of the models. In order to achieve robust and
reliable deep learning models and to use them in clinical
setting, it is required to apply online training, updating
the model parameters with the arrival of new data and
check the data and model reproducibility. At the same
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time, the biophotonic community should adopt validat-
ing standards in order to avoid publishing over-fitted
deep learning models. Despite of the outstanding pro-
gress of deep learning methods in biophotonics field,
their reliability as decision-making systems is always
questionable due to their “black-box” behavior. Thus,
researchers are developing methods to understand the
deep learning predictions [136, 165]. Nevertheless, this
topic needs more investigations.

Finally, we have to answer our initial question “Is
deep learning a boon for biophotonics?” We think that
deep learning is eventually going to be a boon to bio-
photonics, which will revolutionize the decision-making
approaches for pathologist, clinicians and doctors. A moti-
vating example of deep learning used in optical systems is
the IDx-DR device, a clinically accepted deep learning
model to detect diabetes retinopathy in optical coherence
tomography images [166]. Another potential example is
GAN-based modeling for wvirtual staining of
autofluorescence images which can bypass the long
staining protocols and help the pathologist to compare
new biophotonic technologies with the “gold-standard”
staining methods. However, deep learning for bio-
photonics is still in an infant stage and requires overcom-
ing various hurdles before coming into clinical usage. A
large amount of data, quality check for the data, providing
reliable annotations, appropriate model validation, inter-
preting model predictions and improving hardware capac-
ities are vital for overcoming these hurdles. Overcoming
these challenges and achieving optimal decision-making
algorithms based on deep learning for modern healthcare
systems is potentially the future of biophotonics.
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