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Abstract

Urban scaling and Zipf’s law are two fundamental paradigms for the science of cities. These

laws have mostly been investigated independently and are often perceived as disassociated

matters. Here we present a large scale investigation about the connection between these

two laws using population and GDP data from almost five thousand consistently-defined cit-

ies in 96 countries. We empirically demonstrate that both laws are tied to each other and

derive an expression relating the urban scaling and Zipf exponents. This expression cap-

tures the average tendency of the empirical relation between both exponents, and simula-

tions yield very similar results to the real data after accounting for random variations. We

find that while the vast majority of countries exhibit increasing returns to scale of urban

GDP, this effect is less pronounced in countries with fewer small cities and more metropo-

lises (small Zipf exponent) than in countries with a more uneven number of small and large

cities (large Zipf exponent). Our research puts forward the idea that urban scaling does not

solely emerge from intra-city processes, as population distribution and scaling of urban

GDP are correlated to each other.

Introduction

Physical measurements such as weight or size of objects are always confined to specific scales.

However, the outcomes of several natural phenomena and socio-economic processes can

extend across multiple orders of magnitude [1]. Examples of such systems are as diverse as

earthquakes [2], stock market fluctuations [3], casualties in human insurgencies [4], and frac-

ture of materials [5]. These systems usually share non-trivial statistical regularities manifested

in the form of power-law distributions or power-law relations, the so-called scaling laws. Cities

are among these systems as they occur in sizes from thousands to tens of million inhabitants.

Urban systems are also well known to follow scaling relations in time and space, as summa-

rized by Batty [6] in the “seven laws of urban scaling”.
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Zipf’s law [7, 8] and Bettencourt-West law [9] are two of the best-known scaling laws

emerging in urban systems. Initially observed by Auerbach [8] and then popularized by Zipf

[7], Zipf’s law for cities states that the distribution of city populations, for a given region or

country, is approximated by an inverse power-law function (or the rank-size rule), implying

that there are plenty of small cities and very few metropolises. Bettencourt-West law [9], better

known as “urban scaling”, establishes a power-law relation between urban indicators and city

population. Urban scaling is well illustrated by the concept of agglomeration economies in cit-

ies [10, 11], in which the power-law association between urban wealth and population implies

that urban wealth increases more than proportionally with city population.

Fostered by a recent deluge of highly-detailed city data, researchers from diverse disciplines

such as geography, economics, or physics have devoted ongoing efforts in identifying and

understanding fundamental principles and regularities underlying urban systems [1, 6, 12–

14]. While most of these works are either concerned with Zipf’s law [15–25] or urban scaling

[26–34], very few have tackled the relationship between both. Zipf’s law and urban scaling

have mostly been studied independently because it is commonly assumed that both laws are

independent descriptions of urban systems across countries. The few investigations on possi-

ble connections between Zipf’s law and urban scaling have a more local character and explore

this association within countries [35, 36]. The work of Gomez-Lievano et al. [35] is seminal in

this regard and has shown that (under certain conditions) urban scaling can be related to

Zipf’s law when urban indicators are also power-law distributed. This connection is obtained

from probability distributions and shows that the urban scaling exponent has an upper limit

determined by both the Zipf exponent and the power-law exponent that characterizes the

urban indicator distribution. This result however does not imply that these three exponents

are directly associated with each other. In fact, random permutations of population and urban

indicator values only have the effect of removing a possible correlation between the two vari-

ables, but do not have the effect of changing their distribution.

To date, there has been no attempt to empirically investigate the association between urban

scaling and Zipf’s law across a large number of countries. The paucity of such studies certainly

reflects the lack of consistent and comparable data across countries. A convincing comparison

between these two laws demands a unified city definition across the globe as well as measures

of population and urban indicators based on this same definition. And it was not until very

recently that satisfying this requirement has become possible. Here we use a new harmonized

city definition for investigating Zipf’s law and urban scaling over almost five thousand cities in

96 countries. By analyzing population and gross domestic product (GDP) of these cities per

country, we estimate the Zipf and the urban scaling exponents to probe for a possible relation

between these two scaling laws. Our empirical results show that both exponents are indeed

related to each other and that a functional form of this association can be exactly derived from

scaling relations emerging at the country level.

We demonstrate that Zipf’s law and urban scaling imply a power-law relation between total

urban population and total urban GDP of countries, where the country scaling exponent is

dependent on the Zipf and the urban scaling exponents. Because country-aggregated values of

urban population and GDP are fixed, there is only one country scaling exponent for total

GDP, which in turn associates the urban scaling exponent to the Zipf exponent. We verify the

integrity of our model by estimating the country-scaling exponents from the empirical rela-

tionship between the Zipf and the urban scaling exponents, and also by showing that numeri-

cal simulations yield results very similar to those obtained from real-world data. The

connection between both exponents shows that urban scaling does not only emerge from pro-

cesses occurring within the city boundaries; instead, it suggests that the population distribu-

tion of an urban system does affect urban scaling or vice versa. For the particular case of urban
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GDP, while almost all countries exhibit increasing returns to scale (urban scaling exponent

greater than one), our findings indicate this effect is smaller in countries with a more balanced

number of small and large cities (small Zipf exponent) than in countries with a more unbal-

anced number of small and large cities (large Zipf exponent).

Results

Empirical connection between both scaling laws

We start by revisiting Zipf’s law and the urban scaling law. Zipf’s law for cities [7] establishes

that the rank r and the city population s of an urban system are related through a power-law

function

r � s� a ; ð1Þ

where α> 0 is the Zipf exponent. The estimated α varies across countries and epochs, but α�
1 is typically found in empirical studies [18, 23]. Urban scaling laws [9] commonly refer to

power-law associations between an urban indicator y and the city population s within an

urban system, that is,

y ¼ c sb ; ð2Þ

where c> 0 is a constant and β is the urban scaling exponent. The value of β depends on the

type of urban indicator, but increasing returns to scale (β> 1) are usually reported for socio-

economic indicators, decreasing returns to scale (β< 1) for infrastructure indicators, and con-

stant returns to scale (β = 1) for indicators related to individual needs [9]. The values of α and

β are also susceptible to different city definitions [23, 37], and we thus need a unified definition

across different urban systems to test a possible association between their values.

To do so, we use a generalized definition of functional urban areas (FUA) recently pro-

posed by Moreno-Monroy et al. [38, 39]. The concept of FUA was initially developed for

countries of the OECD and Europe as a unified definition of metropolitan areas, consisting

of high-density urban cores and their surrounding areas of influence or commuting areas.

The generalized definition we use (so-called eFUA or GHSL-FUA) represents an extension

of this concept to countries of the entire globe. By considering the areas of influence of

urban cores, eFUAs give a less fragmented representation of the city size distribution because

dense clusters proximate to urban cores are rightly not considered as independent cities.

While eFUAs delineate world-wide comparable city boundaries, the majority of urban indi-

cators are available at the level of local administrative units, that in addition to not being cen-

tralized into a global data set, may change from country to country. We avoid this problem

by considering a global gridded data set for GDP [40] (see Materials and methods). Thus, by

combining these two data sources (see Materials and methods and Fig 1 in S1 Appendix), we

create a consistent data set comprising the population (s) and the GDP (y) of 4,571 cities

from 96 countries.

Having this harmonized data set, we estimate the Zipf exponent α and urban scaling

exponent β after grouping the values of s and y by country (see Materials and methods). The

scatter plot in Fig 1A depicts the values of β versus α, where the insets show Zipf’s law and

urban scaling of city GDP for three countries. As these three examples illustrate, the data fol-

lows Zipf’s law and urban scaling with deviations comparable with other studies about these

two laws (see S1 Appendix, Sec. 4 for all countries). The world maps in Fig 1B and 1C indi-

cate the regional distribution of the values of α and β. In line with the meta-analysis of Refs.

[18, 23], we find Zipf exponents α roughly distributed around 1 with average value and stan-

dard deviation equal to 1.24 and 0.38, respectively (Fig 2A in S1 Appendix). In turn, �94%
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of the countries exhibit urban scaling exponents with GDP (β) larger than 1 (Fig 2B in S1

Appendix), and the average value and standard deviation of β are 1.16 and 0.17, respectively.

This result agrees with the idea that economic indicators display increasing returns to scale

[9, 41].

The results shown in Fig 1 suggest a positive association between the values of β and α, that

is, an increase of the Zipf exponent α appears to come along with a rise in the urban scaling

exponent β (or vice versa). This behavior is also perceptible in the world maps, where we note

that regional differences in the values of α (Fig 1B) are similar to the ones observed for β (Fig

1C). However, these visual similarities are mainly induced by the largest countries in land area,

and a more careful analysis of these maps reveals important differences, especially in the Afri-

can continent and Central Asia. These differences are more evident in the scatter plot of Fig

1A, where we observe a considerable spread in the association between both exponents. We

have further quantified the association between the values of β and α by estimating the Spear-

man rank correlation and the Pearson correlation within a sliding window of size Δα0 centered

in α0. For different values of Δα0, we find that the correlations peak around α0 � 1.1 and start

to decrease and become not statistically significant as the sliding window moves away from

this value of α0 (Fig 3 in S1 Appendix). This analysis thus suggests that the overall association

between both exponents is non-linear and that βmay approach constant values for large and

small values of α.

Fig 1. Association between the urban scaling exponent β and the Zipf exponent α. (A) Values of β versus α for each country in our

data set. The three different markers distinguish countries according to the tercile values of the total urban GDP distribution (for

instance, high-GDP countries have highest�33% GDP values). The horizontal dashed line shows the β = 1 while the inclined dashed

line represents the β = α relationship. As we shall discuss in the next section, the continuous line shows the model of Eq (9) adjusted

to data and the gray shaded region stands for the 95% confidence band. The colored background represents the different intervals of

α defined in Eq (9). The insets (indicated by blue arrows) illustrate Zipf’s law for city population (left) and the urban scaling

relationship of city GDP (right) for three countries (see S1 Appendix, Sec. 4 for all considered countries). We have verified that the

model of Eq (9) provides a significantly better description of data when compared with a null model where β is independent of α
(intercept-only model: β = constant, see Fig 4 in S1 Appendix), and that statistical correlations between β and α are significantly

enhanced in the (orange shaded) region where our model predicts a linear correspondence between the exponents (Fig 5 in S1

Appendix). Maps in panels (B) and (C) show the color-coded values of α and β for each country (light gray indicates missing values).

https://doi.org/10.1371/journal.pone.0245771.g001
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Country scaling and the association between both exponents

To better describe the empirical connection between the urban scaling exponent and the Zipf

exponent, we hypothesize that this association can be derived from the relationship between

country-aggregated values of urban population (S) and urban GDP (Y). As we shall show, the

combination of Zipf’s and the urban scaling laws implies a power-law relation between total

urban population S and total urban GDP Y. This country scaling law is characterized by an

exponent γ that is a function of β and α, which in turn yields a mathematical expression for the

relation between β and α. To do so, we start by noticing that Zipf’s law implies a power-law

dependence for the absolute number of cities with population s, that is, p(s) = ks−(α+1) for smin

< s< smax, where smin and smax represent a lower and an upper cutoff associated to the smallest

and largest city population of a particular urban system, and k is a normalization constant (see

S1 Appendix, Sec. 1 for details). By combining this frequency function p(s) with urban scaling

(Eq 2), we can write the total urban GDP of a country as

Y ¼
Xsmax

s¼smin

csbpðsÞ � kc
Z smax

smin

sb� a� 1ds ; ð3Þ

where the normalization constant k is determined by

S ¼
Xsmax

s¼smin

spðsÞ � k
Z smax

smin

s� ads : ð4Þ

To solve these equations, we consider that smin and smax are power-law functions of S

smin ¼ aSd; ð5Þ

smax ¼ bSy; ð6Þ

where a> 0 and b> 0 are constants, and δ> 0 and θ> 0 are country scaling exponents.

Thus, by plugging Eqs (5) and (6) into Eq (3), we find

Y ¼
cða � 1ÞS
a � b

abbaSdbþya � aabbSybþda

abaSdþya � aabSyþda

� �

; ð7Þ

that in the limit of S� 1 yields

Y ¼ Y0Sg ; ð8Þ

where Y0 is a constant and γ = γ(α, β, δ, θ) is the country scaling exponent for total urban

GDP. As detailed in S1 Appendix, Sec. 1, the exact form of γ depends on conditions imposed

on the exponents α, β, δ, and θ (cases A.1-A.8 in S1 Appendix) which in turn emerge from

determining the dominant term of Eq (7) in the limit of S� 1. Therefore, the combination of

Zipf’s law (Eq 1) with the urban scaling (Eq 2) and the country scaling relations of smin and

smax (Eqs 5 and 6) leads us to the country scaling of total urban GDP (Eq 8), where the expo-

nent γ depends on α, β, δ and θ.

The country scaling relations of GDP and smax have previously been empirically observed

in Refs. [42–44]. We have also verified that Eqs (5), (6) and (8) hold well for the country-aggre-

gated values in our data set with γ> 1 and δ< θ (Fig 6 in S1 Appendix). More importantly,

while α and β are intra-country exponents having different values for each country, γ, δ and θ
are inter-country exponents and there is only one value for each across all countries. Thus, we
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can solve γ = γ(α, β, δ, θ) for β (S1 Appendix, Sec. 1 for details) to find

b ¼

1þ
g � 1

y
0 < a � 1

gþ d � 1

y
þ 1 �

d

y

� �

a 1 < a < 1þ
g � 1

d

1þ
g � 1

d
a � 1þ

g � 1

d

;

8
>>>>>>>><

>>>>>>>>:

ð9Þ

for γ> 1 and δ< θ. This piecewise relationship implies that β is a constant up to α = 1, where

it starts to increase linearly until reaching the diagonal line given by β = α, and then continues

as another constant. It is worth mentioning that by writing β as a function of α, we are not

assuming any causal direction for the association between both exponents. Indeed, we could

also solve γ = γ(α, β, δ, θ) for α but this yields a non-functional dependency, that is, the hori-

zontal plateaus defined by Eq (9) become vertical lines when writing α as function of β.

We have adjusted Eq (9) to the empirical relation between α and β (see Materials and

methods) and the best fitting parameters are γ = 1.06±0.01, δ = 0.26±0.05, and θ = 0.79±0.03.

The solid line in Fig 1A represents the best fit of Eq (9) and the colored background indicates

the different ranges of α defined in Eq (9). Despite the large variations in the data, our model

captures the average tendency of the empirical relation between β and α. We have verified that

the statistical correlations between the values of β and α are only statistically significant in the

mid-range of α values, while there are no significant correlations within the lower and higher

ranges of α values (Fig 5 in S1 Appendix). Furthermore, the Akaike and Bayesian information

criteria indicate that it is at least 100 times more likely that the empirical data come from our

model (Eq 9) than from a null-model assuming no relationship between both exponents

(intercept-only model: β = constant, see Fig 4 in S1 Appendix). We also find that the estimated

parameters from Eq (9) are quite robust against thresholds for the total GDP; the adjusted val-

ues of γ, δ, and δ barely change, even if we only consider the countries with top 50% GDP val-

ues (Fig 7 in S1 Appendix).

In addition to the previous model validation, the adjustment of Eq (9) allows us to verify

the consistency of our modeling approach through the country scaling relationships. Specifi-

cally, the country scaling exponents estimated from Eq (9) should describe well the empirical

country scaling relationships. To do so, we have adjusted the country scaling relationships of

Eqs (5), (6) and (8) by considering only the prefactors (a, b, and Y0) as fitting parameters and

fixing country scaling exponents (δ, θ and γ) to the values estimated from Eq (9). Fig 2A–2C

show that the three country scaling relations describe quite well the empirical data. Further-

more, the country scaling exponents obtained by fitting Eq (9) to the empirical relationship

between β and α agree well with the estimates directly obtained from the country scaling rela-

tions, that is, by fitting Eqs (5), (6) and (8) to the country-aggregated data, as shown in Fig 2D.

The values of δ and θ estimated from both approaches are not significantly different, while the

values of γ are both above one but fitting the country scaling directly from data yields a slightly

larger value. We believe this result provides support for our model, especially when consider-

ing the level of observed variation in the relationship between β and α as well as that in the

country scaling relations.

Simulating the association between both exponents

The level of variation in the relation between the exponents β and α (as well as in the country

scaling relationships) is significantly high and hampers a more visual comparison with our
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model. In addition to indicating that our description of the association between both expo-

nents is far from perfect, these variations also reflect possible estimation errors in the popula-

tion and GDP values, errors related to the definition of city boundaries, and mainly errors

associated with estimating the Zipf and urban scaling exponents (as data does not perfectly fol-

low the Zipf’s and urban scaling laws). As these errors emerge from different sources and do

not seem to affect the association between β and α systematically, we have treated them as ran-

dom variations and investigated their role via an in silico experiment. As summarized in the

Materials and Methods, we have generated artificial data at the city level (city population s and

city GDP y values) by considering Zipf’s law (Eq 1), urban scaling (Eq 2), country scaling rela-

tions (Eqs 5 and 6), and our model (Eq 9). These simulations take as inputs the real values of

total urban population S and the exponent α of each country to generate replicas of these

urban systems (set of values of s and y), from which we can investigate the relationship

between β and α under different levels of variation in the urban and country scaling relations.

To do so, we have fixed the variation intensity (that is, the standard deviation of Gaussian ran-

dom variation around the scaling laws) in the simulated country scaling relations to a level

comparable with the empirical data, and varied the variation intensity in the simulated urban

scaling σy in percentages of the value observed in the real data (σy = 100% means the standard

deviation of the simulation is equal to the standard deviation in the empirical values of β).

The first four panels of Fig 3A show examples of simulated relationships (red circles) in

comparison with empirical data (blue dots) for different values of σy. As expected, the simu-

lated relationship perfectly agrees with our model (Eq 9) when there is no random variation in

the urban scaling. More importantly, we note that the scattering of simulated data becomes

visually very similar to the empirical data as the intensity of the random variation increases up

to σy = 100% (Fig 8 in S1 Appendix). We can also use the simulated data to corroborate our

numerical experiment by verifying the country scaling relations. Fig 3B–3D show the simu-

lated country scaling relations in comparison with the behavior of Eqs (5), (6) and (8) with

parameters estimated from real data. We note that simulated scaling relations for total urban

GDP (Y) and smallest city population (smin) follow very closely the adjusted behavior of the

empirical data.

However, the simulated results for the largest city population (smax) systematically underes-

timate the trend observed in the empirical data. This happens because, in our simulations, we

have used a random number generator associated with a truncated power-law distribution

Fig 2. Country scaling relationships. (A) Scaling relation between total urban GDP (Y) and total urban population (S) for all countries in our data set.

(B) Scaling law between the smallest city population of a country (smin) and the country’s urban population (S). (C) Scaling law between the largest city

population of a country (smax) and the country’s urban population (S). In these three panels, markers represent the values for each country and the

dashed lines are the country scaling relationships of Eqs (5), (6) and (8), where the exponents γ, δ, and θ are obtained from fitting the model of Eq (9) to

the empirical relation between β and α. Only the constants Y0, a and b are adjusted to data and their best fitting values are shown in the panels (±
standard errors). (D) Comparison between estimates of the country scaling exponent obtained by fitting Eq (9) to the empirical association between β
and α (bars in dark colors) and by directly fitting the values of the country scaling relationships (bars in light colors, see Fig 6 in S1 Appendix for the

adjusted scaling laws). Error bars represent 95% bootstrap confidence intervals of the parameters. We notice that both approaches yield similar

estimates, which are statistically indistinguishable in the cases of δ and θ.

https://doi.org/10.1371/journal.pone.0245771.g002
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(between smin and smax) for mimicking population values according to Zipf’s law. Since large

populations are rare and the number of simulated cities is finite, the simulated values for the

largest city population do not get close enough to the upper bound imposed by the truncated

power-law distribution. Consequently, the simulated values of smax underestimate the empiri-

cal ones. We solve this issue by replacing the truncated power-law behavior by a power-law

distribution with exponential cutoff (Materials and Methods). This modification does not

alter the country scaling relations of total urban GDP and smallest city population, that is, the

results of Fig 3B and 3C are not affected by the introduction of the exponential cutoff. Simi-

larly, this modification does not affect the relationship between β and α and the simulated

associations with exponential cutoff are very similar to those obtained with the truncated

power-law (as indicated by the right-most plot in Fig 3A). Indeed, the inclusion of this expo-

nential cutoff only modifies the country scaling relation of the largest city population by

increasing the simulated values of smax. Fig 3E shows an example of simulated results after

after replacing the truncated cut-off with a exponential one for the country scaling relation

between smax and S. We observe that the simulated values of smax obtained with the exponential

cutoff are closer to the empirical data behavior than those obtained with the truncated power-

law distribution (Fig 3D).

Discussion

We have shown that the combination of Zipf’s law and urban scaling implies a country scaling

relationship, where the exponent is a function of the Zipf and the urban scaling exponents.

While the Zipf and the urban scaling exponents vary from country to country, there is only

one country scaling exponent for a given indicator, which in turn implies a direct association

between the urban scaling and the Zipf exponents. In qualitative terms, our results agree with

the more holistic idea that urban scaling exponents do not solely emerge from processes

Fig 3. Simulating the connection between α and β, and the country scaling relationships. (A) Simulated relationships between α
and β under different levels of random variation in the urban scaling law (Eq 2). Here σy is the percentage of the standard deviation in

the empirical values of β. We have a perfect agreement between simulations and the model of Eq (9) when σy = 0%, and the results

become very similar to the empirical data (small blue dots) as the intensity of the random variation increases. (B)-(D) Simulated

country scaling laws for σy = 100%. The dashed lines represent the scaling relationships of Eqs (5), (6) and (8), with parameters

estimated from empirical data. We notice that the simulated scaling laws of total urban GDP (Y) and smallest city population (smin)

follow well the empirically adjusted relationships, while the simulated values for the largest city population (smax) underestimate the

empirical values. This occurs because large populations are rare and do not get close enough to the imposed maximum smax. (E)

Scaling relationship between smax and S when considering that city population values are drawn from a power-law distribution with

exponential cutoff. We notice this change makes the simulated results very similar to the empirical ones. The right-most plot in panel

A shows a simulated relation between β and α when considering the exponential cutoff.

https://doi.org/10.1371/journal.pone.0245771.g003
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occurring within the city boundaries; instead, cities do not represent a closed and non-inter-

acting system and what happens in the entire system (such as flow of people and goods) may

affect urban scaling. Similarly to what happens in transportation theory where the product of

two cities’ populations is usually assumed to be proportional to the commuting flow between

them (such as in gravity models), the population of cities is likely to represent an important

factor for the interactions among cities. Under this assumption, the distribution of city popula-

tion (summarized by the Zipf exponent) may thus represent an indirect proxy for interactions

between cities, and the association observed between β and α summarizes how the population

distribution affects urban scaling and vice versa.

Theoretically, the connection between the exponents β and α would imply that instead of

unrelated, Zipf’s law and urban scaling are indeed the two sides of the same coin. However, the

non-negligible variability observed in the empirical relationship do not corroborate with such

a simple conclusion but suggest that other factors (such as level of socio-economic develop-

ment and the particular history of an urban system) beyond population distribution may also

have a significant effect on the urban scaling of GDP. Understanding the relative importance

of population distribution on urban scaling (and vice versa) for different indicators is an

important future contribution that is currently limited by the availability of other world-wide

comparable city indicators. Even when considering the unexplained variation in the data, the

connection between the two scaling laws uncovered by our work indicates the existence of uni-

versal processes governing both laws; however, finding out this commonality for arbitrary

urban indicators still represents a challenging task.

In the context of urban GDP, our results show that urban systems with small values of the

Zipf exponent also tend to present lower increasing returns to scale of GDP (low values of β).

An urban system described by a small Zipf exponent has a more balanced population distribu-

tion, and consequently, fewer small cities and more large cities when compared with urban

systems described by larger Zipf exponents. Thus, countries with proportionally more metrop-

olises tend to have less pronounced increasing returns to scale than those having a small num-

ber of large cities. We hypothesize that urban systems with a large number of metropolises

may also have a more integrated market whereby these large cities cooperate and develop spe-

cialized economic activities. As a result, urban systems with more metropolises would have a

smaller degree of agglomeration of economic activities in large cities and so weaker increasing

returns to scale for city GDP. In contrast, countries with a small number of large cities have to

concentrate almost all complex economic activities in relatively fewer metropolises, which in

turn intensifies the increasing returns to scale of urban GDP (high values of β).

It is also interesting to note that high-GDP countries present relatively smaller values of

Zipf and urban scaling exponents than mid-GDP and low-GDP countries (Fig 1A and Fig 9

in S1 Appendix), that is, developed countries tend to have more metropolises and less pro-

nounced increasing returns to scale of urban GDP. This latter point agrees with the more local

observation that “rich cities” of the European Union (West cities) also exhibit smaller scaling

exponents for GDP than their “poor” counterparts (East cities) [27]. Large values of βmay

express an urban system with high economic performance, but because β alone does not define

the total urban GDP, large values of β also indicate a significant imbalance between the eco-

nomic productivity of small and large cities. The association between β and α also suggests

that part of this economic inequality may reflect the unbalanced distribution of population. It

is also worth mentioning the possibility of the existence of different urban planning regimes

[45] that may prevent sharp population agglomerations in developed countries and thus also

partially explain the negative association between β and total urban GDP.

Our data do not allow a dynamic analysis nor the identification of the causal direction of

the association between the exponents β and α. Still, a possible explanation for the observed
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differences among countries with different levels of development is that the economic policies

in less developed countries have focused on large cities, fostering this unbalanced situation

and creating cities larger than an hypothetical economically optimal. From a labor-market per-

spective, these large cities may attract inhabitants from smaller cities, changing both the urban

scaling and the Zipf exponents. However, these new inhabitants may mostly find low-paying

jobs or even become unemployed, which in turn might partially explain the poorer overall eco-

nomic performance of less efficient urban systems. The association between both exponents is

even more crucial because the world urban population may increase up to 90% by 2100 [46].

This urbanization process is likely to be even more intense in developing countries and has the

potential to further undermine their economic performance. Thus, it is not only important to

discuss which scaling is desirable but also the population distribution within urban systems.

Materials and methods

Data

The data used in this work is a product of two data sets. First, we use the recently released

GHSL-FUA or eFUA [38, 39] definition of functional urban areas (FUAs). The eFUAs uses

gridded population data from Global Human Settlement Layer (GHSL) [47, 48] and an auto-

mated classification approach for producing 9,031 urban boundaries (and population counts)

over the entire globe (188 countries) for the year 2015. The eFUAs comprise high-density

urban centers and their surrounding commuting zones and aim to capture the functional

extent of cities. Second, we use the gridded GDP data provided by Kummu et al. [40]. This

data set combines sub-national and national GDP data from different sources with population

gridded data (from the GHSL and the HYDE 3.2 [49]) to define three gridded global datasets:

Gross Domestic Production per capita (5 arc-min resolution), Human Development Index (5

arc-min resolution), and Gross Domestic Production (30 arc-sec-min resolution). We have

used only this latter file representing gridded values of total GDP with a resolution of 30 arc-

sec (1 km at equator) for the year 2015 (the same information is also available for the years

1990 and 2000). To define GDP consistently at the grid level across countries, Kummu et al.
first calculate the GDP across gridcells within each subnational unit of a given country as the

corresponding subnational GDP per capita value multiplied by the gridcell population. Next,

the authors sum over these gridcell GDP values and divide by the sum gridcell populations in a

country to define the population-weighted national GDP per capita. They then calculate the

ratio between this population-weighted national GDP per capita and the subnational GDP per

capita. Finally, they multiply this ratio by the national GDP per capita to obtain the final sub-

national GDP per capita values (that vary across subnational units in each country), which

they then multiply by the population in each gridcell within each subnational unit to obtain

the final GDP for every gridcell in a given country. This method ensures that the sum over

GDP per capita values at the gridcell level always coincides with officially reported GDP per

capita values for each country, and that there is global consistency because the method relies

on secondary sources of reported subnational GDP per capita and internationally consistent

population grids. The gridded GDP values are reported in 2011 international US dollars using

purchasing power parity rates (total GDP-PPP). We overlay the gridded GDP data with eFUA

boundary polygons and aggregate the GDP cell values within each polygon for associating a

GDP value to each eFUA. We illustrate this procedure in Fig 1 in S1 Appendix. Next, we

group the resulting data by country and select the countries having at least 10 eFUAs. We also

removed from our analysis 46 eFUA with null GDP (16 from India; 9 from Ethiopia; 5 from

Pakistan; 3 from Sudan; 2 from Niger, Congo, and Chad; and 1 from Argentina, Benin, Egypt,
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Indonesia, Myanmar, Senegal, and Uganda). These criteria lead us to a data set comprising

population s and GDP y of 8,650 functional urban areas from 96 countries.

Estimating the Zipf exponent

Zipf’s law (Eq 1) implies that the complementary cumulative distribution function (CDF) of

city population is a power law, F(s)�s−z, with z� α. We use this connection to estimate the

values of α from the data. Specifically, we applied the approach of Clauset-Shalizi-Newman

[50] to obtain the exponent α via its maximum likelihood estimate a ¼ n=ð
Pn

i¼1
ln si=~sminÞ ;

where ~smin is the lower bound of the power-law regime, si is the population of the i-th city for a

given country such that si � ~smin, and n is the number of city populations in the power-law

regime. The value of ~smin is also estimated from data by minimizing the Kolmogorov-Smirnov

“distance” between the empirical CDF of city populations and F(s). The standard error in the

Zipf exponent SEa ¼ a=
ffiffiffi
n
p

can be obtained from the width of the likelihood maximum [50].

We have used the Clauset-Shalizi-Newman method as implemented in the Python module

powerlaw [51]. In addition to being a quite popular approach for fitting power-law distribu-

tions, Bhattacharya et al. [52] have recently proven that the Clauset-Shalizi-Newman approach

yields an unbiased and consistent estimator, that is, as data increases indefinitely the estimated

parameters converge (in distribution) to the true values. We show the CDF and Zipf’s law

adjusted to each country in S1 Appendix, Sec. 4, where a good agreement is observed in the

vast majority of cases. After estimating ~smin, we filter out all cities with population smaller than

this threshold in all other analyses, leading us to 4,571 functional urban areas from 96 coun-

tries. Thus, the urban scaling laws involve only cities belonging to the power-laws regime, and

the countries’ urban GDP (Y) and countries’ urban population (S) are the aggregated values of

urban GDP (yi) and urban population (si) of cities belonging to the power-law regime for each

country.

Estimating the urban scaling and the country scaling exponents

Urban scaling and country scaling laws are generically represented by a power-law relation

between a dependent variable z and an independent variable x

z ¼ g xn ; ð10Þ

where g is a prefactor and ν is the power-law exponent. Eq (10) is linearized via a logarithmic

transformation

log z ¼ log g þ n log x ; ð11Þ

where logz and logx now represent the dependent and independent variables, logg is the inter-

cept and ν the slope, both being regression coefficients of a corresponding linear model. We

have estimated the values of logg and ν by adjusting Eq (11) to the log-transformed data via

robust linear regression with the Huber loss function [53], as implemented in the Python mod-

ule statsmodels [54]. We further estimate standard errors and confidence intervals for the

parameters logg and ν via bootstrapping [55]. We show the urban scaling law adjusted to each

country in S1 Appendix, Sec. 4, where a good agreement is observed in the vast majority of

cases. The adjusted country scaling laws are shown in Fig 6 in S1 Appendix. In the case of Fig

2A–2C, we have fixed the power-law exponents (regression coefficients) γ, δ and θ to values

obtained from fitting Eq (9) to the relation β versus α, and only the prefactors (intercepts of

the linear model) logY0, loga, and logb have been considered as free parameters in the regres-

sion model.
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Fitting our model to the relationship between β and α
Our model for the relationship between β and α is completely defined in S1 Appendix, Sec. 2.

Depending on whether γ> 1 or γ< 1 and also on whether δ< θ or δ> θ, we have an expres-

sion of β as function of α (Eqs. S56-S59, in S1 Appendix) and Eq (9) is a particular case when

γ> 1 and δ< θ. We have adjusted the complete model (that is, without assuming anything

about the parameters γ, δ, and θ) to the empirical relation between α and β via the L-BFGS-B

nonlinear optimization algorithm [56], as implemented in the Python module lmfit [57]

and without any constraint. The standard errors and the confidence intervals on the parame-

ters γ, δ and θ are estimated via bootstrapping [55]. The best fitting parameters (± standard

errors) are γ = 1.06±0.01, δ = 0.26±0.05, and θ = 0.79±0.03. This leads to Eq (9) because the

best fitting parameters yield γ> 1 and δ< θ. Figs 10 and 11 in S1 Appendix depict different

versions of Fig 1A where we label all countries and show the standard errors in β and α.

Simulating relations between β and α
We simulate the relationship between β and α by generating data at the city level. For a given

country population P with Zipf exponent α, we start by generating a list of m city populations

S ¼ fs1; . . . ; si; . . . ; smg until satisfying the constraint
Pm

i¼1
si � S 10N ð0;sgÞ, where N ð0; sgÞ is a

Gaussian random variable with zero mean and standard deviation σγ. Each si is drawn from a

power-law distribution p(s)�s−(α+1) (compatible with Zipf’s law) within the interval smin < s<
smax, where smin and smax are obtained from the country scaling relations (Eqs 5 and 6) with

multiplicative random variations, that is, smin � Sd 10N ð0;sdÞ and smin � Sy 10N ð0;syÞ, where

N ð0; sdÞ and N ð0; syÞ are Gaussian random variables with zero mean and standard deviations

σδ and σθ, respectively. We next generate a list of urban indicators Y ¼ fy1; . . . ; yi; . . . ; ymg,
where yi ¼ c sbi 10N ð0;syÞ and N ð0; syÞ is a Gaussian random variable with zero mean and stan-

dard deviation σy. In the expression for yi, the value of β is obtained from our model (Eq 9)

while the value of c is chosen to satisfy the condition
Pm

i¼1
yi � Y , where Y is the total urban

GDP (S1 Appendix, Sec. 3). The random variation controlled by the parameters σγ, σδ, and σθ
mimics the variability observed in the empirical country scaling relationships, and we set their

values equal to the standard deviation of the bootstrap estimates of the country scaling expo-

nents (γ, δ, and θ). On the other hand, the random variation controlled by σy mimics the vari-

ability in the urban scaling relationships, and we set its value as a fraction of the standard

deviation of the empirical values of β. We have thus applied this procedure by using all empiri-

cal values of α and Y to obtain the simulated values of β, Y, smin, smax from the lists S and Y
under different values of σy (Fig 3A).

We have also considered a modification of this procedure where the population values were

drawn from a power-law distribution with exponential cutoff [50], that is, p(s)�s−(α+1)exp(−s/
s0) (s> smin), where s0 is an additional parameter. This modification is necessary for reproduc-

ing the empirical behavior of the country scaling between smax and S. Because large city popu-

lations are very rare, the simulated values of si obtained from the upper-truncated power-law

distribution do not get close enough to the imposed maximum value (smax). This results in the

underestimation of smax, as shown in Fig 3D. After replacing the upper-truncated behavior by

the exponential cutoff, we note that the simulated country scaling of smax becomes very similar

to the empirical relation (Fig 3E). In this simulation, we have chosen the value s0 = 3 × 107 to

make the simulated values of smax closer to the scaling law adjusted from the empirical data. It

is worth mentioning that this change has no effect on the relationship between β and α nor on

the other country scaling relations (see the two right-most plots of Fig 3A).

S1 Appendix, Sec. 3 shows more details on how we have implemented this simulation.
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