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0. Introduction

We start this introduction with a review of the history of (precise) Laplace asymptotics 
and mention some of their applications (subsection 0.1). Our contribution is the devel-
opment of the Laplace method for the generalised Parabolic Anderson Model (gPAM), 
a singular stochastic PDE, so we collect its well-posedness and large deviation results in 
subsection 0.2. We then state our main results in full detail in subsection 0.3 and indicate 
how they may be generalised to cover other singular stochastic PDEs (subsection 0.4). 
Finally, we discuss the organisation of this article in subsection 0.5.

0.1. History, relation to other work, and applications

In 1774, Laplace [68]1 himself devised the method that now bears his name to calculate 
asymptotics as ε → 0 of integrals

∫
D

f(x) exp
(
−F (x)

ε2

)
dx

1 The quoted article is an English translation of the original 1774 article in French. The latter is properly 
referenced in the article we quoted.
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for intervals D = [a, b] and functions F with a unique minimum inside D. It was gen-
eralised later to cover (some) domains D ⊆ Rd for d > 1 as well and quickly found its 
way into the canon of classical asymptotic analysis. In parallel to the rapid developments 
in mathematical physics, Laplace’s method gained further traction: it inspired asymp-
totic approximation techniques that were successfully applied in functional space. More 
precisely, they allowed to study newly emerging path integrals of the form

JD(ε) :=
∫
D

f(x) exp
(
−F (x)

ε2

)
dP
(
x

ε

)

as popularised by Glimm and Jaffe [40] when ε → 0, where D is a Borel subset of 
a Banach space X , f and F are real-valued functions on X , and P is a probability 
measure on B(X ).2 In this direction, pioneering work was done by Feynman [32] in his 
research on quantum mechanics in the 1960’s.

Probabilists joined the venture in the 1960’s. Building on earlier works of Cramer, 
Varadhan’s theory of large deviations [79] provides a powerful framework to set up 
Laplace’s method in infinite-dimensional spaces and, in turn, allowed to calculate log-
asymptotics of JX (ε) as ε → 0. A large deviation principle for rescaled Wiener measure 
was given in [75], as were precise asymptotic results for Wiener integrals of the form 
(0.1), with Xε = εw in notation introduced below. We fix the following notation: For 
a family (Xε : ε ∈ [0, 1]) of X -valued random variables that satisfies a large deviation 
principle (LDP), we set3

J(ε) := E

[
exp

(
−F (Xε)

ε2

)]
(0.1)

where F : X → R is assumed to have N + 3 Fréchet derivatives for some N ≥ 0. Precise
Laplace asymptotics, eponymous for this article, assert that J has an expansion of type

J(ε) = exp(−cε−2)(a0 + εa1 + . . . + εNaN + o(εN )) as ε → 0 (0.2)

with explicitly given coefficients c, a0, . . . , aN ∈ R. The hypotheses (H1) to (H4) on F

– detailed in Theorem 1 below – under which this statement is true have found their 
definite form in the works of Ben Arous [11] on path space X = C([0, 1]; Rd): Building 
on foundational work by Azencott [8] (in the elliptic case), he establishes (0.2) for finite-
dimensional diffusions

dXε
t = εσ(Xε

t ) dwt + b(ε,Xε
t ) dt, Xε

0 = x, (0.3)

2 One also requires sufficient regularity of f , F , and ∂D, the boundary of D.
3 The restriction to f ≡ 1 is for simplicity only. See also Remark 0.5 below.
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where w is an r-dimensional Brownian motion (BM) and σ and b satisfy suitable bound-
edness and differentiability assumptions. All of the previous statements, and many more, 
are surveyed in an extensive review article by Piterbarg and Fatalov [72]. We further note 
that sharp Laplace asymptotics (0.2) for some classical stochastic PDEs have been es-
tablished by Rovira and Tindel [73,74]. See also Albeverio et al. [1,7].

The advent of pathwise solution techniques initiated by Lyons’s theory of rough 
paths [69] has brought new momentum to the Laplace method. Starting with Aida [3], 
the Japanese school of stochastic analysis has spearheaded these developments: Ina-
hama [56,55] and then Inahama and Kawabi [53,51,52] consider the Stratonovich version 
of (0.3) in infinite-dimensional Banach spaces in which the classical theory of stochastic 
differential equations (SDEs) breaks down. They bypass this shortcoming by referring 
to rough paths theory – which does work in infinite dimensions – and obtain the ex-
pansion (0.2) in this context. In another article, Inahama [57] has considered (0.3)
for w = wH , an r-dimensional fractional Brownian motion (fBM) of Hurst parame-
ter H ∈ (1/4, 1/2] with rough path lift WH . More precisely, he considers the solution Xε

of the rough differential equation (RDE)

dXε
t = εσ(Xε

t ) dWH
t + b(ε,Xε

t ) dt, Xε
0 = 0. (0.4)

When b and σ are sufficiently smooth with bounded derivatives, he establishes (0.2)
under (essentially) the same hypotheses (H1) to (H4) for X = Cq−var([0, 1]; Rd) and 
q > H−1.

In recent years, insights from rough paths theory have contributed to important break-
throughs in stochastic PDEs: In the seminal article [44], Hairer derives an intrinsic local 
solution to the KPZ equation and then developed his ideas into the theory of regularity 
structures [45], a far-reaching generalisation of rough paths (RP) theory. — In this arti-
cle, we consider a popular example that Hairer’s theory allows to treat – the generalised 
2D Parabolic Anderson Model (gPAM) formally given by the equation

∂tû
(ε) = Δû(ε) + g(û(ε))

(
εξ − ε2„∞”g′(û(ε))

)
, û(0, ·) = u0,

where ξ is a spatial white noise (SWN) – and establish the expansion (0.2) for Xε = û(ε). 
See subsection 0.2 for a detailed discussion of gPAM and its large deviation behaviour 
and subsection 0.3 for a precise statement of our results. In subsection 0.4, we will explain 
our focus on gPAM, point out the difficulties in taking the solutions of other singular 
stochastic PDEs for Xε, and indicate how to overcome them.

We emphasise that the arguments presented in this article immediately generalise Ina-
hama’s result [57] for the specific driver WH in (0.4) to any Gaussian rough path [37,38]. 
On the surface, the restriction in Inahama’s work is due to its heavy reliance on a vari-
ation embedding of HH , the Cameron-Martin space of wH , due to Friz and Victoir [36]
– but ultimately can be traced further: the embedding allows him to identify a certain 
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operator (below denoted by D2(F ◦ Φ ◦ L )(h)) as Hilbert-Schmidt and then resort to 
the classical correspondence

Hilbert-Schmidt operators

←→ Carleman-Fredholm determinants

←→ exponential integrability

for elements in the second Wiener chaos, see for example Janson [61, Chap. 6]. In contrast, 
our argument is solely based on large deviations4 and therefore bypasses this correspon-
dence completely, see subsection 3.2 for details and subsection 0.5 for an outline of the 
argument. In turn, we do not have to rely on the variation embedding specific to HH .

A Laplace method, in spirit of Azencott [9], think asymptotic evaluation of P (Xε
1 ∈ A), 

rather than E 
[
e−F (Xε)/ε2] as in [8,11], on rough path type spaces has also been used in 

[31] to analyze option price asymptotics of rough volatility, cf. [15] and also Section 14.5 
in [33] for context. Related “pre-rough” works, also with applications in finance, include 
Kusuoka and Osajima [65,71].

Finally, we thank Ismael Bailleul for pointing us to his recent work with Masato 
Hoshino [18, Sec. 8] which establishes the smoothness of the abstract solution map to 
singular stochastic PDEs (our Theorem 2.26 in the context of gPAM) in the greatest 
generality that the regularity structures framework allows. This is an important first step 
towards obtaining so-called “Stochastic Taylor expansions” (see Theorem 2 below) for 
any subcritical singular stochastic PDE. However, it does not resolve the issue of getting 
quantitative remainder estimates (as in Theorem 2 (i) for gPAM) in greatest generality. 
In addition, the setting of Bailleul and Hoshino does not deal with Cameron-Martin 
perturbations ξ 	→ ξ + h of the noise which Theorem 1 relies on. See sec. 0.4 below for a 
sketch of the technical problem that these perturbations induce.

Applications. Beside being interesting in their own right, precise Laplace asymptotics 
have applications in various fields of stochastic analysis and mathematical physics.

In that regard, we mention a series of articles by Aida [2–6] concerned with semi-
classical analysis. More specifically, he studies the lowest eigenvalue E0(λ), or ground 
state, of a Schrödinger-type operator −Lλ,V = −L + Vλ on an abstract Wiener 
space (B, H, μ). When L is the Ornstein-Uhlenbeck operator on L2(B, μ) and Vλ =
λV (λ−1/2·) a rescaled potential on B, asymptotics like (0.2) are instrumental in his work 
for proving a lower bound for the so-called semi-classical limit5 of E0(λ) as λ → ∞.

Another major field of application are precise heat kernel asymptotics in the small 
time limit. Consider the Stratonovich SDE given by

4 Ben Arous [11] also used a large deviation argument. See Remark 3.5 for further comments in this 
direction.
5 In general, semi-classical physics is concerned with the behaviour of quantum mechanical equations as 

Planck’s constant � goes to 0. This can be phrased as an equivalent problem for which a parameter λ tends 
to ∞.
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dXε
t = ε

r∑
i=1

Vi(Xε
t ) ◦ dwi

t + ε2V0(Xε
t ) dt, Xε

0 = z ∈ Rd, (0.5)

where w is an r-dim. BM and V0, . . . , Vr are smooth vector fields (VF) on Rd satisfying 
Hörmander’s bracket condition. Under these assumptions, it is well-known that X1

t has 
a smooth density pt(z, ·) w.r.t. λd, the d-dim. Lebesgue measure, for each t > 0. From an 
analytical viewpoint, the generator ε2L of Xε (where L = V0 + 1/2

∑r
i=1 V

2
i ) gives rise 

to the parabolic PDE ∂tf = Lf of which p·(z, ·) is a fundamental solution – hence the 
terminology heat kernel. Ben Arous [10], building on earlier works by Azencott, Bismut 
and other, obtains the asymptotic expansion, outside the cutlocus,

pt(z, z̄) = t−
d/2 exp

(
−D(z, z̄)

2t

)(
a0(z, z̄) + ta1(z, z̄) + . . . + tNaN (z, z̄) + o(tN )

)
as t → 0

(0.6)

with the following rough strategy of proof: first, Brownian scaling implies that Xε
1 = X1

ε2

in distribution, so the small time problem can be transformed into a small noise 
problem. Secondly, the Laplace method is employed to expand the Fourier transform 
of pε2(z, ·). Fourier inversion then leads to the expansion (0.6), which is where one 
uses non-degeneracy of the Malliavin matrix. See also Watanabe, Takanobu [80,78] and 
Kusuoka–Stroock [67] for some representative works on the applications of Malliavin 
calculus to precise asymptotics of large classes of Wiener functionals.

In the Young regime, more precisely when w = wH in (0.5) is a fBM with Hurst 
index H > 1/2, Baudoin–Hairer [17] established the existence of a smooth density. 
Baudoin–Ouyang [20] as well as Inahama [60] then obtained precise heat kernel asymp-
totics for said density.

These results have subsequently been generalised to the rough regime by Inahama, 
first for H ∈ (1/3, 1/2] under ellipticity [59], followed by Inahama and Naganuma [54]
under Hörmander’s condition and for H ∈ (1/4, 1/2], which is the decisive regime for 
which this can be expected [21].

In the case of singular stochastic PDEs, the existence of densities has been settled by 
Cannizzaro, Friz, and Gassiat [23] for gPAM and by Gassiat and Labbé [41] for the Φ4

3
equation. Schönbauer [76] has then generalised these results in the most general regu-
larity structures framework. In all these singular SPDE works, the obstacle in obtaining 
smoothness is the lack of moment estimates for the inverse of the Malliavin matrix. (In 
rough paths / SDE context, this was overcome in [26,25]; a meaningful extension to the 
singular SPDE setting remains an open problem.)

Our work, in a similar setting as [23], constitutes a first example of a family of measures 
on infinite-dimensional space, well-defined only through singular SPDE theory, for which 
large deviations can be extended to full Laplace asymptotics. Techniques from singular 
stochastic PDEs have recently been used to construct the Φ4

3 measure [47,16] and the 
Sine-Gordon measure, for which large deviation results (in the semi-classical limit) were 
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recently shown in [13]; it is likely that the methods of this paper will also be of relevance 
in establishing precise Laplace asymptotics in these models.

0.2. The generalised parabolic Anderson model and its large deviations

Formally, 2D gPAM6 is given by the stochastic PDE

⎧⎨⎩∂tu
ε(t, x) = Δuε(t, x) + g(uε(t, x))εξ(x)

uε(0, x) = u0(x)
, (t, x) ∈ [0,∞) × T 2, (gPAMε)

where the initial datum u0 ∈ Cη(T 2) for η ∈ (1/2, 1) is fixed, g ∈ CN+7
b (R, R) with 

N ≥ 07, ε ∈ I := [0, 1], and ξ is the centred Gaussian field with Cameron-Martin space 
H := L2(T 2) and formal covariance structure ρ(x, y) = δ(x − y) known as spatial white 
noise (SWN). The covariance correctly suggests that SWN is a highly singular object: it 
can be proved that ξ ∈ C− d

2−κ(Td) a.s. for each κ > 0 and spatial dimension d. From 
Schauder theory, one then expects uε (and a fortiori g(uε)) to be in C2− d

2−κ. As is well-
known from harmonic analysis, however, the product g(uε)ξ is well-defined if and only 
if (

2 − d

2 − κ
)

+
(
−d

2 − κ
)

= 2 − d− 2κ > 0,

which fails in case d = 2 and thus proves (gPAMε) ill-posed. At the expense of modifying 
the equation (gPAMε) in a renormalisation procedure, this malaise has been overcome 
with Hairer’s advent of regularity structures.8 In our context, [45, Thm. 1.11] reads:

Theorem 0.1. Fix ε > 0 and let ξδ := ξ∗ρδ, where ρδ := δ−2ρ(δ−1·) is a spatially rescaled 
version of a fixed mollifier ρ. Then, there exists a choice of constants (cδ : δ > 0) and 
a stopping time T ε > 0 such that for each u0 ∈ Cη(T 2) and each T > 0, the classical 
solution ûε

ξδ
to the renormalised equation

⎧⎨⎩∂tû
ε
ξδ

= Δûε
ξδ

+ g(ûε
ξδ

)
(
εξδ − ε2cδg

′(ûε
ξδ

)
)

ûε
ξδ

(0, ·) = u0,
(ĝPAMε)

converges on {T ε > T} in probability, as δ → 0, to a unique limit

6 For further motivations of linear PAM as well as its relation to (spatially) discrete models, the reader is 
directed to the monograph of König [66].
7 For Laplace asymptotics, assuming differentiability of order N +3 is commonplace. The additional “+4” 

is due to regularity structure (and reminiscient of rough paths) theory, see Remark A.36 for details.
8 Paracontrolled calculus developed by Gubinelli, Imkeller, and Perkowski [39] provides an alternative 

solution theory.
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ûε ∈ XT := {u ∈ C([0, T ], Cη(T 2)) : u(0, ·) = u0}

which is independent of the mollifier ρ. ♤

The regularity structures set-up to be used in this article will be introduced in Ap-
pendix A. Its main idea is the following lifting procedure: at first, one constructs a finite 
number of explicit stochastic objects taylored to the structure of (gPAMε); their col-
lection is called the canonical lift Zεξδ = L (εξδ) of the driving noise εξδ to the model 
space M. Secondly, one establishes the continuity of the solution map Φ : M → XT and, 
thirdly, builds a renormalised version Ẑ

εξδ ∈ M from Zεξδ such that ûε
ξδ

= Φ(Ẑ
εξδ). At 

last, one proves that the limit

δεẐ := lim
δ→0

Ẑ
εξδ = lim

δ→0
δεẐ

ξδ

exists in probability in M – and finally defines ûε := Φ(δεẐ). Hairer carried out this 
programme for the equation (gPAMε), amongst others, in the seminal article [45]. In a 
series of papers [19,24,14], it has subsequently been developed into a black-box theory 
to cover a large class of singular stochastic PDEs.

With the (local in time) existence of solutions secured, Hairer and Weber have sub-
sequently investigated the large deviation behaviour of (ûε : ε ∈ I). More precisely, they 
obtained the following result [50, Thm. 4.4], where “u ” denotes a “graveyard path”:

Theorem 0.2. The family (ûε : ε ∈ I) satisfies a large deviation principle (LDP) in 
XT ∪ {u } with good rate function (RF) J , where ûε := u if T ε < T .9 ♤

Remark 0.3. Actually, Hairer and Weber have dealt with the Φ4
3 equation rather than 

(gPAMε) but their methods generalise to all equations that fall into the framework of 
Hairer’s earlier work [45]. For the reader’s convenience, we will spell out their argument 
for the case of (gPAMε) in Appendix C. A more detailed formulation of Theorem 0.2 is 
provided in Theorem C.2. Regarding explosion times, see Appendix B for details. ♤

Large deviations provide a first answer concerning the asymptotics of J in (0.1) on 
logarithmic scale: for Xε := ûε and F : XT → R continuous and bounded, Varadhan’s 
lemma [29, Thm. 2.1.10] implies that

J(ε) = exp
(
− infXT

(F + J ) + o(1)
ε2

)
, ε → 0. (0.7)

We will significantly sharpen (0.7) by obtaining the full expansion.

9 In case T > T ε, it seems more natural to solve the stochastic PDE up to time T ε and only set ûε(t, ·) :=
for t ∈ (T ε, T ], where “ ” is a graveyard state. However, we follow Hairer and Weber [50] in discarding 

all such trajectories in the first place by sending them to the graveyard path u .
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0.3. Main results

Let h ∈ H and consider the equation

(∂t − Δ)ûε
ξδ;h = g

(
ûε
ξδ;h
) (

εξδ + h− ε2cδg
′ (ûε

ξδ;h
))

, ûε
ξδ;h(0, ·) = u0, (0.8)

a shifted version of (ĝPAMε). In analogy with Theorem 0.1, we set ûε
h := limδ→0 û

ε
ξδ;h

(in prob. in XT ).
Our main result, eponymous for this work, reads as follows:

Theorem 1 (Precise Laplace asymptotics). Let g ∈ CN+7
b . For T > 0, we assume that 

F : XT → R satisfies the following hypotheses:

(H1) F ∈ Cb(XT ; R), i.e. F is continuous and bounded from XT into R.
(H2) The functional F given by

F := (F ◦ Φ ◦ L ) + I : H → (−∞,+∞] (0.9)

attains its unique minimum10 at h ∈ H. Here, I denotes Schilder’s rate function, 
i.e.

I (h) =
‖h‖2

H
2 1h∈H + ∞1h/∈H. (0.10)

(H3) The functional F is N + 3 times Fréchet differentiable in a neighbourhood N of 
(Φ ◦ L )(h). In addition, there exist constants M1, . . . , MN+3 such that

|D(k)F (v)[y, . . . , y]| ≤ Mk‖y‖kXT
, k = 1, . . . , N + 3, (0.11)

holds for all v ∈ N and y ∈ XT .
(H4) The minimiser h is non-denegerate. More precisely, D2F |h > 0 in the sense that 

for all h ∈ H \ {0} we have

D2F |h [h, h] > 0. (0.12)

10 In analogy with previous works on Laplace asymptotics, for example Ben Arous [11, sec. 1.4], we em-
phasise that the theorem remains valid if there are finitely many minimisers: One simply localises around 
each of them and proceeds with the local analysis. The value of the coefficients a0, . . . , aN , however, will 
of course change in that case.
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Then, we have the precise Laplace asymptotics

J(ε) = E

[
exp

(
−F (ûε)

ε2

)
1T ε>T

]

= exp
(
−F (h)

ε2

)
(a0 + εa1 + . . . + εNaN + o(εN )) as ε → 0,

(0.13)

where

a0 = E
[
exp

(
−1

2 Q̂h

)]
, Q̂h := ∂2

ε |ε=0F (ûε
h).

The other coefficients (ak)Nk=1 ∈ R are given explicitly in section 3.3, more specifically 
in Proposition 3.6. ♤

Remark 0.4. Observe that, under our hypothesis (H2), the factor exp
(
−ε−2F (h)

)
in 

formula (0.13) coincides with the RHS of (0.7). In other words, we recover the previously 
known large deviation factor. ♤

Remark 0.5. In many works on precise Laplace asymptotics, the functional J is slightly 
more general than (0.1), namely

J(ε) = E

[
f(Xε) exp

(
−F (Xε)

ε2

)
1T ε>T

]
,

where f : XT → R is continuous, bounded, as well as (N +1) times Fréchet differentiable 
and positive in a neighbourhood of (Φ ◦ L )(h). Since the presence of f does not add 
conceptual difficulty, we work with f ≡ 1 to streamline the presentation. However, our 
work can easily be amended for general f . ♤

Remark 0.6. Note that Q̂h is in the second inhomogeneous Wiener chaos with non-
trivial components only in Hk for k ∈ {0, 2}. As such, it admits the representa-
tion Q̂h = E 

[
Q̂h
]

+ I2(A) for some Hilbert-Schmidt operator A and I2 the second 
Wiener-Itô isometry. From general principles (see [61, Thm. 6.2] and [77, Thm. 9.2]), 
this immediately implies that

a0 = e−
1/2E[Q̂h] det2(IdH +A)−1/2 (0.14)

where det2 denotes the Carleman-Fredholm determinant. In recent works on precise 
Laplace asymptotics such as [52], it is shown (in our notation) that

A[k, k] = 1
Qh(L (k)), E

[
Q̂h
]

= Tr(A− Ã) + c
2
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for any k ∈ H, some explicit c ∈ R, and some explicit Hilbert-Schmidt operator Ã

that renders A − Ã trace-class. Such information is interesting from the viewpoint of 
semi-classical analysis but requires considerably more effort

(1) due to the need for renormalisation (recall that Q̂h is quadratic in ξ) and
(2) since one needs more than just Cameron-Martin regularity of the minimiser h (see 

our sketch in sec. 0.4 below) to show that A − Ã is trace-class.

These problems are addressed in great detail in a recent follow-up article [64] of the 
second named author. ♤

Along the way, and of paramount importance in the proof of Theorem 1, we obtain a 
formula that is commonly referred to as (stochastic) Taylor expansion.11 We believe that 
this result is of independent interest and therefore consider it the second contribution of 
this paper:

Theorem 2 (Taylor expansion in the noise intensity). Let h ∈ H and g ∈ C	+4
b for some 

� ≥ 1. Then, for each T > 0 there exists an ε0 = ε0(T ) > 0 such that with I0 := [0, ε0), 
the function

û•
h : I0 → XT , ε 	→ ûε

h (0.15)

is � times Fréchet differentiable. By Taylor’s formula, the expansion

ûε
h = wh +

	−1∑
m=1

εm

m! û
(m)
h + R̂

(	)
h,ε, ε ∈ I0, (0.16)

then holds with the following summands:

(1) The term wh := Φ(L (h)) is the unique solution to the deterministic PDE

(∂t − Δ)wh = g(wh)h, wh(0, ·) = u0. (0.17)

(2) The terms û
(m)
h , m ∈ [� − 1],12 and R̂(	)

h,ε are given by

û
(m)
h := ∂m

ε |ε=0 û
ε
h, R̂

(	)
h,ε :=

1∫
0

(1 − s)	−1

(�− 1)! ∂	
r|r=sε

[
ûr
h

]
ds,

11 Actually, the expansion is fully deterministic and the term “stochastic” only historic: It was accurate in 
the work of Azencott [8] but became outdated by the emergence of pathwise techniques. This was already 
remarked by Inahama and Kawabi [52] in the context of rough paths. Henceforth we refrain from using the 
now misleading term “stochastic”.
12 We use the notation [n] := {1, . . . , n} for any n ∈ N throughout the article.
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In addition, the terms in the expansion (0.16) have the following properties:13

(i) The terms u
(m)
h (Z) and the remainder R

(	)
h,ε(Z) are continuous functions of the 

model Z. In addition, the estimates14

‖u(m)
h (Z)‖XT

� (1 + [|Z−|])m, ‖R(	)
h,ε(Z)‖XT

� ε	(1 + [|Z−|])	 (0.18)

hold: The first one uniformly over all h ∈ H with ‖h‖H ≤ ρ, the second additionally 
over all (ε, Z−) ∈ I ×M− with ε[|Z−| ] < ρ, both for each ρ > 0.

(ii) The terms u
(m)
h (Z) are m-homogeneous w.r.t. dilation in the model Z, that is

εmu
(m)
h (Z) = u

(m)
h (δεZ).

In addition, the terms û
(m)
h are limits of û

(m)
ξδ,h

as δ → 0 in the spirit of Theorem 0.1
above. See Proposition 2.47 below for the linear stochastic PDEs that û(m)

ξδ,h
satisfy. ♤

0.4. Generalisation to other singular stochastic PDEs

In a series of major recent works, Hairer and co-authors [19,24,14] have developed 
regularity structures into a black-box theory that encompasses a large class of stochastic 
PDEs. In principle, the arguments which we will use in the proofs of Theorems 1 and 2
apply to any stochastic PDE that is covered by the afore-mentioned articles.

One reason we concentrate on gPAM in this article is that it allows for a relatively 
simple analysis via regularity structures, so we can emphasise the main principles that 
our arguments are based upon.

Another reason is that Cameron-Martin shifts ξ 	→ ξ+h of the driving noise of gPAM, 
as needed in (0.8), have already been implemented on model space M via the translation 
operator Th in [23, sec. 3.4]. Its well-posedness is a complicated analytical problem, in 
general, because it requires products of elements in Besov spaces of different Lp-scale to 
exist. Even in the case of gPAM, building a solution theory for the shifted equation (0.8)
poses the problem to define

Π := (Gξ)h, Gξ ∈ C1−κ = B1−κ
∞,∞, h ∈ H = B0

2,2 ↪→ C−1

13 We formulate the estimates w.r.t. a generic model Z and the corresponding quantities uε
h(Z)

and u
(m)
h (Z): see Definition 2.33 on p. 43 below for their precise definition. The expansion in (0.16) then 

holds for ε < ε0(T, Z). Since ûε
h = uε

h(Ẑ), û(m)
h = u

(m)
h (Ẑ), and ε0(T ) = ε0(T, Ẑ), this is consistent with 

the first part of the theorem where Z = Ẑ.
14 By “�” we denote estimates up to a constant. If we wish to specify its dependence on a parameter α, 
we write “�α”. The “norm” [ | · | ] appearing on the RHS is the homogeneous norm for a minimal admissible 
model Z− ∈ M−, see subsection A.2 in the appendix for details. For now, one may think of the homogeneous 
rough path norm | | |X| | |α = ‖X‖α + ‖X‖1/2

2α;2 for an α-Hölder, 2-step rough path X = (X, X).
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where Gξ denotes the solution to the linearised equation (g ≡ 1); Cannizzaro, Friz, 
and Gassiat [23, Lem. A.2] have managed to obtain the necessary estimates “by hand”. 
However, more complicated trees that already appear for the shifted Φ4

3 or KPZ equation, 
for example

τ := � Πτ := (Gh)(Gξ)G
(
(Gξ)(Gξ)(Gh)

)
,

σ := � Πσ :=
[
Gx

(
(Gxξ)(Gxh)

)]2
,

render ad hoc estimates unwieldy. Instead, analytic arguments need to be complemented 
by insights into the algebraic make-up of the underlying regularity structure.

Schönbauer [76], in contrast, approached the problem from a different perspective. By 
an ingenious “doubling trick”, similar in spirit to previous arguments by Inahama [58]
in the rough paths context, he is able to leverage the probabilistic estimates of Chandra 
and Hairer [24]; thereby, he manages to prove [76, Thm. 3.11] that the action of Th

on BPHZ lifts of smooth functions is well-defined and continuous almost surely. While 
this argument applies in the most general setting we referenced in the beginning of this 
section, it falls short of proving Th well-defined and continuous on generic models. The 
latter is crucial for the localisation procedure, see sec. 1 below, to work beyond gPAM.

We propose to follow a completely different route using the structural assumptions 
on the Laplace functionals that we consider. As the reader will observe later, we only 
ever want to translate ξ in direction h, the minimiser of the functional F given in (H2) 
above. A priori, it is clear that h is in H (otherwise I (h) = +∞) — but it is known 
from variational calculus that minimisers often enjoy better regularity properties, see 
for example [63, Thm. 14.4.1]. The strategy there – establish some initial regularity and 
then bootstrap using Schauder estimates – informs our reasoning. Under the premise 
that g ∈ C∞

b (R) and u0 ∈ C∞(T 2), we sketch the argument that h ∈ C∞(T 2) for gPAM, 
see [64, Thm. 2] for a precise statement. We stress that this renders the translation 
operator Th well-defined immediately without any appeal to advanced analytic estimates.

(1) By first-order optimality, DF |h ≡ 0. Equivalently, for all k ∈ H we have

〈h, k〉H = DF |wh(vh,k), vh,k := ∂ε|ε=0wh+εk (0.19)

where wh is the solution to (0.17).
(2) The directional derivative vh,k satisfies the linear, inhomogeneous PDE

(∂t − Δ)vh,k = g′(wh)vh,kh + g(wh)k, vh,k(0, ·) = 0. (0.20)
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If h actually were in Hγ , γ ≥ 015, we expect wh ∈ CTHγ+1− by the regularising 
properties of the heat semigroup. In turn, we can then take k ∈ H−θ for some θ > γ

and still make sense of (0.20) and its solution vh,k. Even more so, we can establish 
the estimate

‖vh,k‖Cγ
T

�T ‖k‖H−θ , Cγ
T := CTH−γ+ 1

2 (0.21)

via Gronwall’s inequality.
(3) We extend the linear, bounded operator DF |wh from XT to Cγ

T by a density argument, 
preserving its norm. Altogether, combining (0.19) with the estimate (0.21), we obtain 
the estimate

|〈h, k〉H| �T ‖DF |wh‖L(XT ,R) ‖k‖H−θ

for k ∈ C∞ and infer that h ∈ Hθ by duality.
(4) Since θ > γ, the minimiser h has gained regularity in this procedure. Bootstrapping 

the previous steps implies that h ∈ C∞.

We expect that this argument can be adapted to cover the time-dependency of the 
Cameron-Martin space L2([0, T ] × T 3) for the Φ4

3 equation and, similarly, for other 
singular stochastic PDEs. Investigating this strategy further is left for future work.

Once Th is made sense of as outlined, the arguments presented in the article at hand 
can easily be generalised beyond gPAM.

0.5. Organisation of the article

In this subsection, we discuss the organisation of the article at hand and indicate by 
triangles “�” in which (sub-)sections the hypotheses from Theorem 1 are used. We also 
highlight where we use the large deviation principle (LDP) for (δεẐ− : ε ∈ I) formulated 
in Theorem C.1. Note that the boldface terms can be read as an outline for the proof 
of Theorem 1.

• (1) Localisation. In section 1, we localise the functional J to a ρ-neighbourhood 
of L−(h), the lift of the minimiser h to the space of minimal models M−. By 
the Cameron-Martin theorem, we then recenter the localised functional Jρ to the 

neighbourhood {ε[|Ẑ−| ] < ρ}, at the expense of changing (F ◦ Φ−)(δεẐ−) to the 
function F̃−

Φ(h, ε) := (F ◦ Φ−)(ThδεẐ
−) − F (wh) + εξ(h).16 � (H1), (LDP)

15 Recall that h ∈ H ≡ H0, so the statement is true when γ = 0.
16 Note that (F ◦ Φ−)(δεẐ−) = F (ûε) and (F ◦ Φ−)(ThδεẐ

−) = F (ûε
h ).
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• (2) Taylor expansion in the noise intensity.17 In Corollary 2.1, we obtain a Taylor 
expansion of the functional F (ûε

h) = (F ◦ Φ−)(ThδεẐ
−) up to order N + 2 for small 

ε. In Corollary 2.3, we then see that the Taylor terms and the remainder depend 
continuously on Ẑ and provide estimates for both. In addition, we show that the 
former are homogeneous in ε. This result follows easily from Theorem 2 whose proof 
we prepare throughout the whole section 2. � (H3)
The proof of Theorem 1 continues in section 3. In order to better grasp its structure, 
the reader might want to skip the rest of section 2 in a first reading.

• (2.1) Abstract fixed-point problem. In subsection 2.1, we set up the fixed-point 
problem for Uε, the abstract representation of ûε

h in a suitable space of modelled 
distributions. The choice of the latter requires care: although the natural candi-
date Dγ,η(ThδεẐ) has a Banach structure, it is unsuited for taking derivatives in ε, 
for it is a different space for each ε ∈ I. Instead, we study a family of fixed point 
(FP) equations parametrised by ε whose solutions18
Uε live in one fixed Banach space Dγ,η

U (EhẐ). We then prove that this choice is 
consistent: both Uε and Uε are reconstructed to ûε

h w.r.t. their underlying mod-
els (Proposition 2.13).

• (2.2) Fréchet differentiability of the fixed-point map. The main result of subsec-
tion 2.2 is Theorem 2.26, in which we prove Fréchet differentiability of order N + 3
for the abstract fixed-point map I that sends ε to Uε. In the same theorem, we derive 
explicit FP equations for the derivatives I(m) := ∂m

ε I and establish their continuous 
model dependence. Our main tool here is the Implicit Function Theorem (IFT), the 
applicability of which is verified in Lemmas 2.21 and 2.24.

• (2.3) Taylor expansion in the modelled distribution space. In Corollary 2.28, we ob-
tain a Taylor expansion of Uε in the Banach space Dγ,η

U (EhẐ). In subsection 2.3, 
we analyse its terms and connect them to their counterparts in Theorem 2. In 
particular, we obtain estimates for the Taylor terms (subsection 2.3.1) and the 
remainder (subsection 2.3.2) by means of an abstract version of Duhamel’s prin-
ciple (Proposition 2.35).

• (2.4) Proof of Taylor expansion. In subsection 2.4 we synthesise the results of sub-
sections 2.1 to 2.3 to give a proof of Theorem 2.

• (2.5) Stochastic PDEs for the Taylor terms. We derive stochastic PDEs for the Taylor 
terms û

(m)
ξδ,h from Theorem 2. Their limits û

(m)
h as δ → 0 appear in the formulas for 

the coefficients a0, . . . , aN .
• (3) Local analysis in the vicinity of the minimiser. Section 3 revolves around the study 

of F̃−
Φ(h, ε). The constant term in the Taylor-like expansion for (F ◦ Φ−)(ThδεẐ

−)
compensates the term −F (wh). � (H2), (H4)

17 For a graphical overview of this section’s content – including technical details – see also Fig. 2 on p. 32.
18 Green colour indicates that we are working in the extended gPAM regularity structure, see sec. A.1.
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• (3.1) First-order optimality annihilates the linear term. In subsection 3.1, we prove 
that the sum of εξ(h) and the linear term in the expansion for (F ◦ Φ−)(ThδεẐ

−)
vanishes because h is a minimiser of F (Proposition 3.1). � (H2)

• (3.2) Exponential integrability of the quadratic term. In subsection 3.2, we establish 
the exponential integrability of the quadratic term −1/2Q̂h in the afore-mentioned 
expansion of (F ◦ Φ−)(ThδεẐ

−) (Proposition 3.2). We stress that, in contrast to 
previous works, we do not have to resort to the connection of second Wiener chaos, 
trace-class operators, and Carleman-Fredholm determinants. Instead, we use a large 
deviations argument for (−1/2Qh(δεẐ) : ε ∈ I), itself valid by continuity of Qh in the 
model, and then conclude by non-degeneracy of h. � (H4), (LDP)

• (3.3) The coefficients in the asymptotic expansion. In subsection 3.3, we decom-
pose Jρ in four steps that finally lead to the asymptotic expansion claimed in 
eq. (0.13): Its coefficients a0, . . . , aN are finite thanks to the exponential integra-
bility of −1/2Q̂h (Proposition 3.6). We close our proof of Theorem 1 by showing that 
the four remainder terms created in the decomposition procedure are of order o(εN ). 
Our main tool here is a Fernique-type theorem for the minimal BPHZ model Ẑ−.

• (A) Background knowledge on regularity structures. In appendix A we collect the 
prerequisites of Hairer’s theory of regularity structures that are necessary to follow 
the presentation in this article.

• (A.1) The original and extended gPAM regularity structure. In subsection A.1, we 
briefly recapitulate the algebraic structure necessary to treat gPAMε, that is: the 
original regularity structure, built by Hairer, along with its extended counterpart 
that was introduced to accommodate Cameron-Martin shifts.

• (A.2) Admissible models. Section A.2 deals with (minimal) admissible models and the 
analytical operations that act on them. After repeating the notions of extension and 
translation, we introduce the dilation operator and study its properties. In particular, 
we see that it dovetails nicely with the homogeneous norm on minimal model space. 
In the end, a short summary of BPHZ renormalisation on model space is presented.

• (A.3) Modelled distributions. In section A.3, we recapitulate the notion of a modelled 
distribution and how (the lifts of) non-linear functions act upon them. We then study 
Fréchet differentiability of such lifts, obtain a version of Taylor’s theorem, and see 
how modelled distributions behave w.r.t. dilation.

• (B) Deterministic gPAM and explosion times. In Appendix B, we prove that the 
solutions to deterministic gPAM wh from (0.17) exist globally when the driver h is 
a Cameron-Martin function. In addition, we provide information on the explosion 
time T ε of ûε from Theorem 0.1 and that of ûε

h from (0.15). To quantify the latter, 
we assume boundedness of ε[|Ẑ−| ], a consequence of the localisation procedure in 
section 1.

• (C) Large Deviations. Appendix C is, in essence, a recapitulation of Hairer’s and 
Weber’s work for the stochastic Allen-Cahn equation in the case of gPAM. Most 
importantly, in Theorem C.1 we see that the family (δεẐ− : ε ∈ I) satisfies a LDP 
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on the space M− of minimal admissible models. This allows us to give a complete 
proof of Theorem 0.2, formulated with all the details in Theorem C.2.

• (D) Fernique’s theorem for the minimal BPHZ model. In Appendix D, we prove 
that [|Ẑ−| ], the homogeneous norm of the minimal BPHZ model Ẑ−, has Gaussian 
tails (Theorem D.1) – as needed for our estimates in subsection 3.3 to work.

� From here on, we assume that the reader is familiar with the content of appendix A. 
Throughout the whole article, we use “♠” (as opposed to “♤”) as an “end of statement”-
sign when a complete proof of the statement in question can be found in [34], the extended 
arXiv version of the article at hand.

Acknowledgements. The authors acknowledge funding from the European Research 
Council through Consolidator Grant 683164. TK thanks the Berlin Mathematical School 
for institutional support and the Hausdorff Research Institute for Mathematics in Bonn 
for its warm hospitality and financial support during the Junior Research Trimester 
“Randomness, PDEs, and Nonlinear Fluctuations” where parts of this paper were com-
pleted. He is grateful to Giuseppe Cannizzaro, Antoine Hocquet, and, in particular, Carlo 
Bellingeri and Paul Gassiat for stimulating discussions on the subject of this article. Both 
authors thank the anonymous referees for their careful reading of the manuscript and 
their helpful suggestions to improve the presentation in this article.

1. Localisation around the minimiser and Cameron-Martin

We set F−
Φ := F ◦Φ ◦E and denote by L−(h) the lift of the minimiser h ∈ H to M−. 

In addition, for an [| · | ]-open neighbourhood O of L−(h), we decompose

J(ε) ≡ E

⎡⎢⎣exp

⎛⎝−F−
Φ(δεẐ−)

ε2

⎞⎠ ; T ε > T

⎤⎥⎦ = JO(ε) + JOc(ε) (1.1)

with

JA(ε) := E

[
exp

⎛⎝−F−
Φ(δεẐ−)

ε2

⎞⎠ ; T ε > T, δεẐ
− ∈ A

]
, A ∈ {O,Oc}. (1.2)

Our aim in this section is to prove that the essential contribution to J(ε) comes from 
the vicinity O of L−(h). In other words, we want to qualify the contribution of JOc

to J as asymptotically irrelevant. To this end, we appropriately adapt the proof of [11, 
Lem. 1.32] and [55, Lem. 8.2]. However, these authors rule out explosion in finite time. In 
contrast, Azencott [8] does account for this phenomenon, so the proof of the proposition 
that follows is also informed by his work.
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Proposition 1.1. For each [| · | ]-open neighbourhood O of L−(h), there exists some d >
a := F (h) and ε0 > 0 such that for all ε ∈ (0, ε0), we have

JOc(ε) ≤ exp
(
− d

ε2

)
. (1.3)

♤

Proof. Since JM− is a good rate function (RF), it has compact sublevel sets, i.e. for 
each k > 0, the set

Lk := {Z− ∈ M− : JM−(Z−) ≤ k} (1.4)

is compact in M−. For δ > 0, we further denote by Lk(δ) := {Z− ∈ M− : [|Z− ; Lk| ] <
δ} the open δ-fattening of Lk.

Since the set Lk ∩ Oc is compact in M− as well, the function F− := F ◦ E =
F−

Φ + JM− attains its minimum a1 > a on this set by continuity of F , Φ, and E and 
lower semi-continuity (l.s.c.) of JM− as a RF. Let now a2 ∈ (a, a1); then, there exists 
δ0 > 0 such that

F−(Z−) > a2 for Z− ∈ Lk(δ0) ∩ Oc (1.5)

and thus for each Z− ∈ Lk(δ) ∩ Oc with δ ∈ (0, δ0).
� The inequality in (1.5) can be seen as follows: By l.s.c. of F−, the set {F− > a2}

is open and since a2 < a1, we have Lk ∩Oc ⊆ {F− > a2}. Hence, Lk ⊆ {F− > a2} ∪O
and since C :=

[
{F− > a2} ∪ O

]c is closed, Lk is compact, and Lk ∩ C = ∅, the function

dist(· ; C) : Lk � Z− 	→ dist(Z−; C) := [|Z− ; C|] > 0

attains its strictly positive minimum on Lk. Therefore, we may find δ0 > 0 such that

Lk(δ0) ⊆ {F− > a2} ∪ O,

which implies that Lk(δ0) ∩ Oc ⊆ {F− > a2}. �
We now fix some δ ∈ (0, δ0) and split the analysis of JOc(ε) into two parts:

Part 1: Controlling JOc(ε) on Lk(δ)c ∩Oc.
By assumption (H1), the estimate

E

[
exp

(
−F−

Φ(δεẐ−)
ε2

)
; T ε > T, δεẐ

− ∈ Lk(δ)c ∩ Oc

]
≤ exp

(‖F‖∞
2

)
P
(
δεẐ

− ∈ Lk(δ)c
) (1.6)
ε
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holds. From Theorem C.1, we know that the family {Pε := P ◦ (δεẐ−)−1 : ε > 0}
satisfies a LDP on M−, so we apply the LDP upper bound to the closed set Lk(δ)c to 
obtain

lim sup
ε→0

ε2 logPε

(
Lk(δ)c

)
≤ − inf{JM−(Z−) : Z− ∈ Lk(δ)c} ≤ −k

by definition of Lk ⊆ Lk(δ). We may thus find ε1 > 0 such that for all ε ∈ (0, ε1) we 
have

Pε

(
Lk(δ)c

)
≤ exp

(
− k

2ε2

)
.

Choosing k > 0 such that −d1 ≡ −d1(k) := ‖F‖∞ − k/2 < 0, we further estimate (1.6)
by

(RHS) ≤ exp
(
−d1

ε2

)
(1.7)

for ε ∈ (0, ε1). This same k is fixed for the rest of the proof.

Part 2: Controlling JOc(ε) on Lk(δ) ∩Oc.
We now define the function F−

1 (Z−) := F−
Φ(Z−) for Z− ∈ Lk(δ)∩Oc and F−

1 (Z−) := c >
a2 otherwise. This function is l.s.c. and bounded, for F is bounded by assumption (H1). 
We may thus apply [29, Lem. 2.1.8] in conjunction with Lemma B.3 to infer that

lim sup
ε→0

ε2 logE
[
exp

(
−F−

1 (δεẐ−)
ε2

)
; T ε > T

]
≤ − inf(F1 + JM)

(1.5)
≤ −a2.

Thus, there exists a3 ∈ (a, a2) and ε2 > 0 such that for all ε ∈ (0, ε2), we have

E

[
exp

(
−F−

1 (δεẐ−)
ε2

)
; T ε > T

]
≤ exp

(
−a3

ε2

)
. (1.8)

Now observe that

E

[
exp

(
−F−

Φ(δεẐ−)
ε2

)
; T ε > T, δεẐ

− ∈ Lk(δ) ∩ Oc

]

≤ E

[
. . . ; T ε > T, δεẐ

− ∈ Lk(δ) ∩ Oc

]

≡ E

[
exp

(
−F−

1 (δεẐ−)
ε2

)
; T ε > T, δεẐ

− ∈ Lk(δ) ∩ Oc

]
(1.8)
≤ exp

(
−a3

ε2

)
.
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Combining these two steps, we find that |JOc(ε)| ≤ exp
(
−ε−2d

)
for all ε ∈ (0, ε0), where 

ε0 := ε1 ∧ ε2 and d := d1 + a3 > a3 > a. This completes the proof. �
By the previous proposition, it suffices to consider the functional

Jρ(ε) := E

[
exp

(
−F−

Φ (δεẐ−)
ε2

)
; T ε > T, [|T−hδεẐ

−|] < ρ

]
. (1.9)

for some ρ > 0 which we will later choose sufficiently small. Note that Jρ(ε) ≡ JO(ε) for 
the specific choice19

O ≡ O(h, ρ) := {Z− ∈ M− : [|T−hZ−|] < ρ}.

Instead of tracking the h-dependency of Jρ(ε) via the set O, we want to encode it 
by appropriately changing the functional FΦ � F̃Φ(h, ·). As usual, this amounts to a 
straightforward application of the Cameron-Martin theorem on the following abstract 
Wiener space (B, H, μ), the concept of which has been introduced by Gross [42]:

• the Hilbert space H := L2(T 2),
• the centred Gaussian measure μ with Cameron-Martin space H, and
• the Banach space B, the closure of C∞(T 2) in the Hölder-Besov space C−1−κ(T 2)

for any κ > 0.

Note that under μ, the space white noise ξ is the canonical process.

Proposition 1.2. In the same setting as before, there exists ρ0 = ρ0(T ) > 0 such that

Jρ(ε) = exp
(
−F (h)

ε2

)
E

[
exp

(
− F̃−

Φ(h, ε)
ε2

)
; ε[|Ẑ−|] < ρ

]
(1.10)

for all ρ ∈ (0, ρ0), where

F̃−
Φ(h, ε) := F−

Φ
(
ThδεẐ

−)− F−
Φ(L−(h)) + εξ(h). (1.11)

♤

Proof. Recall that white noise ξ is the identity on the Gaussian measure space (B, μ), 
that is ξ(ω) = ω for ω ∈ B. Also recall that T ε = T−

∞(δεẐ−). From the Cameron-
Martin theorem [28, Prop. 2.26] on the abstract Wiener space (B, H, μ), we know that 
the push-forward measure με

h := (T−h/ε)∗μ has density

19 Note that the set O in the equation that follows is open by continuity of the translation operator T−h
on (M−, [ | · | ]), a consequence of Proposition A.14 and Lemma A.9.
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dμε
h

dμ (ω) = exp
(
− 1
ε2

[
I (h) + εω(h)

])
.

where ω(h) = I(h)(ω) with the Paley-Wiener map I. We then find that

Jρ(ε)

= E

[
exp

(
−
F−

Φ
(
δεẐ

−)
ε2

)
; T−

∞(δεẐ−) > T, [|T−hδεẐ
−|] < ρ

]

=
∫
B

exp
(
−
F−

Φ
(
ThδεẐ

−(ω − h/ε)
)

ε2

)
1
T−
∞(ThδεẐ−(ω−h/ε))>T

1[|δεẐ−(ω−h/ε)|]<ρ
μ(dω)

= exp
(
−F−

Φ(L−(h)) + I (h)
ε2

)
E

[
exp

(
− F̃−

Φ(h, ε)
ε2

)
; T−

∞(ThδεẐ
−) > T, [|δεẐ−|] < ρ

]
= exp

(
−F (h)

ε2

)
E

[
exp

(
− F̃Φ(h, ε)

ε2

)
; T−

∞(ThδεẐ
−) > T, ε[|Ẑ−|] < ρ

]
. (1.12)

Note that we have used Lemma A.29 (with h := −h) for the second equality. Since 
T h
∞ = +∞ (see Remark B.2), any T > 0 satisfies T < T h

∞. Choosing ρ0 > 0 as in 
Lemma B.4, we have

{ε[|Ẑ−|] < ρ} ⊆ {T−
∞(ThδεẐ

−) > T} (1.13)

for all ρ ∈ (0, ρ0), which establishes the claim. �
2. Taylor expansion in the noise intensity parameter

The application of the Cameron-Martin theorem in the last section prompts us to 
analyse the function F̃−

Φ(h, ·) further. In this direction, the first and most important step 
is the local expansion of

Φ−(ThδεẐ
−) ≡ (Φ ◦ E )(ThδεẐ

−) ≡ Φ(ThδεẐ) = Φ(ThδεẐ) = û
(ε)
h (Ẑ)

in ε. This is the content of Theorem 2 given in subsection 0.3 of the introduction.
The local expansion of F−

Φ(ThδεẐ
−) in ε that we need for the analysis of F̃−

Φ(h, ·) is an 
easy corollary of that theorem. While Theorem 2 is stated for general g ∈ C	+4, � ≥ 1, the 
specific regularity assumptions on g (and F ) for the study of precise Laplace asymptotics 
impose � = N + 3.

Corollary 2.1 (Taylor expansion of F
(
û•

h
)
). For each ε ∈ I0 we have

FΦ(ThδεẐ) ≡ F
(
ûε

h
)

= F
(0)
h +

N+2∑ εm

m! F̂
(m)
h + R̂F ;ε;N+3

h (2.1)

m=1
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where F (0)
h := F (wh) ≡ FΦ (L (h)),

F̂
(m)
h ≡ F

(m)
h (Ẑ) := ∂m

ε |ε=0 F
(
uε

h(Ẑ)
)
, m ∈ [N + 2],

and R̂F ;ε;N+3
h ≡ RF ;ε;N+3

h (Ẑ) is implicitly defined from (2.1). We also set Q̂h := F̂
(2)
h .

♤

Remark 2.2. Observe that the preceding corollary was formulated for the specific ele-
ment h ∈ H. However, h does not enter the proof by its property (H2) of being a minimiser 
of F . Instead, we will need the assumptions in (H3), that is: the differentiability of F in 
the neighbourhood N of wh ≡ (Φ ◦L )(h) and the bounds (0.11) for its derivatives. ♤

Proof. By Theorem 2, ε 	→ ûε
h is differentiable on I0 = [0, ε0) and thus continuous. 

Therefore, with possibly smaller ε0 > 0, we have ûε
h ∈ N for all ε ∈ I0. Assumption (H3) 

and Theorem 2 then immediately imply that F ◦ û•
h ∈ CN+3(I0, R), so the expansion 

in (2.1) follows from Taylor’s theorem. �
We collect the properties of the Taylor terms and the remainder in the corollary that 

follows.

Corollary 2.3. In the setting of Corollary 2.1, the following assertions hold for m =
1, . . . , N + 2:

(i) The terms F
(m)
h (Z) and the remainder RF ;ε;N+3

h (Z) are continuous functions of 
the model Z. In addition, we have the estimates∣∣F̂ (m)

h
∣∣ � (1 + [|Ẑ−|])m,

∣∣R̂F ;ε;(N+3)
h

∣∣ �ρ εN+3(1 + [|Ẑ−|])N+3 (2.2)

where the second bound requires ε[|Ẑ−| ] < ρ for some ρ > 0 to be valid.
(ii) The terms F̂

(m)
h ≡ F

(m)
h (Ẑ) are m-homogeneous w.r.t. dilation of the model Ẑ, 

that is

εmF
(m)
h (Ẑ) = F

(m)
h (δεẐ) (2.3)

for ε ∈ I0. In particular, ε2Qh(Ẑ) = Qh(δεẐ). ♤

For the proof of the corollary, in particular part (i), we need some auxiliary formulas. 
They have already appeared in the literature before, cf. [52, pp. 306/307], and use Rior-
dan’s Formula, a version of the well-known Faa di Bruno formula (see the review paper 
by Johnson [62]).

Lemma 2.4. For k, n ∈ N, let Sn
k := {i ∈ Nk

≥1 : |i| = n}. Then, for all ε ∈ I0 the 
equalities
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F̂
(m)
h = m!

m∑
k=1

1
k!
∑
i∈Sm

k

D(k)F |wh

(
1
i1!

û
(i1)
h , . . . ,

1
ik!

û
(ik)
h

)
, (2.4)

R̂
F ;ε;(N+3)
h =

N+2∑
k=1

1
k!

∑
i∈[N+3]k
|i|≥N+3

D(k)F |wh

(
1
i1!

R̂
(N+3)
h,ε (i1), . . . , R̂(N+3)

h,ε (ik)
)

(2.5)

+
1∫

0

(1 − s)N+2

(N + 2)! D(N+3)F (wh + sR̂
(1)
h,ε)

(
R̂

(1)
h,ε, . . . , R̂

(1)
h,ε
)
ds

hold with

R̂
(N+3)
h,ε (m) :=

⎧⎨⎩εmû
(m)
h if m ∈ [N + 2],

R̂
(N+3)
h,ε if m = N + 3,

(2.6)

the terms on the RHS of which are defined in Theorem 2. In particular, we find F̂ (1)
h =

DF |wh

(
û

(1)
h
)

and

Q̂h = DF |wh

[
û

(2)
h
]
+ D2F |wh

[
û

(1)
h , û

(1)
h
]
. (2.7)

♠

Proof of Corollary 2.3. Assertion (ii) is a direct consequence of Theorem 2(ii) combined 
with (2.4).

We turn to assertion (i). In conjunction with assumption (H3), eq. (0.11), the explicit 
representation for F̂

(m)
h derived in Lemma 2.4 allows for the estimate

∣∣F̂ (m)
h
∣∣ �m

m∑
k=1

Mk

∑
i∈Sm

k

k∏
	=1

∥∥û(i�)
h
∥∥
XT

�T

m∑
k=1

Mk#[Sm
k ](1 + [|Ẑ−|])m �m (1 + [|Ẑ−|])m.

(2.8)
In the penultimate estimate, we have applied the estimates from Theorem 2(i). As for 
the remainder, note that {wh+sR̂

(1)
h,ε : s ∈ [0, 1]} ⊆ N for ε ∈ I0, for it is the line segment 

connecting wh and ûε
h. Hence, the integral term in (2.5) may be estimated analogously 

to (2.8). The same is true for the sum in (2.5), except that one uses the additional 
estimate

ε|i|(1 + [|Ẑ−|])|i| ≤ (1 + ρ)|i|−(N+3)εN+3(1 + [|Ẑ−|])N+3

for multi-indices i with |i| ≥ N + 3, as readily implied by ε ∈ [0, 1] and ε[|Ẑ−| ] < ρ. �
In the remainder of this section, we will prepare the proof of Theorem 2 to be given 

in subsection 2.4. If the reader is willing to momentarily believe the validity of that 
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theorem, she may want to proceed with section 3 on page 59 in a first reading. In that 
section, we use the Corollaries 2.1 and 2.3 to continue the proof of the precise Laplace 
asymptotics as claimed in Theorem 1.

2.1. The abstract fixed-point problem

Consider the following abstract fixed-point problems for Z ∈ M and Z ∈ M:

U = PZ
(
G(U)

)
+ T Pu0 � U ∈ Dγ,η

U (Z), (2.9)

U = PZ
(
G(U)[ + ]

)
+ T Pu0 � U ∈ Dγ,η

U (Z), (2.10)

Uε = PZ
(
G(Uε)[ε + ]

)
+ T Pu0 � Uε ∈ Dγ,η

U (Z), (2.11)

Remark 2.5. Note that the model enters these equations implicitly via the abstract con-
volution kernels PZ and PZ , respectively, and thereby characterises the right space of 
modelled distributions we seek solutions in. Our main case of interest is Z := EhẐ ∈ M
where h ∈ H is the minimiser from assumption (H2) and Ẑ ∈ M the BPHZ model. For 
h ∈ H we suppress the dependence on the specific model Z ∈ M and simply write

Ph = P(ThZ; · ), Peh = P(EhZ; · ). ♤

The solvability of the first two fixed-point equations was proved by Cannizzaro, 
Friz, and Gassiat in [23, Prop. 3.23 & 3.25]. Regarding (2.11), we define the abstract, 
parameter-dependent FP map

MZ : I ×Dγ,η
U (Z) → Dγ,η

U (Z), I := [0, 1], (2.12)

for Z ∈ M by

MZ(ε, Y ) := PZ
(
Gε(Y )

)
+ T Pu0, Gε(Y ) := G(Y )[ε + ]. (2.13)

Next, we revisit and amend some variants of the notion of local Lipschitz continuity as 
introduced by Hairer in [45, sec. 7.3] and slightly rephrased by Schönbauer [76, Def. 3.18].

Definition 2.6. Let V , Ṽ be two sectors20 in T and fix γ ≥ γ̄ > 0 as well as η, η̄ ∈ R.

• Given a model Z ∈ M, we say that a map F : Dγ,η
V (Z) → Dγ̄,η̄

Ṽ (Z) is locally 
Lipschitz continuous if for any compact set K ⊂ D and any R > 0 one has the 
bound

20 See [45, Def. 2.5]. In addition, the domain D is given as D := I × T2 for some interval I ⊆ R+, 
cf. Remark A.32 in the appendix.
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|||F (Y ) − F (Ȳ )|||γ̄,η̄,K � |||Y − Ȳ |||γ,η,K (2.14)

uniformly over all Y , Ȳ ∈ Dγ,η
V (Z) with | | |Y | | |γ,η,K ∨ | | |Ȳ | | |γ,η,K ≤ R.

• Let FZ : Dγ,η
V (Z) → Dγ̄,η̄

Ṽ (Z) be locally Lipschitz for any Z ∈ M. We say that 
F = (FZ)Z∈M is stronly locally Lipschitz continuous if for any Z ∈ M there exists 
a neighbourhood B of Z in M such that for any compact set K ⊆ D and R > 0 one 
has the bound

|||FZ(Y );F Z̄(Ȳ )|||γ̄,η̄,K � |||Y ; Ȳ |||γ,η,K + |||Z ; Z̄|||γ,K̄ (2.15)

uniformly over all Z̄ ∈ B and Y ∈ Dγ,η
V (Z), Ȳ ∈ Dγ,η

V (Z̄) such that | | |Y | | |γ,η,K,Z ∨
| | |Ȳ | | |γ,η,K,Z̄ ≤ R. Here, K̄ denotes the 1-fattening of K, i.e. K̄ = {z ∈ D :
dist(z, K) ≤ 1}.

• A family F = (F ε)ε∈I of stronly locally Lipschitz maps F ε = (F ε,Z)Z∈M is called 
uniformly stronly locally Lipschitz continuous if the bound (2.15) holds uniformly in 
ε for each F ε. ♤

The following lemma characterises the Lipschitz properties of the functions (Gε)ε∈I

introduced in (2.13).

Lemma 2.7. The family (Gε)ε∈I is uniformly strongly locally Lipschitz. ♤

Proof. Let α := deg( ) = −1 − κ. For any ζ > 0, we have , ∈ Dζ,ζ
V where V = 〈 , 〉

is a sector of reg. α. Then the same is true for fε := ε + for any ε ∈ I. Recall that 
for (Z, Y ) ∈ M � Dγ,η

U we have G(Y ) ∈ Dγ,η
U (Z) by [45, Prop. 6.13] because the sector 

U is function-like. Since the pair (V, U) is γ̄-regular (see [45, Def. 4.6]) with γ̄ := γ + α, 
with η̄ := η + α it follows from [45, Prop. 6.12] that Gε(Dγ,η

U (Z)) ⊆ Dγ̄,η̄(Z) for each 
Z ∈ M.

In order to check the estimate (2.15), let Z, Z̄, and Ȳ be as required. Note that α =
minA, so by def. of the structure group G, we have Γfε = fε = Γ̄fε for any Γ, ̄Γ ∈ G. 
Hence | | |fZ

ε ; f Z̄
ε | | |ζ,ζ;K = 0. Again, [45, Prop. 6.12] then implies that

|||Gε,Z(Y );Gε,Z̄(Ȳ )|||γ̄,η̄,K � |||GZ(Y );GZ̄(Ȳ )|||γ,η,K + |||fZ
ε ; f Z̄

ε |||ζ,ζ,K + |||Z; Z̄|||γ,K̄
�K,R |||Y , Ȳ |||γ,η,K + |||Z; Z̄|||γ;K̄ ,

(2.16)
where the last estimate is a consequence of [49, Prop. 3.11] and the boundedness as-
sumption on Y , Ȳ . �

We can now answer the question of solvability of (2.11) affirmatively. The following 
corollary is a simple consequence of [45, Thm. 7.8] which applies by the previous lemma.
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W

IZ(ε)

Z
Z̄

I
¯Z(ε)

Dγ,η
U (Z) Dγ,η

U (Z̄)

M

W

Fig. 1. A schematic depiction of the space M � Dγ,η
U . The “fibres” Dγ,η

U (Z) are Banach spaces that vary 
when the underlying model Z ∈ M changes.

Corollary 2.8. For each Z ∈ M there exists a time T̄ > 0 such that for each ε ∈ I there 
exists a unique fixed point Uε(Z) ∈ Dγ,η;T̄

U (Z) to (2.11). In addition, the map

IZ : I → Dγ,η;T̄
U (Z), IZ(ε) := Uε(Z) (2.17)

satisfies the bound

|||IZ(ε); IZ̄(ε)|||γ,η,K �T̄ |||Z; Z̄|||γ;K̄ , (2.18)

uniformly over all ε ∈ I and all Z, Z̄ ∈ M with | | |Z| | |γ;K ∨ | | |Z̄| | |γ;K ≤ R, for each R > 0
and all compact sets K ⊆ (0, T̄ ) × T 2. In particular, IZ depends continuously on Z. ♤

Remark 2.9. If it is clear from the context what the underlying model Z is, we will just 
write Uε and I, respectively. ♤

Remark 2.10. One might be inclined to think that continuity of IZ in Z is automatic 
from the Implicit Function Theorem (IFT). We want to emphasise that this is not the 
case due to the structure of the “fibred” space M � Dγ,η

U (see Fig. 1). To the best of 
the authors’ knowledge, the geometry of it has not yet been fully understood. However, 
we point to the work of Ghani Varzaneh, Riedel, and Scheutzow [43] who introduce the 
notion of a measurable field of Banach spaces to characterise the (in spirit related) space 
of controlled rough paths. ♤

Notation 2.11. We will use the following notations from [23, Prop. 3.25]. Note that we 
suppress the dependence on the initial condition u0 ∈ Cη(T 2) that is fixed throughout 
the paper.

• We denote the solution map to (2.9) by S, that is:

S : M → Dγ,η
U (Z), Z 	→ U = U(Z), (2.19)



P.K. Friz, T. Klose / Journal of Functional Analysis 283 (2022) 109446 27
• We introduce the map Str as

Str : H×M → Dγ,η
U (ThZ), Str(h,Z) := S(ThZ). (2.20)

• We denote by S the solution map to (2.10), that is:

S : M → Dγ,η
U (Z), Z 	→ U = U(Z), (2.21)

• We introduce the map Sex as

Sex : H×M → Dγ,η
U (EhZ), Sex(h,Z) := S(EhZ). (2.22)

For fixed ε ∈ I, we add two more definitions to this list.

• We denote by Sε the solution map to (2.11), that is:

Sε : M → Dγ,η
U (Z), Z 	→ Uε = Uε(Z), (2.23)

• We introduce the map Sε
ex as

Sε
ex : H×M → Dγ,η

U (EhZ), Sε
ex(h,Z) := Sε(EhZ). (2.24)

By definition, Sε(Z) = IZ(ε): The map Sε just emphasises the dependence on the 
model Z. ♤

A family of fixed-point equations

Recall that our object of interest, introduced below eq. (0.8) in the introduction, can 
also be written as

ûε
h(Ẑ) = Φ(ThδεẐ) = R

(
Str(h, δεẐ)

)
= lim

δ→0
R
(
Str(h,MδZ

εξδ
)
. (2.25)

In order to expand this quantity in ε we would like to differentiate the map ε 	→
Str(h, δεẐ) but immediately run into a problem: the space Dγ,η

U (ThδεẐ) of modelled 
distributions that Str(h, δεẐ) lives in depends on ε itself. This is due to the “fibred” 
structure of M � Dγ,η

U , see Fig. 1.
We need the following lemma that is inspired by [23, Prop. 3.25] to remediate this 

problem.

Lemma 2.12. Let Z ∈ M be an admissible model, h ∈ H, and ε ∈ I. Then,

(dε ◦ t )
[
Str(h, δεZ)

]
= Sε

ex(h,Z). (2.26)
♤
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Proof. From [23, Prop. 3.25], we know that

Sex(h, Z̄) = t
(
Str(h, Z̄)

)
,

for each Z̄ ∈ M, so by choosing Z̄ = δεZ we only need to prove that

dε
[
Sex(h, δεZ)

]
= Sε

ex(h,Z).

We denote the RHS by Uε and the LHS by dε(Uε), where Uε := Sex(h, δεZ). We then 
observe that

PEhZ(G(dεUε)[ε + ]) = PEhZ(dε(G(Uε)[ + ]))

= dε
[
PδεEhZ (G(Uε)[ + ])

]
= dε

[
PEhδεZ (G(Uε)[ + ])

]
,

where the last and the penultimate equality are due to Lemma A.21 and Lemma A.38(iii), 
respectively. Note that we have also used that dε commutes with multiplication and 
application of G. It follows that

dεUε = dε
[
PEhδεZ(G(Uε)[ + ]) + T Pu0

]
= PEhZ(G(dεUε)[ε + ]) + T Pu0,

from which we infer that dεUε solves (2.11) (w.r.t. Z := EhZ). Hence, Uε = dεUε by 
uniqueness. �

The following proposition links the fixed-point equation (2.9) with driving model 
ThδεẐ ∈ M to the familiy of fixed-point problems in (2.11) where the driving model 
now is EhẐ ∈ M. Note that the latter does not suffer from ε-dependency of the solution 
space Dγ,η(EhẐ), the problem we set out to solve.

Proposition 2.13. Let ε ∈ I, h ∈ H, and Z ∈ M. Then,

RThδεZStr(h, δεZ) = REhZSε
ex(h,Z). (2.27)

In particular, choosing the BPHZ model Ẑ ∈ M leads to

ûε
h(Ẑ) = REhẐSε

ex(h, Ẑ) ≡ REhẐIEhẐ(ε). ♤

Proof. We combine [23, Lem. 3.22(ii)], which states that RThZ̄ = REhZ̄ ◦ t for each 
Z̄ ∈ M, and Lemma A.38(ii) to obtain the equality

RThδεZStr(h, δεZ) = REhδεZ t
(
Str(h, δεZ)

)
= REhZ(dε ◦ t )

(
Str(h, δεZ)

)
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where we have also used that Eh and δε commute, see Lemma A.21. The claim now 
follows from Lemma 2.12. �

In Corollary 2.8, we have proved local existence of the FP eq. (2.11) for each Z ∈ M. 
More precisely, we have obtained T̄ = T̄ (Z) > 0 such that Uε(Z) exists up to time T̄ , 
uniformly over ε ∈ I.

In general, however, the existence time T∞(ε, Z) of Uε(Z) does depend on ε.21 Recall 
that we have started with a fixed time horizon T ∈ (0, T h

∞ ∧ T0), so we need to find the 
right subset of I×M for which existence up to time T is ensured. We need the following 
corollary towards this end.

Corollary 2.14. For each ε ∈ I and Z ∈ M, we have T∞(ε, EhZ) = T∞(ThδεZ). ♤

Proof. Since Uε(EhZ) = Sε
ex(h, Z) and T∞(ThδεZ) is the explosion time of Str(h, δεZ), 

the claim follows immediately from Lemma 2.12. �
With this result, the following corollary was proved in the last part of the proof of 

Proposition 1.2.

Corollary 2.15. For T > 0 as before, choose ρ0 = ρ0(T ) > 0 as in Lemma B.4. Then, for 
any ρ ∈ (0, ρ0] and (ε, Z−) ∈ I ×M− with ε[|Z−| ] < ρ, we have T∞(ε, EhZ) > T for the 
extension Z = E (Z−) of Z−. ♤

For fixed T and Z, it makes sense to consider the maximal ε ∈ I that satisfies the 
conditions in the previous corollary.

Definition 2.16. For T > 0 and ρ0 = ρ0(T ) > 0 as in Lemma B.4, we define

ε0(T,Z) := ρ0(T )
[|Z−|] ∧ 1

(
1
0

:= ∞
)

(2.28)

Note that ε0(T, Z) = sup{ε ∈ I : ε[|Z−| ] < ρ0(T )}. ♤

A few remarks before we summarise our findings thus far.

Remark 2.17. It is immediate to see that ε0(T, ·) ◦E is continuous on (M−, [| · | ]) and, by 
Lemma A.9, on (M−, | | | · | | |). Therefore, ε0(T, ·) is continuous on (M, | | | · | | |) by continuity 
of E , cf. Theorem A.10; in particular, we have

lim inf
δ→0

ε0(T, Ẑ
ξδ ) = ε0(T, Ẑ) as lim

δ→0
Ẑ

ξδ = Ẑ.

21 Think of the deterministic ODE ẋt = εx2
t with I.C. x0 > 0. Since xt = x0 (1 − εx0t)−1, it has explosion 

time T (ε) = (εx0)−1, which is uniformly bounded from below by x−1
0 for ε ∈ [0, 1]. Hence, any T̄ ≤ x−1

0
would do.
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In light of Corollary 2.15, this means that the renormalised solutions û
(ε)
ξδ,h and their 

limit û
(ε)
h as δ → 0 exist up to time T , uniformly over all ε < ε0(T, Ẑ). Since T > 0

is fixed, the previous observation justifies to fix ε0 := ε0(T, Ẑ) and I0 := [0, ε0) for the 
rest of the article. From here on, we only consider ε ∈ I0, so non-explosion is guaranteed 
both for the approximate and the limiting equations. ♤

Remark 2.18. Aligning with the nature of our problem, we will only consider models Z ∈
M that satisfy Z = EhZ for some Z ∈ M from here on. In light of the previous remark, 
the solution Uε w.r.t. Z = EhẐ exists up to time T for all ε ∈ I0. Disregarding such 
questions of existence, one could work with any Z ∈ M at the expense of replacing 
T � T̄ = T̄ (Z) again, cf. Corollary 2.8. ♤

Remark 2.19 (The case ε = 0.). Recall that our problem reduces to the deterministic
PDE (0.17), namely

(∂t − Δ)wh = g(wh)h, wh(0, ·) = u0,

in case ε = 0. This equation is represented by (2.11) in case ε0, so that R(EhẐ, U0) = wh
as one might reasonably expect. Now recall that U0(EhẐ) takes values in the sec-
tor U = 〈1, , , X〉 of which only one symbol (namely ) will be mapped to a non-
deterministic distribution via Π̂ (namely, a re-centered version of G ∗ ξ). Compared with 
general ansatz (A.24) for Y ∈ Dγ,η

U (EhZ), one then quickly finds from (2.11) with ε = 0
that 〈U0(EhẐ), 〉 = 0, which is consistent with our intuition. We gain even more infor-
mation: since for any Z ∈ M,

• the interpretation of 1 and X is determined by admissibility of Z and
• that of by the extension operator Eh

this means that U0(EhZ) is actually independent of Z.22 Henceforth, we will therefore 
use the symbol W for any U0(EhZ) with explicit representation given by

W (z) = wh(z)1 + φW (z) + 〈φW
X (z), X〉. (2.29)

Note that W = IEhẐ
(0) is exactly the constant term in the Taylor expansion of IEhẐ

(ε)
that we are after. With W := U(L (h)) as in (2.9), it also satisfies

RL (h)W = wh = REhZW

22 Of course, this is only half the truth: We have U0(EhZ) ∈ Dγ,η(EhZ) and the RHS does depend on Z. 
The way that this is meant is that U0(EhZ) ∈ Dγ,η(EhZ̄) for Z, Z̄ ∈ M.
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)

for any Z ∈ M. Finally, we emphasise that it is not important that h (in Eh) is the 
minimiser of F , at least at this stage. However, this property of h will be used in the 
sequel and thus makes it the natural choice. ♤

Summary of this section’s findings

For T ∈ (0, T h
∞ ∧ T0), Proposition 2.13 justifies to abandon the map

I0 → Dγ,η,T
U (ThδεẐ), ε 	→ Str(h, δεẐ)

and instead focus on

IEhẐ
: I0 → Dγ,η,T

U (EhẐ), ε 	→ Sε
ex(h, Ẑ), (2.30)

the solution map to (2.11) (for Z := EhẐ) which we have already encountered in 
Lemma 2.7, eq. (2.17). Note, however, that we have replaced T̄ � T and, accordingly, 
I � I0. The target Banach space of this map does not depend on ε anymore, so we can 
study its Fréchet differentiability in the next section.

2.2. Differentiability of the fixed-point map

Our goal in this section is to establish differentiability of IEhẐ
via the Implicit Function 

Theorem in Banach spaces [82, Thm. 4.E.]. Throughout this section, Z := EhẐ will be 
fixed; see, however, Remark 2.18. We then introduce the space

YZ
T := I0 ×Dγ,η,T

U (Z), ‖(ε, Y )‖YZ
T

:=
(
ε2 + |||Y |||2γ,η;T

)1/2
and consider the map

ΨZ
T : YZ

T → Dγ,η,T
U (Z), (ε, Y ) 	→ Y −MZ(ε, Y ), (2.31)

with MZ(ε, Y ) = PZ
(
G(Y )[ε + ]

)
+ T Pu0 as introduced in (2.13). Whenever con-

venient and without risk of confusion, we will drop the dependence on T and Z for all 
involved quantities.

Proposition A.35 allows to calculate the candidates for the derivatives D(k)Ψ.

Lemma 2.20. Let k ∈ N and suppose the function Ψ is Ck F-differentiable in (ε, Y ) ∈ Y. 
Then, its k-th F-derivative D(k)Ψ(ε, Y ) ∈ L(k)(Dγ,η;T

U (Z))23 at (ε, Y ) is given by

D(k)Ψ(ε, Y )
[
(ε1, Y1), . . . , (εk, Yk)

]
(2.32

23 For a normed linear space V and k ∈ N, we denote by L(k)(V ) the k-linear, bounded maps from V into 
itself.
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A schematic overview of our strategy

φ to wh and uε
ξδ;h, respectively. Dashed lines such 

el space M. Attached to the model ThδεZ
ξδ is a 

ε
ξδ ;h. The solution map Φ that sends ThδεZ

ξδ to Uε

ming cured by the renormalisation group R which 
→ 0 and so one can define ûε

h := Φ(ThδεẐ). The 
 carried out in M− rather than M). We run into 
differentiate Uε w.r.t. that parameter. The remedy 
ched to EhẐ

ξδ , we set up a FP problem with ε as a 
osition 2.13), as symbolised by the two red arrows. 
erentiability properties. The shape of this figure is 
chool 2017 [81].
Fig. 2. Fix δ > 0. On the LHS, we see the “noises” h and εξδ + h which are mapped by the solution map
as that for φ represent discontinuous operations: we thus lift h and εξδ + h (and also εξδ) to the mod
space Dγ,η(ThδεZ

ξδ ) of modelled distributions: it hosts an abstract FP problem for Uε which encodes u

via S and then to uε
ξδ ;h via R is continuous now. Unfortunately, Zξδ does not converge as δ → 0: a shortco

acts on M to change Zξδ into Ẑ
ξδ and, “dually”, uξδ ;h into ûξδ ;h. Indeed, Ẑ

ξδ does have a limit Ẑ as δ

lightgray ball around δεẐ
ξδ symbolises the localisation procedure of sec. 1 (for technical reasons, it was

problems once ε starts to vary: Because the Banach space Dγ,η(ThδεẐ
ξδ ) depends on ε itself, we cannot 

is to work on the extended model space M depicted on the RHS: In the Banach space Dγ,η(EhẐ
ξδ ) atta

parameter. Its solution Uε = Sε(EhẐ
ξδ ) is reconstructed to ûε

ξδ ;h by the operator R just as Uε is (Prop
However, the map I : [0, 1] 
 ε �→ Uε ∈ Dγ,η(EhẐ

ξδ ) is well-defined and may be investigated for its diff
inspired by L. Zambotti’s slides on SPDEs and regularity structures from the Second Haifa Probability S
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= Y11k=1 − P
(
G(k)(Y )

k∏
m=1

Ym [ε + ]
)
−

k∑
	=1

ε	P
(
G(k−1)(Y )

k∏
m=1,
m�=	

Ym

)
. ♠

Proof. The claim follows from an inductive argument in k using Proposition A.35 for 
straightforward direct computations. �

Note that the premise of the previous proposition is yet to be validated. In any case, 
however, the expressions on the RHS of (2.32) make perfect sense: We will use this fact 
to our advantage when verifying the criteria for the Implicit Function Theorem (IFT) to 
apply.

We start with differentiability of the map Ψ from (2.31). For the corresponding state-
ment in the rough paths setting (without dilation and encoded Cameron-Martin shifts), 
see Bailleul [12].

Lemma 2.21 (IFT, 1st condition). Suppose g ∈ C	+4, � ≥ 1, and construct the lift G(m)

of g(m), m = 1, . . . , �, by means of (A.25). Then, there exists a neighbourhood N of 
(0, W ) ∈ Y on which the map Ψ is C	 Fréchet with derivatives given in (2.32). ♠

Remark 2.22. It has proved futile to use the IFT to prove Malliavin differentiability of 
the solution map to (singular) stochastic (P)DEs. For gPAM, this is formulated in [23, 
Prop. 4.7]. In the proof of that proposition, the authors establish the C1 F-differentiability 
of some Ψ̃ (there called Fγ) which coincides with Ψ up to the roles of (there denoted 
by Ξ) and (there denoted by H) reversed. Schönbauer [76] has used that idea in full 
generality, covering any stochastic PDE that can be solved with the theory of regularity 
structures.

Prior to these recent developments, Nualart and Saussereau [70] have employed the 
same argument in the context of SDEs. So have Deya and Tindel [30], albeit for stochastic 
PDEs driven by the fractional BM with Hurst index H > 1

2 . ♤

In the following proof, we will occasionally refer to the proof of Proposition A.35, where 
similar arguments have been used. We recommend the reader to check that proposition 
before proceeding.

Proof. Let M > 0, denote by Bγ,η
T (W, M) a closed ball in Dγ,η;T

U (Z) of radius M , 
centered at W , and set Bγ,η

T (W, M) := I0 × Bγ,η
T (W, M) ⊆ Y. We fix α := deg( ) =

deg( ) = −1 − κ.
Suppose we had already established that Ψ ∈ Ck at (ε, Y ) ∈ Bγ,η

T (W, M) for some 
k ∈ {1, . . . , � − 1}; its derivatives up to order k are then given by (2.32). We want to 
do the induction step k 	→ k + 1 and prove that Ψ ∈ Ck+1 at (ε, Y ). As D(k)Ψ(ε, Y ) is 
linear in ε, it suffices to consider the case ε = 0. We let (εk+1, Yk+1) ∈ I0 × Bγ,η

T (0, M)
and study the k-th order remainder (see [82, p. 229, eq. (7)])
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Δ(k) [(εi, Yi)k+1
i=1
]
≡ Δ(k) [(0, Y ); (εi, Yi)k+1

i=1
]

(2.33)

:= D(k)Ψ(εk+1, Y + Yk+1)
[
(εi, Yi)ki=1

]
−D(k)Ψ(0, Y )

[
(εi, Yi)ki=1

]
−D(k+1)Ψ(0, Y )

[
(εi, Yi)k+1

i=1
]

where D(k+1)Ψ(0, Y ) 
[
(εi, Yi)k+1

i=1
]

is defined by the corresponding quantity in (2.32). At 
this stage, this notation is only suggestive. However, we will prove that

sup
‖(εm,Ym)‖Y≤1,

1≤m≤k

|||Δ(k) [(0, Y ); (εi, Yi)k+1
i=1
]
|||γ,η;T = o

(
‖(εk+1, Yk+1)‖Y

)
,

(εk+1, Yk+1) → 0,

(2.34)

which indeed qualifies D(k+1)Ψ(0, Y ) as the (k + 1)-th derivative of Ψ at (0, Y ). An 
elementary calculation gives

Δ(k) [(0, Y ); (εi, Yi)k+1
i=1
]

= Δ(k) [
Y ; (εi, Yi)k+1

i=1
]
+ Δ(k) [

Y ; (Yi)k+1
i=1
]

(2.35)

where one summand collects the terms with the noise symbol , namely

Δ(k) [
Y ; (εi, Yi)k+1

i=1
]

:= Δ(k);1 [
Y ; (εi, Yi)k+1

i=1
]
+ Δ(k);2 [

Y ; (εi, Yi)k+1
i=1
]
,

Δ(k);1 [
Y ; (εi, Yi)k+1

i=1
]

:= −εk+1P
([

G(k)(Y + Yk+1) −G(k)(Y )
] k∏
m=1

Ym

)
,

Δ(k);2 [
Y ; (εi, Yi)k+1

i=1
]

:= −
k∑

	=1

ε	P
([

G(k−1)(Y + Yk+1) −G(k−1)(Y ) −G(k)(Y )Yk+1
] k∏
m=1,
m�=	

Ym

)
,

(2.36)

and the other one collects those with the Cameron-Martin symbol , namely

Δ(k) [
Y ; (Yi)k+1

i=1
]

:= −P
([

G(k)(Y + Yk+1) −G(k)(Y ) −G(k+1)(Y )Yk+1
] k∏
m=1

Ym

)
.

(2.37)
Part 1: Analysis of the Cameron-Martin part Δ(k). At first, we write

Δ(k) [
Y ; (Yi)k+1

i=1
]

= −P
(
R(k) [Y ; (Yi)k+1

i=1
] )

(2.38)

with R(k) [Y ; (Yi)k+1
i=1
]

implicitly defined from (2.37) and explicitly given in (A.29) in the 
proof of Proposition A.35, where it is also identified as an element of Dγ,η;T

U (Z).
As in the proof of [45, Lem. 9.1], the map z 	→ is easily seen to be an element in 

Dζ,ζ(Z), ζ > 0, with values in a sector of reg. α. From [45, Prop. 6.12], we thus infer 
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that R(k) [Y ; (Yi)k+1
i=1
]

∈ Dγ+α,η+α;T (Z) with values in another sector of reg. α. Since 
η < ᾱ := α + 2 and ᾱ > 024, we have

|||Δ(k) [
Y ; (Yi)k+1

i=1
]
|||γ,η;T � |||Δ(k) [

Y ; (Yi)k+1
i=1
]
|||γ,ᾱ;T � |||Δ(k) [

Y ; (Yi)k+1
i=1
]
|||γ+ᾱ,ᾱ;T

(2.39)
and now apply [45, Prop.’s 6.16 & 6.12]25 to obtain that

|||Δ(k) [
Y ; (Yi)k+1

i=1
]
|||γ+ᾱ,ᾱ;T � |||R(k) [Y ; (Yi)k+1

i=1
]

|||γ+α,η+α;T

� |||R(k) [Y ; (Yi)k+1
i=1
]
|||γ,η;T .

(2.40)

The argument is now identical to that in (A.32): relying on Taylor’s theorem up to order 
one (i.e. Lemma A.34), eq. (A.26)) we have

|||R(k) [Y ; (Yi)k+1
i=1
]
|||γ,η;T �

(
|||Y |||γ,η;T + |||Yk+1|||γ,η;T

)
|||Yk+1|||2γ,η;T

k∏
n=1

|||Yn|||γ,η;T

≤ C(|||W |||γ,η;T ,M)|||Yk+1|||2γ,η;T ,

(2.41)

where we have used that Y ∈ BT
γ,η(W, M), Yk+1 ∈ BT

γ,η(0, M), and that | | |Ym| | |γ,η;T ≤ 1
for 1 ≤ m ≤ k as assumed in (2.34). We then infer that

sup
|||Ym|||γ,η;T≤1,

1≤m≤k

|||Δ(k) [
Y ; (Yi)k+1

i=1
]
|||γ,η;T = O

(
|||Yk+1|||2γ,η;T

)
, Yk+1 → 0. (2.42)

Part 2: Analysis of the noise part Δ(k) = Δ(k);1 + Δ(k);2. Modulo minor changes, the 
arguments are the same as before: We obtain the estimates

sup
‖(εm,Ym)‖Y≤1,

1≤m≤k

|||Δ(k);2 [
Y ; (εi, Yi)k+1

i=1
]
|||γ,η;T = O

(
|||Yk+1|||2γ,η;T

)
, Yk+1 → 0 (2.43)

and

sup
‖(εm,Ym)‖Y≤1,

1≤m≤k

|||Δ(k);1 [
Y ; εk+1, (Yi)k+1

i=1
]
|||γ,η;T = O

(
εk+1|||Yk+1|||γ,η;T

)
,

(εk+1, Yk+1) → 0,

(2.44)

see the extended arXiv version [34] for details. Combining (2.42), (2.43), and (2.44) gives

24 See Remark 2.23 below for a comment on the implications of this constraint for adaptions of our argument 
to cover the Φ4

3 equation where ᾱ < 0.
25 Actually, instead of [45, Prop. 6.12], we apply an analogue of [45, Thm. 4.7] (valid for Dγ spaces without
blow-ups) in the setting of Dγ,η spaces with blow-ups.
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sup
‖(εm,Ym)‖Y≤1,

1≤m≤k

|||Δ(k) [(0, Y ); (εi, Yi)k+1
i=1
]
|||γ,η;T = O

(
‖(εk+1, Yk+1)2‖Y

)
,

(εk+1, Yk+1) → 0,

so the claim (2.34) follows. All the estimates are also valid for k = 0, which establishes 
Ψ ∈ C1 at (ε, Y ) ∈ Bγ,η

T (W, M), so we can close the inductive proof. �
Remark 2.23. At first glance, it might seem that the arguments in (2.39) exclude amend-
ments of our results to cover Φ4

3 where α ∈ (−18/7, −5/2) and, as a consequence, 
ᾱ := α + 2 < 0, cf. [45, Sec. 9.4]. However, this is not the case. Fundamentally, this 
is due to [45, Lem. 9.7 & Prop. 9.8] (and their proofs) which state that, for γ > |2α + 4|
and η ∈ (−2/3, ᾱ), the map U 	→ U3 is strongly locally Lipschitz from Dγ,η

V to Dγ+2α+4,3η
V̄

for sectors V and V̄ of regularity ᾱ and 3ᾱ, respectively. Hence, [45, Prop. 6.16] implies 
that

|||P(U3)|||γ,η;T � |||P(U3)|||γ,3η+2;T � |||P(U3)|||γ+2α+6,3η+2;T

� |||U3|||γ+2α+4,3η;T � |||U |||γ,η;T

where the first two inequalities hold because η < 3η + 2 and 2α + 6 > 0. ♤

The following lemma verifies the second condition for the IFT to apply.

Lemma 2.24 (IFT, 2nd condition). For each T ∈ (0, T h
∞∧T0) and (ε, J) ∈ I×Dγ,η,T

U (Z), 
the map

D2ΨZ(ε, J) = Id−PZ
(
G′(J) •

[
ε +

])
(2.45)

is an element of L(Dγ,η;T
U (Z)) and bijective. In particular, this is true for the map Θ =

ΘZ
T given by

ΘZ
T := D2ΨZ(0,W ) = Id−PZ

(
G′(W ) •

)
. (2.46)

We will write Θ̃ := Θ−1 for the inverse of Θ. ♤

Proof. It is clear that D2Ψ(ε, J) ∈ L(Dγ,η
U (Z)): linearity is trivial and boundedness 

follows by exactly the same arguments as (2.39), (2.40), and the paragraph preceding 
them:

|||D2Ψ(ε, J)(Y )|||γ,η;T � |||Y |||γ,η;T + |||P
(
G′(J)Y

[
ε +

])
|||γ+ᾱ,ᾱ;T

� |||Y |||γ,η;T + |||G′(W )Y
[
ε +

]
|||γ+α,η+α;T

� C(|||J |||γ,η;T , g)|||Y |||γ,η



P.K. Friz, T. Klose / Journal of Functional Analysis 283 (2022) 109446 37
In the last estimate, we have additionally used [45, Prop. 6.13]. Regarding the bijectivity 
of D2Ψ(ε, J), we need to prove that for each V ∈ Dγ,η

U (Z) there exists a Y ∈ Dγ,η
U (Z)

such that

Y = V + P
(
G′(J)Y

[
ε +

])
. (2.47)

This FP problem can again be solved by [45, Thm. 7.8] because DGε(J) : Y 	→
G′(J)Y

[
ε +

]
• maps Dγ,η;T

U (Z) into Dγ+α,η+α;T
U (Z), α := deg( ) = −1 − κ,

• is strongly locally Lipschitz in the sense of Definition 2.6

The arguments are the same as in the proof of Lemma 2.7, in particular (2.16). Actually, 
it suffices for DGε(J) to be locally Lipschitz continuous which is true because it is linear 
and continuous. �
Remark 2.25. Later on, we will actually derive bounds for the operator norm of Θ for 
models with norm of order one, see Proposition 2.35 and Remark 2.36. ♤

With these preparations, the following theorem about C	 F-differentiability of IZ
essentially is a consequence of the IFT. In addition, we provide explicit (iterative) FP 
problems solved by its derivatives I

(m)
Z . For the corresponding statement in the context 

of Malliavin calculus, see [76, Prop. 4.1].

Theorem 2.26 (Differentiability of I). Let T ∈ (0, T h
∞ ∧ T0), Z ∈ M, and set Z :=

EhZ ∈ M. Suppose g ∈ C	+4 for some � ≥ 1. Then there exists some ε� = ε�(T, Z) > 0
such that, for I� := [0, ε�), we have

(i) IZ ∈ C	(I�, Dγ,η;T
U (Z)) in the Fréchet sense.

(ii) For m = 1, . . . , � and ε ∈ I�, the derivative I(m)
Z (ε) ∈ Dγ,η;T

U (Z) uniquely solves the 
FP equation

I
(m)
Z (ε) = MZ

m

(
ε,
(
I

(k)
Z (ε)

)m
k=0

)
, ε ∈ I�, (2.48)

for the FP map MZ
m given by

MZ
m

(
ε,
(
I

(k)
Z (ε)

)m
k=0

)
:= PZ

(
G(m)(IZ(ε))I(m)

Z (ε)
[
ε +

])
(2.49)

+ εPZ
(
B

(m−1),
Z (ε)

)
+ PZ

(
B

(m−1),
Z (ε)

)
+ mPZ

(
A

(m−1),
Z (ε)

)
.
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Here, we have set26 for m ≥ 1:

A
(m),
Z (ε) := m!

m∑
k=1

1
k!G

(k)(IZ(ε))
∑
i∈Sm

k

k∏
	=1

1
i	!

I
(i�)
Z (ε), A

(0),
Z (ε) := G(IZ(ε))

(2.50)

B
(m−1),σ
Z (ε) := m!

m∑
k=2

1
k!G

(k)(IZ(ε))
∑
i∈Sm

k

k∏
	=1

1
i	!

I
(i�)
Z (ε), σ ∈ { , }. (2.51)

where

Sm
k := {i ∈ Nk

≥1 : |i| = m}.

(iii) For m = 1, . . . , � and ε ∈ I�, the map Z 	→ I
(m)
Z (ε) is strongly locally Lipschitz in 

the sense of Definition 2.6.
(iv) It is possible to choose ε� as27

ε�(T,Z) := sup IZ∞(T ), IZ∞(T ) := {ε ∈ I : T∞(r, EhZ) > T for all r ∈ [0, ε)}.
(2.52)

In this case, we have ε�(T, Z) ≥ ε0(T, Z), the latter defined in (2.28). In particular, 
IZ ∈ C	(I0, Dγ,η;T

U (Z)) for I0 = [0, ε0) as before. ♤

Remark 2.27. Note that MZ
m in (2.49) is linear in I

(m)
Z (ε), so the explosion time 

of I(m)
Z (ε) coincides with that of IZ(ε). Also note that ε as well as the second term on 

the RHS of (2.49) vanish for ε = 0. ♤

Proof. By Lemmas 2.21 and 2.24, we can apply the IFT (see [82, Thm. 4.E]) to Ψ. It 
asserts that there exists a neighbourhood O of W and ε� > 0 and a unique function Y� ∈
C	(I�, O) such that

Ψ(ε, Y�(ε)) = 0 for ε ∈ I� = [0, ε�).

By uniqueness of solutions to the fixed-point problem (2.11), we find that Y�(ε) = I(ε)
and hence the claim (i) follows. Regarding (ii), we differentiate m times both sides of 
the FP equation

26 Note that the terms on the RHS of (2.50) and (2.51) are exactly the same, only the summation in the 
latter starts with k = 2. Note, however that B

(m−1),σ
Z only depends on I

(n)
Z for n ∈ [m −1], whereas A

(m),
Z

does so for n ∈ [m]. The asymmetry in choice of superscript (“m” for A, but “m − 1” for B) reflects that 
fact. Also, note that B

(m−1),σ
Z (ε) ≡ 0 for m = 1.

27 Recall that T∞(ε, EhZ) is the existence time of IEhZ(ε), cf. Corollary 2.14 and the comments preceding 
it.
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IZ(ε) = PZ
(
G(IZ(ε))ε

)
+ PZ

(
G(IZ(ε))

)
+ T Pu0.

For the expression on the RHS, this is valid thanks to the linearity of PZ , Proposi-
tion A.35, and (i) By Leibniz rule, we have

∂m
ε [G(IZ(ε))ε ] =

m∑
k=0

(
m

k

)
∂m−k
ε [G(IZ(ε))] ∂k

ε [ε ]

= ∂m
ε [G(IZ(ε))]ε + m∂m−1

ε [G(IZ(ε))]

which then leads to

I
(m)
Z (ε) = εPZ

(
∂m
ε G(IZ(ε))

)
+ PZ

(
∂m
ε G(IZ(ε))

)
+ mPZ

(
∂m−1
ε G(IZ(ε))

)
.

(2.53)
We calculate the derivatives by Riordan’s formula (see [34, eq. (2.11)]), which reads

∂m
ε (G ◦ IZ)(ε) = m!

m∑
k=1

1
k!G

(k)(IZ(ε))
∑
i∈Sm

k

k∏
	=1

1
i	!

I
(i�)
Z (ε). (2.54)

when combined with Proposition A.35. Note that the last summand on the RHS of (2.53)
does not contribute a term containing I

(m)
Z . For the first two summands, only the term 

corresponding to k = 1 in (2.54) does, more precisely

k = 1 � Sm
1 = {m} � G(m)(IZ(ε))I(m)

Z (ε).

We single out the corresponding terms in the definition of MZ
m in (2.49) and, accordingly, 

only start the summation in B
(m−1),σ
Z in (2.51) at k = 2. The claim in (2.48) follows.

Regarding (iii), recall that the operations of multiplication and composition with 
(lifts of sufficiently) regular functions are strongly locally Lipschitz continuous operations 
(cf. [45, Prop. 6.12] and [49, Prop. 3.11], respectively). As a consequence of [45, Thm. 7.8], 
so is Z 	→ IZ(ε) for ε ∈ I� fixed, cf. Corollary 2.8 above. Therefore, the map

V 	→ G(m)(IZ(ε))V
[
ε +

]
+ B

(m−1),
Z (ε) ε + B

(m−1),
Z (ε) + mA

(m−1),
Z (ε)

is strongly locally Lipschitz continuous from Dγ,η,T (Z) to Dγ̄,η̄,T (Z) in case m = 1. Then, 
[45, Thm. 7.8] implies strong local Lipschitz continuity of Z 	→ I

(1)
Z (ε). Iteratively, the 

same arguments prove the claim for m ∈ {2, . . . , �}.
The proof of (iv) is almost identical to the corresponding statement in [76]: Suppose ε�

is chosen as in (2.52) and assume there exists r� > ε� such that T∞(r, EhZ) > T for all 
r ∈ [0, r�). We can then redo the arguments in Theorem 2.21 with (0, W ) ≡ (0, IZ(0))
replaced by (ε�, IZ(ε�)) to infer that we can obtain θ > 0 such that the map

[0, θ) � ε 	→ IZ(ε� + ε) ∈ Dγ,η,T (Z)
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is C	 in the Fréchet sense. In turn, that implies that IZ ∈ C	([0, ε�+θ), Dγ,η,T (Z)) which 
contradicts the maximality of ε�. By Corollary 2.15 and eq. (2.28), we immediately have 
that

ε0(T,Z) = sup IZ(T ) ≤ sup IZ∞(T ) = ε�(T,Z),

thus finishing the proof. �
2.3. Taylor expansion in spaces of modelled distribution

Given Theorem 2.26, Taylor’s formula on Banach spaces [82, Thm. 4.C] provides us 
with an abstract analogue of Theorem 2 in the space Dγ,η,T

U (EhZ). The following corol-
lary is a direct consequence of the afore-mentioned theorem.

Corollary 2.28. In the setting of Theorem 2.26, the expansion

Uε = W +
	−1∑
m=1

εm

m!U
(m) + R	

ε in Dγ,η,T
U (Γeh) (2.55)

holds for each ε ∈ I0 with

(1) the term W as introduced in Remark 2.19, Uε ≡ Uε(Z) := IEhZ(ε), cf. (2.17), and

U (m) ≡ U (m)(Z) := I
(m)
EhZ

(0) for m = 1, . . . , �− 1. (2.56)

The latter are given iteratively as solutions to the fixed-point problems

U (m)(Z) = PEhZ
(
G(m)(W )U (m)(Z)

)
+PEhZ

(
B

(m−1),
EhZ

)
+mPEhZ

(
A

(m−1),
EhZ

)
(2.57)

or, equivalently, by the explicit formula

U (m)(Z) = Θ̃EhZ
[
PEhZ

(
B

(m−1),
EhZ

)
+ mPEhZ

(
A

(m−1),
EhZ

)]
. (2.58)

The terms A
(0),
EhZ

:= A
(0),
EhZ

(0) = G(W ) are given by

A
(m),
EhZ

:= A
(m),
EhZ

(0) = m!
m∑

k=1

1
k!G

(k)(W )
∑
i∈Sm

k

k∏
n=1

1
in!U

(in)(Z), (2.59)

B
(m−1),
EhZ

:= B
(m−1),
EhZ

(0) = m!
m∑ 1

k!G
(k)(W )

∑
m

k∏ 1
in!U

(in)(Z). (2.60)

k=2 i∈Sk

n=1
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given in (2.50) and (2.51), respectively. They only depend on U (k)(Z) for k =
1, . . . , m − 1.

(2) the remainder R	
ε ≡ R	

ε(Z) is defined implicitly from (2.55), that is

R	
ε := Uε −W +

	−1∑
m=1

εm

m!U
(m). (2.61)

All the expressions in the expansion (2.55) are continuous in the model Z. ♤

Remark 2.29. Note that Taylor’s theorem actually gives us an explicit formula for the 
remainder R	

ε(Z), namely

R	
ε(Z) :=

1∫
0

(1 − s)	−1

(�− 1)! I
(	)
EhZ

(sε) ds. (2.62)

However, as we will see in subsection 2.3.2, the definition in (2.61) is very well-suited for 
an inductive argument. ♤

Remark 2.30. The formula for U (m) in (2.57) formally agrees with the corresponding 
ones by Inahama and Kawabi, specifically [52, eq.’s (4.2) - (4.5)] (in the case that the 
SDE they consider has no drift b, i.e. b ≡ 0). ♤

By itself, Corollary 2.28 is merely a version of Taylor’s theorem. It unfolds its full 
merit only when complemented with an analysis of the properties of the Taylor terms 
and the remainder. Most importantly in this direction, we will provide estimates for 
the U (m)’s in subsection 2.3.1 and for R	

ε in subsection 2.3.2.
Before we turn to the estimates, we study further properties of the terms U (m) which 

we need in our analysis. To begin with, the next proposition may be understood as 
m-homogeneity of U (m) w.r.t. dilation of the model.

Proposition 2.31. With dε and δε as in section A.2.1, the terms U (m)(Z) ∈ Dγ,η,T (EhZ)
satisfy the identity

εmU (m)(Z) = dε
(
U (m)(δεZ)

)
, ε ∈ I0 = [0, ε0(T,Z)). (2.63)

♤

Before we can prove it, in light of (2.58) we first need to understand how the operator Θ̃
(see Lemma 2.24) transforms when the underlying model is dilated.
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Lemma 2.32. Let Z ∈ M. We have

Θ̃EhZ ◦ dε = dε ◦ Θ̃EhδεZ , ε ∈ I0. (2.64)
♤

Proof. The claimed identity is equivalent to

dε ◦ ΘEhδεZ = ΘEhZ ◦ dε, ε ∈ I0.

Let Yε ∈ Dγ,η;T
U (EhδεZ). By Lemmas A.21 and A.38(i), we have dεYε ∈ Dγ,η;T

U (EhZ), 
so we find that

ΘEhZ (dεYε) = dεYε − PEhZ

(
G′(W )(dεYε)

)
= dεYε − PEhZ

(
dε
(
G′(Wh)Yε

))
= dε

(
Yε − PEhδεZ

(
G′(W )Yε

))
= dε

(
ΘEhδεZ(Yε)

)
.

In the previous equalities, we have used the explicit form of Θ given in Lemma 2.24, 
the multiplicativity and linarity of dε, Lemma A.38(iii) (to relate dε, δε, and P), and 
Lemma A.21 (to commute δε and Eh). �
Proof of Proposition 2.31. The proof proceeds by induction, starting with m = 1:

εU (1)(Z) = Θ̃EhZPEhZ
(
A

(0),
EhZ

ε
)

= Θ̃EhZPEhZ
(
G(W ) ε

)
= Θ̃EhZPEhZ

(
dε(G(W ) )

)
= Θ̃EhZdε

(
PδεEhZ

(
G(W )

))
= dεΘ̃EhδεZPEhδεZ

(
G(W )

)
= dεU

(1)(δεZ)
(2.65)

In the previous equalities, we have used (2.58) for m = 1, Lemma 2.32, Lemmas A.38(iii) 
and A.21 as in the previous proof, and the fact that dεW = W since 〈W, 〉 = 0, 
cf. Remark 2.19.

We assume the claim is true for m ∈ {1, . . . , � − 2} and do the induction step m 	→
m + 1. First, recall that

εm+1 = ε |i| =
k∏

n=1
εin for i ∈ Sm+1

k = {i ∈ Nk
≥1 : |i| = m + 1}. (2.66)

Using this fact in combination with linearity and multiplicativity of dε, the induction 
hypothesis immediately implies that

εm+1A
(m),
EhZ

= dεA
(m),
EhδεZ

ε, εm+1B
(m),
EhZ

= dεB
(m),
EhδεZ

. (2.67)

By (2.58) and the same reasoning as in (2.65), we thus have

εm+1U (m+1)(Z) = Θ̃EhZ
[
PEhZ

(
εm+1B

(m),
E Z

)
+ (m + 1)PEhZ

(
εm+1A

(m),
E Z

)]

h h



P.K. Friz, T. Klose / Journal of Functional Analysis 283 (2022) 109446 43
= Θ̃EhZ
[
PEhZ

(
dεB

(m),
EhδεZ

)
+ (m + 1)PEhZ

(
dε
[
A

(m),
EhδεZ

])]
=
(
Θ̃EhZ ◦ dε

) [
PEhδεZ

(
B

(m),
EhδεZ

)
+ (m + 1)PEhδεZ

(
A

(m),
EhδεZ

)]
= dε

(
Θ̃EhδεZ

[
PEhδεZ

(
B

(m),
EhδεZ

)
+ (m + 1)PEhδεZ

(
A

(m),
EhδεZ

)])
= dεU

(m+1)(δεZ)

This completes the proof. �
The following definition relates the quantities appearing in Corollary 2.28 to those 

in Theorem 2. Note that it is consistent since the reconstruction operator R is linear 
and continuous.

Definition 2.33. As before, let Z ∈ M. We set uε
h(Z) := R 

(
EhZ; Uε

)
and

• u
(m)
h (Z) := R 

(
EhZ; U (m)), u(m)

ξδ;h := u
(m)
h (Zξδ), û(m)

ξδ;h := u
(m)
h (Ẑ

ξδ), û(m)
h :=

u
(m)
h (Ẑ),

• R
(	)
h,ε(Z) := R 

(
EhZ; R	

ε

)
, R̂(	)

h,ε := R
(	)
h,ε(Ẑ). ♤

For the sake of curiosity, explicit equations for the terms û
(m)
ξδ;h are derived in ap-

pendix 2.5; they are not needed for the proof of Theorem 2.
The following lemma will be needed in subsection 3.1; it states that the term u

(1)
ξδ,h

needs not be renormalised. This is not surprising given that it is a linear function of the 
noise.

Lemma 2.34. We have u
(1)
ξδ;h = û

(1)
ξδ;h. ♤

Proof. From Theorem 2.26(iii), we know that

U (1)(Z) = PEhZ
(
L(1)(Z)

)
, L(1)(Z) := A

(0),
EhZ

+B
(0),
EhZ

= G′(W )U (1)(Z) +G(W )

As a consequence of Remark 2.19, eq. (2.29), we find 〈L(1)(Z), 〉 = 0 for any Z ∈ M. 
In turn, since the action of Πξδ; eh and Π̂ξδ; eh differs only on the symbol , we have

REhZ
ξδ
(
L(1) (Zξδ )

)
(z) = Πξδ; eh

z

[
L(1) (Zξδ) (z)

]
(z) = Π̂ξδ; eh

z

[
L(1) (Zξδ) (z)

]
(z)

= Π̂ξδ; eh
z

[
L(1) (Ẑ

ξδ) (z)
]
(z) = REhẐ

ξδ (
L(1) (Ẑ

ξδ)
)
(z).

With this observation, we then get

û
(1)
ξδ;h(z) = R

(
EhẐ

ξδ ; U (1) (Ẑ
ξδ)
)
(z) =

[
P ∗ REhẐ

ξδ (
L(1) (Ẑ

ξδ)
)]

(z)

=
[
P ∗ REhZ

ξδ
(
L(1) (Zξδ)

)]
(z) = REhZ

ξδ
(
U (1) (Zξδ)

)
(z) = u

(1)
ξδ;h(z)
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which is what we wanted to show. �
Further preparations: Duhamel’s formula. Before we can estimate the terms in (2.55), 
we need some final preparations. In (2.57) we have seen that Y ∈ {U (m) : m ∈ [� − 1]}
satisfies

(1) a linear fixed-point equation of type

Y = Peh
(
G′(W )Y + Ṽ

)
(2.68)

for some modelled distribution Ṽ ∈ Dγ̄,η̄
α for γ̄ := γ + α and η̄ := η + α. The 

subscript “α” indicates that Ṽ takes with values in a sector of regularity α := deg( ).
(2) an inhomogeneous linear equation of the form

ΘehY = V ⇐⇒ Y = Θ̃ehV (2.69)

where

V := Peh Ṽ ∈ Dγ,α+2
U ↪→ Dγ,η

U (2.70)

for η ∈ (0, α + 2) and

Θeh := Id−Peh
(
G′(W ) •

)
∈ L

(
Dγ,η

U (Γeh)
)
, Θ̃eh :=

[
Θeh
]−1

, (2.71)

introduced in Lemma 2.24 can be interpreted as a “Duhamel operator” and its 
inverse. In the reasoning above, we have used [45, Prop. 6.16] which asserts that

Peh : Dγ̄,η̄
α → Dγ̄+2,α+2

U (2.72)

is linear and bounded.

In subsection 2.3.2, more precisely Proposition 2.42, we will see that one can also derive 
an equation of form (2.69) for Y = R	

ε. That makes a strong case for understanding 
the operator norm of Θ̃, so that estimating Y ∈ {U (m), R	

ε : m ∈ [� − 1]} reduces to 
estimating the corresponding V ’s in (2.69).

In this spirit, the following proposition is reminiscient of Duhamel’s Formula in linear 
PDE theory. For its formulation, we define Ṽ := 〈U ∪ U 〉 = 〈τσ : τ ∈ U , σ ∈ { , }〉, a 
sector of regularity α.

Proposition 2.35 (Duhamel). As before, let γ = 1 + 2κ, α = deg( ) = −1 − κ, 
and η ∈ (1/2, 1). For each T ∈ (0, T0 ∧ T h

∞), Z = (Π, Γ) ∈ M, and V ∈ Dγ,η(Γeh), the 
equation (2.69) admits a unique solution Y ∈ Dγ,η

U (Γeh) on (0, T ). Setting λ = λ(Z) :=
1 + [|Z−| ] and defining V from Ṽ ∈ Dγ̄,η̄

˜ (Γeh) as in (2.70) we also have the bound
V
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|||dλY |||
γ,η,T ;Γeh;1/λ � |||dλṼ |||

γ̄,η̄,T ;Γeh;1/λ (2.73)

that holds uniformly over all Z ∈ M. ♠

The proof of the proposition combines different aspects of the equivalent viewpoints 
in (1) and (2) above. Since it is highly technical, we only provide a sketch and refer 
the interested reader to [34, App. E], the extended arXiv version of the article at hand, 
which contains all the details.

Proof (Sketch). At first, we verify the criteria of [45, Thm. 7.8] to see that the fixed-point 
problem (2.68) is solvable.

In a second step, we then establish Neumann series bounds on short time intervals. 
More precisely, for 0 ≤ s < t ≤ T we write Θeh = Id−As for a suitable operator As

that acts on modelled distributions Y supported on (s, t) and defined w.r.t. the rescaled 
recentering operator Γeh,1/λ. By suitably amending [45, Thm. 7.1], the short time bound 
for the abstract convolution kernel Peh , one can find t small enough s.t. the operator 
norm ‖As‖op;t;Γeh;1/λ is bounded by 1/2 and then the classical Neumann series bound

‖[Id−As]−1‖op;t;Γeh;1/λ ≤
(
1 − ‖As‖op;t;Γeh;1/λ

)−1 ≤ 2

holds uniformly over all s ∈ [0, T ].
These two steps combined show that (2.73) holds with T replaced by some small s ∈

[0, T ]. One concludes by restarting the equation after time s, patching together solutions 
in the spirit of [45, Prop. 7.11], and iterating the previous estimates up to the finite 
time T is reached. �

Let us make a few remarks about the philosophy behind the previous proposition and 
existent literature.

Remark 2.36. In the setting of the previous proposition, we could actually prove the 
slightly stronger statement that

|||dλY |||
γ,η;T ;Γeh;1/λ � |||dλV |||

γ,η;T ;Γeh;1/λ ,

for V ∈ Dγ,η,T (Γeh) not necessarily of form (2.70). From a functional analytic perspective, 
the previous inequality can then equivalently be stated as

‖Θ̃Ehδ1/λZ‖op;T � 1

uniformly over each Z ∈ M, where ‖ · ‖op;T denotes the operator norm in
L 
(
Dγ,η;T (Γeh;1/λ)

)
. ♤
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Remark 2.37. The purpose of Proposition 2.35 is to prepare for the proof of the estimates 
in Theorem 2, eq. (0.18): In Definition 2.33, we have seen that the quantities therein are 
reconstructions of modelled distributions Y ∈ {U (m), R	

ε : m ∈ [� − 1]}. By the trivial 
identity Y = d1/λdλY and Lemma A.38(ii), we see that

REhZY = REhZd1/λdλY = REhδ1/λZdλY = 〈dλY ,1〉

where the last identity is true by [45, Prop. 3.28] and the fact that U is a function-like 
sector, see [45, Def. 2.5]. Finally, we can estimate

‖REhZY ‖XT
= ‖〈dλY ,1〉‖XT

≤ |||dλY |||
γ,η,T ;Γeh;1/λ . (2.74)

By Proposition 2.35, it then only remains to estimate the Ṽ corresponding to the specific 
choice of Y . That will be done in the subsections to follow. ♤

Remark 2.38. The previous proposition is consistent with its rough path counterpart [52, 
Lem. 2.1], itself a version of Duhamel’s formula. In the framework of regularity structures, 
Hairer and Mattingly [48] established a version of Duhamel’s formula that applies in our 
framework but did not consider the estimates provided above. ♤

We now start estimating Y = U (m) in the spirit of Remark 2.37.

2.3.1. Estimates on the Taylor terms
In this subsection, we estimate the Taylor terms U (m) in the expansion (2.55). Recall 

from (2.58) that

U (m)(Z) = Θ̃EhZ
[
PEhZ

(
Ṽ (m)(Z)

)]
, Ṽ (m)(Z) := mA

(m−1),
EhZ

+ B
(m−1),
EhZ

. (2.75)

which is of type (2.69). We obtain the following estimates:

Proposition 2.39. For each Z ∈ M, λ = λ(Z) := 1 + [|Z−| ], and T ∈ (0, T h
∞ ∧ T0), we 

have the estimate

|||dλU (m)(Z)|||
γ,η;T ;Γeh;1/λ �

(
1 + [|Z−|]

)m (2.76)

where the implicit constant differs for each m. ♤

Proof. Since A
(m−1),
EhZ

and B
(m−1),
EhZ

take values in U , a function-like sector, it is im-
mediately clear that Ṽ (m) takes values in Ṽ and thus satisfies the assumptions of 
Proposition 2.35. We now use the identity

dλṼ
(m)(Z) = mdλA

(m−1),
E Z λ + dλB

(m−1),
E Z (2.77)
h h
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and run an inductive argument in m. Henceforth, we suppress the subscript EhZ of A
and B. All the norms | | | · | | | are taken w.r.t. the model Ehδ1/λZ.

• m = 1: The previous formula reads dλṼ (1)(Z) = dλA
(0), λ = dλG(W )λ =

G(W )λ since 〈W, 〉 = 0, see Remark 2.19. We then obtain the estimate

|||dλṼ (1)(Z)|||γ̄,η̄;T = λ|||G(W ) |||γ̄,η̄;T � λ = 1 + [|Z−|]

for α, γ, and η (and thus γ̄ and η̄) as in the formulation of Proposition 2.35. That 
same proposition verifies the claim.

• m = 2: In this case, the formula (2.77) is valid with

dλA
(1), = 2G′(W )dλU (1)(Z), dλB

(1), = G′′(W )
[
dλU

(1)(Z)
]2

.

Analogously to the case m = 1, we find

|||dλA(1), λ |||γ̄,η̄;T � |||G′(W ) |||γ̄,η̄;Tλ|||dλU (1)(Z)|||γ,η;T � (1 + [|Z−|])2

as well as

|||dλB(1), |||γ̄,η̄;T � |||G′′(W ) |||γ̄,η̄;T |||dλU (1)(Z)|||2γ,η;T � (1 + [|Z−|])2.

These estimates can be combined to

|||dλṼ (2)(Z)|||γ̄,η̄;T � (1 + [|Z−|])2

which implies the claimed statement by Proposition 2.35.

Suppose the claim is true for some m − 1 ∈ [� − 2]. The argument in case m = 2 is a 
blueprint for the strategy in the induction step

• m − 1 	→ m: We have

|||dλB(m−1), |||γ̄,η̄;T � m!
m∑

k=2

1
k! |||G

(k)(W ) |||γ̄,η̄;T
∑
i∈Sm

k

k∏
n=1

1
in! |||dλU

(in)(Z)|||γ,η;T

�
m∑

k=2

∑
i∈Sm

k

(1 + [|Z−|]) |i| = (1 + [|Z−|])m
m∑

k=2

#[Sm
k ]

� (1 + [|Z−|])m

where we have used that
∑k

n=1 in = m for all i ∈ Sm
k and the induction hypothesis. 

Analogously, we find



48 P.K. Friz, T. Klose / Journal of Functional Analysis 283 (2022) 109446
|||dλA(m−1), λ |||γ̄,η̄;T

� λ(m− 1)!
m−1∑
k=1

1
k! |||G

(k)(W ) |||γ̄,η̄;T
∑

i∈Sm−1
k

k∏
n=1

1
in! |||U

(in)(Z)|||γ,η;T

� λ(1 + [|Z−|])m−1 = (1 + [|Z−|])m.

Altogether, this can be combined to give the estimate

|||dλṼ (m)(Z)|||γ̄,η̄;T � (1 + [|Z−|])m

and again, the claim follows from Proposition 2.35. �
2.3.2. Estimates on the Taylor remainder

In this subsection, we focus on estimating the Taylor remainder R	
ε. Recall from (2.61)

that

Rn+1
ε = R1

ε −
n∑

j=1

εj

j!U
(j) ∈ Dγ,η

U (Γeh) (2.78)

where

R1
ε := Uε −W = Peh

(
G(Uε)ε + [G(Uε) −G(W )]

)
(2.79)

and, as before, U (m) is given in (2.58). Our aim is to prove the following proposition, 
the analog to last subsection’s Proposition 2.39.

Proposition 2.40. Let n ∈ [�] and for Z ∈ M, set λ = λ(Z) := 1 + [|Z−| ]. Then, for 
T ∈ (0, T h

∞ ∧ T0) and ρ ∈ (0, ρ0(T )) with ρ0(T ) > 0 as in Lemma B.4, the estimate

|||dλRn
ε (Z)|||

γ,η;T ;Γeh,1/λ � εn
(
1 + [|Z−|]

)n (2.80)

holds uniformly over all (ε, Z) ∈ I ×M with ε[|Z−| ] < ρ. ♤

The proof is based on induction. The case n = 1 is the content of the following lemma:

Lemma 2.41 (Induction basis). For Z ∈ M, let λ := 1 + [|Z−| ] and assume that ε[|Z−| ] <
ρ. Then, the term R1

ε = Uε −W ∈ Dγ,η,T
U (Γeh) can be estimated by

|||dλR1
ε(Z)|||

γ,η,T ;Γ1/λ;eh �ρ,T ε
(
1 + [|Z−|]

)
. ♤

Proof. Recall from (the proof of) Lemma 2.12 that

Uε = Sε
ex(h,Z) = dε

(
Uε

)
, Uε := Sex(h, δεZ), (2.81)
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so, bearing in mind that W = U0 (see Remark 2.19), we have

dλR
1
ε = dλ

[
dε
(
Uε

)
− d0

(
U0
)]

.

Recall that U = {1, , , X}, among which only is not invariant under dε.

Part 1: Let z ∈ DT := (0, T ] × T 2. We have

|〈dλR1
ε(z), 〉| = |〈dλ [dε (Uε(z)) − d0 (U0(z))] , 〉| = |〈dλdεUε(z), 〉|

≤ ελ |〈Uε(z) − U0(z), 〉| + ελ |〈U0(z), 〉|

so that we can estimate the first of the two summands defining the norm | | | · | | |γ,η,T in 
Definition A.31, eq. (A.23):

‖dλR1
ε‖γ,η,T = sup

τ∈U
sup
z∈DT

|t|
deg(τ)−η

2 ∨0 |〈dλR1
ε(z), τ〉|

≤ ελ sup
z∈DT

|t|
deg( )−η

2
(
|〈Uε(z) − U0(z), 〉| + |〈U0(z), 〉|

)
+ sup

τ∈U\{ }
sup
z∈DT

|t|
deg(τ)−η

2 ∨0 |〈Uε(z) − U0(z), τ〉|

≤ (1 + ελ) sup
τ∈U

sup
z∈DT

|t|
deg(τ)−η

2 ∨0 |〈Uε(z) − U0(z), τ〉|

+ ελ sup
z∈DT

|t|
deg( )−η

2 ∨0 |〈U0(z), 〉| (2.82)

= (1 + ελ) ‖Uε − U0‖γ,η,T + ελ sup
z∈DT

|t|
deg( )−η

2 ∨0 |〈U0(z), 〉|

For now, we leave this term as it is and later analyse it further.

Part 2: We turn to the second term in (A.23), the one containing the Γ’s. At first, by 
Lemma A.20 in the appendix, we observe that

[dλdεUε; dλd0U0](z, z̄) := dλdεUε(z) − dλd0U0(z) − Γeh;1/λ
zz̄ dλdεUε(z̄) + Γeh;1/λ

zz̄ dλd0U0(z̄)

= dλdεUε(z) − dλd0U0(z) − dλdεΓeh;ε
zz̄ Uε(z̄) + dλd0Γeh;0

zz̄ U0(z̄)
(2.83)

holds for any z, ̄z ∈ DT . Now recall that

Γeh;ε
zz̄ = + γeh;ε

zz̄ (J )1 with γeh;ε
zz̄ (J ) = ε〈Π ,K(· − z̄) −K(· − z)〉

so that, in particular, γeh;0
zz̄ (J ) = 0 and thus Γeh;0

zz̄ = . Thus, we find that
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dλdε〈Uε(z), 〉 − dλdεΓeh;ε
zz̄ 〈Uε(z̄), 〉

= ελ
[
〈Uε(z), 〉 − 〈Uε(z̄), 〉

]
− 〈Uε(z̄), 〉γeh;ε

zz̄ (J ) 1

= ελ〈Uε(z) − Γeh;ε
zz̄ Uε(z̄), 〉 − 〈Γeh;ε

zz̄ 〈Uε(z̄), 〉 ,1〉 1.

As a consequence, we find that

〈[dλdεUε; dλd0U0](z, z̄), τ〉 = 〈Uε(z) − U0(z) − Γeh;ε
zz̄ Uε(z̄) + Γeh;0

zz̄ U0(z̄), τ〉, (2.84)

for τ ∈ U \ { }. For τ = , the situation is different:

〈[dλdεUε; dλd0U0](z, z̄), 〉 = ελ〈Uε(z) − Γeh;ε
zz̄ Uε(z̄), 〉

= ελ〈Uε(z) − U0(z) − Γeh;ε
zz̄ Uε(z̄) + Γeh;0

zz̄ U0(z̄), 〉 + ελ〈U0(z) − Γeh;0
zz̄ U0(z̄), 〉

= ελ〈Uε(z) − U0(z) − Γeh;ε
zz̄ Uε(z̄) + Γeh;0

zz̄ U0(z̄), 〉 + ελ〈U0(z) − U0(z̄), 〉
(2.85)

We can now combine (2.83), (2.84), and (2.85) to obtain the following estimate:

sup
z,z̄∈DT ,
|z−z̄|≤1

sup
τ∈U

(
|t| ∧ |t̄|

)deg(τ)−η
2 ∨0 | 〈[dλdεUε; dλd0U0](z, z̄), τ〉|

|z − z̄|γ−deg(τ)

≤ (1 + ελ) sup
z,z̄∈DT ,
|z−z̄|≤1

sup
τ∈U

(
|t| ∧ |t̄|

)deg(τ)−η
2 ∨0 | 〈Uε(z) − U0(z) − Γeh;ε

zz̄ Uε(z̄) + Γeh;0
zz̄ U0(z̄), τ〉|

|z − z̄|γ−deg(τ)

+ ελ sup
z,z̄∈DT ,
|z−z̄|≤1

(
|t| ∧ |t̄|

)deg( )−η
2 ∨0 | 〈U0(z) − U0(z̄), 〉|

|z − z̄|γ−deg( )
(2.86)

Part 3: Observe that U0 solves the fixed-point equation

U0 = PEhδ0ZG(U0)[ + ] + T Pu0 = I
(
G(U0)[ + ]

)
+ T̄ in Dγ,η

U (Γeh;0),

so a quick comparison of coefficients shows that 〈U0, 〉 = 〈G(U0), 1〉 = g (〈U0,1〉). We 
remind the reader of the identity

〈U0,1〉 = REhδ0ZU0 = REhZd0U0 = REhZW = 〈W,1〉,

so that 〈U0, 〉 = 〈G(W ), 1〉. Next, we emphasise that for z = (t, x), ̄z = (t̄, ̄x) ∈ DT with 
|z − z̄| ≤ 1 we have

|z − z̄|γ ≤|z − z̄|γ−deg( )
,

(
|t| ∨

∣∣t̄∣∣)deg( )−η
2 ∨0 ≤ T

deg( )−η
2 ∨0.

Since deg(1) = 0 and Γeh;0
zz̄ 1 = 1, we then infer that
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ελ

[
sup
z∈DT

|t|
deg( )−η

2 ∨0 |〈U0(z), 〉| + sup
z,z̄∈DT ,
|z−z̄|≤1

(
|t| ∧ |t̄|

)deg( )−η
2 ∨0 | 〈U0(z) − U0(z̄), 〉|

|z − z̄|γ−deg( )

]

�T ελ

[
sup
z∈DT

|〈G(W )(z),1〉| + sup
z,z̄∈DT ,
|z−z̄|≤1

| 〈G(W )(z) − Γeh;0
zz̄ G(W )(z̄),1〉|

|z − z̄|γ
]

≤ ελ |||G(W )|||γ,η,T .
(2.87)

Part 4: The estimates in (2.82), (2.86), and (2.87) then lead to the inequality

|||dλR1
ε(Z)|||

γ,η,T ;Γ1/λ;eh ≤ (1 + ελ)|||Uε;U0|||γ,η,T + ελ |||G(W )|||γ,η,T

= (1 + ελ)|||Sex(h, δεZ);Sex(h, δ0Z)|||γ,η,T + ελ |||G(W )|||γ,η,T .
(2.88)

where the equality is true by definition of Uε in (2.81). By joint local Lipschitz continuity 
of Sex as established in [23, Prop. 3.25],28 we can further estimate

|||Sex(h, δεZ);Sex(h, δ0Z)|||γ,η,T � |||δεZ − δ0Z||| � |||δεZ− − 0|||
= ε[|Π−|] ∨ ε2[|Π−|]2 ≤ ε(1 + ρ)[|Z−|].

By assumption, we have ελ ≤ 1 +ρ since ε ≤ 1, so the previous estimate may be combined 
with (2.88) to give

|||dλR1
ε(Z)|||

γ,η,T ;Γ1/λ;eh � ε[|Z−|] + ελ � ε(1 + [|Z−|])

where the implicit constant depends on ρ, T , and the norm of G(W ), a deterministic 
quantity. �

We proved the case n = 1 by leveraging the continuity of the involved solution maps. 
The general strategy, however, is to invoke Duhamel’s formula, Proposition 2.35, again. 
As alluded to earlier, our first step towards this goal is to derive an equation of type (2.69)
for Rn+1

ε .

Proposition 2.42. For n ≥ 1 we have

ΘehRn+1
ε = Peh

(
[Rn+1

ε ; ] ε + [Rn+1
ε ; ]

)
, (2.89)

where

[Rn+1
ε ; ] := G(Uε) −G(W ) −

n−1∑
j=1

∑
i∈∪n−1

l=1 Sl
j

1
j!G

(j)(W )
j∏

m=1

εim

im!U
(im), (2.90)

28 In [23, Prop. 3.25], the map Sex is denoted by SH .
ex
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[Rn+1
ε ; ] := G(Uε) −G(W ) −G′(W )(Uε −W ) −

n∑
j=2

∑
i∈∪n

l=1S
l
j

1
j!G

(j)(W )
j∏

m=1

εim

im!U
(im),

(2.91)

and Sn
k := {i ∈ Nk

≥1 : |i| = n}. ♤

Proof. We start with the case n = 1. Recall from Corollary 2.28 that A(0), = G(W ), 
B(0), = 0, thus U (1) = Peh(G′(W )U (1) ) + Peh(G(W ) ). Combined with (2.79) we find

R2
ε = R1

ε − εU (1) = Peh
(
[G(Uε) −G(W )]ε

)
+ Peh

(
G(Uε) −G(W ) −G′(W )εU (1) )

and then use the identity εU (1) = R1
ε−R2

ε = Uε−W −R2
ε in the last term of the second 

summand. This leads to the claimed identity

R2
ε = Peh

(
[G(Uε) −G(W )]ε

)
+ Peh

(
[G(Uε) −G(W ) −G′(W )[Uε −W ]]

)
+ Peh

(
G′(W )R2

ε

) (2.92)

For n ≥ 2, we use the fact that

Rn+1
ε = R2

ε −
n∑

j=2

εj

j!U
(j)

combined with (2.57) and (2.92) to obtain the identity

Rn+1
ε − Peh

(
[G(Uε) −G(W )]ε

)
− Peh

(
[G(Uε) −G(W ) −G′(W )[Uε −W ]]

)
= R2

ε − Peh
(
[G(Uε) −G(W )]ε

)
− Peh

(
[G(Uε) −G(W ) −G′(W )[Uε −W ]]

)
−

n∑
j=2

εj

j!U
(j)

= Peh
(
G′(W )R2

ε

)
−

n∑
j=2

εj

j!

[
Peh(G′(W )U (m) ) + Peh

(
A(j−1), )

+ Peh
(
B(j−1), )]

= Peh
(
G′(W )Rn+1

ε

)
−

n∑
j=2

εj

j!

[
Peh

(
A(j−1), )

+ Peh
(
B(j−1), )]

. (2.93)

Next, observe that Sj
k = ∅ for k > j (∗). By definition of B(j−1), in (2.60), we have

n∑
j=2

εj

j!B
(j−1), =

n∑
j=2

εj
j∑

k=2

1
k!G

(k)(W )
∑

j

k∏
m=1

1
im!U

(im)
i∈Sk
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(∗)=
n∑

k=2

1
k!G

(k)(W )
n∑

j=1
εj
∑
i∈Sj

k

k∏
m=1

1
im!U

(im)

=
n∑

k=2

1
k!G

(k)(W )
∑

i∈∪n
j=1S

j
k

k∏
m=1

εim

im!U
(im)

where the last equality uses that εj = ε |i| =
∏k

m=1 ε
im for i ∈ Sj

k. Analogously, by 
definition of A(j), in (2.59) we have

n∑
j=2

εj

j! jA
(j−1), = ε

n−1∑
j=1

εj

j!A
(j), = ε

n−1∑
k=1

1
k!G

(k)(W )
∑

i∈∪n−1
j=1 Sj

k

k∏
m=1

εim

im!U
(im).

Once we update (2.93) by the previous two identities, the claim follows. �
Remark 2.43. Formally, the expression for Rn+1

ε from Proposition 2.42 agrees with the 
one by Inahama and Kawabi, see the penultimate equation on page 303 in [52]. ♤

For Y := Rn+1
ε , we learn from the previous proposition that the corresponding Ṽ

and V in (2.70) resp. (2.69) are given by

Ṽ [n+1] := [Rn+1
ε ; ] ε + [Rn+1

ε ; ] , V [n+1] := Peh(Ṽ ). (2.94)

In the next two lemmas, we derive more explicit expressions for [Rn+1
ε ; σ], σ ∈ { , }.

Lemma 2.44. The identity

[Rn+1
ε ; ] =

n−1∑
j=1

1
j!G

(j)(W )
( ∑

i∈[n−1]j
|i|≥n

j∏
m=1

εim

im!U
(im) +

j∑
m=1

(
j

m

)(
Sn−1

ε

)j−m (
Rn

ε

)m)

+
1∫

0

(1 − s)n−1

(n− 1)! G(n)(W + sR1
ε)
[
R1

ε

]n ds (2.95)

holds with Sn−1
ε :=

∑n−1
i=1

εi

i! U
(i). ♤

Proof. By definition, R1
ε = Uε −W . We expand G(Uε) at W ≡ U0 to write

G(Uε) −G(W )

=
n−1∑
j=1

1
j!D

(j)G(W )
[
R1

ε, . . . ,R
1
ε

]
+

1∫ (1 − s)n−1

(n− 1)! D(n)G(W + sR1
ε)
[
R1

ε, . . . ,R
1
ε

]
ds
0
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=
n−1∑
j=1

1
j!G

(j)(W )
[
R1

ε

]j +
1∫

0

(1 − s)n−1

(n− 1)! G(n)(W + sR1
ε)
[
R1

ε

]n ds (2.96)

where we used Proposition A.35 in the last equality. At the same time, by the identity 
R1

ε = Sn−1
ε +Rn

ε and the binomial theorem, the first term in the expansion (2.96) reads

n−1∑
j=1

1
j!G

(j)(W )
[
R1

ε

]j =
n−1∑
j=1

1
j!G

(j)(W )
[(
Sn−1

ε

)j +
j∑

m=1

(
j

m

)(
Sn−1

ε

)j−m (
Rn

ε

)m]
.

(2.97)
For [Rn+1

ε ; ] as in (2.90), we have thus far established that

[Rn+1
ε ; ]

=
n−1∑
j=1

1
j!G

(j)(W )
[(
Sn−1

ε

)j +
j∑

m=1

(
j

m

)(
Sn−1

ε

)j−m (
Rn

ε

)m −
∑

i∈∪n−1
l=1 Sl

j

j∏
m=1

εim

im!U
(im)

]

+
1∫

0

(1 − s)n−1

(n− 1)! G(n)(W + sR1
ε)
[
R1

ε

]n ds. (2.98)

We further rewrite29

(
Sn−1

ε

)j =
(

n−1∑
i=1

εi

i! U
(i)

)j

=
j∏

r=1

(
n−1∑
	r=1

ε	r

�r!
U (	r)

)
=

∑
�∈[n−1]j

j∏
m=1

ε	m

�m!U
(	m) (2.99)

and observe that

n−1⋃
l=1

Sl
j =

n−1⋃
l=1

{i ∈ Nj
≥1 : |i| = l} = {i ∈ Nj

≥1 : |i| ∈ [n−1]} = {i ∈ [n−1]j : |i| ∈ [n−1]}.

Combining this identity with the formula (2.99) for (Sn−1
ε )j , we see that

(
Sn−1

ε

)j − ∑
i∈∪n−1

l=1 Sl
j

j∏
m=1

εim

im!U
(im) =

∑
i∈[n−1]j

j∏
m=1

εim

im!U
(im) −

∑
i∈[n−1]j
|i|∈[n−1]

j∏
m=1

εim

im!U
(im)

=
∑

i∈[n−1]j
|i|≥n

j∏
m=1

εim

im!U
(im)

29 Recall that [n] := {1, . . . , n} for n ∈ N.
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Plugging this identity into (2.98) finishes the proof. �
A similar identity holds for [Rn+1

ε ; ] and can be proved analogously.

Lemma 2.45. For Sn−1
ε as in Lemma 2.44, the following identity holds:

[Rn+1
ε ; ] =

n∑
j=2

1
j!G

(j)(W )
( ∑

i∈[n−1]j
|i|≥n+1

j∏
m=1

εim

im!U
(im) +

j∑
m=1

(
j

m

)(
Sn−1

ε

)j−m (
Rn

ε

)m)

+
1∫

0

(1 − s)n

n! G(n+1)(W + sR1
ε)
[
R1

ε

]n+1 ds (2.100)

Finally, we have gathered all the tools to prove Proposition 2.40.

Proof of Proposition 2.40. The statement for n = 1 is the content of Lemma 2.41, so we 
assume the claim is true for n ∈ [� −1] and consider the induction step n 	→ n +1. Using 
Proposition 2.42 in conjunction with Lemmas 2.32 and A.38, we obtain the identity

dλR
n+1
ε (Z) = (dλ ◦ Θ̃EhZ)

[
PEhZ([Rn+1

ε ; ] ε + [Rn+1
ε ; ] )

]
= Θ̃Ehδ1/λZ

[
PEhδ1/λZ(dλ[Rn+1

ε ; ]ε λ + dλ[Rn+1
ε ; ] )

]
,

so by Duhamel’s principle presented in Proposition 2.35, we have the estimate

|||dλRn+1
ε (Z)|||

γ,η;T ;Γeh;1/λ; � ελ|||dλ[Rn+1
ε ; ]|||

γ,η;T ;Γeh;1/λ + |||dλ[Rn+1
ε ; ]|||

γ,η;T ;Γeh;1/λ .

(2.101)
We have to estimate the terms | | |dλ[Rn+1

ε ; σ]| | |
γ,η;Γ1/λ;eh on the right hand side and start 

with σ = . In this case, the factor ελ = ε(1 + [|Z−| ]) already contributes one power 
towards the exponent in the claim. By Lemma 2.44, terms of three types are to be 
estimated:30

(1) Those only containing Taylor terms dλU (i) with i ∈ [n −1], for which Proposition 2.39
implies the estimate

∑
i∈[n−1]j
|i|≥n

j∏
m=1

εim

im! |||dλU
(im)(Z)|||

γ,η;T ;Γeh;1/λ �
∑

i∈[n−1]j
|i|≥n

j∏
m=1

εim

im! (1 + [|Z−|])im

30 Recall that the operator dλ is linear, multiplicative, and commutes with the application of lifts G of 
functions g, see eq. (A.17) and Lemma A.38(i).
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�
∑

i∈[n−1]j
|i|≥n

[
ε(1 + [|Z−|])

]|i| �ρ εn(1 + [|Z−|])n,

where we have used ε[|Z−| ] < ρ to estimate terms with powers bigger that n.
(2) Those that contain at least one factor of dλRn

ε , for which we have

j∑
m=1

(
j

m

)
|||dλSn−1

ε |||j−m

γ,η;T ;Γeh;1/λ
|||dλRn

ε |||mγ,η;T ;Γeh;1/λ
� εn(1 + [|Z−|])n (2.102)

Here, we have used the induction hypothesis, Proposition 2.39 to estimate the terms 
dλU

(k) (hidden in dλSn−1
ε ), and the fact that ε[|Z−| ] < ρ to estimate powers higher 

than n by a ρ-dependent constant.
(3) The Bochner integral in (2.95). In order to control this term, we observe that

|||W + sdλR
1
ε|||γ,η,T ;Γeh;1/λ � |||W |||

γ,η,T ;Γeh;1/λ + (1 + ρ)

holds uniformly over s ∈ [0, 1]. In this estimate, we have used the induction ba-
sis (Lemma 2.41) and the assumption that ε[|Z−| ] < ρ. Hence, we can estimate

1∫
0

(1 − s)n−1

(n− 1)! |||G(n)(W + sdλR
1
ε)|||γ,η;T ;Γeh;1/λ ds |||dλR1

ε|||nγ,η,T ;Γeh;1/λ

�
1∫

0

(1 − s)n−1

(n− 1)! |||W + sdλR
1
ε|||γ,η;T ;Γeh;1/λ ds |||dλR1

ε|||nγ,η,T ;Γeh;1/λ
� εn(1 + [|Z−|])n

again by the induction basis. Note that the first estimate, depends on the norms 
of ‖g(r)‖∞, r ∈ {n, n + 1}, as well as ‖Γeh;1/λ‖; the latter, however, satisfies a deter-
ministic bound that depends on ‖h‖H, see Lemma A.24 in the appendix.

By definition of λ, these estimates can be combined to

ελ |||dλ[Rn+1
ε ;σ]|||

γ,η;T ;Γ1/λ;eh �ρ εn+1(1 + [|Z−|])n+1,

in case σ = . For σ = , we argue analogously using Lemma 2.45 instead of Lemma 2.44. 
However, note that no additional factor ελ appears in | | |dλ[Rn+1

ε ; ]| | |
γ,η;T ;Γeh;1/λ in (2.101), 

so all estimates have to be of order n + 1 rather than n. In fact, they are: For terms 
of types (1) and (3) appearing in [Rn+1

ε ; ], this can be seen immediately from their 
definition. For terms of type (2) note that the first sum in (2.100) starts with j = 2, 
so 
(
Sn−1

ε

)j−m always comes with an exponent j −m ≥ 1, contributing one additional 
power to the exponent of ε (1 + [|Z−|]) in (2.102). �
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2.4. Proof of Theorem 2

The whole section is occupied by the proof.

Proof. Note that

U = 〈1, , , X〉 ⊆ T̄ ⊕ T≥α+2, 1 − κ = α + 2 < γ = 1 + 2κ

and recall that XT := C
(
[0, T ], Cη(T 2)

)
for fixed η ∈ (1/2, 1). As a consequence of [45, 

Prop. 3.28], it thus follows that

V ∈ Dγ,η,T
U (Z) =⇒ RZV ∈ C

(
(0, T ], Cα+2(T 2)

)
∩ C

(
[0, T ], Cη(T 2)

)
⊆ XT .

More generally, the reconstruction operators

R : M � Dγ,η;T
U → XT , REh• : M � Dγ,η;T

U (Eh•) → XT .

are jointly locally Lipschitz continuous by the reconstruction theorem [45, Thm. 3.10]
and Proposition A.13. Since REhZ is linear and bounded for any fixed Z ∈ M (and thus 
Fréchet C∞), it immediately follows from Theorem 2.26 that

u•
h(Z) = REhZ ◦ IEhZ ∈ C(	)(I0(T,Z),XT ).

• Property (i): Continuous dependence on the model and estimates.

By Definition 2.33, continuity of u(m)
h (Z), m ∈ [� − 1], and R

(	)
h,ε(Z) in Z is a direct 

consequence of joint continuity of REh• and Corollary 2.28.
In view of Remark 2.37, the estimates in (0.18) are straightforward consequences of 

Proposition 2.39 and Proposition 2.40, respectively. We have

‖u(m)
h (Z)‖XT

= ‖REhZU (m)(Z)‖XT
≤ |||dλU (m)(Z)|||

γ,η;T ;Γeh;1/λ � (1 + [|Z−|])m

and

‖R(	)
h,ε(Z)‖XT

= ‖REhZR	
ε(Z)‖XT

≤ |||dλR	
ε(Z)|||

γ,η;T ;Γeh,1/λ � ε	
(
1 + [|Z−|]

)	
.

• Property (ii): Homogeneity w.r.t. model dilation.

Recall that we want to prove the equality εmu
(m)
h (Z) = u

(m)
h (δεZ) for ε ∈ I0(T, Z). By 

now, this is an easy consequence of Proposition 2.31: We have

εmu
(m)
h (Z) = REhZ

(
εmU (m)(Z)

)
= REhZ

(
dεU

(m)(δεZ)
)

= REhδεZ
(
U (m)(δεZ)

)
= u

(m)
h (δεZ)
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where we have additionally used Lemma A.38(ii) and Lemma A.21). �
2.5. Stochastic PDEs for the Taylor terms

In this section, we derive stochastic PDEs that are satisfied by the Taylor terms û(m)
ξδ;h

in the expansion (0.16) in Theorem 2 (with the notational convention introduced in 
Definition 2.33). Even though these equations are not used elsewhere in this article, we 
feel that they are still interesting to the reader. For a corresponding statement in the 
framework of rough paths theory, see Inahama and Kawabi [52, Def. 4.1]. In what follows, 
we will use the following convention:

Notation 2.46. For U (m)(Z), A(m),
EhZ

, and B
(m−1),
EhZ

as in Corollary 2.28, we set

Û
(m)
ξδ,h := U (m)(Ẑ

ξδ), Â
(m),
ξδ,h := A

(m),
EhẐ

ξδ
, B̂

(m−),
ξδ,h := B

(m−),
EhẐ

ξδ
. ♤

With this convention, the fixed-point equation (2.57) for Û
(m)
ξδ,h reads

Û
(m)
ξδ,h = PEhẐ

ξδ (G′(W )Û (m)
ξδ,h ) + mPEhẐ

ξδ (
Â

(m−1),
ξδ,h

)
+ PEhẐ

ξδ (
B̂

(m−1),
ξδ,h

)
(2.103)

The announced equations are:

Proposition 2.47 (Explicit equations for û(m)
ξδ;h). The term û(m)

ξδ;h satisfies the linear stochas-
tic PDE given by

(∂t − Δ)û(m)
ξδ;h = â

(m−1),
ξδ;h ξδ − â

(m−1),c
ξδ;h cδ +

[
b̂
(m−1),
ξδ;h + û

(m)
ξδ;hg

′(wh)
]
h, û

(m)
ξδ;h(0, ·) = 0.

(2.104)
The coefficient functions of ξδ and h are defined by31

â
(m−1),
ξδ;h := mReh

(
Â

(m−1),
ξδ;h

)
= m〈Â(m−1),

ξδ;h ,1〉,

b̂
(m−1),
ξδ;h := Reh

(
B̂

(m−1),
ξδ;h

)
= 〈B̂(m−1),

ξδ;h ,1〉.
(2.105)

They calculate to the same expressions as the corresponding terms in (2.59), multiplied 
by m, and (2.60), respectively, only with the replacements G � g, W � wh, and U (k) �
û

(k)
ξδ;h. For the coefficient of cδ, we have

â
(m−1),c
ξδ;h := m〈Â(m−1),

ξδ;h , 〉 = m!
m−1∑
k=1

1
k!g

(k)(wh)
∑

i∈Sm−1
k

k∑
r=1

1
ir!

â
(ir−1),
ξδ;h

k∏
n=1,
n �=r

1
in! û

(in)
ξδ;h.

♠

31 The second equalities with 〈. . . , 1〉 are due to an analogue of [45, Prop. 3.28] to the spaces Dγ,η
U (Ẑξδ ;eh ).
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Remark 2.48. As a sanity check, one can verify that the equation for û(m)
ξδ;h in Proposi-

tion 2.47 can also be obtained by naively applying ∂m
ε |ε=0 to

(∂t − Δ)ûε
ξδ;h = g

(
ûε
ξδ;h
) (

εξδ + h − ε2cδg
′ (û(ε)

ξδ;h
))

, ûε
ξδ;h(0, ·) = u0.

In particular, we find

(m = 1) â
(0),
ξδ;h = g(wh), â

(0),c
ξδ;h = 0 = b̂

(0),
ξδ;h

(m = 2) â
(1),
ξδ;h = 2g′(wh)û(1)

ξδ;h, â
(1),c
ξδ;h = 2g′(wh)g(wh), b̂

(1),
ξδ;h = g′′(wh)

[
û

(1)
ξδ;h
]2

such that

(m = 1) (∂t − Δ)û(1)
ξδ;h = g(wh)ξδ + û

(1)
ξδ;hg

′(wh)h

(m = 2) (∂t − Δ)û(2)
ξδ;h = 2g′(wh)û(1)

ξδ;hξδ − 2g′(wh)g(wh)cδ

+
[
g′′(wh)

[
û

(1)
ξδ;h
]2

+ û
(2)
ξδ;hg

′(wh)
]
h

(2.106)

with û(i)
ξδ;h(0, ·) = 0 for i = 1, 2. ♤

The equations for the Taylor terms become useful when one attempts to calculate (or 
numerically approximate) the coefficients ak in (0.13) explicitly, see the formula (3.16)
in Proposition 3.6 below. A proof of Proposition 2.47 can be found in [34, Sec. 2.5].

3. Local analysis in the vicinity of the minimiser

Recall that the application of the Cameron-Martin theorem in Proposition 1.2 has 
lead to the expression

Jρ(ε) = exp
(
−F (h)

ε2

)
E

[
exp

(
− F̃−

Φ(h, ε)
ε2

)
; ε[|Ẑ−|] < ρ

]
, (3.1)

with F̃−
Φ(h, ε) given in (1.11). By plugging in the expansion obtained in Corollary 2.1, 

we obtain the identity

F̃−
Φ(h, ε) = ε

[
DF |wh

(
û

(1)
h
)

+ ξ(h)
]
+ ε2

2 Q̂h +
N+2∑
m=3

εm

m! F̂
(m)
h + R̂F ;ε;N+3

h (3.2)

for each ε ∈ I0 := [0, ε0) with ε0 = ε0(T, Ẑ) as in (2.28).
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3.1. Vanishing of the linear term by first-order optimality

In this subsection, we want to use first-order optimality implied by assumption (H2) 
to prove the proposition that follows. Recall our convention from Definition 2.33 that 
û

(1)
h (ω) = u

(1)
h (Ẑ(ω)) for ω ∈ Ω.

Proposition 3.1. We have

DF |wh

(
û

(1)
h (ω)

)
+ ξ(ω)(h) = 0. (3.3)

for P -a.e. ω ∈ Ω. Hence,

Jρ(ε) = exp
(
−F (h)

ε2

)
E
[
exp

(
−1

2 Q̂h − ŜF ;ε;N
h − 1

ε2 R̂
F ;ε;N+3
h

)
; ε[|Ẑ−|] < ρ

]
(3.4)

where we have set

ŜF ;ε;N
h :=

N+2∑
m=3

εm−2

m! F̂
(m)
h . (3.5)

♤

Proof. By assumption (H2), the Cameron-Martin function h is the unique minimiser of 
F = (FΦ ◦L ) + I , so DF |h ≡ 0 ∈ H′. We calculate the Fréchet derivatives of the two 
summands of F . Since ξδ is smooth a.s., we have ξδ(ω) ∈ H for P -a.e. ω ∈ Ω.

(1) For Schilder’s rate function I , we obtain

DI |h (ξδ(ω)) = 1
2

d
dλ

∣∣∣
λ=0

〈h + λξδ(ω), h + λξδ(ω)〉H = 〈ξδ(ω), h〉H. (3.6)

(2) Recall that (Φ ◦ L )(h) = wh and, by Proposition 2.13 (with Z := Zξδ(ω)),

(Φ ◦ L )(εξδ(ω) + h) = R
(
S
(
ThδεZ

ξδ(ω)
))

= R
(
Str(u0, h, δεZξδ(ω))

)
= R

(
Sε
ex(u0, h,Zξδ(ω))

)
= R

(
IEhZ

ξδ (ω)(ε)
)

= u
(ε)
h
(
Zξδ(ω)

)
,

which in turn implies that

D(Φ ◦ L )
∣∣
h (ξδ(ω)) = d

dε

∣∣∣
ε=0

u
(ε)
h
(
Zξδ(ω)

)
= u

(1)
h (Zξδ (ω)) = u

(1)
h
(
Ẑ

ξδ(ω)
)
.

where Ẑ
ξδ(ω) denotes the BPHZ model associated to ξδ(ω) and the last equality is 

due to Lemma 2.34. We combine these observations to obtain
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D(F ◦ Φ ◦ L ) |h (ξδ(ω)) = DF |(Φ◦L )(h)

(
D(Φ ◦ L )

∣∣
h (ξδ(ω))

)
= DF |wh

(
u

(1)
h
(
Ẑ

ξδ(ω)
))

.

(3.7)

Altogether, (3.6) and (3.7) lead to the equality

DF |wh

(
u

(1)
h
(
Ẑ

ξδ(ω)
))

+ 〈ξδ(ω), h〉H = DF |h (ξδ(ω)) = 0. (3.8)

We recall two more results:

(1) From [45, Rmk. 10.6] and the comments thereafter, we know that

lim
δ→0

〈ξδ, h〉H = ξ(h) in L2(P ). (3.9)

(2) From [45, Thm. 10.19] (or, more generally, [24, Thm. 2.33]), we know that Ẑ
ξδ

converges to Ẑ in probability in M as δ → 0.

Therefore, we may pass to a common subsequence to obtain P -a.s. limits in the preceding 
two statements. As DF |wh

is continuous by assumption (H3) and u(1)
h is continuous in 

the model by Theorem 2(i), taking δ → 0 in (3.8) establishes the claim in (3.3). �
By the previous proposition, we now need to analyse the behaviour as ε → 0 of

Eρ(ε) := E
[
exp

(
−1

2 Q̂h − ŜF ;ε;N
h − 1

ε2 R̂
F ;ε;N+3
h

)
; ε[|Ẑ−|] < ρ

]
. (3.10)

3.2. Exponential integrability of the quadratic term

In a first step, we study the exponential integrability of the quadratic term −1/2 Q̂h in 
(3.10), as it will give us the leading order term a0 in the expansion (0.13), cf. section 3.3.

Proposition 3.2. There exists some β > 0 such that exp
(
−1

2Q̂h

)
∈ Lp(P ) with p :=

1 + β. ♤

The proof of the preceding proposition crucially relies on the non-degeneracy assump-
tion (H4) on the minimiser h. It will be combined with the following elementary lemma.

Lemma 3.3. Let X : Ω → R be a random variable and λ ∈ R. Suppose there exists some 
C > λ and k, K > 0 such that for all r ∈ (k, ∞) we have the estimate P (X ≥ r) ≤
K exp(−Cr). Then, there exists some β > 0 such that exp(λX) ∈ L1+β(P ). ♤
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Recall that Q̂h = Qh(Ẑ). In Corollary 2.3(ii), we have established that ε2Qh(Ẑ) =
Qh(δεẐ). Since Qh is continuous in the model (by Corollary 2.3(i)) and the family (
δεẐ : ε > 0

)
satisfies a LDP on model space M with good rate function (RF)

JM(Z) = inf{I (h) : h ∈ H with L (h) = Z}, (3.11)

cf. Theorem C.1, we can apply the contraction principle to infer that the family (
−1

2Qh(δεẐ) : ε > 0
)

satisfies a LDP on R with good RF

Λ(y) := inf{JM(Z) : Z ∈ M with − 1/2 Qh(Z) = y}

= inf{I (h) : h ∈ H with − 1/2 Qh(L (h)) = y}.

Recall that I denotes Schilder’s RF, that is: I (h) = 1
2‖h‖

2
H for h ∈ H.

Proof of Proposition 3.2. We want to apply Lemma 3.3 with X := −1
2Qh(Ẑ) and λ = 1. 

We set

C∗ := inf{JM(Z) : Z ∈ M, −1/2 Qh(Z) ≥ 1} (3.12)

and immediately find32

C∗ = inf{1/2 ‖h‖2
H : h ∈ H∗}, H∗ := {h ∈ H : −1/2 Qh(L (h)) ≥ 1}. (3.13)

The LDP upper bound for 
(
−1

2Qh(δεẐ) : ε > 0
)

now implies that for each C ∈ (0, C∗)
there exists an ε0 = ε0(C) > 0 such that

P
(
−1

2Qh(Ẑ) ≥ ε−2
)

= P
(
−1

2Qh(δεẐ) ≥ 1
)
≤ exp

(
−ε−2C

)
,

holds for all ε ≤ ε0. Hence, all we need to show is C∗ > λ = 1, or equivalently

C∗ − 1 > 0. (3.14)

If H∗ = ∅, then C∗ = +∞ and there is nothing to prove, so we assume H∗ �= ∅. By a 
compactness argument, oursourced to Lemma 3.4 below, we find h∗ ∈ H∗ with h∗ �= 0
and C∗ = 1

2‖h∗‖2
H. Now take v, w ∈ H and observe the following:

32 We remind the reader that assumption (H4) reads D2F |h > 0 for F = F ◦ Φ ◦ L + I . As we will see 
shortly, it implies Qh ◦ L > − Id (and not Qh ◦ L > 0), so the condition −1/2 Qh(L (h)) ≥ 1 for h ∈ H
in (3.13) is indeed meaningful. In particular, it is consistent with earlier work by Ben Arous [11].



P.K. Friz, T. Klose / Journal of Functional Analysis 283 (2022) 109446 63
(1) From (3.6), we know that DI |h (v) = 〈h, v〉H. For the second derivative, we find

D2I |h [v, w] = d
dt

∣∣∣
t=0

DI |h+tv (w) = d
dt

∣∣∣
t=0

〈h + tv, w〉H = 〈v, w〉H.

In particular, C∗ = 1
2‖h∗‖2

H = 1
2D

2I |h [h∗, h∗].
(2) The definitions in Corollary 2.1 immediately imply

1
2Qh(L (h∗)) = 1

2∂
2
ε

∣∣
ε=0 F

(
u

(ε)
h (L (h∗))

)
= 1

2∂
2
ε

∣∣
ε=0 F ◦ Φ

(
ThδεL (h∗)

)
= 1

2∂
2
ε

∣∣
ε=0 F ◦ Φ ◦ L (h + εh∗) = 1

2D
2(F ◦ Φ ◦ L ) |h [h∗, h∗].

(3.15)

where we additionally use Remark A.15 and Proposition A.18 in the third equality.

Altogether, we obtain (3.14) from

−1 + C∗ ≥ 1
2D

2 ((F ◦ Φ ◦ L ) + I
) ∣∣

h [h∗, h∗] = 1
2D

2F |h [h∗, h∗] > 0,

where we have used that h∗ ∈ H∗ in the first estimate and assumption (H4) in the 
last. �
Lemma 3.4. In the setting of the previous proof, assume H∗ �= ∅. Then, C∗ < ∞ and 
there exists h∗ ∈ H∗ with h∗ �= 0 and C∗ = 1

2‖h∗‖2
H. ♤

Proof. Notice that C∗ ≤ JM(L (h)) < ∞ for any h ∈ H∗ �= ∅ and recall that JM
is a good RF, so that the set Lk := {Z ∈ M : JM(Z) ≤ k} is compact in M for 
each k ∈ [0, ∞). Also, for any such k the set

Ak := Lk ∩ {Z ∈ M : −1/2 Qh(Z) ≥ 1} ⊆ M

is compact again because (−1/2 Qh)−1([1, ∞]) is closed in M by continuity of Qh. Now 
choose k∗ sufficiently large such that Ak∗ �= ∅. Then,

C∗ ≡ inf{JM(Z) : Z ∈ M, −1/2 Qh(Z) ≥ 1} = inf{JM(Z) : Z ∈ Ak∗}

and since JM is l.s.c. as a RF, it attains its minimum on compact sets, so there exists 
a Z∗ ∈ Ak∗ with C∗ = JM(Z∗). By definition of JM, we may thus find h∗ ∈ H∗ with 
C∗ = 1

2‖h∗‖2
H.

Suppose h∗ = 0. By (3.15) and the fact that h∗ ∈ H∗, the latter defined in (3.13), we 
find that

−1 ≥ 1
Qh(L (0)) = 1

D2(F ◦ Φ ◦ L ) |h [0, 0] = 0,
2 2
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because D2(F ◦Φ ◦L ) |h is a bilinear form on H. Therefore, we clearly have h∗ �= 0. �
Remark 3.5. Ben Arous has also employed a large deviations argument to prove [11, 
Lem. 1.51], the equivalent of Proposition 3.2 in his setting. He uses [11, Lem. 1.11] to 
close that argument and the proof of the latter, in turn, is based on [11, Lem. 1.9, 1.23, 
and 1.26]. These lemmas crucially rely on the correspondence between trace-class op-
erators, Carleman-Fredholm determinants, and exponential integrability for elements in 
the second Wiener chaos that we alluded to in the introduction.

This is the point where our line of reasoning diverts: We use the continuity of the 
Itô-Lyons solution map (resp. its counterpart in regularity structures), one of the main 
results of rough paths theory only developed ten years after Ben Arous’s work. More 
precisely, this idea entered our argument via continuity of Qh that we used to identify 
the set 

(
−1/2Qh

)−1 ([1, ∞]) ⊆ M as closed.
The connection to Ben Arous’s line of reasoning is elaborated upon in the recent 

follow-up article [64] by the second author, see also Remark 0.6. ♤

3.3. The coefficients in the asymptotic expansion

It remains to calculate the coefficients (ak)Nk=0 ⊆ [0, ∞) in the expansion (0.13). The 
arguments for that are completely analogous to those of Inahama and Kawabi [52, sec. 
6]: Thus, we will only state the formulas for the ak’s and provide a sketch of the proof. A 
complete argument with all the details can be found in the extended arXiv version [34]
of the present article.

For N ≥ 1, m ∈ [N ], and k ∈ [m], let G(k, m) be the set of all maps π : {1, . . . , k} →
{3, . . . , m + 2}. For π ∈ G(k, m) and i ∈ {1, . . . , k}, we also set

πi := π(i), �(π) :=
k∑

i=1
(πi − 2), |π| :=

k∑
i=1

πi

and then define G=(k, m) := {π ∈ G(k, m) : �(π) = m}.

Proposition 3.6 (The coefficients am). We have

am ≡ am(h, Ẑ, F ) := E

[
exp

(
−1

2 Q̂h

)
Wm

]
< ∞ (3.16)

where W0 := 1 and

Wm :=
N∑ (−1)k

k!
∑ k∏ F̂

(πi)
h
πi!

, m ∈ [N ]. ♠

k=1 π∈G=(k,m) i=1
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Remark 3.7. Recall that the terms F̂
(i)
h have been introduced in Corollary 2.1 above. 

Further, note that the terms Wm can be calculated explicitly by Lemma 2.4 and Propo-
sition 2.47. ♤

Proof (Sketch). We decompose Eρ(ε) from (3.10) as Eρ(ε) =
∑N

m=0 amεm+
∑4

j=1 I
(j)
ρ (ε)

in such a way that we can show that I(j)
ρ (ε) = o(εN ) as ε → 0 for each j = 1, . . . , 4.

Essentially the latter is a consequence of the localisation in Proposition 1.2. More 
precisely, since ε ∈ I0 is such that ε[|Ẑ−| ] < ρ, the estimates

εm
∣∣F̂ (m+2)

h
∣∣1

ε[|Ẑ−|]<ρ
� εm

(
1 + [|Ẑ−|]

)m+2
1
ε[|Ẑ−|]<ρ

� (ε + ρ)m
(
1 + [|Ẑ−|]

)2
1
ε2

∣∣R̂F ;ε;N+3
h

∣∣1
ε[|Ẑ−|]<ρ

�ρ εN+1 (1 + [|Ẑ−|]
)N+3

1
ε[|Ẑ−|]<ρ

� (ε + ρ)N+1 (1 + [|Ẑ−|]
)2

(3.17)
follow from Corollary 2.3. Combined with the Fernique-type Theorem D.1 and Proposi-
tion 3.2, they can be used to prove the claimed asymptotic identities.

It remains to prove that the am’s are finite. By Proposition 3.2, we know that 
exp

(
−1/2Q̂h

)
∈ Lp(P ) for some p > 1. We denote the conjugate Hölder exponent to 

p by q to infer that∥∥∥∥exp
(
−1

2 Q̂h

)
Wm

∥∥∥∥
L1(P)

≤
∥∥∥∥exp

(
−1

2 Q̂h

)∥∥∥∥
Lp(P)

‖Wm‖Lq(P) < ∞,

Here we have used that Wm ∈ Lq(P ) because it belongs to a finite inhomogeneous Wiener 
chaos and thus has moments of all orders [61, Thm. 3.50]. �
Appendix A. Regularity structures – background knowledge

In this section, we provide the basis on regularity structures needed in this article. 
We try to keep the presentation self-contained but the sheer scope of the material forces 
us to refer the reader to the literature where appropriate. For a short introduction on 
regularity structures, we refer the reader to Hairer [46] as well as Chandra and Weber [27].

A.1. The extended regularity structure

The specific regularity structure for (gPAMε) has been constructed frequently, see 
Hairer [45] and Hairer and Pardoux [49]

However, as exemplified by eq. (0.8), we want to consider noises ξ shifted by Cameron-
Martin functions h ∈ H during our analysis. Hence, we need to extend T by introducing 
another noise symbol H ≡ that represents h. This procedure has already been car-
ried out in the context of Malliavin calculus, for (gPAMε) by Cannizzaro, Friz, and 
Gassiat [23], and more recently by Schönbauer [76] in a much more general frame-
work. We adopt the setting of the former and consider the extended regularity structure 
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T = (A, T , G): the extended model space T = TW ⊕ TU is given by TW := 〈W〉 and 
TU := 〈U〉, where

W := {Ξ, H, I(Ξ)Ξ, I(H)Ξ, I(Ξ)H, I(H)H,XiΞ, XiH : i = 1, 2}

= { , , , , , , Xi , Xi : i = 1, 2}

U := {1, I(Ξ), I(H), Xi : i = 1, 2} = {1, , , Xi : i = 1, 2}

Sometimes, we will also refer to the extended list of symbols as F := U ∪ W, so that 
T = 〈F〉. Further, we introduce A := {deg(τ) : τ ∈ F}, where for i = 1, 2 the symbols 
have homogeneities

τ , , , , Xi , Xi 1 , Xi

deg(τ) −1 − κ −2κ −κ 0 1 − κ 1

for fixed κ > 0 with κ � 1. The sets U , W, F , T , and A are defined analogously, leaving 
out all the symbols with an instance of .

For the sake of brevity, we focus on the construction of G as in [23, Sec. 3.2]. This 
is in analogy with [45, Sec. 8.1] where the structure group G is constructed. The lat-
ter also serves as a reference for further details on our construction; for a far-reaching 
generalisation, see Bruned, Hairer, and Zambotti [19].

We introduce the vector space T+ built from finite linear combinations of the basis 
vectors

Xk
∏
j

J	jτj , j, k ∈ N2, τj ∈ T , deg(τj) + 2 −|j| > 0,

on which we act by a co-module Δ, i.e. a linear map Δ : T → T ⊗ T+ given by

Δτ := τ ⊗ 1 for τ ∈ {1, , }, ΔXi := Xi ⊗ 1 + 1 ⊗Xi,

as well as, for τ, σ ∈ T and Bτ := {m ∈ N2 : deg(τ) + 2 −|m| > 0}, recursively by

Δ(τσ) := (Δτ)(Δσ), Δ(Iτ) := (I ⊗ Id)Δτ +
∑

k+	∈Bτ

1
k!�!X

k ⊗X	Jk+	(τ)

In the previous expression, note that Xk ∈ T and X	 ∈ T+: By abuse of notation, we 
do not distinguish between these symbols on the left and right hand side of the tensor 
product.

One then defines G+ as the set of characters of T+, that is: linear functionals f : T+ →
R such that f(τσ) = f(τ)f(σ). The structure group G is then given by all Γf , f ∈ G+, 
where
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Γfτ := (Id⊗f)Δτ, τ ∈ T . (A.1)

A matrix representation for the structure groups G and G is given in [23, eq. (3.3)] and 
[23, eq. (3.4)], respectively.

Remark A.1. For convenience, the constructions that follow are presented for the regu-
larity structure T . Mutatis mutandis, they also hold for T . ♤

A.2. Admissible models

In practice, the cornerstone of Hairer’s theory are the so-called models: a family of 
analytical objects taylored to the equation at hand to mimic the role of classical Taylor 
polynomials.

In particular, admissible models relate last paragraph’s abstract integration operator 
I to a concrete integral kernel K. We follow Hairer [45, Sec. 10.4] in choosing

K(x) = − 1
2π log ‖x‖ (A.2)

for x ∈ R2 in a sufficiently small neighbourhood of 0. Outside of that neighbourhood, we 
choose K smooth, compactly supported, and such that

∫
R2 x

kK(x) dx = 0 for |k| ≤ r and 
some fixed degree r that is sufficiently large. The definitions that follow are in adapted 
to this choice (and thus our equation at hand) but they work in much greater generality.

Definition A.2 (Smooth admissible model). Let Π : R2 → L(T , C∞(R2)) be a smooth 
map that satisfies the following four conditions:

(Π1) For each K ⊆ R2 compact, the bound |(Πyτ)(ȳ)| �K |ȳ − y| deg(τ) holds uniformly 
over y, ȳ ∈ K and τ ∈ F .

(Π2) For each y, ȳ ∈ R2, we have Πy1(ȳ) ≡ 1.
(Π3) For any k ∈ N2, y, ȳ ∈ R2 and τ ∈ F with Xkτ ∈ T we have

(Πy[Xkτ ])(ȳ) = (ȳ − y)k(Πyτ)(ȳ). (A.3)

(Π4) For any τ ∈ F with Iτ ∈ T and all y, ȳ ∈ R2 we have

(ΠyIτ)(ȳ) = (K ∗ Πyτ)(ȳ) +
∑

|	|< deg(τ)+2

(ȳ − y)l

�! fy(J	τ). (A.4)

where the map f : R2 → G+, y 	→ fy, is uniquely specified from Π by imposing multi-
plicativity and

(Π5) fy(X	) = (−y)	, fy(J	τ) = −(D	K ∗ Πyτ)(y) for |�| < deg(τ) + 2.
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We then define F : R2 → G from f by Fy := Γfy according to (A.1) and impose the 
algebraic relation

(Π6) Πy ◦ F−1
y = Πȳ ◦ F−1

ȳ for every y, ȳ ∈ R2.

The pair Z := (Π, F ) is then called a smooth admissible model for T , the collection of 
which we denote by M∞. ♤

Remark A.3. A priori, one would have to account for time-dependence of (gPAMε) in the 
models. However, given that SWN ξ does not depend on time, one would immediately 
find that

Πzτ(z̄), z = (t, x), z̄ = (t̄, x̄) ∈ R3

is independent both of t and t̄, cf. [45, sec. 10.4]; this fact is reflected in our definitions.
In particular, it has informed our choice of the integral kernel K in (A.2): While 

initially, we need to take a suitable “cut-off” version of the heat kernel P that complies 
with [45, Lem. 5.5], we can actually integrate out the temporal variable and then arrive 
at the Green’s function K of the Laplacian. ♤

Remark A.4. Notice that the map Π uniquely specifies f (and a fortiori F through (A.1)
and Γ by Γyȳ = F−1

y ◦ Fȳ) via (Π5). Hence, we will interchangeably write and speak of 
an admissible model

Π ←→ Z = (Π, f) ←→ Z = (Π, F ) ←→ Z = (Π,Γ). ♤

In addition, we consider a set of test functions

B ≡ B2 := {η ∈ C2(R2) : ‖η‖C2 ≤ 1, supp η ⊆ B(0, 1)}, (A.5)

whose rescaled versions are given by ηλy (ȳ) = λ−2η(λ−1(ȳ − y)) for λ ∈ (0, 1] and y, ȳ ∈
R2. Since we are studying (gPAMε) with periodic boundary conditions, it is then natural 
to enforce periodicity:

Definition A.5 (Periodicity). Let Z = (Π, F ) ∈ M∞. We denote by {e1, e2} the standard 
basis of R2 and introduce the translation maps

Ti : R2 → R2, Ti(y) = y + ei i = 1, 2. (A.6)

These maps Ti act on test functions φ by Tiφ := φ ◦ T−1
i . The model Z = (Π, F ) is said 

to be periodic if

(ΠTiyτ)(Tiφ) = (Πyτ)(φ), FTiy = Fy (A.7)
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holds for every y ∈ R2, every test function φ, every τ ∈ T and every i = 1, 2. The set of 
periodic admissible smooth models is denoted by M∞,p. ♤

Definition A.6 (Admissible model). Let Z = (Π, F ), Z̄ = (Π̄, F̄ ) ∈ M∞,p, and K ⊆ R2 a 
compact domain. We set

|||Π − Π̄|||K := sup
λ,φ,τ,z

λ− deg(τ)∣∣(Πzτ − Π̄zτ)(φλ
z )
∣∣ (A.8)

where the suprema are taken over λ ∈ (0, 1], φ ∈ B, τ ∈ F , and z ∈ K. The set (M∞, | | | ·| | |)
then forms a pseudometric space, from which we define the (separable) space

M := cl|||·||| M∞,p. (A.9)

The elements of M are called (periodic) admissible models for T . Another metric on 
M, in the literature (e.g. [31, Sec. A.3]) by abuse of terminology referred to as the 
homogeneous model norm [| · | ], is given by33

[|Π − Π̄|]K := sup
λ,φ,τ,z

(
λ− deg(τ)∣∣(Πzτ − Π̄zτ)(φλ

z )
∣∣) 1

[τ] (A.10)

where the supremum runs over the same set as in (A.8). In addition, [τ ] := #[ in τ ] ∨ 1
denotes the number of noises in the symbol τ , e.g. [ ] = 2. Analogously to M, we 
define the space M of models for T . ♤

Remark A.7. Periodicity implies that we can always work on the spatial domain K = T 2, 
so we will omit the subscript K in | | | · | | | and [| · | ]. ♤

• Minimal admissible models.

We want to characterise a model given as minimal information as possible. For that 
purpose, we fix

• W− := { , } ⊆ W and T− := 〈W−〉 ⊆ T ,
• W− := { , , , , , } ⊆ W and T− := 〈W−〉 ⊆ T ,

i.e. the symbols of negative homogeneity without factors of Xi (in F or F , respectively) 
and the linear spaces they span.

Definition A.8 (Minimal admissible model). Let Π− : R2 → L(T−, C∞(R2)) be a smooth 
periodic map such that ‖Π−‖ < ∞ for

33 The reader might wonder why the metric [ |· ; ·| ] does not involve Γ. This fact has extensively been 
elaborated on in the literature: We refer to [23, Rmk. 3.5] for further details and references.
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|||Π−||| := max
τ∈W−

|||Π−|||τ , [|Π−|] := max
τ∈W−

[|Π−|]τ (A.11)

with

|||Π−|||τ := sup
λ,φ,z

λ− deg(τ)∣∣〈Π−
z τ, φ

λ
z 〉
∣∣ , [|Π−|]τ := sup

λ,φ,z

(
λ− deg(τ)∣∣〈Π−

z τ, φ
λ
z 〉
∣∣) 1

[τ]
, (A.12)

where

• 〈·, ·〉 denotes the inner product in L2 and
• the suprema are taken over λ ∈ (0, 1], φ ∈ B, z ∈ D as in (A.8).

In addition, we impose the constraints (Π3) to (Π6) from Definition A.2. The closure 
of the set of all such maps Π− under | | | · | | | is denoted by M−. Its elements are called 
minimal admissible models. ♤

The consistency of the preceding definition is checked in [23, Sec. 3.3] and [50, Sec. 2.4]. 
We emphasise that changing W− � W− leads to the space M− of minimal admissible 
models w.r.t. T .

The following lemma is straightforward but helpful.

Lemma A.9. Convergence w.r.t. | | | · | | | and [| · | ] in M− are equivalent. ♤

Proof. This follows immediately from the continuity of the maps x 	→ xk and x 	→ x1/k, 
k ∈ N, at the origin. �

The introduction of minimal admissible model is justified by the following theorem, 
see [23, Thm. 3.9] in case of (gPAMε); the general case is considered in [50, Thm. 2.10].

Theorem A.10 (Extension theorem). For every Π− ∈ M−, there exists a unique admis-
sible model Z = (Π, F ) ∈ M such that Πzτ = Π−

z τ for all τ ∈ W− and z ∈ R2. In 
addition, the extension map

E : M− → M, Π− 	→ (Π, F ) (A.13)

is locally Lipschitz continuous on (M−, | | | · | | |)34 and bijective.

Notation A.11. Given a model Z = (Π, f) ∈ M, by the previous theorem there always 
exists a Π− ∈ M− (simply given by restriction of Π to T−) such that Z = E (Π−). We 
will also write Z− := Π− and sometimes also write Z− for a generic element in M−.

34 Note that E is not locally Lipschitz continuous on (M−, [ | · | ]) simply because the square root is not 
Lipschitz. However, E is still continuous w.r.t. [ | · | ] by Lemma A.9.
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With a superscript “−”-sign on an operation we signify that it acts on M− (rather 
than M), that is: it is composed with E . In this article, this convention for example 
concerns the solution map Φ− := Φ ◦ E , the functional F−

Φ := F ◦ Φ−, the explosion 
time T−

∞ := T∞ ◦ E to be introduced in Appendix B below, etc. ♤

Finally, we present how to lift smooth functions ζ to M− and then to M. The 
example the reader should have in mind is ζ = ξδ, a realisation of smoothened SWN ξ.

Definition A.12 (Canonical lift). Let ζ ∈ C∞(T 2). We define L−(ζ) := Πζ ∈ M− by

Πζ
y (ȳ) := ζ, Πζ

y (ȳ) := Πζ
y (ȳ)Πζ

y (ȳ) (A.14)

where Πζ
y (ȳ) is defined by (Π4) and (Π5)above. In addition, we impose (Π2) and (Π3) 

and then define L (ζ) = (Πζ , F ζ) := E (L−(ζ)). ♤

The fact that L (ζ) ∈ M∞ is commonplace in the literature by now; we refer to 
Hairer [45, Prop. 8.27] for details.

A.2.1. Analytical operations for admissible models
In this section, we introduce analytical operations on M. Let us emphasise that all 

these operations have obvious counterparts on M−: actually, given Theorem A.10, we 
could even define them on M− and simply “push them forward” onto M via E .

We start with a recap of extension35 and translation studied by Cannizzaro, Friz, and 
Gassiat [23].

• Extension and translation.

On an algebraic level, we have introduced the symbol to encode shifts of the driving 
noise ξ into Cameron-Martin direction h ∈ H, thus extending the regularity structure T

to T . The following proposition provides an analytical counterpart on the level of mod-
els, see [23, Prop. 3.10].

Proposition A.13 (Extension). Let Z = (Π, f) ∈ M and h ∈ H. Then, there exists a 
unique admissible model Zeh = (Πeh , f eh) ∈ M such that for all z ∈ R3,

(1) Πeh |T = Π, f eh |T+
= f , Πeh

z ≡ h, and
(2) Πeh

z τ = (Πeh
z τ1)(Πeh

z τ2) for all τ = τ1τ2 ∈ W \W with τ1 ∈ U and τ2 ∈ { , }.
(3) the conditions (Π3) to (Π6) hold.

35 This is not to be confused with the extension operator E from Theorem A.10. Here, we will focus on 
extending models for T to models for T , that is: extend Z ∈ M to M.
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In addition, the extension map E given by

E : H×M → M, (h,Z) 	→ EhZ := Zeh , (A.15)

is jointly locally Lipschitz continuous. ♤

Eventually, we want to build a translated model ThZ ∈ M for the original regularity 
structure T , so we introduce abstract linear translation operations t : T → T and 
t
+ : T+ → T+ by

t := + , t Xk := Xk, t (τσ) := (t τ)(t σ), t (Iτ) := I(t τ),

t
+Xk := Xk, t

+(τσ) := (t+τ)(t+σ), t
+(J	τ) := J	(t τ)

where the very last relations hold for all τ ∈ T such that Iτ ∈ T and deg(τ) +2 −|�| > 0. 
We then have the following result, see [23, Prop. 3.12]:

Proposition A.14 (Translation). Let Z = (Π, f) ∈ M and h ∈ H. Then, Zh = (Πh, fh)
given by Πh := Πeh ◦ t and fh := f eh ◦ t+ is an element of M, i.e. an admissible model 
for T . In addition, the translation map T given by

T : H×M → M, (h,Z) 	→ ThZ := Zh, (A.16)

is jointly locally Lipschitz continuous. ♤

Remark A.15. From the previous proposition, we also see that L (h) is well-defined 
for h ∈ H. Indeed, because Th0 for 0 := L (0) is a model, we know that the analytical 
and algebraic relations for constructing L (h) by Definition A.12 are true. In fact, one 
simply has L (h) = Th0, where the RHS may even serve as a definition of the LHS. In 
the most general setting, this relation also holds, see the first equation of p. 28 in the 
work of Schönbauer [76].

In addition, it is easy to see that for h, k ∈ H, we have ThL (k) = L (k + h). ♤

The following lemma will be crucial in Appendix D below when we investigate Gaus-
sian concentration on (M−, [| · | ]).

Lemma A.16. Let h ∈ H and Z− ∈ M−. Then, we have the inequality

[|ThZ
−|] � [|Z−|] +‖h‖H . ♠

Remark A.17. Note that the inequality in the previous lemma is uniform in h ∈ H. This 
is to be compared to Proposition A.14, where joint Lipschitz continuity w.r.t. | | | · | | | holds 
locally. ♤
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• Dilation.

The operator Th from Proposition A.14 accounts for translations ξ � ξ+h in Cameron-
Martin directions h ∈ H. Reviewing eq. (gPAMε), we also need to analytically encode the 
operation ξ � εξ which goes by the name dilation by ε ∈ I. In analogy with translation, 
we first introduce some abstract linear dilation operations dε : T → T and d+

ε : T+ → T+
by

dε := ε , dε := , dεX
k := Xk, dε(τσ) := (dετ)(dεσ), dε(Iτ) := I(dετ),

d+
ε X

k := Xk, d+
ε (τσ) := (d+

ε τ)(d+
ε σ), d+

ε (J	τ) := J	(dετ)
(A.17)

where the very last relations hold for all τ ∈ T such that Iτ ∈ T and deg(τ) +2 −|�| > 0.

Proposition A.18 (Dilation). Let Z = (Π, f) ∈ M be an admissible model. Then, δεZ =
(Πε, fε) given by Πε := Π ◦ dε and fε := f ◦ d+

ε is an element of M. In addition, the
dilation map δ given by

δ : R×M → M, (ε,Z) 	→ δεZ, (A.18)

is jointly continuous and Πετ = ε[τ ]Πτ for any τ ∈ T . For h ∈ H and the canonical lift L

introduced in Definition A.12 (cf. also Remark A.15), we have δεL (h) = L (εh). ♠

Remark A.19. Observe that the dilation operator δ also maps M resp. M− onto them-
selves. ♤

In order to prove that δ is well-defined and thus the preceding proposition, we need the 
following lemma which investigates how the structure group transforms unter dilations.

Lemma A.20. In the setting of Proposition A.18, consider the operators Γ := Γf ∈ G and 
Γε := Γfε ∈ G built via (A.1). Then, dε ◦ Γε = Γ ◦ dε. ♠

As is easily seen, the operations of extension and dilation commute.

Lemma A.21. Let h ∈ H and ε > 0. Then, Eh ◦ δε = δε ◦ Eh. ♠

On the other hand, the operations of translation and dilation do not commute, but 
instead satisfy a relationship that is easy to state.

Lemma A.22. For each h ∈ H and ε > 0, we have Th ◦ δε = δε ◦ Th/ε. ♤

Proof. The assertion follows by dε ◦ t = t /ε ◦ dε and d+
ε ◦ t+ = t

+
/ε
◦ d+

ε , both of which 

are straightforward consequences of the definitions of dε, d+
ε , t , and t+. �

The following lemma allows us to normalise models to have norm of order one.
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Lemma A.23. Let h ∈ H, Z ∈ M, and λ = λ(Z) := 1 + [|Z−| ]. Then, the estimate

|||Ehδ1/λZ||| � 1 (A.19)

holds with an implicit constant that depends on ‖h‖H. ♠

As a corollary, this allows us to control the extended and appropriately normalised 
operators Γ ∈ G.

Lemma A.24. Let h ∈ H, Z = (Π, Γ) ∈ M, and set λ := 1 + [|Z−| ]. We have the bound

‖Γeh,1/λ‖ := sup
τ∈T

sup
β<deg(τ)

sup
z �=z̄

‖Γeh,1/λ
zz̄ τ‖β

|z − z̄|deg(τ)−β
�‖h‖ 1. ♤

Proof. In the case of gPAM, this can be proved directly, see [23, Rmk. 3.5] and its proof 
in their appendix B. However, as pointed out in [50, Rmk. 2.4] and [49, Rmk. 3.5], it is 
also a direct consequence of [45, Thm. 5.14] in the general case. �

The merit of the following lemma lies in the fact that it explains why the homogeneous 
norm [| · | ] from eq.’s (A.11) and (A.12) is called homogeneous in the first place. It also 
explains the very reason for working with the minimal rather than the full model: The 
latter includes the polynomials and therefore is not homogeneous (w.r.t. dilation) under 
the homogeneous norm.

Lemma A.25. For ε ≥ 0 and Z− ∈ M−, we have [|δεZ−| ] = ε[|Z−| ]. ♤

Proof. The claim follows directly from the definition of [| · | ] and the fact that Πετ =
ε[τ ]Πτ , cf. Proposition A.18. �
A.2.2. Renormalisation

Renormalisation in regularity structures is encoded on the level of models. In recent 
years, it has been set up in great generality in the series [19,24,14] of seminal papers; 
for the relatively simple gPAM, however, it can be done “by hand”, as carried out in 
Hairer’s foundational article [45].

We just review the results we need; for details, see [45, Sec.’s 8.3 and 9.1]. We fix cδ ∈ R

and suitably amend Definition A.12 of the canonical lift L (ξδ): For y, ȳ ∈ T 2, we define

Π̂ξδ
y (ȳ) := Πξδ

y (ȳ), Π̂ξδ
y (ȳ) := Πξδ

y (ȳ), Π̂ξδ
y (ȳ) := Π̂ξδ

y (ȳ)Π̂ξδ
y (ȳ) − cδ, (A.20)

impose (Π2) to (Π5) above, set Ẑ
ξδ,− := Π̂ξδ ∈ M− and then Ẑ

ξδ := E (Ẑ
ξδ,−) ∈ M. 

We then have the following convergence result [45, Thm. 10.19]:
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Proposition A.26. Let cδ := 〈Kδ, ρδ〉. Then, there exists a (random) model Ẑ ∈ M
independent of the specific choice of mollifier ρ such that

lim
δ→0

Ẑ
ξδ = Ẑ in prob. in M.

We call Ẑ the BPHZ model. ♤

Remark A.27. For Ẑ to be the BPHZ model, one defines cδ := E 
[
Πξδ (0)

]
. That is con-

sistent with our choice, as the following short calculation using the covariance structure 
of SWN ξ shows:

E
[
Πξδ (0)

]
= E

[
Πξδ (0)Πξδ (0)

]
= E

[
(K ∗ ξδ)(0)ξδ(0)

]
= E

[
〈ξ,Kδ(−·)〉〈ξ, ρδ(−·)〉

]
= E

[
〈ξ,Kδ(−·)〉〈ξ, ρδ(−·)〉

]
=
∫

Kδ(−x)ρδ(−x) dx (A.21)

=
∫

Kδ(x)ρδ(x) dx = 〈Kδ, ρδ〉.

Furthermore, the statement of the previous proposition is also true on minimal model 
space: We denote the limiting model by Ẑ

− ∈ M− and call it the minimal BPHZ 
model. ♤

We recall another result from Cannizzaro, Friz, and Gassiat, namely [23, Lem. 3.20], 
in slightly updated terminology.

Lemma A.28. Let Ẑ ∈ M be the BPHZ model. There exists a null set N such that, for 
every h ∈ H and ω ∈ N c, we have

Th

[
Ẑ(ω)

]
= Ẑ(ω + h). (A.22)

♤

The following lemma is a consequence of [23, Lem. 3.20] and Lemma A.22:

Lemma A.29. There exists a nullset N such that, for all ω ∈ N c, h ∈ H, and ε > 0, we 
have

(Th ◦ δε)
[
Ẑ(ω)

]
= δε

[
Ẑ(ω + h/ε)

]
. ♤

Proof. Let N be the null set from Lemma A.28. Now consider eq. (A.22), replace h � h/ε, 
and apply δε on both sides. We then conclude by Lemma A.22. �

Trivially, both of the previous lemmas also hold for Ẑ
−.
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A.3. Modelled distributions

Spaces of modelled distributions play a key role in Hairer’s theory: In case of the 
polynomial regularity structure, they are simply Hölder continuous functions and for the 
rough paths regularity structure, they coincide with controlled paths, see [33, sec. 13.3].

Definition A.30. For s ∈ [0, ∞), we define the hyperplane at time s by

Ps := {z = (t, x) ∈ R3 : t = s}.

We also set P := P0. ♤

Definition A.31 (Modelled distribution). Let Z = (Π, Γ) ∈ M be a model for the regu-
larity structure T . Fix γ > 0, η ∈ R, and s ∈ [0, ∞).

(i) We say that

U : (0,∞) ×R2 → T<γ :=
⊕
β<γ

Tβ

belongs to Dγ,η
s (Γ) if, for every compact set D ⊆ (0, ∞) ×R2, the quantity

|||U |||γ,η;Γ;D;Ps
= sup

z∈D\Ps

sup
β<γ

|t− s|
β−η

2 ∨0 ‖U(z)‖β

+ sup
z,z̄∈D\Ps,
|z−z̄|≤1

sup
β<γ

(
|t− s| ∧ |t̄− s|

) β−η
2 ∨0 ‖U(z) − Γzz̄U(z̄)‖β

|z − z̄|γ−β

(A.23)

is finite, where z = (t, x) and z̄ = (t̄, ̄x). We denote the first summand on the RHS 
of (A.23) by ‖U‖γ,η;D;Ps

.
(ii) Let Z̄ = (Π̄, ̄Γ) ∈ M be another model. For U ∈ Dγ,η

s (Γ) and Ū ∈ Dγ,η
s (Γ̄), we write 

| | |U ; Ū | | |γ,η;D;Ps
for the quantity in (A.23) where we change U(z) � U(z) − Ū(z) in 

the first summand and

U(z) − Γzz̄U(z̄) � U(z) − Ū(z) − Γzz̄U(z̄) + Γ̄zz̄Ū(z̄)

in the second. ♤

Remark A.32. In practice, when the model Z is clear from the context, we refrain from 
indicating Γ in the norm in (A.23). In case s = 0, we also omit the subscript Ps. In ad-
dition, recall that we are only considering periodic models, cf. Definition A.5, complying 
with our assumption of periodic boundary conditions. Hence, the domain D can always 
be taken as D = I × T 2 for some interval I ⊆ R. We will use the following notation:
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||| · |||γ,η,(s,T ] when D := (s, T ] × T 2, ||| · |||γ,η,T when D = DT := (0, T ] × T 2.

Finally, observe that the notation | | |U ; Ū | | | in (ii) above indicates that it is not a func-
tion of U − Ū . In fact, U and Ū do not even live in the same space, a consequence of 
the “fibred” structure of M � Dγ,η, cf. Fig. 1 on p. 26. For any fixed domain D, the 
space (Dγ,η

Ps
(Γ), | | |γ,η;D;Ps

) is a bona fide Banach space. ♤

• Fréchet differentiability and Taylor’s formula for modelled distributions

We can always write a modelled distribution Y ∈ Dγ,η
U (Z) that takes values in the 

sector U = 〈1, , , X〉 as

Y (z) = φ1(z)1 + φ (z) + φ (z) + 〈φX(z), X〉 (A.24)

for some coefficient functions φ1, φ , φ , and φX . Further layed out in [49, sec. 3.4], the 
function g then induces a function G that acts on such modelled distributions by

G(Y )(z) := g(φ1(z))1+g′(φ1(z))φ (z) +g′(φ1(z))φ (z) +g′(φ1(z))〈φX(z), X〉. (A.25)

Remark A.33 (Projection onto T<γ). In following Hairer [45, sec. 4.2], the function G

should actually be denoted Gγ to keep track of the (here implicit) projection onto T<γ . 
In the whole article, we will keep γ = 1 +2κ for some 0 < κ � 1 fixed and thus suppress 
the subindex. In the same spirit, we will not explicitly indicate said projection when 
multiplying two elements in Dγ,η

U (Z) and when expanding Pu0 into its Taylor jet

T Pu0 :=
∑
|k|<γ

Xk

k!
(
Dk(Pu0)

)
∈ Dγ,η

U

of order γ. ♤

In a next step, we will quantify the Fréchet differentiability that G inherits from g
and, as a natural byproduct, obtain Taylor’s formula for G.

Lemma A.34. Fix Z ∈ M and consider two modelled distributions Y , Ỹ ∈ Dγ,η
U (Z)

with coefficient functions φτ and φ̃τ , τ ∈ {1, , , X}, respectively. Given a function 
f ∈ C4(R; R) with F defined as in (A.25), we then have the identity

F (Y + Ỹ ) − F (Y ) − F ′(Y )Ỹ =
1∫

0

(1 − s)F ′′(Y + sỸ )Ỹ 2 ds. (A.26)

For f ∈ C3(R, R), we have
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F (Y + Ỹ ) − F (Y ) =
1∫

0

F ′(Y + sỸ )Ỹ ds. (A.27)

♤

This lemma is true in greater generality than stated here, see [76, Prop. B.2] and its 
proof. It is instrumental in the proof of the following proposition.

Proposition A.35. Fix Z ∈ M, let D := Dγ,η
U (Z), and suppose g ∈ C	+4, � ≥ 1. Then, 

G ∈ C	(D, D) (in the Fréchet sense) and

D(k)G(Y )
[
(Ym)km=1

]
:= D(k)G(Y )[Y1, . . . , Yk] = G(k)(Y )

k∏
m=1

Ym, k ≤ �, (A.28)

where G(k) is built from g(k) by means of (A.25). ♠

Remark A.36 (Regularity assumptions on g). Let us comment on the order of differen-
tiability imposed on g. First of all, recall that γ = 1 + 2κ and that U is a function-like 
sector, the lowest non-zero homogeneity of which is

χ := deg( ) = deg( ) = 1 − κ.

As detailed in [45, Prop. 6.13], for G(	) to be well-defined we actually only need g(	) ∈ Cn

with n ∈ N and n ≥ γ/χ∨ 1, i.e. n ≥ 2 and g ∈ C	+2. However, in our proof we will make 
use of Lemma A.34 with F ′ := G(	), so that G(	+1) appears on the RHS of (A.26) and, 
by the same token, necessitates g ∈ C(	+3). However, we will also want to use (strong) 
local Lipschitz continuity of G(	+1), so [45, Prop. 6.13] and [49, Prop. 3.11] imply the 
need for an additional “+1” in regularity, resulting in g ∈ C(	+4).

In the setting of Theorem 1, we have � = N+3 and so the above reasoning requires g ∈
C(N+7). ♤

The following proof borrows from that of [23, Prop. 4.7].

Proof. Suppose we had already established that G ∈ Ck for some k ∈ {1, . . . , � − 1} with 
D(m)G, m = 1, . . . , k, given by (A.28). We want to do the induction step k 	→ k + 1 and 
prove that G ∈ Ck+1, so let Y ∈ D and consider

R(k) [Y ; (Yi)k+1
i=1
]

:= D(k)G(Y +Yk+1)
[
(Yi)ki=1

]
−D(k)G(Y )

[
(Yi)ki=1

]
−G(k+1)(Y )

k+1∏
m=1

Ym.

(A.29)
We want to prove that
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sup
|||Ym|||γ,η≤1,

1≤m≤k

|||R(k) [Y ; (Yi)k+1
i=1
]
|||γ,η = o

(
|||Yk+1|||γ,η

)
, Yk+1 → 0. (A.30)

Setting Pk :=
∏k

n=1 Yn, an element of D by [45, Prop. 6.12], we easily see that

R(k) [Y ; (Yi)k+1
i=1
]

=
(
G(k)(Y + Yk+1) −G(k)(Y ) −G(k+1)(Y )Yk+1

)
Pk. (A.31)

Since k ≤ � − 1, we have g(k) ∈ Cm with m ≥ 5, so we may invoke Lemma A.34, more 
specifically (A.26), to obtain

R(k) [Y ; (Yi)k+1
i=1
]

=
1∫

0

(1 − s)G(k+2)(Y + sYk+1)Yk+1
2 ds Pk =: Ik+2(Y , Yk+1)Pk

From [45, Prop. 6.13], we know that G(k+2)(Y + sYk+1) ∈ D for each s ∈ [0, 1]; 
[45, Prop. 6.12] then implies that G(k+2)(Y + sYk+1) [Yk+1]2 is also in D. Hence, so 
is the Bochner integral Ik+2(Y , Yk+1) and, by the same token as before, the product 
Ik+2(Y , Yk+1)Pk. The quoted propositions then give

|||R(k) [Y ; (Yi)k+1
i=1
]
|||γ,η � sup

s∈[0,1]
|||G(k+2)(Y + sYk+1)|||γ,η|||Yk+1|||2γ,η

k∏
n=1

|||Yn|||γ,η

�
(
|||Y |||γ,η + |||Yk+1|||γ,η

)
|||Yk+1|||2γ,η

k∏
n=1

|||Yn|||γ,η,

(A.32)

using, in particular, that G(k+2) is locally Lipschitz continuous. The previous equation 
implies that

sup
|||Ym|||γ,η≤1,

1≤m≤k

|||R(k) [Y ; (Yi)k+1
i=1
]
|||γ,η = O

(
|||Yk+1|||2γ,η

)
, Yk+1 → 0, (A.33)

and so (A.30) follows. Since the previous argument also works for k = 0, where

R(0) [Y ;Y1
]

= G(Y + Y1) −G(Y ) −G′(Y )Y1,

the induction argument can be closed. �
As a corollary of the last proposition, we may lift Taylor’s theorem from g to G.

Corollary A.37. In the setting of Proposition A.35, the identity

G(Y + Ỹ ) + G(Y ) +
	−1∑ 1

m!G
(m)(Y )Ỹ m + R	(Y , Ỹ ), Y , Ỹ ∈ D,
m=1
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holds true with

R	(Y , Ỹ ) =
1∫

0

(1 − s)	−1

(�− 1)! G(	)(Y + sỸ )Ỹ 	 ds. ♤

• Dilation of modelled distributions

The following lemma clarifies the relation between modelled distributions based on an 
admissible model and its dilated counterpart. It is the analogue of [23, Lem. 3.22] and 
proved similarly.

Lemma A.38. Let Z ∈ M be an admissible model for a regularity structure T , ε ∈ I =
[0, 1], and δεZ = (Πε, Γε). For each γ > 0, η ∈ [0, γ], and Uε ∈ Dγ,η(Γε), we have:

(i) dεU
ε ∈ Dγ,η(Γ), i.e. dε

(
Dγ,η(Γε)

)
⊆ Dγ,η(Γ). In addition, dε commutes with the 

operations of composition with smooth functions and product between modelled dis-
tributions.

(ii) RδεZUε = RZdεU
ε.

(iii) dε
(
PδεZUε

)
= PZdεU

ε. ♠

Remark A.39. We emphasise that the preceding lemma is valid for any regularity struc-
ture, in particular for those introduced in section A.1 above. ♤

Appendix B. Deterministic gPAM and explosion times

In this section, we summarise facts about explosion times of the (stochastic) PDEs 
under investigation.

We start with gPAM driven by a Cameron-Martin function. The following proposition, 
in essence, is a version of [22, Prop. A.1], with some appropriate changes to cover our case 
of interest. Recall that XT is the space of functions u ∈ C([0, T ]; Cη(T 2)) with u(0, ·) = u0
and η ∈ (1/2, 1).

Proposition B.1. Let T > 0. Given g ∈ C1
b (R), u0 ∈ Cη(T 2) for η ∈ (0, 1), and h ∈ H ≡

L2(T 2), there exists a unique global solution wh ∈ XT to the equation

(∂t − Δ)wh = g(wh)h, wh(0, ·) = u0. ♠

• Explosion times.

Next, recall that the explosion time T∞ of the solution to eq. (2.9) – that is: the smallest 
time for which the equation

U = PZ
(
G(U)

)
+ T Pu0 in Dγ,η

U (Z), (B.1)
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does not have a solution (cf. [45, Coro. 9.3]) – is lower semicontinuous (abbr. “l.s.c.”) 
as a function of Z ∈ M (u0 is fixed), see [23, Prop. 3.23]. Since the extension operator 
E : M− → M is continuous (cf. Theorem A.10), the map

T−
∞ := T∞(u0, ·) ◦ E : M− → [0,+∞]

is l.s.c. both on (M−, ‖·‖) and (M−, [| · | ]). We introduce

• the explosion time T0 of the deterministic PDE when the noise is set to zero (ε = 0). 
More precisely, we set

T0 := T−
∞(0) (B.2)

where 0 ∈ M− is the lift of the function that is constant 0.
• For ε ∈ [0, 1], let T ε := T−

∞(δεẐ−). In other words, T ε is the explosion time of ûε

from Theorem 0.1 in the introduction.
• For h ∈ H, let Th

∞ := T−
∞(L−(h)) denote the deterministic explosion time of the 

PDE driven by the non-random noise h.

Remark B.2. In the specific case at hand, T0 is the explosion time of the homogeneous 
heat equation with initial condition u0 ∈ Cη(T 2). Hence, T0 = +∞ by linearity of the 
equation. Furthermore, for gPAM we have Th

∞ = +∞ for any h ∈ H as Proposition B.1
above shows. ♤

The following two lemmas are general statements for stochastic PDEs amenable to 
analysis via regularity structures and not specific to gPAM.

Lemma B.3. Let T < T0. Then P (T ε > T ) → 1 as ε → 0. ♠

Loosely speaking, the next lemma states that if one controls the noise (in the form of 
the model δεẐ−), then one can ensure that the stochastic PDE driven by h + εξ lives as 
long as that driven by h. Its proof is informed by [23, Cor. 3.27].

Lemma B.4. Fix h ∈ H and let T < Th
∞. Then, there exists ρ = ρ(T ) > 0 such that, for 

all ε ∈ [0, 1] and Z− ∈ M− with ε[|Z−| ] < ρ, we have T−
∞(ThδεZ−) > T . ♠

Appendix C. Large deviations

In this section, we will give a precise formulation of Theorem 0.2 that characterises 
the large deviation behaviour of the solutions (û(ε) : ε ∈ I) from Theorem 0.1.

Basically, this amounts to proving applicability of [50, thm. 3.5] in the setting of the 
abstract Wiener space (B, H, μ) introduced in the prequel to Proposition 1.2. Therefore 
we only state the three LDP’s that we will need. For their proofs, the interested reader is 
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referred to the extended arXiv version [34, App. C] of the article at hand. It also contains 
a complete specification of the setup for (gPAMε) and a proof that the afore-mentioned 
result of Hairer and Weber indeed applies in this case.

The first LDP concerns the space of minimal models M− and is, in fact, the one we 
are working with. Recall that I (h) = 1

2‖h‖
2
H for H = L2(T 2) denotes Schilder’s RF.

Theorem C.1. The family (δεẐ− : ε ∈ I) of dilated, minimal BPHZ models satisfies a 
large deviation principle on M− (both equipped with ‖·‖ and [| · | ]) under μ with rate ε2

and good rate function

JM− : M− → [0,+∞], JM−(Z−) = inf{I (h) : h ∈ H, L−(h) = Z−}. (C.1)
♠

Its proof is virtually the same as the one of [50, Thm. 4.3]. This LDP can then 
be “pushed forward” via the generalised contraction principle [50, Lem. 3.3], leading to 
the following corollary.

Corollary C.1. The family (δεẐ : ε ∈ I) of dilated BPHZ models satisfies a large deviation 
principle on M under μ with rate ε2 and good rate function

JM : M → [0,+∞], JM(Z) = inf{I (h) : h ∈ H, L (h) = Z}. (C.2)
♠

Finally, we can give a precise statement of Theorem 0.2 announced in the introduction. 
Its proof entirely mirrors that of [50, Thm. 4.4]. Recall that XT := {u ∈ C([0, T ], Cη(T 2)) :
u(0, ·) = u0}, where u0 ∈ Cη(T 2) is the fixed initial condition, and that “u ” denotes a 
“graveyard path” which we postulate to have distance 1 from every element u ∈ XT .

Theorem C.2. Let T > 0, η ∈ (1/2, 1), and X̄T := XT∪{u }. Then, the family (ûε : ε ∈ I)
in Theorem 0.1 satisfies a LDP in X̄T with RF

J (u) = inf{I (h) : h ∈ H, Φ(L (h)) = u}, J (u ) := ∞

Here, we have set ûε := u in case T > T ε, the latter introduced in Appendix B
above. ♠

Appendix D. Fernique’s theorem on model space

Let (B, H, μ) be the abstract Wiener space from Appendix C which is also the setting 
for the generalised Fernique theorem proved by Friz and Oberhauser [35].

By Ẑ ∈ M, we denote the BPHZ model and let Ẑ− ∈ M− be its minimal part, that 
is Ẑ = E (Ẑ−). The following theorem establishes Gaussian concentration.
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Theorem D.1 (Fernique). There exists an χ > 0 such that

Eμ

[
exp

(
χ[|Ẑ−|]2

)]
≡
∫
B

exp
(
χ[|Ẑ−(ω)|]2

)
μ(dω) < ∞. (D.1)

♤

Proof. Let h ∈ H and N ⊆ B be the nullset from Lemma A.28. For each ω ∈ N c, we 
have

[|Ẑ−(ω)|] = [|Th

[
T−h

(
Ẑ

−(ω)
)]
|] � [|T−h

(
Ẑ

−(ω)
)
|] +‖h‖H = [|Ẑ−(ω − h)|] +‖h‖H ,

where the inequality is due to Lemma A.16 and the equalities due to Lemma A.28, which 
trivially also holds for the minimal admissible BPHZ model Ẑ−. The claim now follows 
from the generalised Fernique theorem [35, Thm. 2]. �
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