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Abstract. A finite array of N globally coupled Stratonovich models exhibits a
continuous nonequilibrium phase transition. In the limit of strong coupling, there
is a clear separation of timescales of centre of mass and relative coordinates. The
latter relax very fast to zero and the array behaves as a single entity described by
the centre of mass coordinate. We compute analytically the stationary probability
distribution and the moments of the centre of mass coordinate. The scaling
behaviour of the moments near the critical value of the control parameter ac(N )

is determined. We identify a crossover from linear to square root scaling with in-
creasing distance from ac. The crossover point approaches ac in the limit N → ∞

which reproduces previous results for infinite arrays. Our results are obtained
in both the Fokker–Planck and the Langevin approach and are corroborated by
numerical simulations. For a general class of models we show that the transition
manifold in the parameter space depends on N and is determined by the scaling
behaviour near a fixed point of the stochastic flow.
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1. Introduction

Arrays of stochastically driven nonlinear dynamical systems may exhibit nonequilibrium phase
transitions of continuous or discontinuous type, for a recent review see [1], cf also [2, 3].
Concepts developed to describe equilibrium phase transitions such as symmetry or ergodicity
breaking, order parameter, critical behaviour, critical exponents, etc, have been successfully
transferred to noise induced nonequilibrium phase transitions. The structure of the theory will
be generically of mean field type, if infinite globally coupled arrays are studied. This allows for
a number of analytical results.

Remarkably, essential characteristics of phase transitions can already be found in the case
of a single Stratonovich model. This is mainly due to the multiplicative nature of the noise.
Models driven by additive noise do not show this peculiar property. The Langevin equation for
the single-site Stratonovich model [4]–[6] reads

dx = (ax − x3)dt + σ x ◦ dW (t), (1)

where a is a control parameter, σ denotes the strength of the noise and W (t) is a Wiener
process with autocorrelation 〈W (t)W (s)〉 = min(t, s). Equation (1) is interpreted in the
Stratonovich sense as indicated by the symbol ◦. The Stratonovich model describes, e.g., the
overdamped motion in a biquadratic potential U (x) = −

a
2 x2 + 1

4 x4 where the control parameter
is stochastically modulated, a → a + ξt , with a Gaussian white noise ξt .

The associated Fokker–Planck equation (FPE) describing the evolution of the probability
density P(x, t) is

∂t P = −∂x

{[(
a −

σ 2

2

)
x − x3

−
σ 2

2
x2∂x

]
P

}
. (2)

Equation (2) has a weak stationary solution, a Dirac distribution δ(x) located at the common
zero x = 0 of drift and diffusion coefficient, which is also a zero of the stochastic flow in
equation (1). If the system is initially at x = 0, it will always stay there.

Furthermore, there exist spatially extended strong stationary solutions determined up to
a constant factor, Ps(x) ∝ |x |

2a/σ 2
−1exp{−(x/σ)2

}. Ps(x) lives on S+ = [0, ∞) if the initial
distribution lives on S+\0, and on S− = (−∞, 0], if the initial distribution lives on S−\0. The
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constant is determined such that the solution is normalized via integrating over the support and
can be interpreted as a probability density, i.e.

Ps(x) =
1

Z
|x |

2a/σ 2
−1e−(x/σ)2

, (3)

Z =

∫
S±

dx |x |
2a/σ 2

−1e−(x/σ)2
=

1
2σ

2a/σ 2
0(a/σ 2), (4)

provided 2a/σ 2 > 0. For 2a/σ 2 6 0 the normalization Z diverges since the integrand in (4)
scales like |x |

2a/σ 2
−1 as x → 0. In this case it can be shown (see appendix A) that a weakly

normalized version converges to the known weak solution δ(x) and that x = 0 is an absorbing
fixed point of the system.

If fractions of the initial distribution of given weights live on S−, on S+, and on 0, all will
keep their weight and evolve to the stationary probability densities living on their respective
support as guaranteed by a H -theorem [7].

The Stratonovich model exhibits a strong ergodicity breaking [8] depending on the control
parameter a, since the state space decomposes into regions where the system cannot reach one
region if it is initiated in a different one. For a 6 0 the only stationary solution is δ(x), i.e.
the fixed point x = 0 of the stochastic dynamics is absorbing. Additionally, for a > 0 we have
the spatially extended solution (3) living on S± depending on the initial distribution. This is
reflected by the mean value

〈x〉± =

∫
S±

dxx Ps(x) =


0, if a 6 0,

±σ
0(a/σ 2 + 1/2)

0(a/σ 2)
, if a > 0.

(5)

Obviously, 〈x〉± can serve as an order parameter and shows critical behaviour 〈x〉± ∼ ±

√
π

σ
(a −

ac(1))β as a → ac(1) = 0 with β = 1.
Note that also the location of the maximum of the spatially extended density undergoes a

bifurcation, xmax
±

= 0 for 0 < a 6 amax
c (1) = σ 2/2 and xmax

±
= ±(a − amax

c )1/2 for a > amax
c (1).

The critical behaviour of an array of infinitely many globally coupled Stratonovich models
has been thoroughly investigated in [9]. The scaling of higher moments was considered
in [10], see also [11]. The stationary probability density is the solution of a nonlinear FPE
which depends on the order parameter. The scaling behaviour of the order parameter is
analytically determined, 〈x〉± ∼ ±(a − ac(∞))β as a → ac(∞) with ac(∞) = −σ 2/2 and β =

sup{1/2, σ 2/(2D)}, where D is the strength of the harmonic coupling between the systems [9].
The strong coupling limit, D → ∞, of an infinite array of globally coupled systems was
analytically treated already in the pioneering paper [12], cf also [13, 14]. For nearest neighbour
coupling, the coupling term can be considered as a discretization of the Laplacian. A linear
stability analysis of the corresponding Ginzburg–Landau and Swift–Hohenberg equations in
the case of strong coupling is performed in [15].

In this paper, we investigate nonequilibrium phase transitions in finite arrays of globally
coupled Stratonovich models in the strong coupling limit. We introduce centre of mass and
relative coordinates and exploit that for strong coupling there is a clear separation of timescales.
The relative coordinates relax very quickly to zero and the system behaves as a single entity
described by the centre of mass coordinate Rt . Thus, we can adiabatically eliminate the relative
coordinates. The stationary probability density of the centre of mass coordinate ps(R) is
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analytically calculated for a class of nonlinear systems and a scheme to determine the transition
manifold in the parameter space is developed. For finite arrays of linearly coupled Stratonovich
models the mean value 〈R〉 of the centre of mass coordinate is computed analytically. Near a
critical value of the control parameter a the stochastic system shows scaling behaviour similar to
the order parameter of the single Stratonovich model with the same critical exponent β = 1 but
with a different ac(N ) which is also given analytically. Keeping a finite small distance to ac(N )

we recover for N → ∞ the known result of the self-consistent theory [9] with critical exponent
β = 1/2, see above. For finite N we identify a crossover value of the control parameter a?(N ).
For ac(N ) < a � a?(N ) we have a linear scaling as for N = 1 whereas for a � a?(N ) a square
root behaviour as for N → ∞ is observed. Our analytical results are corroborrated by numerical
simulations.

Recently, finite arrays of (non) linear stochastic systems have been investigated also by
Muñoz et al [10], and by Hasegawa [16].

Muñoz et al tried to obtain for multiplicative noise characteristics of the probability density
of the mean field for finite N . They argued that the Langevin equation for the mean field variable
is of similar form as the Langevin equation for a single system. Assuming that the multiplicative
driving noise and the local field variable are uncorrelated, they inferred the scaling behaviour of
the variance of an effective multiplicative noise with N , and of the critical value ac(N ) of the
control parameter. They also predicted a crossover from a critical exponent β = 1 near ac(N ) to
the critical exponents for N → ∞ for larger distances to ac(N ). Note that in [10] the Langevin
equation was treated in the Ito-sense which leads to a shift of the critical control parameter
compared to the same equation in the Stratonovich-sense.

Hasegawa considered finite systems with additive and multiplicative noise using his
augmented moment method which is applicable for small noise strength. He emphasized that
multiplicative noise and the local field variable are not uncorrelated in contrast to the assumption
in [10] and demonstrated some consequences of such a simplification.

Our approach, though similar in spirit to [10], is controllable, valid in leading order
for strong coupling D, and provides explicit analytic results which are confirmed by
independent numerical simulations. It may serve as a starting point to calculate next order
corrections ∼ 1/D.

The paper is organized as follows. In the next section we consider two harmonically
coupled Stratonovich models and show that for strong coupling the centre of mass coordinate
R is the relevant degree of freedom. The mean value of R shows a critical behaviour which
is analytically characterized. Section 3 deals with a class of N globally coupled systems
of general kind. For strong coupling we compute analytically the stationary probability
distribution ps(R) after eliminating the relative coordinates. Further, we determine the transition
manifold in the parameter space where ps(R) undergoes a transition from a delta-distribution
to a spatially extended solution. In section 4, we specialize to the case of N globally
coupled Stratonovich models and determine the critical behaviour of the order parameter
and of higher moments of R for strong coupling. Conclusions are drawn and a summary
is given in section 5. In appendix A, we introduce the concept of weak normalization for
the case that a spatially extended solution of the stationary FPE cannot be normalized in
the naive sense. Appendix B shows that the Langevin approach both in Stratonovich- and in
Ito-interpretation leads to the same results as the Fokker–Planck approach used in the main part
of the paper.
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2. Two coupled Stratonovich systems

We consider a pair of particles with coordinates x1(t) and x2(t) in a biquadratic potential which
are coupled harmonically with positive coupling strength D and each subjected to independent
Gaussian white noise of strength σ . The system of Langevin equations reads

dxi =

axi − x3
i − D

∑
j=1,2

(
xi − x j

) dt + σ xi ◦ dWi(t), i = 1, 2, (6)

where Wi(t) denote independent Wiener processes with 〈Wi(t)W j(s)〉 = δi, j min(t, s). In
contrast to equation (1) no exact solution of system (6) is known.

The joint probability density P(x1, x2; t) is governed by the FPE

∂t P = −

∑
i=1,2

∂xi

Di −

∑
j=1,2

∂x j Di, j

 P

 , (7)

where, adopting the notation of [17],

Di(x1, x2) =

(
a +

σ 2

2

)
xi − x3

i − D
2∑

j=1

(xi − x j), (8)

Di, j(xi) =
σ 2

2
x2

i δi j (9)

denote drift and diffusion coefficients, respectively.
One can show that the system (7) exhibits no detailed balance. Hence, there is no easy way

to obtain analytically the stationary solution Ps.
For strong coupling, however, a systematic analytical approach is possible. With increasing

coupling strength the particles become tightly glued together and move as a single entity.
Therefore it appears natural to introduce centre of mass and relative coordinates. Simulations of
equation (6) show that indeed the stationary distribution of the relative coordinate p̂s(r) becomes
very sharp for large values of D, cf figure 1.

The stationary distribution of the centre of mass ps(R) shows behaviour which is similar
to the distribution of a single Stratonovich model. For large values of a, we have a monomodal
distribution which vanishes at the boundaries of the support, cf figure 1. For small values of a the
distribution ps(R) diverges as R → 0 in a normalizable way, cf figure 2. For even smaller values
of a all trajectories xi(t) approach zero and the distributions of both r and R are δ-distributions.
Accordingly, the mean value 〈R〉 undergoes a continuous transition at a critical value of a.
In the following, we analytically calculate ps(R) and 〈R〉 and its scaling characteristics in the
strong coupling limit, D → ∞. We introduce the centre of mass coordinate R(t) and the relative
coordinate r(t) by

R =
1
2(x1 + x2), r =

1
2(x1 − x2) (10)

with the inverse transformation

x1 = R + r, x2 = R − r. (11)

With

∂x1/2 =
1
2 (∂R ± ∂r), (12)
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ps(R) p̂s(r)

R) (r)

 0

 0.6

 1.2

 0  1  2
 0

 5

 10

 15

–0.8 –0.4  0  0.4  0.8

Figure 1. Stationary probability densities for centre of mass ps(R) (left) and
relative coordinates p̂s(r) (right) for two coupled systems. The distribution of
relative coordinates is symmetric with respect to zero and becomes very sharp
with increasing strength of the coupling D. The symbols show histograms
from 4 × 105 realizations obtained by solving equation (6) with a stochastic
Runge–Kutta scheme5. Parameters are D = 1 (squares), 10 (circles), and 100
(triangles); a = 1 and σ 2

= 1. Initial values were all in the positive sector. Entries
of several bins are omitted to avoid overloading; the lines are guides to the eye.

∂2
x1/2

=
1
4

(
∂2

R + ∂2
r ± ∂2

Rr

)
, (13)

the Langevin equations (6) then transform to

dR =
(
a R − R3

− 3Rr 2
)

dt +
σ

√
2

(
R ◦ dW̃1(t) + r ◦ dW̃2(t)

)
, (14)

dR =
[
(a−2D) r−r 3

−3r R2
]

dt +
σ

√
2

(
r ◦ dW̃1(t)+R ◦ dW̃2(t)

)
, (15)

where the transformed Wiener processes W̃i(t) are defined as(
W̃1

W̃2

)
=

1
√

2

(
1 1
1 −1

)(
W1

W2

)
(16)

with 〈W̃i(t)W̃ j(s)〉 = δi, j min (t, s).
The FPE associated with (14) and (15) governing the probability density of centre of mass

and relative coordinates P(R, r; t) reads

∂t P = (LR +Lr +Lr R) P, (17)

where the Fokker–Planck operators are

LR = − ∂R

[(
a +

σ 2

2

)
R − R3

− 3Rr 2
−

σ 2

4
∂R

(
R2 + r 2

)]
, (18)

5 We used the stochastic Runge–Kutta method in a version proposed in [30, 31] which is an explicit algorithm for
stochastic ordinary differential equations in the Stratonovich sense that converges with weak order 1, cf [32]. The
step size was always 0.01.
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ps(R)
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p̂s(r)

(r)

 1
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Figure 2. Stationary probability density for centre of mass ps(R) (left) and
relative coordinates p̂s(r) (right) for two coupled systems in a semilogarithmic
plot. For sufficiently small control parameter, ps(R) diverges for R → 0 in
a normalizable way. p̂s(r) becomes essentially sharper compared to figure 1.
Parameters are a = −0.05, D = 100, σ 2

= 1 (triangles) and 0.49 (circles).
The symbols show data from 5 × 106 realizations generated by a stochastic
Runge–Kutta algorithm (see footnote 5). Initial values were chosen in the
positive sector. The lines are guides to the eye.

Lr = − ∂r

[(
a − 2D +

σ 2

2

)
r − r 3

− 3rR2
−

σ 2

4
∂r

(
R2 + r 2

)]
, (19)

Lr R = σ 2∂2
r R rR. (20)

Note that only Lr depends on D. In the strong coupling limit D → ∞ the relative coordinate
vanishes, rt → 0, on a very fast timescale of the order 1/D, cf equation (15). Hence, the
stationary probability density factorizes to Ps(R, r) = ps(R)δ(r) with a Dirac distribution for
the relative coordinate. In this case there is no flow related to the relative coordinate r , i.e.
LrP = Lr R P ≡ 0, since for any suitable function ϕ∫

∞

−∞

dR∂r [ϕ(r)δ(r)] ≡ 0. (21)

Integrating equation (17) with respect to r yields in the stationary case

0 =

∫
∞

−∞

dRLRP s = −∂R

[(
a R − R3

−
σ 2

4
R2∂R

)
ps

]
. (22)

Similarly as for the single Stratonovich model, there is always a weak solution δ(R).
For initial values xi(0) > 0 ∀i (or xi(0) < 0 ∀i) the spatially extended solution of equation

(22) lives on the support S+ = [0, ∞) (or on S− = (−∞, 0]) and can be normalized provided
a > ac(2) = −σ 2/4. For a 6 ac(2) the weakly normalized version of the spatially extended
solution converges to δ(R). Thus, we have

ps(R) =


δ(R), for a 6 ac(2),

1

Z
|R|

4a/σ 2
e−2R2/σ 2

, for a > ac(2),
(23)
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Z =
1
2 (σ/2)2a/σ 2+1/2 0

(
2a/σ 2 + 1/2

)
. (24)

There is a strong ergodicity breaking when a crosses ac(2). The mean value 〈R〉± calculated
with (23) is

〈R〉± =


0, if a 6 ac(2),

±
σ

√
2

0(2a/σ 2 + 1)

0(2a/σ 2 + 1/2)
, if a > ac(2).

(25)

and scales like 〈R〉± ∼ ±

√
2π

σ
(a − ac(2))β with β = 1 as a → ac(2).

3. General N-site systems

3.1. Adiabatic elimination of relative coordinates

In the following, we demonstrate that the strategy sketched above can be generalized for a class
of N coupled systems. We consider

dxi =

 f (xi) −
D

N − 1

N∑
j=1

(
xi − x j

) dt + g(xi) ◦ dWi(t), (26)

with i = 1, . . . , N and where f and g are smooth (with no singularities) and twice differentiable
chosen such that the stochastic process x(t) = {xi(t), i = 1, . . . , N } has natural boundaries at
infinity [4, 18]. Both f and g may depend on a d-dimensional set of control parameters a.
D > 0 is the coupling strength of the harmonic attraction. Note that we have absorbed a factor
σ , the strength of the noise, in the function g.

The FPE for the joint probability density P(x; t), x = {xi , i = 1, . . . , N }, associated to (26)
reads

∂t P = −

N∑
i=1

∂xi

Di −

N∑
j=1

∂x j Di, j

 P

 . (27)

Using the shorthand fi = f (xi), gi = g(xi) and g′

i = ∂x i gi , drift coefficient and diffusion matrix
are given by

Di = fi +
1

2
g′

i gi −
D

N − 1

N∑
j=1

(
xi − x j

)
, (28)

Di, j =
1
2 g2

i δi j . (29)

It is advantageous to introduce centre of mass and relative coordinates {R, r},
r = {rk, k = 2, . . . , N }, by the linear transformations

R =
1

N

N∑
i=1

xi , (30)

rk = xk − R, for k = 2, . . . , N . (31)
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The inverse transformation is given by

x1 = R −

N∑
k=2

rk, (32)

xk = R + rk, for k = 2, . . . , N . (33)

Observing the rules for linear transformations we have
N∑

i=1

∂

∂xi
Di =

∂

∂ R
DR +

N∑
k=2

∂

∂rk
Drk , (34)

N∑
i, j=1

∂2

∂xi∂x j
Di j =

∂2

∂ R2
DR,R +

N∑
k=2

∂2

∂ R∂rk
DR,rk +

N∑
k,l=2

∂2

∂rk∂rl
Drk ,rl . (35)

Drift and diffusion coefficients in the new coordinates are given by, cf also [17],

Dy =

N∑
i=1

∂y

∂xi
Di , Dy,z =

N∑
i, j=1

∂y

∂xi

∂z

∂x j
Di, j , (36)

where y and z stand for the new coordinates R, rk and rl , respectively.
Again, the FPE determining P(R, r; t) has the form ∂t P = LP , with L= LR +Lr +Lr R

where

LR = −∂R

(
DR − ∂R DR,R

)
, (37)

Lr = −

N∑
k=2

∂rk

(
Drk −

N∑
l=2

∂rl Drk ,rl

)
, (38)

Lr R =

N∑
k=2

∂2
Rrk

DR,rk . (39)

Explicitly, the new drift and diffusion coefficients are

DR =
1

N

N∑
i=1

(
fi +

1

2
g′

i gi

)
, (40)

Drk = −DR + fk +
1

2
g′

kgk − D
N

N − 1
rk, (41)

DR,R =
1

2N 2

N∑
i=1

g2
i , (42)

DR,rk = Drk ,R =
1

2N
g2

k − DR,R, (43)
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Drk ,rl = DR,R −
1

2N

(
g2

k + g2
l

)
+

1

2
g2

k δkl . (44)

All arguments in fi , gi and g′

i have to be expressed by (R, r), see equations (32) and (33). Note
that only Dr k depends on the coupling strength D explicitly.

For large times the probability density P(R, r; t) converges to a stationary probability
density, cf [7], determined by LPs(R, r) = 0. For D → ∞ this enforces

N∑
k=2

∂

∂rk
[rk Ps(R, r)] = 0 , (45)

which has a weak solution

Ps(R, r) = ps(R)δ(r). (46)

In the strong coupling limit all fluctuations of the relative coordinates vanish. The system is
concentrated on the centre of mass and moves stochastically as a whole, combined particle.

The probability density of the centre of mass ps(R) can be determined by integrating
Ps(R, r) over all relative coordinates. Performing this integration we obtain from the stationary
FPE ∫

dN−1r LPs =

∫
dN−1r LR(R, r)Ps(R, r) = 0, (47)

provided that the boundary terms associated with the relative coordinates vanish. In the strong
coupling limit we have Ps(R, r) ∝ δ(r), (47) holds in any case and leads to

LR(R, 0)ps(R) = 0 , (48)

where LR is given by (37). From (40) and (42) we infer drift and diffusion for r = 0 as

DR(R, 0) = f (R) + 1
2 g′(R)g(R), (49)

DR,R(R, 0) =
1

2N
g2(R). (50)

The spatially extended strong solution of (48) is given by

ps(R) =
1

Z
|g(R)|N−2 exp

{
2N
∫ R

dR′
f (R′)

g2(R′)

}
, (51)

provided that the normalization constant Z is finite. Whether or not this is the case depends on
the scaling behaviour of the functions f (R) and g(R) near a common zero R0 which, if existing,
will build a boundary of the support. This is explained in detail in the next subsection.

Equation (50) shows that in the strong coupling limit the diffusion coefficient DR,R scales
like σ 2/N , cf also [10, 16]. For the infinite system and finite noise strength σ the stationary
probability density of the centre of mass ps(R) is a Dirac measure located at one of the attractive
zeros of the drift coefficient (49), depending on the initial conditions.

For D → ∞ all particles are strongly correlated. The variance of the coordinate xi(R, r)
of an arbitrary system i calculated with Ps(R, r) = ps(R)δ(r) is

〈x2
i 〉 − 〈xi〉

2
= 〈R2

〉 − 〈R〉
2. (52)

Due to the strong correlations, the variance of the centre of mass scales like N 0 in contrast to
the case of uncorrelated systems where the central limit theorem predicts a scaling like N−1.
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Note that for small coupling, D < σ 2/2, one expects that the relative fluctuations in finite
systems become large for times of order ln N ; for larger times the mean field approximation
will completely break down [19].

3.2. Determination of the transition manifold

There will be a strong ergodicity breaking if the state space decomposes into different regions
with the property that one region will not be accessible if we start in a different one [8].

For multiplicative noise, zeros of the stochastic flow separate the state space into mutually
non-accessible regions. If we place the system initially on such a zero, i.e. on a fixed point of
the stochastic dynamics, it will stay there forever. Accordingly, the FPE has a weak solution, a
δ-distribution living on that fixed point. If any trajectory in the neighbourhood ‘asymptotically’
reaches the fixed point (the fixed point is absorbing), there will be no spatially extended
probability density in this neighbourhood. The spatially extended stationary solution of the FPE
cannot be normalized in the naive sense. The weak normalization procedure leads to the weak
solution.

If trajectories cannot reach the fixed point, the stationary solution of the FPE will be
normalizable and we will have a spatially extended probability density living on the support
bounded by the fixed point. This properties can be exploited to determine the transition manifold
in the parameter space.

We suppose that f (R, a) and g(R, a) near a common zero R0 have the following scaling
behaviour

f (R0 + ε) ∼ A f ε
m f , (53)

g(R0 + ε) ∼ Agε
mg , (54)

where m f , mg > 0. Near R0 we have for the stationary solution (51) of the reduced FPE (48)

ps(R0 + ε) ∝ |ε|mg(N−2) exp

{
2N
∫ R0+ε

dR′
f (R′)

g2(R′)

}
. (55)

For m f − 2mg > −1 the integral in (55) gives a contribution ∝ εm f −2mg+1 at the upper
boundary which vanishes for ε → 0 so that in leading order ps(R0 + ε) ∝ |ε|mg(N−2). The
exponent mg(N − 2) is negative only for N = 1. In this case, if mg > 1 the singularity of ps

at R = R0 is not normalizable and we have only a weak stationary solution ps(R) = δ(R − R0).
Note that for N > 2 coupled systems of this kind the singularity of ps does not occur.

For m f − 2mg = −1 the integral gives a logarithmic contribution (A f /A2
g)ln|ε| which

leads to

ps(R0 + ε) ∝ |ε|mg(N−2)+2N A f /A2
g . (56)

If the exponent in (56) is smaller than −1 the density ps(R) will diverge for R → R0 and will
not be normalizable in a naive way. The weak normalization procedure leads to a Dirac measure
located at R0. If the exponent is larger than −1 the density ps(R) will be normalizable and
we will have a spatially extended probability density. The transition manifold Ac in the control
parameter space Rd is determined by the condition that the exponent in (56) is −1,

Ac =
{
a ∈ Rd : mg(N − 2) + 2N A f /A2

g = −1
}
. (57)
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For m f − 2mg < −1 the integral in (55) diverges like −A f /(A2
g|m f − 2mg + 1|)

ε−|m f −2mg+1| as ε → 0. Accordingly, ps(R → R0) = 0 for A f > 0 and ps(R → R0) = ∞ for
A f < 0. In the first case ps(R) is normalizable and we have a spatially extended stationary
probability density. In the latter case the weak normalization procedure yields a Dirac measure
at R0. A change in the sign of A f induced by tuning a control parameter is associated with
a change of the stability of the fixed point R0 of the deterministic flow f (R) and leads to a
significant alteration of the ergodic properties. In a vicinity of R0 the behaviour of the stochastic
system is dominated by the deterministic flow. The transition manifold

Ac =
{
a ∈ Rd : A f = 0

}
(58)

does not depend on the system size and the amplitude Ag in contrast to (57). If the system lives
on the d − 1 dimensional transition manifold (58), that is A f = 0, the scaling of the deterministic
flow is not described by (53) but by f (R0 + ε) ∼ B f ε

n f with n f > m f . The system’s behaviour,
now depending on B f , Ag, n f , mg and N , could be classified in more detail repeating the above
procedure.

4. N coupled Stratonovich models

Now we return to our specific example and consider N globally coupled Stratonovich models
in the strong coupling limit. For drift and noise function we have

f (R; a) = a R − R3 and g(R; σ) = σ R. (59)

The common zero of f and g is R0 = 0 with m f − 2mg = −1, and A f = a, Ag = σ . Inserting
this in (57), we obtain an explicit representation of the transition curve in the two-dimensional
parameter space,

Ac =
{
(a, σ ) ∈ R2 : N − 1 + 2Na/σ 2

= 0
}
. (60)

Given the noise strength σ we have

ac(N ) = −
σ 2

2

(
1 −

1

N

)
, (61)

which reproduces the results for N = 1, for N = 2 (see above), and for N → ∞.
Figure 3 compares results from simulation and the asymptotic result (61) for ac(N ) and

illustrates the finite size scaling ac(N ) − ac(∞) = σ 2/(2N ) for strong coupling D � 1.
For initial values xi > 0 (or xi < 0 ) ∀i the stationary distribution for the centre of mass

(51) lives on S+ or S−, respectively, and is given by

ps(R) =


δ(R), if a 6 ac(N ),

1

Z
|R|

2N
σ2 (a−ac(N ))−1e−

N
σ2 R2

, if a > ac(N ),
(62)

Z =
1
2(σ

2/N )
N
σ2 (a−ac(N ))

0
(
(a − ac(N ))N/σ 2

)
. (63)

For initial values xi = 0 ∀i , we have ps(R) = δ(R) for all values of a.
Similar to the single Stratonovich model, there is a qualitative change in the shape of

the spatially extended probability density. The maximum of ps(R) undergoes a bifurcation at
amax

c = σ 2(1/N − 1/2). Figure 4 compares for different system sizes the asymptotic result (62)
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ac

N

Figure 3. Transition point ac versus system size N for σ 2
= 0.1. Simulation

results for D = 81 obtained by maximizing the linear correlation coefficient6

(grey bullets) and by short time relaxation7 (black bullets) are both in good
agreement with the asymptotic result (61) for D → ∞ (solid line).

with histograms obtained by simulations for large D. For a > ac(N ) the nth moment of the
centre of mass can be evaluated as

〈Rn
〉± = (±)n

(
σ 2

N

)n/2
0
(
(a − ac(N ))N/σ 2 + n/2

)
0
(
(a − ac(N ))N/σ 2

) . (64)

Keeping N finite, the first moment scales as a → ac(N ) like

〈R〉± ∼ ±
N 1/2

σ

√
π (a − ac(N ))β , β = 1, (65)

since 0(z) ∼ 1/z as z → 0 [20]. Note that also the higher moments 〈Rn
〉 scale linearly with

a − ac(N ).

6 Trajectories of xi (t) are numerically determined by an adapted Heun method [30] with time step 0.01 for
different control parameters a ' ac. Values of a for which xi (t) comes very close to zero are discarded to
exclude a < ac. After the transient period the steady state temporal averages are built. Supposing a power law
〈R〉 ∝ (a − ac)

β the data are displayed for different test values of ac in a double logarithmic plot. After a visual
control we determine ac by maximizing the linear correlation coefficient as proposed in [14], β is the slope of the
corresponding line.
7 The transition points ac are determined observing numerically the behaviour of R(t) for an initial state where all
xi (0) = R0 with R3

0 � R0 for a short period of time such that the distribution of the xi (t) becomes not too broad.
Then, the evolution is essentially governed by the linear part of the Langevin-equation of R(t), cf appendix B.
Trajectories of xi (t) are generated by a stochastic Runge–Kutta method with step 0.01 (see footnote 5). Generically,
for a < ac(N ) the trajectory of R(t) will relax towards zero, whereas for a > ac(N ) it will increase provided R0 was
smaller than the saturation value. Finally, the estimates of ac(N ) obtained from different trajectories are averaged.
A similar procedure has been exploited in [9] for N → ∞; cf also [1].
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Figure 4. Probability density of the centre of mass obtained by simulation for
D = 100 (symbols) compared with analytic results (lines) for D → ∞ given
by equation (62). On the left we show results for different system sizes N = 2
(circles), 4 (squares) and 8 (triangles) for a = 1 > amax

c . The histograms are
obtained from 106 realizations generated by a stochastic Euler method8. On
the right we show only results for N = 8 for ac < a = −0.42 < amax

c ; here
5 × 106 realizations were generated by a stochastic Runge–Kutta algorithm (see
footnote 5). σ 2

= 1.

Keeping a finite distance to ac(N ) we obtain for N → ∞, observing 0(z + 1/2)/0(z) =
√

z(1 − 1/(8z) + · · ·) as z → ∞ [21],

〈R〉± ∼ ± (a − ac(∞))β , β = 1/2, (66)

which reproduces the result in [9] for D > σ 2. Higher moments of order n scale with β = n/2.
We define the crossover value a?(N ) by (a?(N ) − ac(N ))N/σ 2

= 1. For a � a?(N ) =

−σ 2/2 + (3/2)σ 2/N we have a linear scaling as for N = 1 whereas for a � a?(N ) a square
root behaviour as for N → ∞ is observed, cf figure 5.

Our results are analytically derived for the strong coupling limit in a controllable approach.
We note that both the critical and the crossover value of the control parameter are in accordance
with the values proposed on different grounds in [10] for weak and intermediate noise, provided
the shift due to the Ito interpretation used there is taken into account.

5. Conclusions

In this paper, we have determined the characteristics of a continuous nonequilibrium phase
transition in a finite array of globally coupled Stratonovich models in the limit of strong coupling
D → ∞. In this limit there is a clear separation of the timescales governing the evolution of the
centre of mass coordinate and the relative coordinates: the characteristic time of the relative
coordinate scales as 1/D and thus becomes short in the strong coupling limit. The slow centre
of mass coordinate enslaves the fast relative coordinates, its mean value serves as an order
parameter. This allows a controllable and consistent treatment both in the Fokker–Planck and the

8 The Euler–Maruyama method, see [30, 33], is the stochastic equivalent of the explicit Euler method and has
strong order 1

2 convergence. The step size was 0.01.
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Figure 5. Crossover in the scaling behaviour of 〈R〉 as a function of a − ac(N )

as predicted by equation (64) for N = 1 (dash-dotted line), 2 (dashed line), and
100 (solid line); σ 2

= 1. The symbols show averages over 2 × 106 realizations
generated by a stochastic Runge–Kutta scheme (see footnote 5) for N = 2
(circles) and 100 (squares); σ 2

= 1 and D = 100. The dotted straight lines
have slope 1 (left) and slope 1/2 (right), respectively. The arrows indicate the
crossover points a?(N ) − ac(N ).

Langevin description which is corroborated by numerical simulations. The reduction of a high-
dimensional problem to a problem of low dimension is of course inspired by generalizations of
slaving and adiabatic elimination techniques and the concept of centre manifolds to stochastic
systems developed in a different context [22]–[24], cf also [25, 26].

We have analytically determined both the critical value of the control parameter ac(N )

and the scaling behaviour of the order parameter and of higher moments. With increasing
distance from ac(N ) a crossover from linear to square root behaviour is found. For N → ∞ the
known scaling behaviour is reproduced. The formal results, i.e. the computation of the stationary
distribution of the centre of mass coordinate (up to a quadrature) and the determination of the
transition manifold are given for a general class of systems.

Our approach may serve as a starting point to calculate next order corrections in 1/D. In
a multiscale analysis, we have to take into account that for finite but large D the distribution of
the relative coordinates is, though very sharp, of finite width.

The observation that a solution of the stationary FPE which is not normalizable in a naive
way converges to the weak solution if weakly normalized is certainly of interest in a broader
context.

Appendix A. Weak normalization

The FPE for multiplicative noise has two types of stationary solutions: weak solutions, i.e.
Dirac-distributions living on the zeros of the stochastic flow and spatially extended strong
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solutions which live on a support which is bounded by zeros of the stochastic flow or by natural
boundaries at infinity. Under certain conditions the spatially extended solution may diverge at
a zero of the stochastic flow so strongly that it is not normalizable and therefore cannot be
considered as a probability density. Here, we introduce the concept of weak normalization and
show that in the latter case the weakly normalized solution converges to the Dirac distribution
living on that zero.

We assume that the unnormalized solution P̃s(x) lives on [x0, b), where x0 is a zero of the
stochastic flow and scales for x → x0 as

P̃s(x) ∼ const (x − x0)
α, α < −1. (A.1)

The normalization integral diverges at the lower boundary and scales like∫ b

x0+1

dx P̃s(x) ∼ −const
1

α + 1
1α+1 as 1 → 0. (A.2)

Introducing a test function ϕ(x) which can be expanded near x0 as ϕ(x) = ϕ(x0) + ϕ′(x0)(x −

x0) + . . . , we have as 1 → 0∫ b

x0+1

dx P̃s(x)ϕ(x) ∼ −const
1

α + 1
1α+1

{ϕ(x0) +
α + 1

α + 2
ϕ′(x0)1 + · · ·}. (A.3)

Now we obtain for the hereby defined weakly normalized probability density Pw
s (x)∫ b

x0

dx Pw
s (x)ϕ(x) = lim

1→0

∫ b
x0+1

dx P̃s(x)ϕ(x)∫ b
x0+1

dx P̃s(x)
= ϕ(x0), (A.4)

which implies that Pw
s (x) = δ(x − x0).

Appendix B. Langevin approach

In sections 2 and 3, we used the Fokker–Planck approach in the centre of mass and relative
coordinates to calculate ac(N ) for D → ∞. In this limit the relative coordinates rk → 0, and it
is easy to calculate the reduced stationary probability density of the centre of mass coordinate
ps(R). We determined ac(N ) such that ps(R) is a Dirac measure at R = 0 for a < ac(N ) and it
is spatially extended for a > ac(N ).

The same result can be obtained in the Langevin approach, both in Stratonovich and
Ito-interpretation as explained in the following for the special case N = 2. The generalization
to N > 2 is straightforward.

We exploit that for large D the characteristic timescale of the relative coordinate r(t) is
1/D so that r(t) becomes very fast. Then the (slow) centre of mass coordinate R(t) feels only
the average of the fast process r(t) and it is justified to replace in the Stratonovich–Langevin
equation (14) for R the terms associated with r by their average,

dR =
(
a R − R3

− 3R〈r 2
〉
)

dt+
σ

√
2

(
R ◦ dW̃1(t) + 〈r ◦ dW̃2(t)〉

)
, (B.1)

since for D → ∞, r → 0 we have 〈r 2
〉 = 0. However, the second average 〈r(t) ◦ dW̃2(t)〉 is not

zero as one could naively expect. With the help of the Furutsu–Novikov theorem [27, 28] we
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obtain

〈r(t) ◦ ξ̃2(t)〉 =

∫ t

−∞

ds
〈
ξ̃2(t)ξ̃2(s)

〉 〈 δr(t)

δξ̃2(s)

〉
=

1

2

〈
δr(t)

δξ̃2(s)

〉∣∣∣
s=t

=
1

2

σ
√

2
〈R(t)〉. (B.2)

Note that the averages here are with respect to realizations of ξ̃2 .
We now observe that the resulting equation for R does not depend on ξ̃2, therefore 〈R〉 = R,

and obtain

dR =

[(
a +

σ 2

4

)
R − R3

]
dt +

σ
√

2
R ◦ dW̃1(t), (B.3)

from which the threshold ac(2) = −σ 2/4 follows.
The system (14) and (15) in Stratonovich sense can be written in a compact form as

dρ = f(ρ)dt +
∑

j=1,2 g( j)(ρ) ◦ dW̃ j(t), where ρ = (R, r)T . The equivalent Ito system is dρ =

(f + 1/2
∑

j ∂ρg( j)g( j))dt +
∑

j g( j) dW̃ j(t), where the drift term is modified by the Ito shift;

∂ρg( j) is the shorthand of a Jacobian, cf e.g. [29]. For our system we have g(1)
= σ/

√
2 ρ and

g(2)
= σ/

√
2 (r, R)T . The Ito shift amounts to σ 2/2 ρ so that the equivalent Ito version of (14)

reads

dR =

[(
a +

σ 2

2

)
R−R3

−3Rr 2

]
dt+

σ
√

2

(
R dW̃1(t)+r dW̃2(t)

)
. (B.4)

Again, R feels only the average of the terms associated with the fast process r , we have
〈r 2

〉 = 0 but now also the second average vanishes since in the Ito calculus 〈r(t)dW̃2(t)〉 =

〈r(t)〉〈dW̃2(t)〉 = 0 which results in

dR =

[(
a +

σ 2

2

)
R − R3

]
dt +

σ
√

2
R dW̃1(t). (B.5)

This is indeed the Ito equivalent to equation (B.3) which can be seen observing that in the single
variable case the Ito shift is simply 1/2 g′ g = σ 2/4 R.

For arbitrary N the same procedure leads to ac(N ) = −(σ 2/2)(1 − 1/N ) as obtained
above.
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Due to a typesetting error not produced by the authors, equations (15), (21) and (22) in this article
each contain an upper case R which should be lower case. The correct equations are reproduced
below:

dr = [
(a − 2D) r − r3 − 3rR2

]
dt +

σ√
2

(
r ◦ dW̃1(t) + R ◦ dW̃2(t)

)
, (15)

∫ ∞

−∞
dr∂r[ϕ(r)δ(r)] ≡ 0 , (21)

0 =
∫ ∞

−∞
drLRPs = −∂R

[(
aR − R3 − σ 2

4
R2∂R

)
ps

]
. (22)
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