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The Ingram Conjecture

M. Barge, H. Bruin, S. Štimac∗†

January 12, 2010

Abstract
We prove the Ingram Conjecture, i.e., we show that the inverse limit spaces of ev-

ery two tent maps with different slopes in the interval [1, 2] are non-homeomorphic.
Based on the structure obtained from the proof, we also show that every self-
homeomorphism of the inverse limit space of the tent map is pseudo-isotopic, on
the core, to some power of the shift homeomorphism.

2010 Mathematics Subject Classification: 54H20, 37B45, 37E05
Key words and phrases: tent map, inverse limit space, unimodal map, classification,

pseudo-isotopy

1 Introduction

Apart from their interest within continuum theory, inverse limit spaces play a key role

in the description of uniformly hyperbolic attractors [25, 26], global ‘Hénon-like’ strange

attractors [6] and the structure emerging from homoclinic tangencies in dynamical sys-

tems [4]. They find further use in the area of (substitution) tiling spaces [1] which, in

some cases, are covering spaces of the type of inverse limit spaces with which we are

concerned with in this paper; namely, those with a single tent map Ts : [0, 1] → [0, 1],

x 7→ min{sx, s(1 − x)} as bonding map. Such inverse limit spaces can be embedded in

the plane as global attractors of homeomorphisms [19, 22, 12] and immersed in the plane

as global attractors of skew product maps [15].

Inverse limit spaces are notoriously difficult to classify. In this paper, we solve in the

affirmative the classification problem known as the Ingram Conjecture:

∗Supported in part by NSF 0604958 and in part by the MZOS Grant 037-0372791-2802 of the Republic
of Croatia.

†Part of this research was done at the Mathematisches Forschungsinstitut Oberwolfach during a stay
within the Research in Pairs Programme from January 11 to January 24, 2009. The authors thank the
MFO for its hospitality. HB also thanks Delft University of Technology, where this paper was largely
completed.
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Theorem 1.1 (Ingram Conjecture). If 1 ≤ s < s′ ≤ 2, then the corresponding inverse

limit spaces lim←−([0, 1], Ts) and lim←−([0, 1], Ts′) are non-homeomorphic.

This is the main outstanding conjecture regarding dynamics on continua, dating back

to at least the early nineties. In the “Continua with the Houston problem book” in 1995

[16, page 257], Ingram writes

The [...] question was asked of the author by Stu Baldwin at the summer

meeting of the AMS at Orono, Maine, in 1991... There is a related question

which the author has considered to be of interest for several years. He posed

it at a problem session at the 1992 Spring Topology Conference in Charlotte

for the special case (that the critical point has period) n = 5.

It is clear that if two interval maps are topologically conjugate, then their inverse limit

spaces are homeomorphic. Thus it may be more natural to ask the question for the ‘fuller’

logistic family fa(x) = ax(1 − x), a ∈ [0, 4]. It is well-known [18] that each logistic map

is semi-conjugate to a tent-map Ts with s = exp(htop(fa)) (provided htop(fa) > 0), but

the logistic maps contain infinitely renormalizable maps as well as maps with periodic

attractors, phenomena that are ruled out in the (uniformly expanding) setting of tent

maps with slope s > 1. The effect of renormalization (i.e., the existence of periodic

intervals for period > 1) on the structure of the inverse limit space is well-understood,

see [5]: it produces proper subcontinua that are periodic under the shift homeomorphism,

that are homeomorphic with the inverse limit space of the renormalized map. Therefore

the solution of the Ingram Conjecture also shows that every pair of logistic maps that are

non-conjugate on their non-wandering sets have non-homeomorphic inverse limit spaces.

There have been several partial results to the Ingram Conjecture, e.g. Barge and

Diamond [3], which solved the period n = 5 case, and [24, 14]. Complete solutions were

obtained when the critical point is periodic by Kailhofer [17] (see also [8]), or has finite

orbit by Štimac [23]. More recently, the case where the critical point is non-recurrent was

solved in [21]. Further results that classify certain features of inverse limit spaces of tent

maps with non-periodic recurrent critical orbits were obtained in e.g. [11, 20, 13].

Our solution to the Ingram Conjecture gives more information about the set of self-

homeomorphisms on lim←−([0, 1], Ts): we show that any such homeomorphism behaves like

an iterate of the shift homeomorphism σ.

The critical point 1
2

of Ts is denoted by c, and we write ci = T i(c). Although Ts is

defined on [0, 1], there is a forward invariant interval [c2, c1] = [s(1 − s/2), s/2], called
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the core, on which Ts is surjective. We call lim←−([c2, c1], Ts) the core of the inverse limit

space. The space lim←−([0, 1], Ts) is the union of the core of the inverse limit and a ray C

converging onto it.

Recall that the composant of x ∈ X is defined as the union of all proper subcontinua

of X containing x. For 1 ≤ s < 2, lim←−([0, 1], Ts) has only two composants: C and

lim←−([0, 1], Ts) \ {(. . . , 0, 0, 0)}. But for s >
√

2, lim←−([c2, c1], Ts) is indecomposable and

hence has uncountably many pairwise disjoint composants, each of which is dense. If

s >
√

2 and the orbit of c is finite, the composants of lim←−([c2, c1], Ts) are the same as the

arc-components. Otherwise, the composants can be very complicated. For 1 < s ≤ √
2,

the core has just two composants that overlap in a single arc-component.

Theorem 1.2. Given s ∈ [1, 2], for every homeomorphism h : lim←−([0, 1], Ts) ª, there is

an R ∈ Z such that h, restricted to the core lim←−([c2, c1], Ts), is pseudo-isotopic to σR, i.e.,

it permutes the composants of the core of the inverse limit in the same way as σR.

Our proof of the Ingram Conjecture relies on the properties of so-called link-symmetric

arcs in the composant C of lim←−([0, 1], Ts) containing the endpoint α := (. . . , 0, 0, 0).

Inverse limit spaces are chainable, and w.r.t. natural chains, a homeomorphism h :

lim←−([0, 1], Ts′) → lim←−([0, 1], Ts) maps link-symmetric arc to link-symmetric arcs. From this

we derive that maximal link-symmetric arcs in lim←−([0, 1], Ts′) centered at so-called snappy

points s′i map to link-symmetric arcs centered at snappy points si+M ∈ lim←−([0, 1], Ts) for

some M ∈ Z and all sufficiently large i ∈ N.

This in turn implies that h maps so-called q-points close to p-points, while ‘translating’

their levels by a fixed number M . This shows that h effectively fixes the folding pattern

of the zero-composant, with the Ingram Conjecture as an easy consequence. Additional

arguments show that every self-homeomorphism of lim←−([0, 1], Ts), when restricted to the

core, is pseudo-isotopic to a power σR of the shift for some R ∈ Z.

We give the basic definitions in the next section. In Section 3 we investigate the lengths

of maximal link-symmetric arcs, leading in Section 4 to the proof that a homeomorphism

between two unimodal inverse limit spaces induces a shift of indices of snappy points,

and more generally, acts as a shift on the levels of q-points and p-points. This leads to

the proof of the Ingram Conjecture. Finally, in Section 5, we prove the remaining results

on pseudo-isotopy.
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2 Definitions

Let N := {1, 2, . . . } and N0 := {0, 1, 2, . . . }. Let Ts : [0, 1] → [0, s/2], Ts(x) = min{sx, s(1−
x)} be the tent map with slope s ∈ [1, 2] and critical point c = 1

2
. Write ci = ci(s) := T i

s(c),

so in particular c1 = s
2

and c2 = s(1− s
2
).

The inverse limit space lim←−([0, 1], Ts) is the collection of backward orbits

{x = (. . . , x−2, x−1, x0) : Ts(xi−1) = xi ∈ [0, s/2] for all i ≤ 0},

equipped with metric d(x, y) =
∑

n≤0 2n|xn − yn| and induced (or shift) homeomorphism

σ = σs given by

σ(. . . , x−2, x−1, x0) = (. . . , x−2, x−1, x0, Ts(x0)).

Let πp : lim←−([0, 1], Ts) → [0, 1], πp(x) = x−p, be the p-th projection map. Since Ts fixes

0, lim←−([0, 1], Ts) contains the endpoint α := (. . . , 0, 0, 0). The composant of lim←−([0, 1], Ts)

containing this point is denoted by C; it is a ray converging from α to, but disjoint from,

the core of the inverse limit space lim←−([c2, c1], Ts).

Frequently, the Ingram Conjecture is posed for slopes s, s′ ∈ [
√

2, 2] only, because for

0 < s ≤ √
2, lim←−([c2, c1], Ts) is decomposable. Since lim←−([0, 1], Ts) is a single point for

s = 0 and a single arc for s ∈ (0, 1], we will always assume that all slopes s are greater

than 1. The next two lemmas show how to reduce the case s ∈ (1,
√

2] to s ∈ (
√

2, 2].

Lemma 2.1. For 21/2n+1 ≤ s ≤ 21/2n
, n ∈ N, the core of the inverse limit space

lim←−([c2, c1], Ts) is homeomorphic with two copies of lim←−([0, 1], Ts2) joined at their end-

points.

Proof. For this range of s, Ts([c2, p]) = [p, c1] and Ts([p, c1]) = [c2, p]), where p := s
s+1

is the positive fixed point of Ts. It follows that lim←−([c2, c1], Ts) is homeomorphic with

two copies of lim←−([p, c1], T
2
s ) joined at the endpoint (. . . , p, p, p). Direct calculation shows

that, if L is the orientation preserving affine homeomorphism from [p, c1] onto [0, c1(s
2)],

then L ◦ T 2
s ◦ L−1 = Ts2 on [0, c1(s

2)] and hence lim←−([p, c1], T
2
s ) is homeomorphic with

lim←−([0, 1], Ts2).

Lemma 2.2. Suppose that 21/2n
< s ≤ 21/2n−1

and 21/2n′
< s′ ≤ 21/2n′−1

, n, n′ ∈ N,

and suppose that lim←−([0, 1], Ts) is homeomorphic with lim←−([0, 1], Ts′). Then n = n′ and

assuming that the Ingram Conjecture holds for slopes >
√

2, then also lim←−([0, 1], Ts2n−1 )

is homeomorphic with lim←−([0, 1], T(s′)2n−1 ).
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Proof. For 21/2 < s < 2, lim←−([0, 1], Ts) consists of a ray C winding onto an indecompos-

able continuum, namely lim←−([c2, c1], Ts). It follows from Lemma 2.1 that for 21/2n
< s <

21/2n−1
, lim←−([0, 1], Ts) consists of a ray winding onto a pair of rays, each winding onto a

pair of rays,. . . , each winding onto a pair of rays, each of which winds onto an indecompos-

able continuum. There are 2n−1 of these indecomposable continua, each homeomorphic

with the core of the inverse limit space lim←−([0, 1], Ts2n−1 ). Hence if lim←−([0, 1], Ts) is home-

omorphic with lim←−([0, 1], Ts′), then n = n′ and lim←−([0, 1], Ts2n−1 ) is homeomorphic with

lim←−([0, 1], T(s′)2n−1 ). To cover the remaining cases, note that if s = 21/2n−1
, then the only

alteration needed in the above description of lim←−([0, 1], Ts) is that at the penultimate level,

instead of a pair of rays winding onto a pair of indecomposable subcontinua, we just have

two indecomposable subcontinua (each homeomorphic with lim←−([0, 1], T2)) joined at their

common endpoint. It is clear in this case that if lim←−([0, 1], Ts′) is homeomorphic with

lim←−([0, 1], Ts), then s′ = s.

Definition 2.3. The arc-length or d̄ metric on C is defined as

d̄(x, y) = sp|x−p − y−p|

for each p so that πp : [x, y] → [0, 1] is injective.

If x, y ∈ C, then we denote by [x, y] the arc between x and y, and by (x, y) the interior

of the arc [x, y]. We write x ¹ y if x ∈ [α, y], i.e., d̄(α, x) ≤ d̄(α, y).

Definition 2.4. A continuum is chainable if for every ε > 0, there is a cover {`1, . . . , `n}
of open sets (called links) of diameter < ε such that `i ∩ `j 6= ∅ if and only if |i− j| ≤ 1.

Such a cover is called a chain. Clearly the interval [0, s/2] is chainable. We call Cp a

natural chain of lim←−([0, 1], Ts) if

1. there is a chain {I1
p , I2

p , . . . , In
p } of [0, s/2], with the relatively open interval Ij

p and

Ij+1
p adjacent for all 1 ≤ j < n− 1, such that `j

p := π−1
p (Ij

p) are the links of Cp;

2. each point x ∈ ∪p
i=0T

−i
s (c) is the boundary point of some link Ij

p ;

3. for each i there is j such that Ts(I
i
p+1) ⊂ Ij

p .

Let us define width(Cp) := maxj |Ij
p |. If width(Cp) < εs−p/2 then mesh(Cp) := max{diam(`) :

` ∈ Cp} < ε, which shows that lim←−([0, 1], Ts) is indeed chainable.

Condition 3. ensures that Cp+1 refines Cp (written Cp+1 ¹ Cp).

5



Definition 2.5. A point x = (. . . , x−2, x−1, x0) ∈ C is called a p-point if x−j = c for

some j ≥ p. For the largest such j, the number Lp(x) := j − p is called the p-level. In

particular, x0 = T
p+Lp(x)
s (c). The ordered set of all p-points of composant C is denoted

by Ep, and the ordered set of all p-points of p-level l by Ep,l. Given an arc A ⊂ C

with successive p-points x0, . . . , xn, the p-folding pattern of A, denoted by FPp(A), is the

sequence FPp(A) = Lp(x
0), . . . , Lp(x

n). The folding pattern of composant C, denoted by

FP (C), is the sequence Lp(z
1), Lp(z

2), . . . , Lp(z
n), . . . , where Ep = {z1, z2, . . . , zn, . . . }

and p is any nonnegative integer. Let q ∈ N, q > p, and Eq = {y0, y1, y2, . . . }. Since

σq−p is an order-preserving homeomorphism of C, it is easy to see that, for every i ∈ N,

σq−p(zi) = yi and Lp(z
i) = Lq(y

i). Therefore, the folding pattern of C does not depend

on p.

For the above arc A, the projection πp : A → [0, s/2] need not be injective; so the

folding pattern of A can be very long and A may pass through the same link `j of the

natural chain Cp many times. If Aj is an arc component of A ∩ `j, then we say that Aj

goes straight through `j if πp|Aj is injective; otherwise it turns in `j. If Aj turns in `j,

then Aj contains at least one p-point.

Definition 2.6. Let `0, `1, . . . , `k be those links in Cp that are successively visited by an

arc A = [u, v] ⊂ C (hence `i 6= `i+1, `i ∩ `i+1 6= ∅ and `i = `i+2 is possible if A turns in

`i+1). Let Ai ⊂ `i be the corresponding arc components such that Cl Ai are subarcs of A.

We call the arc A

• p-link-symmetric if `i = `k−i for i = 0, . . . , k;

• maximal p-link-symmetric if it is p-link-symmetric and there is no p-link-symmetric

arc B ⊃ A and passing through more links than A;

• p-symmetric if πp(u) = πp(v) and if for A ∩ Ep = {x0, . . . , xn} we have Lp(x
i) =

Lp(x
n−i) for every i = 0, . . . , n.

In any of these cases, the p-point of Ak/2 with the highest p-level is called the center of

A, and the link `k/2 is called the central link of A.

It is easy to see that if A is p-symmetric, then n is even and Lp(x
n/2) = max{Lp(x

i) :

xi ∈ A∩Ep}. Clearly, every p-symmetric arc is p-link-symmetric as well, but the converse

does not hold.

Definition 2.7. Let (si)i∈N be a sequence of p-points such that 0 ≤ Lp(x) < Lp(si) for

every p-point x ∈ (α, si). We call p-points satisfying this property snappy.
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Since for every slope s > 1 and p ∈ N0, the sequence FP (C) starts as 0 1 0 2 0 1 . . . ,

and since by definition Lp(s1) > 0, we have Lp(s1) = 1. Also, since si = σi−1(s1),

Lp(si) = i, for every i ∈ N. Note that the snappy p-points depend on p: if p ≥ q, then

the snappy p-point si equals the snappy q-point si+p−q.

Let us extend the notion of folding pattern as follows. A sequence e1, . . . , ek is the

folding pattern of T j|H for an interval H ⊂ [0, 1] if ce1 = T j(x1), . . . , cek
= T j(xk), where

x1 < · · · < xk are the critical points of T j on H. (If 0 ∈ H, then the folding pattern starts

with ∗ by convention, just as ∗ denotes the conventional p-level of α.) In this extended

terminology, the p-folding pattern of [α, sj+1] is the same as the folding pattern of T j on

[0, c1], independently of p.

Measured in arc-length, d̄(α, s1) = 1
2
sp, and since σ(si) = si+1 we obtain

d̄(α, si) =
1

2
sp−1si for all i ≥ 1. (2.1)

3 Maximal Link-Symmetric Arcs

In this section we establish upper bounds for the lengths of p-link-symmetric arcs. The

Ingram Conjecture was previously proved for all tent-maps with a (pre)periodic critical

point, see [23]. So let as assume from now on that the slope s is such that c is not

(pre)periodic. Throughout this section we use the notation T := Ts, ak := T k(a) for

any point or interval (except for the precritical points zk in Definition 3.3 below), and

â := 1− a is the symmetric point around c.

Definition 3.1. Given ε > 0 and H := [a, b] ⊂ [0, c1], we say that T n|H is ε-symmetric,

if |T n(a + t)− T n(b− t)| < ε for all 0 ≤ t ≤ b− a.

If width(Cp) < ε and the arc J ⊂ [α, sk] is p-link-symmetric, then πp+k : J → H :=

πp+k(J) is one-to-one and T k|H is ε-symmetric.

Definition 3.2. We say that T n|H is ε-periodic of period 2η if |T n(t)− T n(t + 2η)| < ε

for all t, t + 2η ∈ H.

If T n|H is ε-symmetric around two centers that are η apart, then T n|H is ε-periodic

with period 2η. We will explain this fact in more detail in the proof of Proposition 3.6,

where it is used several times.

Definition 3.3. We call zk a closest precritical point if T k(zk) = c and T k maps [c, zk]

monotonically onto [ck, c]. Clearly, if zk is a closest precritical points, so is ẑk.
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Lemma 3.4. There are infinitely many N and closest precritical points zN such that

θN := min{|ci − c| : 0 < i ≤ N} > |zN − c|.

Proof. If c is not recurrent, then θn 6→ 0 and the lemma is trivial. So let us assume that

c is recurrent, but obviously not periodic. Let n be such that |cn − c| = θn.

If x 7→ |T n(x)− c| has a local maximum at c, then T n([c, cn]) 3 c. Indeed, if this were

not the case, then by the choice of n, T n maps [c, cn] in a monotone fashion into [c, cn],

which is clearly impossible for tent maps with slope > 1. So in this case, zn ∈ [cn, ĉn] and

the lemma holds with N = n.

So assume now that x 7→ |T n(x) − c| has a local minimum at c. Take m ∈ N
minimal such that the closest precritical zm ∈ [ĉn, cn]. We will show that cj /∈ [ẑm, zm]

for n < j ≤ m. If j = m, then x 7→ |T j(x) − c| has a local maximum at c, and we can

argue as above. So assume by contradiction that cj ∈ [ẑm, zm] for some n < j < m. If

x 7→ |T j(x) − c| has a local maximum at c, then the closest precritical point zj satisfies

T j([c, zm]) ⊂ T j([c, zj]) = [cj, c] ⊂ [ẑm, c] or [c, zm]. This implies that either [c, zm] or

[ẑm, c] is mapped monotonically into itself by T j, which is impossible. The remaining

possibility is that x 7→ |T j(x) − c| has a local minimum at c. In this case, T j−n maps

[zm, cn] monotonically onto [w, cj]. If c ∈ (w, cj), then m ∈ N cannot be minimal such

that Tm([c, cn]) 3 c. If c /∈ (w, cj), then w ∈ [ĉn, cn] ∩ T (j−n)−m(c), and since −m <

(j − n)−m < 0, m is again not minimal such that Tm([c, cn]) 3 c.

Take N = m and the lemma follows.

Take N0 as in Lemma 3.4 and so large that sN0 > 100. Let N ≥ N0 from Lemma 3.4

be so large that

δ := |zN − c| < |zN0 − c|/100. (3.1)

Then |cn − c| ≥ sn|zn − c| ≥ sN0|zN − c| > 100δ for every N0 ≤ n ≤ N by the choice of

N0 and |cn − c| > |zN0 − c| > 100δ for n ≤ N0 by the choice of N .

Lemma 3.5. Given δ as in (3.1), there exists r0 = r0(δ) such that for every interval J̃

with |J̃ | ≥ 22δ, there exist l ≤ r0N and an interval J with |J | ≥ 18δ and concentric with

J̃ , such that T l
s|J is monotone and Jl := T l(J) ⊃ [c− δ, c + δ].

Proof. Let x be the center of J̃ and take m ≥ 0 minimal such that J̃m 3 c; hence Tm|J̃
is monotone.

Clearly, m ≤ (r0 − 1)N for some r0 ≥ 1 depending only on δ. If ∂J̃m is δ-close to c,

then we take J ′ ⊂ J̃ centered at x and slightly smaller such that c ∈ ∂J ′m and m′ > m

8



minimal such that J ′m′ contains c in its interior. Since |J ′m| > 20δ, it contains zN or ẑN

as in (3.1), and m′ −m ≤ N and |cm′−m − c| ≥ δ by Lemma 3.4.

If at iterate m′ the other boundary point of J ′ is δ-close to c, then m′ −m < N . We

take the interval J ′′ ⊂ J ′ centered at x slightly smaller such that c ∈ Tm′
(∂J ′′) and take

m′′ > m′ minimal such that c is an interior point of Tm′′
(J ′′). Since Tm′

(zN) ∈ Tm′
(J ′′),

and by (3.1) again, m ≤ m′ ≤ m′′ ≤ m + N and ∂J ′′m′′ is not δ-close to c. In each case,

there is l ≤ r0N and J ∈ {J̃ , J ′, J ′′} so that the lemma holds.

For interval H =: [a, b] with center x we formulate the following property:

c ∈ H and δ < min{|c− a|, |c− b|, |c− x|}. (3.2)

Proposition 3.6. Assume that s ∈ [1, 2] is such that c is not (pre)periodic. There exists

ε > 0 such that if H satisfies (3.2), then T n|H is not ε-symmetric for any n ∈ N0.

Proof. We will prove Proposition 3.6 using the induction hypothesis:

if H satisfies (3.2), then T n|H is not ε-symmetric. (IHn)

Take N0, N and δ as in (3.1), r0 as in Lemma 3.5 and H that satisfies (3.2).

Let ε ∈ (0, δ) be so small that

ε < min{|ci − cj| : 0 ≤ i < j ≤ (2 + r0)N}. (3.3)

Since c lies off-center in H by at least δ, by the choice of ε, (IHk) holds for all

k ≤ (2+ r0)N . Assume now that (IHj) holds for all j < n. We will prove (IHn), but first,

continuing with the interval J̃ of Lemma 3.5, we prove the following lemma.

Lemma 3.7. Let J̃ be an interval of length |J̃ | ≥ 22δ centered at ck for some 1 ≤ k ≤ 2N .

If T j|J̃ is ε-symmetric for some 0 ≤ j ≤ n, then the interval Jl := T l(J) from Lemma 3.5

satisfies condition (3.2).

Proof. We know already from Lemma 3.5 that Jl ⊃ [c − δ, c + δ]. Hence if (3.2) fails,

then η := |ck+l − c| ≤ δ. Since T l|J is monotone, j > l. Therefore T j−l|Jl
is ε-symmetric

around ck+l and symmetric around c, and it follows that T j−l|Jl
is ε-periodic with period

2η. Indeed, by symmetry around c, T j−l
Jl

is ε-symmetric around the symmetric point ĉk+l.

Hence T j−l
Jl

must also be ε-symmetric around the points c±2η, which are the reflections of

c in ck+l and ĉk+l, etc. Extending these symmetries, we see that |T j−l(t)−T j−l(t+2η)| < ε

for all t, t + 2η ∈ Jl, so T j−l|Jl
is ε-periodic with period 2η. Even more, T j−l|Jl

is ε-

symmetric around c+2iη on every separate subarc Pi := [c+(2i−1)η, c+(2i+1)η] ⊂ Jl.
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Recall that 1 ≤ k ≤ 2N and l ≤ r0N , so we have η > ε by the choice of ε in (3.3).

Since |Jl| ≥ 18δ = 18|zN − c|, one of the components of Jl \ {c}, say the one containing

zN > c, has length ≥ 9δ. We can take r ≤ N minimal such that zr ∈ [c + δ, c + 8.9δ].

Take i ∈ Z such that if

zr ∈
{

(c, c + 4.3δ], then c + 2iη ∈ (zr + 0.1δ, zr + 2.1δ),

(c + 4.3δ, c + 8.9δ], then c + 2iη ∈ (zr − 2.1δ, zr − 0.1δ).
(3.4)

Let H ⊂ Jl be the longest interval centered at x := c + 2iη on which T r|H is monotone.

Then H 3 zr, and T j−l|H and T j−l−r|Hr are ε-symmetric. We will show that Hr satisfies

(3.2). Indeed, since |zr − c| ≤ 9δ < |zN0 − c|/10 (so r > N0) by (3.1) and |x− zr| ≥ δ/10,

we have |xr− c| = sr|x− zr| ≥ 2N0/2δ/10 > δ. If |zr− ∂H| ≥ δ/10, then |c− ∂Hr| > δ for

the same reason. If on the other hand there is a point y ∈ ∂H such that |y − zr| < δ/10,

then y has to be a precritical point. By the choice of r, y = zr′ ∈ (c + 8.9δ, c + 9δ] for

some r′ < r. By the choice of N and Lemma 3.4, |yr − c| = |cr−r′ − c| ≥ δ.

This shows that Hr satisfies (3.2), but also T j−l−r|Hr is ε-symmetric around xr, and

this contradicts (IHj−l−r), proving this lemma.

Combining the induction hypothesis (IHn) and Lemma 3.7, we have proved the fol-

lowing stronger property.

Corollary 3.8. If J̃ is centered at ck for some 1 ≤ k ≤ 2N and |J̃ | ≥ 22δ, then T j|J̃ is

not ε-symmetric for j ≤ n.

Now we continue the induction on n and assume by contradiction that T n|H is ε-

symmetric for some H satisfying (3.2) and for ε satisfying (3.3). Let [a′, b′] := H ′ ⊂ H

be centered around x such that c ∈ ∂H ′. Assume without loss of generality that c = a′

is the left endpoint of H ′, and let L and R be intervals of length δ at the left and right

side adjacent to H ′. Since |H ′| ≥ δ, so H ′ 3 zN or ẑN , there is 0 < k ≤ N minimal such

that c ∈ H ′
k. Clearly |H ′

k| > |Lk| = |Rk| ≥ 100δ. We distinguish four cases:

Case I: H ′
k satisfies (3.2). Then by (IHn−k), T n−k|H′

k
cannot be ε-symmetric, and neither

can T n|H′ or T n|H .

Case II: |xk−c| < δ, see Figure 1 (left). If the length of the interval T n−k([xk, c]) exceeds

ε, then since T n−k is also symmetric around c, T n−k must be ε-symmetric on H ′
k both with

center xk and with center x̂k, and therefore ε-periodic on H ′ with period 2η := 2|xk − c|.
We use the same argument as in the proof of Lemma 3.7: T n−k is ε-symmetric on each

interval Pi := [c + (2i − 1)η, c + (2i + 1)η] for each i ∈ Z such that Pi ⊂ H ′
k. Since

|H ′
k| ≥ 100δ ≥ 100η, Pi ⊂ H ′

k for at least −25 ≤ i ≤ 25. Take r ≤ N minimal such that
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Figure 1: An illustration of Cases II (left) and IV (right).

[zr − δ/10, zr + δ/10] ⊂ H ′
k, and i ∈ Z as in (3.4), and H ′′ ⊂ H ′ such that H ′′

k is the

maximal interval centered at c+2iη on which T r is monotone. As before, T n−(k+r)|H′′
k+r

is

the ε-symmetric but H ′′
k+r satisfies (3.2). This would contradict (IHn−(k+r)), so it cannot

occur.

If on the other hand the length of T n−k([xk, c]) is less then ε, then we might as well

have chosen x such that xk = c. This means that the intervals Lk+1 and Rk+1 are adjacent,

see Figure 1 (bottom left). More precisely, they are adjacent except for an error which

does not show at ε-scale under the iterate T n−(k+1), so by a negligible adjustment, we can

assume that they form an interval of length ≥ 100δ with center ck+1. Since k + 1 ≤ 2N ,

Corollary 3.8 implies that T n−(k+1)|Lk+1∪Rk+1
and hence T n|H are not ε-symmetric.

Case III: |a′k − c| < δ. Since k ≤ N , the choice of δ renders this impossible.

Case IV: |b′k− c| < δ, see Figure 1 (right). Replace R by the largest interval R′ ⊂ H ∪R

with R′∩R 6= ∅ such that c ∈ ∂R′
k and T k|R′ is monotone. If c ∈ ∂R′

l for some 0 ≤ l < k,

then R′
k = [c, ck−l], so |R′

k| ≥ δ by Lemma 3.4. Also rename H ′ \ R′ to H ′. Hence

T k+1|L∪H′∪R′ has three branches, sδ ≤ |R′
k+1| and 100δ ≤ |Lk+1| ≤ |H ′

k+1|.
Let j > 0 be minimal such that T k+j+1(H ′) 3 c. If H ′

k+j+1 = [ck+j+1, cj+1], which is

centered at xk+j+1, satisfies (3.2), then we can invoke (IHn−(k+j+1)), so assume that this

is not the case. Since |L| ≥ δ, so L 3 zN or ẑN , we have j ≤ k + j + 1 ≤ N . Therefore

both |cj+1 − c| > δ and |ck+j+1 − c| ≥ δ.
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Thus if (3.2) fails, we must have |xk+j+1 − c| < δ. If in the remaining n− (k + j + 1)

iterates, the arc [xk+j+1, c] grows to length > ε, then, as in Case II, T n|H′ must contain

a large ε-periodic arc, to which we apply the same argument as in Case II (i.e., the

argument of Lemma 3.7). The remaining possibility is that xk+j+1 is so close to c that

on an ε-scale, we may as well assume that xn+k+1 = c.

Both ck+j+2 = a′k+j+2 and cj+2 ≈ b′k+j+2 are local minima of T k+j+2|L∪H′∪R′ , see

Figure 1 (bottom right). Assume without loss of generality that cj+2 < ck+j+2, so R′
k+j+2

has a small extra hook before joining up with Lk+j+2. As we assumed that T n|H is ε-

symmetric, the effect of this hook needs to be ‘ε-repeated’ near a′ in L. But Lk+j+2 and

R′
k+j+2 overlap, so in R′, the same effect needs to be ε-repeated next to the first hook.

Continuing this way, we find that T n−(k+j+2) is ε-periodic over the entire length of R′
k+j+2.

Take i minimal such that R′′ := T i(R′
k+j+2) 3 c. Since |R′

k| ≥ δ we have j+ i+2 < N ,

|R′′| ≥ 100δ and |∂R′′ − c| ≥ δ. Therefore T n−(k+j+i+2)|R′′ is ε-periodic of period 2η,

where the length of the hook after i more iterates is η := |cj+i+2− ck+j+i+2| > ε, because

k + j + i + 2 ≤ 2N and by the choice of ε in (3.3). If η < 10δ < |R′′|/10, then

T n−(k+j+i+2)|R′′ is ε-periodic with at least 5 adjacent intervals P of length 2η around the

center of which T n−(k+j+i+2)|R′′ is ε-symmetric. So we can find a new interval H ′′ ⊂ R′′

centered around the center of one of these P s such that H ′′ satisfies (3.2). But this

contradicts (IHn−(k+j+i+2)).

If η ≥ 10δ, then we let H ′′ be the arc of length 22δ centered at ck+j+i+2. Again,

since k + j + i + 2 ≤ 2N , the iterate T n−(k+j+i+2) cannot be ε-symmetric on H ′′ by

Corollary 3.8. But then the assumed ε-symmetry of T n|H does not extend beyond H ′,

and Case IV follows.

This proves the inductive step and hence the proposition.

Let κ := min{i ≥ 3 : ci ≥ c}. Then κ < ∞ provided 1 < s < 2. Let · · · < c−3 <

c−2 < c−1 < c0 = c be the successive precritical points on the left of c with T j(c−j) = c.

Since cκ−1 < c < cκ, we have c2−κ < c2 < c3−κ. Let δ = |zN − c| as in (3.1) be so small

(i.e., N as in Lemma 3.4 so large) that

δ <
1

30
min{|c−1 − c−2|, |c−1 − ĉ1|, |c2 − c2−κ|}, (3.5)

where ĉ1 = 1 − c1 = 1 − s/2. Assume that s ∈ [1, 2] is such that c is not (pre)periodic,

and take ε is as in (3.3) in the proof of Proposition 3.6.

Let (Ai)i∈N be the sequence of maximal p-link-symmetric arcs with center si for every

i ∈ N. Recall that (si)i∈N is the sequence of snappy p-points (see Definition 2.7) and that
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width(Cp) := maxj |Ij
p |.

Lemma 3.9. If width(Cp) < ε, then Ai contains exactly κ snappy p-points for each

i ≥ κ− 1, namely si−κ+2, si−κ+3, . . . , si+1, and si−κ+2 is an interior point of Ai.

Proof. Let H be the interval centered at c2 such that c is the left endpoint of Hκ−2 :=

T κ−2(H). Then |H| ≥ 22δ by the choice of δ, so by Proposition 3.6 and Lemma 3.7 in

particular, T p+i−1|H cannot be ε-symmetric.

J

¡¢¡¢¡¢

¡¡¡

¤¤¤

si−κ+1 si−κ+2 si−κ+3 si si+1
( )
L R

?
πp+i

c1−κ c2−κ c3−κ c c1
¡¢

?
T

XXXXXXXXXXz
@

@@R

c1−κ

c3−κ c
c1¤£c2︸︷︷︸

H

Figure 2: The arc J and its image under πp+i and T ◦ πp+i = πp+i−1.

Let J = [x, si+1] be such that J 3 si and d̄(si, si+1) = d̄(x, si), where d̄ is defined in

Definition 2.3. Then πp+i−1 maps J in a 2-to-1 fashion onto [c2, c1], with πp+i−1(si) = c1

and πp+i−1(si+1) = c2. Therefore J is p-symmetric and also p-link-symmetric around si.

Since c2−κ < c2 < c3−κ, we have πp+i−1(J) 63 c2−κ. Extend J on either side by equally

long arcs L and R such that πp+i−1(L ∪ R) = H, see Figure 2. Since T p+i−1|H is not

ε-symmetric, Ai 6⊃ L∪ J ∪R provided width(Cp) < ε. Hence Ai 63 si−κ+1 as claimed.

Remark 3.10. The bound κ in this lemma is not sharp if Ts has a periodic critical point.

For example, for the tent map with c2 < c = c3 < c1, the folding pattern is

FP (C) = ∗ 0 1 0 2 0 1 3

maximal p-symmetric︷ ︸︸ ︷
1 0 2 0 4 0 2 0 1 3 1 0 5 0 1 3 1 0 2 0 4 0 2 0 1 6 1 0 2 0 4 0 2︸ ︷︷ ︸

maximal p-link-symmetric

0 1 . . .

where p-levels of snappy p-points are underlined and ∗ denotes the conventional p-level of

α. Since c has period 3, so ca = ca+3b for all a, b ∈ N, p-link-symmetric arcs can be longer

than p-symmetric arcs. Indeed, the maximal p-symmetric arc centered at snappy point

s5 stretches from s3 to s6, while maximal p-link-symmetric arc centered at s5 stretches

almost from α to some point with p-level 2. This property holds for all snappy points:

the maximal p-link-symmetric arc around si contains sj for all j ≤ i + 1.

A preperiodic example is s = 2, i.e., lim←−([0, 1], Ts) is the Knaster continuum.
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Lemma 3.11. Assume that width(Cp) < ε and fix i ∈ N, i > κ−1, and let `i and `i−1 be

the links of Cp containing si and si−1 respectively. Let y be such that si−1 ≺ y ≺ si and

y is not contained in the same arc-component of `i as si, nor in the same arc-component

of `i−1 as si−1. Then the maximal p-link-symmetric arc J with center y contains at most

one snappy p-point, and J ⊂ Ai.

Proof. Let · · · < c−2 < c−1 < c0 = c be the successive precritical points to the left of c

with T j(c−j) = c. Since Ai contains si+1 and its symmetric point around si (at least as

boundary points), we have πp+i(Ai) ⊃ [ĉ1, c1] ⊃ [c−1, c]. Let H := πp+i(J) with center

x := πp+i(y) ∈ [c−1, c]. Assume by contradiction that J contains two snappy p-points, or

that J 6⊂ Ai. Then |H| ≥ 22δ by the choice of δ in (3.5).

Let w := (c−1 + c)/2. We distinguish four cases.

1. c− δ < x < c. If |T i([x, c])| ≤ ε, then we cannot ‘ε-distinguish’ x from c, violating

our assumption that y and si do not belong to the same arc-component of the same

link. If |T i([x, c])| > ε, then T i is ε-symmetric on H with centers x and c, so T i is

ε-periodic on H with period 2|x−c|. This leads to a contradiction by the argument

of the proof of Lemma 3.7.

2. w ≤ x ≤ c − δ. Then H satisfies (3.2), so by Proposition 3.6, T i|H cannot be

ε-symmetric.

3. c−1 + δ/s ≤ x < w. Then by assumption H contains one of c, c−2 or ĉ1 (whence

|H| ≥ 22δ), and hence T (H ∩ [c−2, c] ∩ [ĉ1, c]) satisfies (3.2), so T i|H cannot be

ε-symmetric by Proposition 3.6.

4. c−1 < x < c−1 + δ/s. If |T i([c−1, x])| ≤ ε, then we cannot ‘ε-distinguish’ x from

c, violating the assumption that y and si−1 are not contained in the same arc

component of `i−1. If |T i([c−1, x])| > ε and again, H by assumption contains one

of c, c−2 or ĉ1 (so |H| ≥ 22δ), then T i−1 is ε-periodic on T (H) which again leads to

a contradiction by the argument of the proof of Lemma 3.7.

This proves the lemma.

4 Link-Symmetric Arcs and Homeomorphisms

In this section we study the action of homeomorphisms h : lim←−([0, 1], Ts′) → lim←−([0, 1], Ts)

on snappy q-points and q-points in general. Let q, p, g ∈ N0 be such that

h(Cq) ¹ Cp ¹ h(Cg).
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Recall that we assumed the slopes s′ and s to be such that the critical points c′ and c are

not (pre)periodic. Clearly h maps the zero-composant C′ of lim←−([0, 1], Ts′) to the zero-

composant C of lim←−([0, 1], Ts), and in particular the endpoint α′ of C′ to the endpoint α

of C. Let κ′ := min{i ≥ 3 : c′i ≥ c′}, where c′i = T i
s′(c

′). Let us denote the snappy q-points

(i.e., associated with Cq) by s′i and the snappy g-points by s′′i . Therefore, snappy q-point

s′i is the same as snappy g-point s′′i+q−g. Similarly, let A′
i be the maximal q-link-symmetric

arc centered at s′i while as before, Ai denotes the maximal p-link-symmetric arc centered

at si

Since A′
i is q-link-symmetric, and h(Cq) ¹ Cp, the image Di := h(A′

i) ⊂ C is p-link-

symmetric and therefore has a well-defined center, we denote it as mi, and a well-defined

central link `p (see Definition 2.6). In fact, h(s′i) and mi belong to the central link `p and

mi is the p-point with the highest p-level of all p-points of the arc component of `p which

contains h(si). Let Mi := Lp(mi).

Theorem 4.1. Mi+1 = Mi + 1 for all sufficiently large integers i ∈ N.

Proof. Without loss of generality we can assume that s′ ≥ s, so that κ′ ≥ κ. We prove

first that if N ≥ κ is so large that mN lies beyond the κ-th snappy p-point of C, then

Lp(y) < MN , for every y ∈ (α,mN); i.e., mN is snappy.

Assume by contradiction that there exists y ∈ (α,mN) such that Lp(y) ≥ MN . By

taking Lp(y) maximal with this property, we can assume that y = sj−1 ≺ mN ≺ sj for

some j > κ. More precisely, mN is not contained in the same arc-component of the link

containing sj−1 as sj−1, and similarly for sj. Lemma 3.11 implies that DN contains at

most one snappy p-point and that DN ⊂ Aj. Let us denote by B the p-link-symmetric

arc such that sj is the center of B, DN ⊂ B ⊂ Aj and ∂DN ∩ ∂B 6= ∅ (see Figure 3).

Since Cp ¹ h(Cg), the arc B′′ = σq−g ◦ h−1(B) is g-link-symmetric and contains the arc

σq−g ◦ h−1(DN) = σq−g(A′
N). The center z′′ of B′′ is the center of the arc component of

the central link `g of B′′ containing σq−g ◦h−1(sj). By Lemma 3.9, A′
N contains κ′ snappy

q-points s′N−κ′+2, . . . , s
′
N , s′N+1.

The map σq−g maps the κ′ snappy q-points s′i ∈ A′
N to the κ′ snappy g-points s′′i+q−g ∈

σq−g(A′
N), and B′′ contains at least these κ′ snappy g-points. If the center z′′ of B′′ is

not snappy, then B′′ contains at most one snappy g-point by Lemma 3.11, so we have a

contradiction. Otherwise, if z′′ is snappy, then even if z′′ is the right-most snappy g-point

of σq−g(A′
N), then still B′′ contains κ′ − 1 snappy g-points on the left of the center z′′,

contradicting Lemma 3.9. Therefore, mN is snappy.

Let us consider the arc DN+κ′−2 = h(A′
N+κ′−2). Since Lq(s

′
i+1) − Lq(s

′
i) = 1, the
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s′N

A′N︷ ︸︸ ︷
-
h

mN

DN︷ ︸︸ ︷
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B︸ ︷︷ ︸
Aj

@
@
@R
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¡
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s′′N+q−g

σq−g(A′N )︷ ︸︸ ︷
z′′

︸ ︷︷ ︸
B′′

Figure 3: The relations between relative snappy points and arcs in Cq (left), Cp (right),
and Cg (bottom).

arc [s′i, s
′
i+1] contains a q-point of every q-level less than i, so contains q-points of q-

levels 1 and 2. Therefore, πq([s
′
i, s

′
i+1]) = [c2, c1]. Note that two different points from

s′N , . . . , s′N+κ′−1 ∈ A′
N+κ′−2 can be mapped into the same link, say `p of Cp, but cannot

be mapped into the same arc component of `p. Indeed, if h([s′i, s
′
i+1]) ⊂ A, where A is a

arc component of `p, then h(Cq) ⊂ `p, a contradiction. Therefore, sMN
, . . . , sMN+κ′−1

are

all different.

So, the arc DN+κ′−2 is p-link-symmetric and contains at least κ′ snappy p-points,

sMN
, . . . , sMN+κ′−1

. By Lemma 3.9, the maximal p-link-symmetric arc AMN+κ′−2
centered

at the snappy p-point sMN+κ′−2
contains κ snappy p-points, sMN+κ′−2−κ+2, . . . , sMN+κ′−2

, sMN+κ′−2+1.

Therefore, DN+κ′−2 ⊆ AMN+κ′−2
, κ′ = κ, sMN+i

= sMN+i and MN+i = MN + i for all

0 ≤ i ≤ κ− 1. By induction we get MN+i = MN + i for all i ∈ N0 as well.

Every snappy p-point si ∈ C can be contained in at most two links of Cp, and one of

them is always the central link of Ai, which we will denote by `si
p . Let Ksi

be the arc

component of `si
p containing si. Given a p-point x ∈ C with Lp(x) = l, there can be two

links of Cp containing x, but one of them is always `sl
p . We denote the arc component

of `sl
p containing x by Kx. Let `

s′i
q ∈ Cq and Ks′i ⊂ `

s′i
q be the similar notation related

to C′ and Cq. Also, for a q-point x′ of C′ with Lq(x
′) = k let the arc component of `

s′k
q

containing x′ be denoted by Kx′ .

Proposition 4.2. There exists M ∈ Z such that the following holds:

(1) Let l ∈ N and let x′ be a q-point with Lq(x
′) = l. Then u = h(x′) ∈ `

sl+M
p and

the arc component Ku ⊂ `
sl+M
p containing u, also contains a p-point x such that
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Lp(x) = l + M .

(2) For l ∈ N0 and i ∈ N, the number of q-points in [s′i, s
′
i+1] with q-level l is the same

as the number of p-points in [sM+i, sM+i+1] with p-level M + l.

Proof. (1) Recall that the set of q-points in C′ is denoted by E ′
q. By Theorem 4.1, there

exists M ∈ Z such that ai = h(s′i) ∈ `
sM+i
p for every i ∈ N0 and the arc component Kai

of

`
sM+i
p contains sM+i. Therefore, statement (1) is true for all snappy q-points.

Also h([s′1, s
′
2]) = [a1, a2], sM+1 ∈ Ka1 and sM+2 ∈ Ka2 . Let q-point x′1 ∈ [s′2, s

′
3]

be such that the arc [s′1, x
′
1] is q-symmetric with center s′2. Then h([s′1, x

′
1]) is p-link-

symmetric with center sM+2. Since there exists a unique p-point b1 such that the arc

[sM+1, b1] is p-symmetric with center sM+2, we have h(x′1) ∈ Kb1 , see Figure 4. Also

Lq(x
′
1) = 1 and Lp(b1) = M + 1.

s′1 . . . s′2 . . . x′1 . . . s′3 . . . x′1,2 . . . x′2 . . . s′4 . . .

q-symmetric︷ ︸︸ ︷

︸ ︷︷ ︸
q-symmetric

︸ ︷︷ ︸
q-symmetric

@
@

@R
h

. . . sM+1 . . . sM+2 . . . b1 . . . sM+3 . . . b1,2 . . . b2 . . . sM+4 . . .

p-symmetric︷ ︸︸ ︷

︸ ︷︷ ︸
p-symmetric

︸ ︷︷ ︸
p-symmetric

Figure 4: The configuration of symmetric arcs.

We have h([s′2, s
′
3]) = [a2, a3], sM+2 ∈ Ka2 and sM+3 ∈ Ka3 . Let the q-point x′2 ∈

[s′3, s
′
4] be such that the arc [s′2, x

′
2] is q-symmetric with center s′3. Therefore h([s′2, x

′
2])

is p-link-symmetric with center sM+3. There exists a unique p-point b2 such that the

arc [sM+2, b2] is p-symmetric with center sM+3, so h(x′2) ∈ Kb2 . Also Lq(x
′
2) = 2 and

Lp(b2) = M + 2. Since [s′2, x
′
2] is q-symmetric, there exists a q-point x′1,2 ∈ [s′3, x

′
2] such

that the arc [x′1, x
′
1,2] is q-symmetric with center s′3. Then h([x′1, x

′
1,2]) is p-link-symmetric

with center sM+3. Since there exists a unique p-point b1,2 such that the arc [b1, b1,2] is

p-symmetric with center sM+3, we have h(x′1,2) ∈ Kb1,2 , see Figure 4. Also Lq(x
′
1,2) = 1

and Lp(b1,2) = M + 1.
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The proof of (1) follows by induction. Suppose at step k we have h([s′k, s
′
k+1]) =

[ak, ak+1], sM+k ∈ Kak
and sM+k+1 ∈ Kak+1

, see Figure 5. Let again q-point x′k ∈
[s′k+1, s

′
k+2] be such that the arc [s′k, x

′
k] is q-symmetric with center s′k+1. Then h([s′k, x

′
k])

is p-link-symmetric with center sM+k+1. The unique p-point bk such that [sM+k, bk] is p-

symmetric with center sM+k+1 satisfies h(x′k) ∈ Kbk
. Also Lq(x

′
k) = k and Lp(bk) = M+k.

s′k s′k+1 x′ x′k y′ s′k+2 x′k+1 s′k+3

q-symmetric︷ ︸︸ ︷

?
h

sM+k

≈ h(s′k)

sM+k+1 x bk y sM+k+2

≈ h(s′k+2)

bk+1

≈ h(x′k+1)

sM+k+3

≈ h(s′k+3)
︸ ︷︷ ︸

p-link-sym.

Figure 5: The relative point in the induction step. Here ≈ stands for “belongs to the
same arc component in the same link”.

Let us suppose by induction that for every q-point x′ ∈ Eq, Lq(x
′) > 0, x′ ≺ x′k,

we have u = h(x′) ∈ `
sr+M
p , where r = Lq(x

′), and the arc component Ku ⊂ `
sr+M
p

contains a p-point x such that Lp(x) = r + M . Since Lq(x
′
k) = k, Lq(s

′
k+1) = k + 1 and

Lq(s
′
k+2) = k + 2, for every q-point x′ ∈ (s′k+1, s

′
k+2), x′ 6= x′k, we have Lq(x

′) < Lq(x
′
k).

Hence for every q-point y′ ∈ (x′k, s
′
k+2) there exists a q-point x′ ∈ (s′k+1, x

′
k) such that

the arc [x′, y′] is q-symmetric with center x′k. So the arc h([x′, y′]) is p-link-symmetric

with center bk. The induction hypothesis implies that for u = h(x′), the arc component

Ku ∈ `
sr+M
p contains a p-point x such that Lp(x) = r + M , where r = Lq(x

′).

Since Lp(bk) = M +k, Lp(sM+k+1) = M +k+1 and Lp(sM+k+2) = M +k+2, we have

Lp(v) < Lp(bk) for every p-point v ∈ (sM+k+1, sM+k+2), v 6= bk. Hence for every p-point

v ∈ (bk, sM+k+2) there exists a p-point w ∈ (sM+k+1, bk) such that the arc [w, v] is p-

symmetric with center bk. Therefore, and since h([x′, y′]) is p-link-symmetric with center

bk, there exists a unique p-point y such that the arc [x, y] is p-symmetric with center bk.

Also, h(y′) ∈ Ky and Lp(y) = Lp(x), so Lp(y) = Lq(y
′) + M . This proves that for every

q-point x′ ∈ Eq, Lq(x
′) > 0, x′ ≺ s′k+2, we have u = h(x′) ∈ `

sr+M
p , where r = Lq(x

′), and

the arc component Ku ⊂ `
sr+M
p contains a p-point x such that Lp(x) = r + M .

Next h([s′k+1, s
′
k+2]) = [ak+1, ak+2], sM+k+1 ∈ Kak+1

and sM+k+2 ∈ Kak+2
. Let the q-

point x′k+1 ∈ [s′k+2, s
′
k+3] be such that the arc [s′k+1, x

′
k+1] is q-symmetric with center s′k+2.

Then h([s′k+1, x
′
k+1]) is p-link-symmetric with center sM+k+2. Since there exists a unique
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p-point bk+1 such that the arc [sM+k+1, bk+1] is p-symmetric with center sM+k+2, it follows

that h(x′k+1) ∈ Kbk+1
. Also, Lq(x

′
k+1) = k+1 and Lp(bk+1) = M +k+1. Since [s′k+1, x

′
k+1]

is q-symmetric with center s′k+2 and [sM+k+1, bk+1] is p-symmetric with center sM+k+2, the

same argument as above shows that for every q-point x′ ∈ Eq, Lq(x
′) > 0, x′ ≺ x′k+1, we

have u = h(x′) ∈ `
sr+M
p , where r = Lq(x

′), and the arc component Ku ⊂ `
sr+M
p contains a

p-point x such that Lp(x) = r + M . This proves the induction step.

(2) Let x be a p-point such that Lp(x) > 0 and v = h−1(x) lies beyond the κ-th snappy

g-point. Since h−1 is also a homeomorphism and h−1(Cp) ≺ Cg, (1) implies that there

exists M ′ such that v ∈ `
s′′
r+M′

g , where r = Lp(x). Also the arc component Kv ⊂ `
s′′
r+M′

g

contains a g-point x′′ such that Lg(x
′′) = r + M ′.

Let x′ be a q-point such that Lq(x
′) > 0, x′ lies beyond the κ-th snappy g-point and

u = h(x′) lies beyond the κ-th snappy p-point. Then u ∈ `
sr′+M
p , where r′ = Lq(x

′),

and the arc component Ku ⊂ `
sr′+M
p contains a p-point x such that Lp(x) = r′ + M .

Also v = h−1(x) ∈ `
s′′
r′+M+M′

g and the arc component Kv ⊂ `
s′′
r′+M+M′

g contains a g-point

x′′ such that Lg(x
′′) = Lq(x

′) + M + M ′. Since h−1 ◦ h = id, we have x′′ = x′. Also

Lg(x
′′) = Lq(x

′) + q − g implies that M + M ′ = q − g. Since the number of q-points in

[s′i, s
′
i+1] with q-level l, l ∈ N0, is the same as the number of g-points in [s′′q−g+i, s

′′
q−g+i+1]

with g-level q − g + l, it follows that this number is the same as the number of p-points

in [sM+i, sM+i+1] with p-level M + l.

Proof of Theorem 1.1. By [23] we can assume that the critical points of Ts and Ts′ have

infinite orbits. Therefore the above proposition shows that

FPq([s
′
k, s

′
k+1]) = FPp+M([sM+k, sM+k+1]) = FPp([sk, sk+1]),

for every positive integer k, and therefore FP (C′) = FP (C), implying s′ = s. This proves

the Ingram Conjecture.

5 Pseudo-isotopy

Throughout this section, h : lim←−([0, 1], Ts) → lim←−([0, 1], Ts) will be an arbitrary self-

homeomorphism. We will extend Proposition 4.2 in order to prove the result on pseudo-

isotopy. Note that (1) and (2) of Proposition 4.2 together show that h induces an order

preserving injection hq,p from Eq to Ep such that hq,p(Eq,i) = Ep,M+i = Ep+M,i for every

i ∈ N0, where Er,l denotes the set of all r-points with r-level l (see Definition 2.5). In

fact hq,p is an order preserving bijection from Eq to Ep+M and is defined as follows:
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Definition 5.1. Let x ∈ Eq. If x = s′i for some i ∈ N, we define hq,p(s
′
i) = sM+i ∈ Ep. For

all other x ∈ Eq, there exists i ∈ N such that x ∈ (s′i, s
′
i+1). By Proposition 4.2, the num-

ber of q-points of (s′i, s
′
i+1) is the same as the number of (p+M)-points of (sM+i, s

′
M+i+1).

Let (s′i, s
′
i+1) ∩ Eq = {x0, . . . , xn} and (sM+i, s

′
M+i+1) ∩ Ep+M = {y0, . . . , yn}. We define

hq,p(x
i) = yi, i = 0, . . . , n.

The next lemma shows that hq,p is essentially independent of q and p.

Lemma 5.2. If q1, p1 ∈ N are such that h(Cq1) ≺ Cp1 ≺ h(Cq) ≺ Cp, then hq1,p1|Eq1
=

hq,p|Eq1
.

Proof. By Proposition 4.2, h(Cq) ≺ Cp implies that there exists M ∈ Z such that

hq,p(Eq,i) = Ep,M+i for every i ∈ N0. Also, h(Cq1) ≺ Cp1 implies that there exists M1 ∈ Z
such that hq1,p1(Eq1,i) = Ep1,M1+i for every i ∈ N0. Let r, l ∈ N be such that q1 = q + r

and p1 = p + l. Since Eq+r,i = Eq,r+i, we have

hq,p(Eq+r,i) = hq,p(Eq,r+i) = Ep,M+r+i,

and also

hq+r,p+l(Eq+r,i) = Ep+l,M1+i = Ep,M1+l+i.

We want to prove that M + r = M1 + l. To see this it suffices to pick a convenient point

x in Eq+r,j for some j ∈ N, and to prove that hq,p(x) = y = hq+r,p+l(x). Then the fact

that y ∈ Ep,M+r+j and y ∈ Ep,M1+l+j implies that M + r + j = Lp(y) = M1 + l + j. For

us, the convenient choice of x ∈ Eq+r ⊂ Eq is a snappy (q + r)-point.

Let us denote the snappy (q + r)-points by ŝ′i and the snappy (p + l)-points by ŝi,

while as before s′i denotes the snappy q-points and si denotes the snappy p-points. Note

that the snappy (q + r)-point ŝ′i is the same as the snappy q-point s′i+r, and the snappy

(p+ l)-point ŝi is the same as the snappy p-point si+l. Let us denote the maximal (q + r)-

link-symmetric arc with the center ŝ′i by Â′
i, and the maximal (p + l)-link-symmetric arc

with the center ŝi by Âi, while as before A′
i denotes the maximal q-link-symmetric arc

with the center s′i, and Ai denotes the maximal p-link-symmetric arc with the center si.

Note that h(Â′
i) ⊆ ÂM1+i, h(A′

i+r) ⊆ AM+i+r and ŝ′i = s′i+r. Also, the center of ÂM1+i is

ŝM1+i = sM1+i+l and the center of AM+i+r is sM+i+r. Therefore, sM+i+r = sM1+i+l and

M + r = M1 + l.

Corollary 5.3. R = M + p− q does not depend on M, p, q.

Proof. By Lemma 5.2, M1+l = M+r. Therefore R1 = M1+p1−q1 = M1+(p+l)−(q+r) =

M + r + p− q − r = R.
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Definition 5.4. We call an arc B ∈ C a p-bridge if the boundary points of B are p-points

with p-level 0, and if Lp(x) 6= 0 for every p-point x ∈ Int B.

Corollary 5.5. Let B′ ⊂ C be a (q + 1)-bridge and ∂B′ = {a′, b′}. There exists a

(p + M + 1)-bridge B such that for ∂B = {a, b} we have h(B′) ⊂ Ka ∪ B ∪ Kb and

h(a′) ∈ Ka, h(b′) ∈ Kb, where Ka and Kb are the arc-components of the link `
sM+1
p of Cp

containing a and b respectively.

Proof. Proposition 4.2 dealt with points in Eq,j for j ≥ 1, but bridges involve points of

level zero. Since Eq,1 = Eq+1,0, in this corollary we can work with (q + 1)-bridges.

For each j ≥ 1, Eq,j is contained in a single link `
s′j
q ∈ Cq and by Proposition 4.2, for

`
sM+j
p ⊇ h(`

s′j
q ), every point of h(Eq,j) is contained in an arc component of `

sM+j
p which

contains a p-point of Ep,M+j = Ep+M,j. Since Eq+1,0 = Eq,1 and Ep+M+1,0 = Ep+M,1, every

point of h(Eq+1,0) = h(Eq,1) is contained in an arc component of `
sM+1
p which contains a

point of Ep+M,1 = Ep+M+1,0.

Every two adjacent points of Eq+1,0 are the boundary points of a (q + 1)-bridge, and

every two adjacent points of Ep+M+1,0 are the boundary points of a (p + M + 1)-bridge.

We also have hq,p+M(Eq+1,0) = hq,p+M(Eq,1) = Ep,M+1 = Ep+M+1,0. Therefore, for every

(q + 1)-bridge B′ there exists a (p + M + 1)-bridge B such that hq,p+M(B′) = B. More

precisely, for every (q + 1)-bridge B′ and ∂B′ = {a′, b′}, there exists a (p + M + 1)-bridge

B such that for ∂B = {a, b} we have h(B′) ⊂ Ka∪B∪Kb with h(a′) ∈ Ka and h(b′) ∈ Kb.

Note that if B′ is a (q +1)-bridge with center z′ and ∂B′ = {a′, b′} and B′ is contained in

a single link `
s′1
q+1, then h(B′) is contained in the arc component Ka = Kb which contains

also a (p + M + 1)-point z such that Lp+M+1(z) = Lq+1(z
′). So the arc component Ka

contains a (p+M +1)-bridge B with center z and we have again h(B′) ⊂ Ka∪B∪Kb.

Example 5.6. A sin 1
x
-continuum is a homeomorphic copy of

(
{0} × [−1, 1]

)
∪

{
(x, sin

1

x
) : x ∈ (0, 1]

}

and the arc {0} × [−1, 1] is called the bar of the sin 1
x
-continuum. Assume that s >

√
2

is such that the inverse limit lim←−([0, 1], Ts) contains a sin 1
x
-continuum H. (Such s exist

in abundance, cf. [2] and [13].) Then {σ−n(H)}∞n=0 is a sequence of pairwise disjoint

sin 1
x
-continua with diam(σ−n(H)) → 0 as n → ∞. There is then a sequence of disjoint

neighborhoods Un of σ−n(H) with diam(Un) → 0. For each n, Un∩C contains arbitrarily

long arcs. Pick a sequence of arcs An ⊂ Un ∩ C of arc-length ≥ n + 1, and construct a

bijection h : lim←−([0, 1], Ts) ª such that h is the identity on lim←−([0, 1], Ts) \ ∪nAn and on
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each An, h fixes ∂An, but moves some points in An homeomorphically such that there is

xn ∈ An with d̄(xn, h(xn)) = n. Since diam(Un) → 0, we find that h is continuous and

bijective. Finally the compactness of lim←−([0, 1], Ts) implies that h is a homeomorphism.

Even though h is isotopic to the identity, supx∈C d̄(x, h(x)) = ∞.

Therefore we cannot assume that a general self-homeomorphism of lim←−([0, 1], Ts) has

an R ∈ Z such that supx d̄(h(x), σR(x)) < ∞. Block et al. [8, Theorem 4.2] used this

property to conclude that h and σR are pseudo-isotopic, i.e., they permute the composants

of lim←−([c2, c1], Ts) in the same way. However, since σ−R ◦ h preserves (q + 1)-bridges for

some R ∈ Z and q sufficiently large, we can still follow the argument from [8].

Proof of Theorem 1.2. Let P = s/(1 + s) > 1/2 be the orientation reversing fixed point

of Ts and Q the center between c2 and c1. Let ε = mesh(Cp) in Definition 2.4. Without

loss of generality, we can take ε/2 < min{|c − P |, |c − Q|}. Let x ∈ lim←−([0, 1], Ts) \ C =

lim←−([c2, c1], Ts) be arbitrary. Recall that the composant of x in lim←−([c2, c1], Ts) is the union

of all proper subcontinua of lim←−([c2, c1], Ts) containing x. Without loss of generality we

can fix q ∈ N such that πq+1(x) ≥ P . Fix p ∈ N and M ∈ Z as in Proposition 4.2

such that h(Cq) ¹ Cp and h sends (q + 1)-bridges to (p + M + 1)-bridges in terms of

Corollary 5.5. Let R = M + p− q, so p + M + 1 = q + R + 1. Since by Corollary 5.3, R

does not depend on q and p, we can take q and p larger than |R| without loss of generality.

Recall that the links `k
p of Cp are of the form `k

p = π−1
p (Ik

p ) of width ≤ εs−p/2. The

map σ−R maps the chain Cp to a chain C̃p−R whose links are of the form π−1
p−R(Ik

p ) and

hence also with width ≤ εs−p/2; this chain is coarser than Cp−R if R < 0. Furthermore,

the σ−R-image of a (q + R + 1)-bridge is a (q + 1)-bridge.

Take h̃ = σ−R ◦h. Since h(Cq) ¹ Cp, we have h̃(Cq) ¹ C̃p−R and h̃ sends (q+1)-bridges

to (q + 1)-bridges, but the ‘error’ allowed in Corollary 5.5, i.e., the arc-components

of links from Cp, must now be replaced by arc-components of links of C̃p−R. Recall

that width(Cp) = maxj |Ij
p |, and |πp−i(`

j
p)| = |πp(`

j
p)|si = |Ij

p |si, for every 0 ≤ i ≤
p. Therefore, πp−R(˜̀jp−R) = πq−M(˜̀jq−M) ≤ εs−p/2, and πq+1(˜̀

j
p−R) = πq+1(˜̀

j
q−M) =

πq−M(˜̀jq−M)s−M−1 ≤ εs−p−M−1/2. Thus, the (q + 1)-th projection of links of C̃p−R are

intervals of length ≤ εs−(p+M+1)/2 = εs−(q+R+1)/2, see Figure 6.

The (q +1)-bridges that are small enough to belong to one or two links of Cq will map

to arcs contained in the link ˜̀
p−R. Since πq+1(x) ≥ P and εs−(q+1)/2 < |c− P |, no such

short bridge can be close to x. On the longer (q + 1)-bridges of Cq that map outside of
˜̀
p−R, h̃ acts as a trivial one-to-one correspondence, sending the first such bridge to the

first, the second to the second, etc.

22



'

&

$

%

˜̀
p−R

?
πq+1

?
c

¾ -
< εs−(p+M+1)/2 = εs−(q+R+1)/2

r ¿

À

r ·

¸
h̃(a) h̃(b) ¶

µ
¨
§

¥
¦h̃(B)

'

&

$

%

˜̀
p−R

?
πp−R

?
c1+M

¾ -
< εs−p/2

r ¿

À

r ¯
°

h̃(a) h̃(b) ¨
§

h̃(B)

Figure 6: The (p−R)-th and (q +1)-th projection of ‘the bridge’ h̃(B) with relevant link
˜̀
p−R. The picture is suggestive of M + 1 ≤ 0; if instead M + 1 > 0, then h̃(B) contains

fewer (q + 1)-points than (p−R)-points.

Find a sequence (xn)n∈N ⊂ C such that xn → x. Then for large n, xn belongs to a

long (q +1)-bridge, and by the above argument, h̃(xn) and xn belong to the same (q +1)-

bridge up to an ‘error’ of at most εs−(q+R+1)/2. Take Hn = [h̃(xn), xn] and a subsequence

such that Hnj
→ H in Hausdorff topology. Clearly H is a continuum and x, h̃(x) ∈ H.

Since πq+1(x) ≥ P , the arcs Hnj
belong to arcs whose (q + 1)-projections belong to

[c− εs−(q+R+1)/2, c1] for all sufficiently large j. Since q + R + 1 ≥ 1 and ε/2 < c−Q, we

have Q < c− ε/2 < c− εs−(q+R+1)/2 implying [c− εs−(q+R+1)/2, c1] ⊂ [Q, c1].

Therefore πq+1(Hnj
), πq+1(H) ⊂ [Q, c1], and since [Q, c1] is a proper subset of [c2, c1]

and the inclusion holds for arbitrarily large q, H is a proper subcontinuum of lim←−([c2, c1], Ts).

It follows that h̃(x) and x belong to the same composant of lim←−([c2, c1], Ts). Apply σR to

find that h(x) and σR(x) belong to the same composant as well.

Pseudo-isotopy of h implies that the number of composants being mapped to them-

selves is the same for hn and σnR. This number grows like snR, which in [9] provides a

proof of the Ingram conjecture for tent maps with periodic critical point. In this situa-

tion, [9] in fact also shows that h is isotopic to a power of the shift. Due to the existence

of composants that are not arc-connected, this is not so clear in the general case.

Remark 5.7. Not every pseudo-isotopy is an isotopy. For instance, a homeomorphism
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flipping the bar of a sin 1
x
-continuum cannot be isotopic to the identity. If the bonding map

is a quadratic map within the first period doubling cascade, then the inverse limit space is

a finite collection of sin 1
x
-continua, see [7], and we can indeed construct homeomorphism

that are pseudo-isotopic but not isotopic to the identity. Among those tent maps Ts,

s ∈ [
√

2, 2], whose inverse limit space is known to contain sin 1
x
-continua, both in [2] and

[13], the topology is much more complicated, as more than a single ray can be expected

to accumulate on their bars. Thus the following question is very relevant:

Is every self-homeomorphism of lim←−([0, 1], Ts) isotopic to a power of the shift?

We know this to be true if c is periodic or non-recurrent [9, 10], but this case is simpler,

because the only proper subcontinua of lim←−([c2, c1], Ts) are arcs or points.
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