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Abstract: Precise knowledge of modal behavior is of essential importance for understanding
light guidance, particularly in hollow-core fibers. Here we present a semi-analytical model that
allows determination of bands formed in revolver-type anti-resonant hollow-core fibers. The
approach is independent of the actual arrangement of the anti-resonant elements, does not enforce
artificial lattice arrangements and allows determination of the effective indices of modes of
preselected order. The simulations show two classes of modes: (i) low-order modes exhibiting
effective indices with moderate slopes and (ii) a high number of high-order modes with very
strong effective index dispersion, forming a quasi-continuum of modes. It is shown that the mode
density scales with the square of the normalized frequency, being to some extent similar to the
behavior of multimode fibers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Hollow core fibers received significant attention during recent times due to their extraordinary
potential for a multitude of applications such as light generation and delivery in the UV [1–5] and
mid-IR [6–11], spectroscopy [12–17], micromachining [18,19], surgery [20] and low-latency
data transmission [21, 22]. In particular, hollow-core anti-resonant fibers (HC-ARFs), consisting
of a small number of anti-resonant elements (AREs) arranged around a hollow core, represent a
promising alternative to existing fiber geometries due to their simplistic design compared to, e.g.,
Kagome or photonic band gap (PBG) fibers [6, 23, 24]. In contrast to the latter fiber type, light
guidance in HC-ARFs is mediated by a combination of anti-resonant reflection at the air-silica
interfaces and inhibited coupling [25–27] and does not demand a periodic microstructured
cladding compared to PBG fibers. Within a first-order approximation, low-loss light guidance in
HC-ARFs is associated with the close-to-unity reflectivity of a ray incident on the glass strand at
nearly grazing incidence [28, 29].
A particularly important branch of HC-ARFs is the nodeless negative-curvature design (Fig.

1(a)), comprising mutually non-touching tubular AREs which are connected to the fiber jacket at
a single location, resulting in reduced bend loss [30]. The negative-curvature core shape and
the lack of nodes strongly reduce the number of modes the core mode could potentially couple
to and thus, decrease the confinement loss [31, 32]. This loss reduction strategy is typically
implemented on the basis of arranging a small number of tubular AREs around a central hollow
core by attaching them at constant azimuthal distances to the inner wall of a jacket capillary.
These fibers are referred to as revolver-type fibers, node-less HC-ARFs or single-ring PCFs
and reveal enormous potential for the applications mentioned above. Additional features (e.g.,
nano-bridges or nested tubes) can also be included into the AREs in order to further reduce
the confinement losses to telecommunication levels [4, 33–35], where an optimized thickness
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Fig. 1. (a) Illustration of the cross section of a single-ring anti-resonant hollow-core fiber
(i.e., revolver-type hollow-core fiber). The geometric parameters shown in the sketch are
explained in the main text. A typical, numerically calculated intensity distribution of the
fundamental core mode is shown (red). (b) Examples of intensity distributions of the top
and bottom band edge mode using our model (grey background: ARE strand). The inset
shows two anti-resonant elements and the scalar field distributions of top and bottom band
edge modes with the corresponding boundary condition highlighted by the two black dots.

of the air regions can also decrease losses [36]. Light guidance in HC-ARFs can be described
as a combination of (i) anti-resonant reflection [26] and (ii) inhibited coupling between core
and ARE modes [37]. An analysis of the guided modes is typically addressed by full-vectorial
finite-element (FE) simulations. However, the large diameters of core and AREs allow for
(circular and planar) approximations that enable predicting propagation constants and modal
attenuation very well [28,29,38–41]. Since anti-resonant reflection is necessary but not sufficient
for low-loss guidance of light in HC-ARFs, coupling of energy from the central core to the ARE
modes needs to be avoided (referred to as inhibited coupling), which is usually achieved by an
optimized ratio between core and ARE diameters.
To reveal the physics of light guidance in HC-ARFs, understanding the formation of bands

mediated by the modes of the microstructured cladding is the essential key and was of great help
to unlock the basic principles of light guidance in, e.g., band gap fibers [42] and planar photonic
crystal structures [43, 44]. Considering infinitely extended lattices of defined symmetry (e.g.,
hexagonal lattice in case of PBG fibers) has been successfully employed to calculate the density
of states (DOS) in microstructured claddings [45]. In contrast to PBG fibers, revolver-type
HC-ARFs generally include a single ring of AREs which are circularly arranged at constant
azimuthal distances.
Here, we present a semi-analytical model that allows calculating the edges of bands formed

by the coupling of the ARE-modes in revolver-type HC-ARFs. The approach is independent of
the actual arrangement of the AREs, does not enforce artificial lattice geometries to the single
ARE and allows determining the propagation constants of cladding modes of preselected order.
The effective indices obtained from the simulations show that (i) low-order modes are close
to the dispersion of the central core mode and (ii) there exist a high number of higher-order,
strongly-dispersive modes, forming a quasi-continuum of modes. Additionally, an analysis of the
modes at cut-off shows that mode density scales with the square of the normalized frequency.
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2. Fiber geometry and method

2.1. Fiber geometry

The geometry of the revolver-type HC-ARF considered here consists of N non-touching tubular
AREs (inner diameter d, wall thickness t, gap width s) attached to the interior of a jacket-tube
(Fig. 1(a)). Here we define three important parameters a = d/2, b = a + t and c = b + s/2 along
the radial axis of one ARE (Fig. 1(b)) which are required for the subsequent considerations. The
core diameter Dc is determined by the size and number of AREs, given by [41]

Dc = 2
c − b sin π/N

sin π/N (1)

2.2. Proposed model

The mathematical model which we would like to introduce here was originally developed within
the scope of all-solid PBG fibers by Birks et al [46]. The basic idea relies on determining
the effective indices neff of top and bottom band edge modes via analyzing the supermodes of
two identical adjacent cylindrical waveguides (field distributions: ψ). Due to the symmetry of
this geometry these modes are obtained by applying boundary conditions exactly in the middle
between the two waveguides: dψ/dr |r=c = 0 and ψ(r = c) = 0 (see Fig. 1(b)). The resulting
band edge modes resemble bonding and anti-bonding states well-known from the hybridization
of wave functions in molecular physics (e.g. H2 molecule). The effective indices of other
possibly formed supermodes are located inside the range defined by these two edges, simplifying
the analysis to the calculation of only two modes in order to distinguish domains of zero and
non-zero density of cladding states. Please note, that a generalized model for an arbitrary number
of layers using a transfer matrix approach was already introduced earlier [47]. However, the
particular symmetrical case of three layers relevant here (air-silica-air) enables a comparably
simple expression of the dispersion equation of the band edge modes without using matrix
equations.

It is important to note that the discussed model is in fact a one-dimensional nearest-neighbor
approach. This particular fact makes this model highly appropriate to analyze the cladding
modes of revolver-type HC-ARFs in comparison to numerical calculations of the photonic density
of states which demands to artificially impose infinite periodic symmetries to the structure.
Within the scope of the single ring anti-resonant fiber geometry investigated here (Fig. 1(a)), the
interaction of adjacent AREs can be assumed to be that of an infinite azimuthal chain of AREs
with only neighboring elements interacting (nearest-neighbor approximation) with no energy
flux along this direction. The energy flow along the radial direction can be neglected here since
simulations of a single anti-resonant element show that the imaginary part of the effective index
is about 105 to 106 times smaller than that of the real part for realistic geometry parameters (ARE
diameter about 20 µm). Since our model relies on scalar wave functions (i.e., the weak-guidance
approximation), we verify its applicability by comparing the effective indices of the modes
of a single ARE obtained from FE simulations and from the scalar wave approximation (see
Appendix, Fig. 7). This direct comparison shows a negligible difference between both approaches
across almost the entire relevant spectral bandwidth, justifying the scalar wave approximation.
Please note, that the scalar wave approximation has been successfully applied to situations of
significantly higher refractive index contrast (chalcogenide/silica PBG fibers [48]), whereas it
can principally be extended to account for the vectorial nature of Maxwell’s equations [49].
The effective indices of the edge modes are obtained by solving the dispersion equation of the
three-layer system using the particular boundary conditions (see Appendix).
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3. Results and discussion

3.1. Investigated geometry

The geometric parameters of the revolver-type HC-ARF considered here are N = 6, d = 20 µm,
t = 500 nm and s = 4.16 µm , yielding a core size of Dc = 29.33 µm using Eq. (1), corresponding
to typically implemented revolver-type HC-ARFs. It is important to note that the resulting
ratio d/Dc = 0.682 yields a phase-matching between the first higher-order core mode and
the fundamental ARE mode, leading to large modal differential loss as proposed by [28, 50].
For the sake of simplicity the material dispersion of silica and air have been neglected here,
yielding constant refractive indices (refractive index glass ng = 1.45, refractive index air na = 1).
The use of dispersion-less material parameters allows a scaling-invariant representation of the
results using the planar V-parameter given by V = k0t(n2

g − n2
a)1/2, which linearizes the spectral

dependence of the modes and directly shows the spectral positions of the resonances at multiple
integers of π.

3.2. ARE modes inside the fundamental transmission band

In the following we show the spectral distributions of the normalized effective mode index
(neff − na)V2 of the various relevant modes, whereas we refer to the resulting plots as band maps.
Here, the scaling factor V2 removes the strong waveguide dispersion which is usually present in
such plots in order to improve visibility of the band maps. The particular choice of the scaling
factor is motivated by the λ−2

0 -scaling known from the Marcatili-Schmeltzer model [51] and leads
to constant values of (neff − na)V2 of a particular mode at the points of anti-resonance (V = π/2,
3/2π, 5/2π,...) in the absence of material dispersion.

Special care has to be taken regarding the assignment of mode labels. The labeling of LP
modes corresponds to a pre-chosen azimuthal mode order l and the incremental solution counter
m. Since reported studies on antiresonant waveguides generally focus on solutions neff < na, the
first solution that is found in this domain is commonly labeled LP01. This leads to the existence
of an LP01 mode in each transmission window of an ARE. However, from our perspective a more
accurate the correct way of labeling LP modes in AREs is starting the search of eigenmodes at the
highest refractive index neff = ng. This has the consequence that the lowest-order antiresonant
mode inside the first transmission window is the LP02 mode of the ARE, exhibiting two maxima
in its intensity distribution: one in the center of the ARE and the second one inside (or near to)
the silica ring.

Figure 2 shows an example of a band map (bands are indicated by the colored areas) calculated
from V = 0.15π to 1.10π, comprising the LPl1 and LPl2 resonances (with l being the azimuthal
mode order). Qualitatively, one can see two types of modes: (i) such of low-order bands with
effective indices exhibiting moderate slopes and (ii) those of a large number of very narrow,
highly dispersive bands forming a quasi-continuum of ARE-modes. For the sake of clarity the
transparency of all bands has been increased (exponentially) towards higher azimuthal mode
orders (i.e., higher numbers of l) to prevent figure cluttering. This representation clearly reveals
the advantage of our method compared to rigorous FE simulations since it is possible to target
selected mode orders instead of obtaining the entire quasi-continuum of modes, which is the case
in full numerical FE simulations. It is interesting to note that the effective indices around the
center of the transmission bands can be well approximated by the analytic formula of an isolated
glass annulus with large core diameter [28] (black dashed lines in Fig. 2).
As shown in Fig. 2, the effective index of the fundamental core mode of this example

fiber geometry (calculated using FE modelling) is located well above the effective index of the
fundamental ARE mode since Dc > d. A high-resolution FE simulation of the effective index of
the fundamental core mode shows that it undergoes a multitude of anti-crossings (not shown
here) with the low-azimuthal-mode-order ARE bands towards the low frequency side of each
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Fig. 2. Band map (colored background) showing the formed ARE-bands between the LPl1
and LPl2 resonances (parameters given in the main text). Colors refer to different radial
mode orders, while selected azimuthal mode orders l are labeled at the top of the graph.
The red line refers to the fundamental core mode of the revolver-type HC-ARF obtained
from FE-simulations while the black dashed lines correspond to the effective indices of the
lowest-order ARE modes calculated using Eq. (25) of [28]. The black markers show the
positions of the radial intensity distributions investigated in Fig. 3(a)-(d).

transmission band. This is a result of the decreasing inhibited coupling effect between core
and ARE modes in case of low azimuthal mode orders (i.e., small values of l). The emergence
of multiple anti-crossings is, in fact, not visible at the high frequency edge (towards higher
values of V) of each transmission window. This suggests, that applications which demand a
well-behaved group velocity dispersion of the core mode, e.g., applications involving ultrashort
pulse propagation, should not operate at the low-frequencies edge (long-wavelength edge) of a
transmission window.
Figure 3 shows the normalized intensity distributions of the LP02 ARE top and bottom edge

mode exemplary for three different V-parameters as well as the intensity distribution of one of the
highly disperse bands (l = 20, m = 1) at V/π = 0.5. Inside a transmission band, i.e. between two
integer multiples of V/π the intensity of the lowest-azimuthal-order ARE modes is dominantly
located inside the central air domain of an ARE (see Fig. 3(a)). Since the planar V-parameter
corresponds to the accumulated phase between two reflections at the strand [28], the shape of the
intensity distribution also correlates with V . As shown in the inset, there is only a negligible
amount of light propagating outside the ARE (r > b), strongly decreasing the difference of
the effective indices of the top and bottom band edge ARE modes, corresponding to a small
bandwidth of the LP02 band at V/π = 0.50 (see Fig. 2). Around the resonance frequency, e.g.
V/π = 0.99, the intensity of the ARE modes is distributed more and more inside the air domain
outside the annulus (r > b). This is accompanied with a larger impact of the different boundary
conditions and therefore, results in a significant broadening of the band around the resonances.
For frequencies higher than V/π = 1 the normalized effective indices of the top and bottom band
edge LP02 mode is positive and therefore, is evanescent in the air domains. A very interesting
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Fig. 3. Normalized intensity distribution of the top and bottom band edge of the LP02
ARE mode (a) in the center of the transmission band (V = 0.50π), (b) slightly below the
first resonance (V = 0.99π) and (c) after the first resonance (V = 1.04π). (d) A typical
intensity distribution of a higher azimuthal order mode (l = 20) at the point of antiresonance
(V = 0.50π). All four plots refer to the positions highlighted by the black dots in Fig. 2.

feature of the AREs can be explained when taking a closer look to the intensity distribution of
higher-azimuthal-order modes (see Fig. 3(d)). The intensity is located mainly inside the silica
ring, even though the normalized effective index is well below zero. As a consequence, the
overlap of the fundamental mode of the whole fiber geometry with such kind of mode is quite
small, proving the concept of inhibited coupling in HC-ARFs.

3.3. Large bandwidth mapping

The simulation of the band map across a significantly larger spectral bandwidth, i.e., a large
number of LPlm resonances exhibits similar features as discussed for Fig. 2: well-separated low-
order ARE bands that branch-off at the frequencies of the strand resonances (i.e., at V-parameters
being a multiple of π) and highly dispersive higher-order ARE bands (Fig. 4). It is important to
point out that each radial mode order m supports a larger number of azimuthal mode orders l for
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increasing V , overlapping with bands of lower radial mode orders and therefore, increasing the
density of ARE modes towards higher frequencies.

Fig. 4. Band map over a large frequency range calculated using our mathematical model
(simulation parameters are given in the main text). Different colors correspond to different
radial mode orders m of the LPlm modes. The transparency of the bands scales inversely
with the azimuthal mode order l in order to improve visibility and to prevent figure cluttering.
The three insets show close-ups of the band map in the vicinity of the resonance points at
V/π = 1, 2 and 3 (highlighted by the black dashed rectangles in the main figure).

3.4. Number of modes of a single ARE

Since the circumference of an ARE is large compared to the operation wavelength, the number
of modes supported by a single ARE is high as well, i.e., high azimuthal mode orders have
to be considered, leading to very fine-featured density of states maps when using FE-based
simulations [27]. In order to save calculation time, we determine the maximum azimuthal mode
order that is needed to be taken into account at a certain V-parameter. As shown in the Appendix,
the cut-off condition neff = na for a single ARE leads to the following equation that has to be
solved:

Jl+1(V · a/t)Yl−1(V · b/t) = Yl+1(V · a/t)Jl−1(V · b/t). (2)

The number of guided modes M at a certain V-parameter can be obtained by summation of
the number of solutions of Eq. (2), considering that the LP0m solution represents two modes and
all other solutions represent four modes [52]. Figure 5 shows the results of these calculations
as a function of the planar V-parameter for various ratios of d/t. As expected, a large number
of modes that increase towards larger V and d/t (hundreds to thousands) are supported by
the ARE. Even in the fundamental transmission window (0 < V ≤ π), usually used for light
transmission in HC-ARFs, a few hundred modes can be found in an ARE. This particular fact
clearly distinguishes HC-ARFs from other low-index core fibers such as all-solid or hollow-core
PBG fibers and is a result of the large diameter of the ARE compared to the operation wavelength
as well as the comparably high refractive index difference between silica and air. From the
perspective of phase-matching, the dispersion of the central core mode undergoes multiple
crossing with ARE-modes naively suggesting a coupling of the core mode to leaky ARE modes

                                                                                               Vol. 27, No. 7 | 1 Apr 2019 | OPTICS EXPRESS 10015 



at almost any wavelength, making low-loss guidance in HC-ARF not obvious. However, as
pointed out by Debord et al. [27], inhibited coupling of the core mode to higher-order modes
has to be additionally considered to explain light guidance in HC-ARFs. In their supplementary
information it is stated that the overlap integral of the electric fields of the core mode and ARE
modes quickly decreases for increasing azimuthal mode orders, qualitatively explaining the
emergence of low-loss guidance in HC-ARFs.
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Fig. 5. Number M of ARE-modes as function of the planar waveguide parameter for various
d/t ratios (20 ≤ d/t ≤ 80 in increments of 10). The example geometry considered for the
band maps is defined by d/t = 40. Circles represent the sum of all modes using Eq. (2).
Lines correspond to Eq. (3) which is a fit to the data points. The inset shows the number of
modes as function of V2 in order to visualize the quadratic dependence.

The results of Fig. 5 suggests that the number of modes M in an ARE scales linearly with
V2 and d/t, i.e. with the area of the silica domain of an ARE A = πt2(1 + d/t) ∝ (1 + d/t)V2.
Fitting such a function to the data points using only a single proportionality parameter yields the
following approximation for the number of ARE modes in a silica HC-ARF:

M ≈ 0.512
(
1 +

d
t

)
· V2. (3)

This equation agrees very well with the simulation results for all considered ratios d/t and
V-parameters. Furthermore, it is consistent with the number of modes in multimode fibers
(corresponding to the limit d → 0), where M ≈ 0.5V2 [52]. The data show discontinuities of the
slope at integer values of V/π (see inset of Fig. 5), resulting from the additional set of modes
that contribute when sweeping across the resonances of different radial mode order.

3.5. Influence of distance between the AREs

To exemplify that the presented approach allows to solely concentrate on modes that are relevant
for the light guidance, we calculate the band maps for three different ARE separation distances
(s = 2 µm, 5 µm and 10 µm) while keeping the ARE diameter and strand thickness fixed, taking
into account exclusively the six lowest azimuthal mode orders only (0 ≤ l ≤ 5, Fig. 6).
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Fig. 6. Dependence of the band maps on the inter-ARE distance s while d and t were kept
constant ((a) s = 2 µm, (b) s = 5 µm, (c) s = 10 µm).

Interestingly, small separation distances (large d/Dc) yield band maps with well-separated
and comparably narrow bands between the resonance frequencies (Figs. 6(a) and 6(b)), while the
bands become substantially wider towards larger ARE separations (smaller d/Dc , Fig. 6(c)). In
the latter example already all bands except the lowest-order band in each spectral transmission
window overlap. A further increase of ARE distance would result in effective indices of the top
bands edges approach levels similar to that of the fundamental core mode of the HC-ARF. The
appearance of such wide bands can be explained by the increasing localization of the modes
inside the spatial domain between two AREs towards larger separations.

4. Conclusions

Understanding the modal behavior is of essential importance for any photonic system and is
particularly relevant for hollow-core optical fibers that rely on sophisticated light guidance
mechanisms. In this work we have presented a semi-analytical model that allows for the
determination of the effective indices of the bands formed by the supermodes of the AREs in
revolver-type hollow-core fibers. Our approach does not enforce an artificial two-dimensional
lattice structure and is particularly useful to understand the behavior of the modes with effective
indices smaller than that of air, which is of great importance for understanding light guidance in
hollow-core fibers. The model only demands solving two transcendental equations, reducing
simulation times by orders of magnitude compared to full numerical simulations and allows to
concentrate on modes of pre-chosen order. However, it is noteworthy to mention that the current
version of our model is principally limited to symmetric ARE geometries (i.e., structures with
azimuthal invariance) while a modified version may be able to handle more complex geometries
such as, e.g. nested AREs [53,54]. We showed that the band maps of revolver-type HC-ARFs
consists of (i) low-order ARE-modes with dispersions of moderate slope that branch-off from the
isolated LP-resonances and (ii) a larger number of highly dispersive higher-order ARE-modes,
forming a quasi-continuum of modes. The latter fact clearly distinguishes HC-ARFs from
PBG fibers which have zero density of cladding states in defined spectral domains, therefore
highlighting the inhibited coupling effect to be an essential feature of the light guidance in
HC-ARFs. By analyzing the modal behavior at cut-off we have shown that the mode density scales
by the square of the planar waveguide parameter V , similar to the behavior of multimode fibers.
The large amount of modes clearly motivates the application of our model which, in contrast to
finite-element simulations, allows to calculate a selected number of modes of prechosen order.
We believe that the proposed method represents a very promising tool for future design studies of
HC-ARFs, opening new avenues for issues such as modal discrimination via phase-matching of
higher-order core modes to continuum modes.
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Appendix

Scalar wave equation and dispersion equation

For negative normalized effective indices (neff < na) the radial component of the wave function
ψ(r) for can be expressed using Bessel’s functions:

ψ(r) =
A1Jl (Qr/t) 0 ≤ r < a

A2Jl (Ur/t) + B2Yl (Ur/t) a ≤ r ≤ b

A3Jl (Qr/t) + B3Yl (Qr/t) r > b

(4)

where we have normalized U and Q analogous to the V-parameter as

U2 = k2
0 t2

(
n2
g − n2

eff

)
(5)

Q2 = k2
0 t2

(
n2
a − n2

eff

)
(6)

The continuity of ψ and ψ ′ at r = a and r = b yields

A2 =
π

2
α [QYl(Uα)Jl+1(Qα) −UYl+1(Uα)Jl(Qα)] A1 (7)

B2 = −
π

2
α [QJl(Uα)Jl+1(Qα) −UJl+1(Uα)Jl(Qα)] A1 (8)

A3 = −
π

2
β [QJl(Uβ)Yl+1(Qβ) −UJl+1(Uβ)Yl(Qβ)] A2

− π
2
β [QYl(Uβ)Yl+1(Qβ) −UYl+1(Uβ)Yl(Qβ)] B2 (9)

B3 =
π

2
β [QJl(Uβ)Jl+1(Qβ) −UJl+1(Uβ)Jl(Qβ)] A2

+
π

2
β [QYl(Uβ)Jl+1(Qβ) −UYl+1(Uβ)Jl(Qβ)] B2 (10)

where α = a/t and β = b/t.
The dispersion equation gtop and gbot for the calculation of the effective indices of the top and

bottom band edge, respectively, are therefore

gtop = {A3 [Jl−1 (Qγ) − Jl+1 (Qγ)] + B3 [Yl−1 (Qγ) − Yl+1 (Qγ)]} /Ql−1 = 0 (11)

gbot = [A3Jl (Qγ) + B3Yl (Qγ)] /Ql = 0 (12)

where we have used γ = c/t.
Similarly, for values neff > na the radial part of the wave function ψ(r) can be written as:

ψ(r) =
A1Il (Wr/t) 0 ≤ r < a

A2Jl (Ur/t) + B2Yl (Ur/t) a ≤ r ≤ b

A3Il (Wr/t) + B3Kl (Wr/t) r > b

(13)

with W2 = k2
0 t2

(
n2

eff − n2
a

)
, yielding
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A2 = −
π

2
α [WYl(Uα)Il+1(Wα) +UYl+1(Uα)Il(Qα)] A1 (14)

B2 =
π

2
α [W Jl(Uα)Il+1(Wα) +UJl+1(Uα)Il(Wα)] A1 (15)

A3 = β [W Jl(Uβ)Kl+1(W β) −UJl+1(Uβ)Kl(W β)] A2

+ β [WYl(Uβ)Kl+1(W β) −UYl+1(Uβ)Kl(W β)] B2 (16)
B3 = β [W Jl(Uβ)Il+1(W β) +UJl+1(Uβ)Il(W β)] A2

+ β [WYl(Uβ)Il+1(W β) +UYl+1(Uβ)Il(W β)] B2 (17)

and therefore, resulting in the following dispersion equations:

gtop = A3 {[Il−1 (Wγ) + Il+1 (Wγ)] + B3 [Kl−1 (Wγ) + Kl+1 (Wγ)]} /W l−1 = 0 (18)

gbot = [A3Jl (Qγ) + B3Yl (Qγ)] /W l = 0 (19)

Applicability of the scalar approximation

Since our model relies on a scalar description of the electric field (weak-guidance approximaton),
it is crucial to ensure that this approximation is justified for refractive-index differences in the
magnitude of 0.45 (corresponding to a silica/air interface). Figure 7 shows a direct comparison
of the normalized effective index of the lowest-order ARE modes between a vectorial and scalar
transfer-matrix approach for the case of a single ARE. One can see that both solutions match very
well over a large spectral range inside the first optical window (1 ≤ V/π ≤ 2), in particular for
the lowest-order modes. Merely around the resonance points (corresponding to integer values of
V/π) the scalar solutions exhibit variations from those of the vectorial wave equation. Therefore,
we believe it is reasonable to utilize the scalar wave approximation for the derivation of the
presented model in the case of a silica hollow-core fiber.
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solutions of Eq. (25) from [28].
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