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On multi-species diffusion with size exclusion
Katharina Hopf, Martin Burger

ABSTRACT. We revisit a classical continuum model for the diffusion of multiple species with size-exclusion con-
straint, which leads to a degenerate nonlinear cross-diffusion system. The purpose of this article is twofold: first, it
aims at a systematic study of the question of existence of weak solutions and their long-time asymptotic behaviour.
Second, it provides a weak-strong stability estimate for a wide range of coefficients, which had been missing so
far.

In order to achieve the results mentioned above, we exploit the formal gradient-flow structure of the model with
respect to a logarithmic entropy, which leads to best estimates in the full-interaction case, where all cross-diffusion
coefficients are non-zero. Those are crucial to obtain the minimal Sobolev regularity needed for a weak-strong
stability result. For meaningful cases when some of the coefficients vanish, we provide a novel existence result
based on approximation by the full-interaction case.

1. INTRODUCTION

Nonlinear cross-diffusion models and their mathematical analysis have received considerable attention in the
last years, including various degenerate cases as arising in models with size exclusion or local repulsion (cf.
e.g. [4, 3, 5, 8, 7, 12, 13, 11, 21]). While the local-in-time existence and uniqueness of classical solutions has
been established a while ago in a more general setting (cf. [1]), the questions of global-in-time regularity and
qualitative properties of weak solutions continue to pose a significant challenge due to non-uniform parabolicity
and missing maximum principles for systems. From a modelling point of view such systems can naturally be
derived from lattice systems for multiple species with size exclusion, which found applications in particular in cell
biology (cf. [6, 15, 16, 19]).

In this paper we will revisit the canonical macroscopic cross-diffusion system arising from these models and
derive new results both on the global existence of weak solutions as well as their stability and uniqueness (in
the sense of a weak-strong stability result). For T ∗ ∈ (0,∞], n ∈ N, a smooth bounded domain Ω ⊂ Rd,
d ∈ N, and constant coefficients Kij , i, j ∈ {0, . . . , n}, we consider the cross-diffusion system

∂tui −∇ ·

 n∑
j=0

Kij(uj∇ui − ui∇uj)

 = 0 in (0, T ∗)× Ω, i ∈ {0, . . . , n}, (1.1a)

supplemented by no-flux boundary conditions

ν ·
n∑
j=0

Kij(uj∇ui − ui∇uj) = 0 on (0, T ∗)× ∂Ω, i ∈ {0, . . . , n}, (1.1b)

with ν denoting the outward unit normal to ∂Ω. Since effectively only off-diagonal entries of (Kij)ij enter
into (1.1a), (1.1b), we may assume, without loss of generality, thatKii = 0 for all i ∈ {0, . . . , n}, a convention
to be adopted throughout this paper.

Supposing the natural symmetry hypothesis Kij = Kji, the pointwise sum
∑n

i=0 ui of all densities is for-
mally preserved under the evolution. Assuming, for simplicity, that

∑n
i=0 ui|t=0 ≡ 1, we are thus interested in

solutions u = (u0, . . . , un) of the above PDE system taking values in the planar hypersurface

S :=

{
u′ := (u′0, . . . , u

′
n) ∈ (0,∞)n+1 :

n∑
i=0

u′i = 1

}
.

Our study is based on the well-known observation (cf. [5, 13, 21]) that system (1.1) can be written as a gradient
flow of the convex integral functional

H(u) =

∫
Ω
h(u) dx, h(u) =

n∑
i=0

λ(ui) (1.2)
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K. Hopf, M. Burger 2

with λ(s) := s log s− s+ 1, that takes the form

∂tui −∇ ·

(
n∑
l=0

Mil(u)∇Dlh(u)

)
= 0 in (0, T ∗)× Ω, i ∈ {0, . . . , n} (1.3)

for a suitable symmetric and positive semi-definite mobility M : S → R(n+1)×(n+1).

To see this, we first rewrite equation (1.1a) more concisely as

∂tui −∇ · (
∑
j

Aij(u)∇uj) = 0

with the matrix A = (Aij)i,j=0,...,n given by

Aij(u) = δij

n∑
k=0

Kikuk −Kijui. (1.4)

Here, δij denotes the Kronecker symbol. Then, defining the mobility matrix M(u) := A(u)(D2h(u))−1,
system (1.1a) turns into (1.3). For later reference, we note that the components of M(u) take the form

Mil(u) = ui(δil

n∑
k=0

Kikuk −Kilul), (1.5)

from which we see in particular that M(u) is symmetric for all u ∈ S if and only if (Kij) is. Furthermore, as we
will see in Section 2.2, for (Kij) symmetric the positive semi-definiteness of M(u) for all u ∈ S is equivalent to
the non-negativity ofKij for all i 6= j. This motivates imposing the following mild hypotheses on the coefficients
Kij .

Hypotheses.

(H1) Symmetry: Kij = Kji for all i, j ∈ {0, . . . , n}, i 6= j.
(H2) Non-negativity: Kij ≥ 0 for all i, j ∈ {0, . . . , n}, i 6= j.

Note that from a microscopic point of view the Kij are proportional to the rate at which particles of type i and
j change sites and hence are non-negative and symmetric. In particular, hypotheses (H1) & (H2) are fulfilled
in all relevant applications and will therefore be assumed throughout this manuscript without necessarily being
referred to. The symmetry of the Kij implies that, upon adding up the equations (1.1a),

d

dt

n∑
i=0

ui =

n∑
i=0

∂tui = 0,

and the non-negativity of Kij can be used to conclude preservation of non-negativity of each ui, hence they
are directly related to obtaining a solution in S . More specifically, under hp. (H1), (H2) and an additional non-
degeneracy condition on {Kij} (such as hp. (H2∗) or (H3) below), a strong maximum-type principle (cf. e.g. [17])
ensures that smooth flows starting in the surface S will not leave it as long as they maintain their regularity.

Our analysis further requires some non-degeneracy condition on the coefficients Kij . While existence and
equilibration will be established under a rather mild condition (to be specified in Section 4, see (H3)), our stability
analysis in Section 3 requires in addition to hp. (H1)–(H2) the full-interaction hypothesis

(H2∗) Positivity: Kij > 0 for all i, j ∈ {0, . . . , n}, i 6= j.

Note that from a microscopic point of view, the strengthened condition (H2∗) means that all combinations of
different particles can change sites and hence there is no situation where particles can get stuck. In this context,
let us recall that the diagonal values Kii are irrelevant for the dynamics and have been set to zero to simplify
notations.
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Multi-species diffusion with size exclusion 3

Approach. Exploiting the formal gradient-flow structure (1.3) is a key feature of our analysis. At a formal level,
(1.3) implies the following basic entropy dissipation law

d

dt
H(u) +

∫
Ω

1

2

n∑
i,j=0

Kijuiuj

∣∣∣∣∇uiui
− ∇uj

uj

∣∣∣∣2 dx = 0 (1.6)

along solutions u = u(t, x) ∈ S , which is the main building block in our global existence and long-time
asymptotic analysis. The latter will be carried out under a hypothesis far weaker than (H2∗) (cf. Section 4, (H3)).
To explain the new difficulties arising when relaxing (H2∗), let us note that hypothesis (H2∗) ensures that the
dissipated quantity

∫
ΩD, where

D :=
1

2

n∑
i,j=0

Kijuiuj

∣∣∣∣∇uiui
− ∇uj

uj

∣∣∣∣2 ,
provides L2 control of the Sobolev gradient of

√
ui, since thenD &

∑n
i=0 |∇

√
ui|2.Without hypothesis (H2∗)

this bound is no longer valid and the dissipation law (1.6) provides only poor gradient control of solutions.
Hence, we cannot rely on standard Sobolev space theory and compactness arguments to pass to the limit in
the approximation scheme. Indeed, taking for instance Ki0 > 0 and Kij = 0 for all i, j ∈ {1, . . . , n}, one
even has

n∑
i,j=0

Kijuiuj

∣∣∣∣∇uiui
− ∇uj

uj

∣∣∣∣2 ≤ K
 1

u0
|∇u0|2 + u0

n∑
j=0

1

uj
|∇uj |2

 ,

where K := max1≤i≤nK0i, so that any gradient control of uj , j ≥ 1, obtained from (1.6) is lost when u0

vanishes. (This bound follows from an estimate analogous to that in the proof of Lemma 2.3.)

For proving our perhaps most interesting result, a weak-strong stability estimate (with the relative entropy as
a generalised distance), the dissipation property (1.6) is not sufficient. Here, we follow [10] and rely on the
structure (1.3) for controlling the relative entropy of a weak solution with respect to a strong solution. Developing
further the approach in [10], we will see that weak-strong stability is mostly a consequence of the general
structural properties of (1.3): apart from the smoothness properties of h and M, the strict convexity1 of the
entropy, and the parabolicity of the gradient-flow evolution system (1.3) (in the sense of Amann [1]), we only
rely on the a priori estimate (1.6) providing sufficient gradient control. Precisely because of this last prerequisite
our stability analysis is confined to models {Kij} obeying the full-interaction hypothesis (H2∗). However, it
significantly improves the perturbative results of [3], which are based on the same assumption, but also need all
values {Kij}i 6=j to be close to some constant.

We would like to remark that our existence theory and the weak-strong stability estimate are equally valid in
the presence of external potentials, that is, for models (1.3) where the Boltzmann-type entropy

∑
i λ(ui) is

enhanced by a linear potential part
∑

i uiΥi for given smooth potentials Υi : Ω → R. This leads to evolution
systems (1.1a) of the form

∂tui −∇ ·
[ n∑
j=0

Kij(uj∇ui − ui∇uj + uiuj∇(Υi −Υj))
]

= 0.

An extension to mean-field interaction (cf. e.g. [4]) also seems possible in certain regimes.

1.1. Main results. Our main results can be divided into two parts, contained in Sections 3 and 4, respectively.

(i) The first part concerns fully interacting systems (H1), (H2∗): Here, gradient bounds are available globally
and existence of weak solutions is well-established [11]. In this setting, we are able to perform a fairly
general weak-strong stability and asymptotic analysis.

1In this article, strict convexity of the function h ∈ C2(S) is to be understood in the sense of the Hessian D2h(u) being positive
definite at every point u ∈ S .
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(ii) The second part considers more general partially interacting systems. These are quite relevant for ap-
plications, but due to the degeneracy of the parabolic structure even the issue of existence in a weak
sense has not been fully understood so far. We establish the existence of weak solutions (in a slightly
generalised sense) as well as their convergence to the steady state in the long-time limit.

1.1.1. Results on full interactions in part (i). Let T ∗ ∈ (0,∞].

Definition 1.1 (Weak solution). We call u = (u0, . . . , un) a weak solution of (1.1) with if ui ∈ L2(0, T ;H1(Ω)),
∂tui ∈ L2(0, T ; (H1(Ω))∗) for all T < T ∗ and i ∈ {0, . . . , n}, if u(t, x) ∈ S for a.e. (t, x) ∈ (0, T ∗)×Ω,
and if u satisfies (1.1) in the weak sense, i.e. if for all T < T ∗, allψ ∈ L2(0, T ;H1(Ω)) and all i ∈ {0, . . . , n}∫ T

0
〈∂tui, ψ〉dt+

∫ T

0

∫
Ω

n∑
j=0

Aij(u)∇uj · ∇ψ dxdt = 0. (1.7)

Observe that under the hypotheses of Definition 1.1 one has 0 ≤ ui ≤ 1 for all i.

For systems (1.1) obeying hypothesis (H2∗), we perform a weak-strong stability analysis choosing the relative
entropy

Hrel(u, ũ) :=

∫
Ω
hrel(u, ũ) dx :=

∫
Ω

[
h(u)−

n∑
i=0

Dih(ũ)(ui − ũi)− h(ũ)
]

dx (1.8)

as a generalised distance between a weak solution u and some strictly positive reference solution ũ that enjoys
certain extra regularity properties. Our most interesting result under the full-interaction hypothesis consists in a
weak-strong stability estimate, where ‘strong solutions’ are defined in the following way.

Definition 1.2 (Strong solution). We call ũ = (ũ0, . . . , ũn) a strong solution of (1.1) if ũ ∈ C0,1([0, T ∗) ×
Ω)1+n, if ũ(t, x) ∈ S for all (t, x) ∈ [0, T ]×Ω and all T < T ∗, and if ũ satisfies (1.1) in the weak sense (as
specified in Definition 1.1).

Observe that our notion of a strong solution not only requires Lipschitz regularity, but also strict positivity of
all components ũi on [0, T ∗) × Ω and as a consequence min[0,T ]×Ω ũi > 0 for all T < T ∗ and all i ∈
{0, . . . , n}. Let us further remark that under hypotheses (H1), (H2∗) (and more generally under (H1), (H2) and
the condition (H3) to be introduced in Section 4) for given Lipschitz continuous initial data uin with uin(Ω) ⊂ S ,
local existence of a unique strong solution follows from Amann [1] and the parabolic structure of the system (see
Section 2.1 for details).

Our weak-strong uniqueness and stability result states as follows.

Theorem 1.3 (Weak-strong stability). Assume hypotheses (H1), (H2∗) and suppose that ũ ∈ C0,1([0, T ∗) ×
Ω)1+n is a strong solution in the sense of Definition 1.2. For all T ∈ (0, T ∗) there exists a constantCT,ũ <∞
only depending on ‖ũ‖C0,1([0,T ]×Ω) and (inf [0,T ]×Ω ũi)

n
i=0 such that the following holds true:

any weak solution u in the sense of Definition 1.1 that has the additional regularity
√
ui ∈ L2

loc([0, T
∗);H1(Ω))

for all i ∈ {0, . . . , n} obeys the stability estimate

Hrel(u(t), ũ(t)) ≤ Hrel(u(0), ũ(0)) exp(CT,ũt) for al t ∈ [0, T ], (1.9)

whereHrel denotes the relative entropy functional (1.8).

If u|t=0 = ũ|t=0, the above theorem implies that u = ũ a.e. in (0, T ∗)× Ω.

See Section 3.2 for the proof of Theorem 1.3. The regularity hypothesis
√
ui ∈ L2

loc([0, T
∗);H1(Ω)) in

Theorem 1.3 is natural under hypothesis (H2∗), and the existence of weak solutions obeying this hypothesis is
well-established, see Theorem 2.5 below.

For completeness, we further note the following asymptotic stability result, which follows from classical argu-
ments in the full-interaction regime.
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Multi-species diffusion with size exclusion 5

Theorem 1.4 (Exponential stability of steady states). Assume hypotheses (H1), (H2∗) and let ū ∈ S . There
exists a constant ε > 0 only depending on ū, on κ := mini 6=jKij > 0 and on Ω such that any weak solution
u = (u0, . . . , un) of (1.1) in the sense of Definition 1.1 with the extra regularity

√
ui ∈ L2

loc([0, T
∗);H1(Ω))

and average values 1
|Ω|
∫

Ω ui(0) dx = ui for all i ∈ {0, . . . , n} satisfies the decay estimate

‖u(t)− u‖2L1(Ω) ≤ CHrel(u(0), u)e−εt for all t > 0. (1.10)

The proof of Theorem 1.4 is given in Section 3.3.

1.1.2. Results in part (ii) on partial interactions. Since the precise statement of our results concerning partial
interactions requires several additional concepts and notations that will be introduced in detail in Section 4, we
here prefer to only summarise the main results on part (ii):

� Large-data global existence of weak solutions (see Theorem 4.2),
� Convergence to equilibrium of the constructed solutions (see Theorem 4.4).

While for specific subclasses of models existence has previously been obtained in the literature (see [5, 11, 21]),
our result concerning the long-time asymptotics appears to be the first rigorous one for partially interacting
systems.

We should mention that for certain degenerate classes of partially interacting models the regularity obtained
from entropy estimates does not suffice to uniquely determine all flux terms Kij(uj∇ui − ui∇uj) appearing
in (1.1a). In fact, in contrast to the models covered by existing literature [5, 11, 21], the present existence
analysis faces situations where, due to poor gradient control, expressions of the form Kijuj∇ui may not even
be defined in the distributional sense (despite the fact that 0 ≤ ul ≤ 1 for all l). Hence, our existence result,
Theorem 4.2, is formulated for a somewhat generalised notion of weak solutions that, however, reduces to the
standard concept of weak or distributional solutions when restricting to the models considered in [5, 11, 21].
Besides, the generalised notion of weak solutions in Theorem 4.2 respects mass conservation and allows to
uniquely determine the long-time asymptotic behaviour of solutions (cf. Theorem 4.4).

1.2. Previous literature. Below, we provide an overview of the analytical results available for system (1.1). We
should point out that [5] was the first work to analyse such a system (for n = 2).

Literature on global existence:

� Full interactions:
� the case Kij > 0 for all i 6= j has been fully covered by [11, Theorem 2], see [2] for details.
� [2]: global existence of weak solutions for non-zero flux boundary conditions and time-dependent

domains in one space dimension d = 1. Equilibration for suitable data.
� Partial interactions:

� [5]: global existence of weak solutions for n = 2 and Ki0 > 0,Kij = 0 for j, i ≥ 1. (Only the
case d ∈ {1, 2, 3} was considered, but the proof does not rely on this restriction.)

� [11, Theorem 3]: global existence of weak solutions again for n = 2 and Ki0 > 0,Kij = 0 for
j, i ≥ 1, but more general transition rates (not considered in the present manuscript).

� [21]: global existence of weak solutions for general n ≥ 2 and Ki0 > 0,Kij = 0 for j, i ≥ 1.

Literature on convergence to equilibrium (partial interactions):

� [5, Section 5]: non-rigorous sketch proof that assumes monotonicity of the entropy.2

� [21, Theorem 4]: attempt to rely on decoupling to deduce an exponential convergence rate. (However, the
crucial Gronwall type argument therein appears to be false and fixing it would require a new idea.)

Literature on uniqueness (partial interactions):

� [21, Theorem 5]: uniqueness of weak solutions in a situation where the problem essentially decouples
(K0i = a0 > 0 for all i ∈ {1, . . . , n} and Kij = 0 for i, j ≥ 1).

2The argument can be made rigorous by following the ideas in Section 4, and in particular the proof of Theorem 4.4.
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Let us finally note that in perturbative or small data settings classical techniques apply. Such regimes are math-
ematically better behaved and easier to handle:

� [5, Section 3]: wellposedness of strong solutions near equilibrium.
� [3]: existence and uniqueness of strong solutions when the interaction coefficientsKij , i 6= j are positive

and close to each other. In this case, the system is close to decoupled linear diffusion, and the authors
apply classical L2 methods to study the wellposedness in this perturbative setting.

1.3. New aspects of the present results. As discussed in the previous paragraph, so far, uniqueness results
have only been available for small data settings or under rather restrictive assumptions on the model. In the
present work we remove such smallness restrictions on the model and establish a weak-strong stability estimate
for system (1.1) with general coefficients satisfying (H1), (H2∗), see Theorem 1.3. Our method relies on an
adaptation of the technique in [10] devised by the second author for proving weak-strong uniqueness in energy-
reaction-(cross-)diffusion systems. This approach in turn was motivated by an adjusted relative entropy method
due to Fischer [9] for reaction-diffusion systems. A crucial ingredient allowing us to handle the new difficulties
induced by the size-exclusion effect is a local coercivity-type estimate (cf. inequality (3.9)), which we deduce
from the strict convexity of the entropy density.

We further establish existence of weak solutions and equilibration in the long-time limit under a fairly mild hy-
pothesis on Kij arguably covering all models relevant for applications. Here, our idea is to take advantage of
the existence result for full interactions [11], which provides us with a family of approximate solutions. Upon
an analysis of the compactness and convergence properties of these approximate solutions, we then take a
„vanishing-interaction limit“, where the artificially introduced interaction parameters are being sent to zero, to
eventually obtain weak solutions to the partially interacting system. Owing to poor compactness properties
linked to the degeneracy of such systems, we are not able to establish a strong entropy dissipation inequality
nor monotonicity of the entropy in time. However, we will show that a version of the strong entropy dissipation
inequality holds true up to an error term (cf. inequality (4.4b)) that is initially only known to tend to zero along
a some sequence of times tk → ∞, along which stronger convergence properties hold. Inequality (4.4b),
however, allows us to upgrade this result and prove the strong convergence to equilibrium along any sequence
t→∞.

1.4. Outline. In Section 2, we use a change of variables to remove the degeneracy of equation (1.1) that is
linked to the volume constraint. We further establish basic algebraic identities and coercivity estimates involving
the mobility matrix that will be needed in subsequent parts. The stability results for fully interacting systems are
proved in Section 3. In Section 4, the full-interaction hypothesis is dropped, and general, partially interacting
systems relevant for applications are introduced. For these problems, we establish existence of weak solutions
and convergence to equilibrium.

This paper has two appendices. Appendix A contains a technical lemma used in the proof of the weak-strong
stability estimate. For details concerning our notations we refer to Appendix B.

2. PRELIMINARIES

2.1. The gradient system for n species. Consistent with the size constraint, the mobility M underlying sys-
tem (1.1) degenerates in the direction nS := (1, . . . , 1)T normal to the hyperplane containing S . This de-
generacy can be removed by means of an affine coordinate transformation mapping the n-dimensional domain
D ⊂ Rn, given by

D :=

{
U ′ = (U ′1, . . . , U

′
n) ∈ (0,∞)n :

n∑
i=1

U ′i < 1

}
,

diffeomorphically onto S . Such a transformation can be realised by the map

Ψ : D → S, U = (U1, . . . , Un) 7→ (1−
n∑
i=1

Ui, U1, . . . , Un).

DOI 10.20347/WIAS.PREPRINT.2883 Berlin 2021



Multi-species diffusion with size exclusion 7

By means of this change of variables, the gradient structure with respect to S gives rise to a gradient flow for the
vector of n densities U(t, x) ∈ D, as will be detailed below. Of course, we could have immediately written down
a PDE system for U equivalent to (1.1) by replacing u0 by 1 −

∑n
i=1 Ui and rearranging terms. However, we

hope that the following few expository paragraphs may help better understand some of the underlying structures.

Entropy density. For U ∈ D we define the pulled-back entropy density

ĥ(U) := h(Ψ(U)) =
n∑
i=1

λ(Ui) + λ
(
1−

n∑
i=1

Ui
)
,

where as before λ(s) = s log s − s + 1. Observe that ĥ ∈ C(D) ∩ C∞(D) is strictly convex. Abbreviating
v := 1−

∑n
i=1 Ui, we have

Diĥ(U) = log(Ui)− log(v) = log
(
Ui
v

)
and

D2ĥ(U) = diag( 1
U1
, . . . , 1

Un
) + 1

vE,

where Eij = 1 for all i, j ∈ {1, . . . , n}.
Mobility. Since the Onsager operator div(M(u)∇ · ) is acting on the dual variables, computing the appropriate
mobility M̂ on D requires using the inverse Φ := Ψ−1 of Ψ,

Φ : S → D, u = (u0, . . . , un) 7→ U = (u1, . . . , un).

We may now define the (n× n) mobility matrix

M̂(U) := DΦ|Ψ(U)M(Ψ(U))DΦT
|Ψ(U), U ∈ D,

which is again symmetric. (Since Φ is affine, the argument in DΦ|Ψ(U) may be dropped.)

Gradient-flow equation. The above ingredients determine the gradient-flow equation (1.3) in the new variables
as {

∂tU −∇ · (M̂(U)∇Dĥ(U)) = 0 in (0, T ∗)× Ω,

M̂(U)∇Dĥ(U) · ν = 0 on (0, T ∗)× ∂Ω.
(2.1)

Introducing the „diffusion matrix“

Â(U) := M̂(U)D2ĥ(U),

equation (2.1) may further be written as the PDE system{
∂tU −∇ · (Â(U)∇U) = 0 in (0, T ∗)× Ω,

(Â(U)∇U) · ν = 0 on (0, T ∗)× ∂Ω.
(2.2)

A direct computation yields the following explicit form for the matrix Â(U)

Âij(U) = δij

[
n∑
l=1

Kilul +Ki0(1−
n∑
l=1

ul)

]
− (Kij −Ki0)ui, i, j ∈ {1, . . . , n}. (2.3)

Observe that system (2.2) can also directly be obtained from (1.1) by inserting u0 = 1 −
∑n

i=1 Ui and rear-
ranging terms.

Entropy dissipation. We emphasize that the information contained in (2.1) is the same as in the original system.
In particular, we assert that

D2ĥM̂D2ĥ = DΨT (D2h ◦Ψ)(M ◦Ψ)(D2h ◦Ψ)DΨ. (2.4)

This follows from the identities D2ĥ = DΨT (D2h ◦Ψ)DΨ and

(DΨDΦ)M(u)(DΨDΦ)T = M(u),
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which can be verified explicitly by an elementary calculation using the structure of M. Hence, as a consequence
of (2.4), the dissipated quantities of the flows in transformed and original coordinates are indeed the same:

P̂(U) :=
n∑

i,j=1

∇Ui · (D2ĥ(U)M̂(U)D2ĥ(U))ij∇Uj

=
n∑

k,l=0

∇uk · (D2h(u)M(u)D2h(u))kl∇ul =: P(u).

(2.5)

Parabolic structure. Assuming a mild non-degeneracy condition on the coefficientsKij , the problem formulated
in terms of n species enjoys full parabolicity in a classical sense, as will be explained in the following. For
simplicity, we only consider the case of a fully interacting system obeying (H2∗), which guarantees that κ :=
mini,j∈{0,...,n},i 6=jKij is strictly positive. It has been shown in the proof of [2, Lemma 2.3] that

ζTD2ĥ(U)Â(U)ζ ≥ κ
n∑
i=1

U−1
i ζ2

i for U ∈ D. (2.6)

See also Corollary 2.4 below, which actually implies this bound (although our reasoning is different and perhaps
easier to grasp). In terms of M̂, inequality (2.6) takes the form

ζTD2ĥ(U)M̂(U)D2ĥ(U)ζ ≥ κ
n∑
i=1

U−1
i ζ2

i for U ∈ D. (2.7)

Since for eachU ∈ D the matrixD2ĥ(U) is invertible, the last inequality implies that M̂(U) > 0 for allU ∈ D,
where we recall that M̂(U) is symmetric. Hence, by continuity, for every compact subset K ⊂⊂ D there exists
a positive constant c∗(K) > 0 such that

M̂(U) ≥ c∗(K) diag(1, . . . , 1) for all U ∈ K. (2.8)

We further note that, since for every U ∈ D the diffusion matrix Â(U) is the product of the positive definite
symmetric matrices M̂(U) and D2ĥ(U), it has its spectrum σ(Â(U)) contained in R>0. Therefore, thanks to
Amann’s work [1], which requires the real parts of the eigenvectors of Â(U) to be strictly positive, the Cauchy
problem associated with system (2.2) has a unique local-in-time smooth solution for Lipschitz regular initial data
U in satisfying U in(Ω) ⊂ D.

Remark. In fact, under hypothesis (H2∗), the inclusion σ(Â(U)) ⊂ R>0 sufficient for applying [1] even holds
for all U ∈ D (and thus by continuity also in an open neighbourhood of D). This is a consequence of [12,
Lemma 2.3]. Hence, local wellposedness is even valid under the more general condition U in(Ω) ⊂ D. Preser-
vation of positivity and size constraint are, however, not fully trivial if U in(Ω) ∩ ∂D 6= ∅ and will have to be
verified a posteriori.

Equivalence of the two PDE systems. The n-species diffusion system (2.2) precisely agrees with the last n
components of the original system (1.1). This may be verified explicitly by using formula (2.3) and the relation∑n

i=0 ui = 1. Since the equation for the zeroth component u0 = 1−
∑n

i=1 Ui in (1.1) is obtained by summing
up the equations for the components i = 1, . . . , n, system (2.2) is equivalent to the original problem. For later
reference, we formulate this observation for the concept of weak solutions in the following lemma.

Lemma 2.1. System (1.7) for i ∈ {0, . . . , n} is equivalent to the weak form of (2.2), i.e. to∫ T

0
〈∂tUi, ψ〉 dt+

∫ T

0

∫
Ω

n∑
j=1

Âij(U)∇Uj · ∇ψ dxdt = 0 (2.9)

for i ∈ {1, . . . , n}. More precisely, u = (u0, . . . , un) being a weak solution of (1.1) in the sense of Definition
1.1 is equivalent to U = (u1, . . . , un) satisfying ui ∈ L2(0, T ;H1(Ω)), ∂tui ∈ L2(0, T ; (H1(Ω))∗) for all
T < T ∗ and i ∈ {1, . . . , n}, fulfilling U(t, x) ∈ D for a.e. (t, x) ∈ (0, T ∗) × Ω, and obeying (2.9) for all
T < T ∗ and all ψ ∈ L2(0, T ;H1(Ω)).
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We should note that the dimension reduction leading to full parabolicity comes at a price: the entropy function in
the new coordinates induces a strong coupling between the n unknowns, potentially introducing new difficulties
in the uniqueness and stability analysis.

2.2. Algebraic estimates. Here, we establish coercivity bounds for the quadratic form induced by the symmet-
ric and positive semi-definite matrix

P(u) := D2h(u)M(u)D2h(u), u ∈ S, (2.10)

on the tangent space TuS to S . Since the vector nS := (1, . . . , 1) points in the direction perpendicular to the
hyperplane containing S , we can identify

TuS = {ξ ∈ R1+n : ξ · nS = 0}.

Lemma 2.2. Let Kij satisfy Hypotheses (H1) & (H2). Further recall that the mobility matrix M is given by (1.5),
and let P be given by (2.10) (with h as in (1.2)). For all u ∈ S and all ξ ∈ TuS

ξTP(u)ξ =
1

2

∑
i,j

Kijuiuj

∣∣∣∣ ξiui − ξj
uj

∣∣∣∣2 . (2.11)

While identity (2.11) holds for general ξ ∈ R1+n, only tangent vectors ξ are relevant in our analysis.

Proof of Lemma 2.2. Observe that D2h(u)ij = 1
ui
δij , and hence

Pij(u) =
1

uj
δij

n∑
k=0

Kikuk −Kij .

We then compute∑
i,j

Pij(u)ξiξj =
∑
i,k

Kik
uk
ui
ξ2
i −

∑
i,j

Kijξiξj

=
1

2

∑
i,j

Kijuiuj
( ∣∣∣ ξiui ∣∣∣2 +

∣∣∣ ξjuj ∣∣∣2 )− 1

2

∑
i,j

Kijuiuj2
ξi
ui

ξj
uj
,

where second step uses the symmetry ofKij . The last line equals the right-hand side of (2.11) and the assertion
follows.

Lemma 2.3 (Matrix coercivity estimates). Assume the hypotheses and use the notations of Lemma 2.2. Then
for all u ∈ S and ξ ∈ TuS

ξTP(u)ξ ≥
n∑

α=0

κ(α)

(
1

uα
|ξα|2 + uα

n∑
j=0

1

uj
|ξj |2

)
,

where κ(α) := 1
2 min`: 6̀=αKα` ≥ 0 for α ∈ {0, . . . , n}.

Proof. Identity (2.11) allows us to estimate

ξTP(u)ξ =
1

2

n∑
α=0

∑
j:j 6=α

Kαjuαuj

∣∣∣∣ ξαuα − ξj
uj

∣∣∣∣2

≥
n∑

α=0

κ(α)uα
∑
j:j 6=α

uj

(
1

u2
α

ξ2
α +

1

u2
j

ξ2
j − 2

1

uαuj
ξαξj

)

=
n∑

α=0

κ(α)uα

(
1− uα
u2
α

ξ2
α +

∑
j:j 6=α

1

uj
ξ2
j + 2

1

uα
ξ2
α

)

=
n∑

α=0

κ(α)

(
1

uα
|ξα|2 + uα

n∑
j=0

1

uj
|ξj |2

)
,

where the penultimate equality uses the fact that ξ · nS = 0, that is,
∑n

j=0 ξj = 0.
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Corollary 2.4. Let Kij satisfy Hypotheses (H1), (H2) and define

P̂(U) := D2ĥ(U)M̂(U)D2ĥ(U), U ∈ D.

Then, for all U ∈ D and ζ ∈ Rn,

ζT P̂(U)ζ ≥ κ
(
|
n∑
l=1

ζl|2 +
n∑
i=1

1

Ui
|ζi|2

)
,

where κ := minj,k∈{0,...,n},j 6=kKjk.

Proof. This follows from Lemma 2.3 by inserting the tangent vector ξ := DΨζ and performing some elementary
manipulations. Note that here we have also used the identity (2.4).

2.3. Existence of weak solutions under hp. (H2∗). Observe that under hypothesis (H2∗), i.e. for κ :=
mini 6=jKij > 0, Corollary 2.4 implies that ζT P̂(U)ζ &

∑n
i=1

1
Ui
|ζi|2. This estimate, combined with the

convexity properties of ĥ, allows us to apply Theorem 2 of [11] to infer global existence of weak solutions to
system (1.1) under hp. (H2∗), where we also rely on Lemma 2.1 on the equivalence between the original and
the transformed system:

Theorem 2.5 (See [11] & L. 2.1). Let mini 6=jKij > 0. Let uin ∈ L1(Ω)1+n satisfy uin(x) ∈ S for a.e.
x ∈ Ω. Then there exists a function u ∈ L2

loc([0,∞);H1(Ω))1+n with ∂tu ∈ L2
loc([0,∞);H1(Ω)∗)1+n

and u(t, x) ∈ S for a.e. (t, x) ∈ (0,∞)×Ω that satisfies system (1.1) in the weak sense and takes the initial
datum u(0) = uin. Furthermore, the regularity

√
ui ∈ L2

loc([0,∞);H1(Ω)) for all i ∈ {0, . . . , n} (2.12)

holds true.

The main feature of the proof of Theorem 2.5 consists in a transformation to the Legendre conjugate variables
w = Dĥ(U) upon which the system can be regularised by a standard higher-order elliptic term while preserving
the key entropy estimate.

We should note that the statement of Theorem 2 by Jüngel [11] assumes that uin(x) ∈ S for a.e. x ∈ Ω.
However, as observed by the author in the paragraph following the statement of this theorem, an approximation
argument allows to relax this hypothesis to uin(x) ∈ S for a.e. x ∈ Ω. It is further necessary to point out that
the regularity (2.12) does not appear in the statement of [11, Theorem 2], but it directly follows from the proof of
this result, see [11, proof of Theorem 2; in particular, equation (23) and Step 3].

Let us remark that in [2, Theorem 2.2] a result similar to Theorem 2.5 appears (formulated for the n-species
system), again deduced by verifying the hypotheses of Theorem 2 of [11]. But since it is stated in a slightly
weaker form, we will not use it here.

3. STABILITY RESULTS FOR FULL INTERACTIONS

3.1. Entropy dissipation balance. Theorems 1.3 and 1.4 both rely on the following entropy dissipation identity.

Proposition 3.1. Let u = (u0, . . . , un) be a weak solution according to Definition 1.1 enjoying the regularity√
ui ∈ L2

loc([0, T
∗);H1(Ω)) for all i. Then for all T ∈ (0, T ∗)∫

Ω
h(u(T )) dx =

∫
Ω
h(u(0)) dx−

∫ T

0

∫
Ω

P(u) dxdt, (3.1)

where P(u) =
∑

i,j ∇ui · Pij(u)∇uj =
∑

i,j ∇ui · (D2h(u)M(u)D2h(u))ij∇uj (cf. (2.5)).

As a consequence, for all 0 ≤ s < T < T ∗∫
Ω
h(u(T )) dx =

∫
Ω
h(u(s)) dx−

∫ T

s

∫
Ω

P(u) dxdt. (3.2)
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Proof of Prop. 3.1. We begin by observing that u ∈ C([0, T ];L2(Ω))1+n. This is a consequence of the reg-
ularity hypotheses in Definition 1.1 combined with standard embeddings for Bochner spaces. Formally, iden-
tity (3.1) follows upon testing (1.7) with Dih(u), taking the sum over i and applying a chain rule. However, the
Boltzmann-type entropy density h is not smooth up to ui = 0, and hence, we need to regularise first. The
procedure is very standard, but since it has not been carried out for this particular system, some details are
required.

For ε > 0 let hε(u) := h(u0 + ε, . . . , un + ε) =
∑n

i=0 λ(ui + ε). Then

Dihε(u) = log(ui + ε) ∈ L2
loc([0, T

∗);H1(Ω))

and Dikhε(u) = 1
ui+ε

δik for all i, k ∈ {0, . . . , n}, where δik denotes the Kronecker symbol.

Choosing ψ = Dihε(u) in the weak equation (1.7) for ui and taking the sum
∑n

i=0 gives∫
Ω
hε(u(T )) dx−

∫
Ω
hε(u(0)) dx = −

∫ T

0

∫
Ω

∑
i,j,k

Dikhε(u)Aij(u)∇uj · ∇uk dxdt. (3.3)

To pass to the limit ε→ 0, we wish to apply the dominated convergence theorem. In the terms on the left-hand
side this is immediate thanks to the bound 0 ≤ ui ≤ 1. Concerning the integral on the right-hand side, we
need appropriate information about its integrand. For this purpose, we compute for i, j ∈ {0, . . . , n}, using the
formula (1.5) for M,∑

k

Dikhε(u)Aij(u)∇uj · ∇uk =
1

ui + ε
Mij(u)

1

uj
∇uj · ∇ui

=
1

ui + ε
ui(δij

n∑
l=0

Kilul −Kijuj)
1

uj
∇uj · ∇ui

= δij
1

ui + ε
|∇ui|2

n∑
l=0

Kilul −
ui

ui + ε
Kij∇uj · ∇ui.

The terms in the last line are bounded above (in absolute values, pointwise a.e.) by the integrable function
C
∑

i |∇
√
ui|2 for some ε-independent constant C ∈ (0,∞). Hence, the dominated convergence theorem

allows to infer identity (3.1) upon taking the limit ε ↓ 0 in equation (3.3).

3.2. Weak-strong stability estimate. In the derivation of the stability estimate asserted in Theorem 1.3, we
roughly follow the technique in [10]. The size-exclusion effect, however, induces some new difficulties requiring
the new estimate (3.9) to handle the present problem.

Proof of Theorem 1.3. Let ũ = (ũ0, . . . , ũn) be a strong solution and u = (u0, . . . , un) a weak solution with
the properties as stated in Theorem 1.3. We recall the relation U = (u1, . . . , un), Ũ = (ũ1, . . . , ũn) and
note that for i ∈ {1, . . . , n}

Diĥ(U) = log

(
Ui
u0

)
= log

(
ui
u0

)
. (3.4)

In the proof below, we freely switch between the original and the transformed variables u, ũ and U, Ũ and
choose the form that appears to be more convenient for the specific argument in question. As explained in
Section 2.1, both forms are equivalent and the specific choice of variables has no mathematical significance.

We then define

ĥrel(U, Ũ) := ĥ(U)−
n∑
i=1

Diĥ(Ũ)(Ui − Ũi)− ĥ(Ũ)

= h(u)−
n∑
k=0

Dkh(ũ)(uk − ũk)− h(ũ) = hrel(u, ũ).
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Since ĥ is strictly convex uniformly in D and u0 = 1−
∑n

i=1 ui, we have the lower bound

ĥrel(U, Ũ) & |U − Ũ |2 ∼ |u− ũ|2.

Let now T ∈ (0, T ∗). We will establish a weak-strong stability estimate of the form∫
Ω
ĥrel(U, Ũ) dx

∣∣∣∣τ=t

τ=0

≤ CT,ũ
∫ t

0

∫
Ω
ĥrel(U, Ũ) dxdτ, t ∈ (0, T ), (3.5)

with CT,ũ = C(‖ũ‖C0,1([0,T ]×Ω), (inf [0,T ]×Ω ũi)
n
i=0), upon which the asserted inequality (1.9) follows from

Gronwall’s lemma.

To begin with, we compute the time evolution of ĥrel(U, Ũ) using the entropy dissipation balance (3.2) and the
regularity of U, Ũ as well as integration by parts for Sobolev–Bochner functions (cf. [18, Lemma 7.3]),∫

Ω
ĥrel(U, Ũ) dx

∣∣∣∣τ=t

τ=0

= −
∫ t

0

∫
Ω

P̂(U) dxdτ −
∫ t

0

d

dτ

∫
Ω

n∑
i=1

Diĥ(Ũ)(Ui − Ũi) + ĥ(Ũ) dx dτ

= −
∫ t

0

∫
Ω

P̂(U) dxdτ −
∫ t

0

∫
Ω

( n∑
i,k=1

Dikĥ(Ũ)∂tŨk(Ui − Ũi)
)

dxdτ

−
∫ t

0

n∑
i=1

〈∂tUi, Diĥ(Ũ)〉 dτ.

For the penultimate integral on the right-hand side we next use the fact that ũ is a strong solution, while the
last integral on the right-hand side is further rewritten appealing to the weak solution property (2.9) of U . Upon
insertion of the identity Â = M̂D2ĥ, some rearrangement of terms and renaming of indices, we arrive at∫

Ω
ĥrel(U, Ũ) dx

∣∣∣∣τ=t

τ=0

=

∫ t

0

∫
Ω
ρ dxdτ, t ∈ (0, T ),

where3

ρ := −P̂(U) +
n∑

i,l=1

∇Diĥ(Ũ) · M̂il(U)∇Dlĥ(U)

+

n∑
i,l,j=1

∇
(
Dij ĥ(Ũ)(Uj − Ũj)

)
· M̂il(Ũ)∇Dlĥ(Ũ)

(3.6)

with the understanding that∇Dlĥ(U) :=
∑n

k=1Dlkĥ(U)∇Uk.

Hence, for proving the stability estimate (3.5) it suffices to show the pointwise bound

ρ ≤ CT,ũ ĥrel(U, Ũ). (3.7)

For this purpose, we fix ι := ιT ∈ (0, 1) such that ũi ≥ 2ι in [0, T ] × Ω for all i ∈ {0, . . . , n}. For a.e.
(t, x) ∈ [0, T ]× Ω we then distinguish the following cases:

� Case 1: min{u0(t, x), . . . , un(t, x)} > ι.
� Case 2: min{u0(t, x), . . . , un(t, x)} ≤ ι.

Case 1. In this case, ui ≥ ι for all i ∈ {0, . . . , n} and there exists a convex setKι ⊂⊂ D with dist(Kι, ∂D) &
ι such that U(t, x) ∈ Kι. We will show that ρ ≤ CT,ũ|u − ũ|2 using the nondegeneracy property (2.8), the

strict convexity of ĥ, as well as the smoothness of M̂ and ĥ inD. Dependencies of constants on fixed quantities
such as ‖ũ‖C0,1([0,T ]×Ω) and ι will frequently be omitted.

3A caveat is in place here: Since the function Dlĥ(U) may not be locally integrable (not to mention weakly differentiable in the

Sobolev sense), the gradient ∇Dlĥ(U) in (3.6) needs to be read in a symbolic way with the rigorous meaning ∇Dlĥ(U) :=∑n
j=1 DjDlĥ(U)∇Uj .
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Recalling the identity P̂(U) =
∑n

i,l=1∇Diĥ(U) · M̂il(U)∇Dlĥ(U) and taking advantage of the fact that,

since U(t, x) is away from ∂D, the Hessian D2ĥ(U(t, x)) ∈ Rn×n is well-defined, we may rewrite (3.6) in
the form

ρ = −
n∑

i,l=1

∇(Diĥ(U)−Diĥ(Ũ)) · M̂il(U)∇(Dlĥ(U)−Dlĥ(Ũ))

−
n∑

i,l=1

∇(Diĥ(U)−Diĥ(Ũ)) · (M̂il(U)− M̂il(Ũ))∇Dlĥ(Ũ)

−
n∑

i,j,l=1

∇
(
Diĥ(U)−Diĥ(Ũ)−Dij ĥ(Ũ)(Uj − Ũj)

)
· M̂il(Ũ)∇Dlĥ(Ũ),

(3.8)

where we continue to employ the short-hand notation∇Diĥ(U) :=
∑n

k=1Dikĥ(U)∇Uk.

Thanks to inequality (2.8) with K = Kι and the fact that h ∈ C4(Kι), there exists ε∗ = ε∗(Kι) > 0 such that
for any δ ∈ (0, 1)

ρ ≤ −ε∗
n∑
i=1

|∇Diĥ(U)−∇Diĥ(Ũ)|2 + δ|∇u−∇ũ|2 + Cδ|u− ũ|2.

Here, the last term in (3.8) has been estimated invoking Taylor’s theorem, see Appendix A for details.

We assert that there exists ε(ιT ) > 0 and CT,ũ = C(‖ũ‖C0,1([0,T ]×Ω), ιT ) <∞ such that

G :=
n∑
i=1

|∇Diĥ(U)−∇Diĥ(Ũ)|2 ≥ ε(ιT )|∇u−∇ũ|2 − CT,ũ|u− ũ|2. (3.9)

First suppose that (3.9) holds true. Then, choosing δ = ε∗ε(ιT ) allows us to deduce (3.7) in Case 1.

Proof of inequality (3.9) (in Case 1). We compute for i ∈ {1, . . . , n}

∇Diĥ(U)−∇Diĥ(Ũ) =
n∑
j=1

(
Dij ĥ(U)∇Uj −Dij ĥ(Ũ)∇Ũj

)
=

n∑
j=1

[
Dij ĥ(U)(∇Uj −∇Ũj) + (Dij ĥ(U)−Dij ĥ(Ũ))∇Ũj

]
.

Since ĥ is smooth and strictly convex on D, the inverse Hessian B(U) := (D2ĥ(U))−1 is well-defined and
for U ∈ Kι its spectral norm |||B(U)||| is bounded above by a finite constant C(ι) only depending on ι > 0.
Hence,

|∇U −∇Ũ | ≤ |B(U)(∇Dĥ(U)−∇Dĥ(Ũ))|+ |B(U)(D2ĥ(U)−D2ĥ(Ũ))∇Ũ |

≤ C(ι)|∇Dĥ(U)−∇Dĥ(Ũ)|+ CT,ũ|U − Ũ |,
which implies (3.9).

This concludes the proof of inequality (3.9).

Case 2. In this case, we recall the definition of ρ in (3.6) and Corollary 2.4 (see also inequality (2.7)) to estimate

ρ ≤ −ε1
n∑
i=1

|∇
√
ui|2 + CT,ũ|∇u|+ CT,ũ

≤ −ε2
n∑
i=1

|∇
√
ui|2 + CT,ũ,

where we have used the boundedness of u. Since |u− ũ| &ι 1, we deduce (3.7).

The proof of Theorem 1.4 is now complete.
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Remark 3.2 (Second proof of inequality (3.9)). For a more quantitative estimate in Case 1, the following alter-
native proof of inequality (3.9) may be of interest. Let T ∈ (0,∞) be fixed but arbitrary and abbreviate ι := ιT .
In view of (3.4), we have

G =
n∑
i=1

|∇ log
(
ui
u0

)
−∇ log

(
ũi
ũ0

)
|2,

which can be rewritten as

G =
n∑
i=1

|∇ϕi −∇ϕ0|2

for ϕi := log
(
ui
ũi

)
. We compute using the identity u0 = 1−

∑n
i=1 ui

∇ϕ0 = ∇ log(u0)−∇ log(ũ0) = −
n∑
i=1

1
u0
∇ui +

n∑
i=1

1
ũ0
∇ũi

= −
n∑
i=1

ui
u0
∇ log(ui) +

n∑
i=1

ũi
ũ0
∇ log(ũi)

= −
n∑
i=1

ui
u0
∇ϕi +R(u, ũ),

where here and below R(u, ũ) denotes a harmless term that satisfies |R(u, ũ)| ≤ CT,ũ|u − ũ| and may
change from line to line. Hence,

∇ϕ1 −∇ϕ0 = (1 + u1
u0

)∇ϕ1 +

n∑
i=2

ui
u0
∇ϕi +R(u, ũ)

= (1 +

n∑
i=1

ui
u0

)∇ϕ1 +

n∑
i=2

ui
u0

(∇ϕi −∇ϕ1) +R(u, ũ)

= (1 +

n∑
i=1

ui
u0

)∇ϕ1 +

n∑
i=2

ui
u0

(∇ϕi −∇ϕ0 +∇ϕ0 −∇ϕ1) +R(u, ũ).

Using the inequality 2|a− b|2 ≥ a2 − 2b2, we infer for any δ ∈ (0, 1)

|∇ϕ1 −∇ϕ0|2 ≥ (1− 2δ)|∇ϕ1 −∇ϕ0|2 + δ(1 + 1−u0
u0

)|∇ϕ1|2

− C1(ι)δ
n∑
i=1

|∇ϕi −∇ϕ0|2 − CT,ũ|u− ũ|2.

For δ = δ(ι) > 0 small enough, we deduce

G =

n∑
i=1

|∇ϕi −∇ϕ0|2 ≥ ε1(ι)|∇ϕ1|2 − CT,ũ|u− ũ|2

≥ ε2(ι)|∇u1 −∇ũ1|2 − CT,ũ|u− ũ|2,

where the last estimate follows from the definition ofϕ1 and elementary manipulations. To infer the full bound (3.9)
one argues by symmetry.

3.3. Exponential stability of steady states.

Proof of Theorem 1.4. By Proposition 3.1, the weak solution u satisfies identity (3.2). Moreover, equation (1.7)
implies that

∫
ui(t) dx =

∫
ūi dx for all t ≥ 0 and i ∈ {0, . . . , n}. Hence, we have for all 0 ≤ s < t < ∞
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and fixed constants ε1(κ), ε2(κ,Ω) > 0∫
Ω
hrel(u(t), u) dx−

∫
Ω
hrel(u(s), u) dx = −

∫ t

s

∫
Ω

P(u) dxdτ

≤ −ε1κ
∫ t

s

∫
Ω

n∑
i=0

|∇
√
ui|2 dxdτ

≤ −ε2κ
∫ t

s

∫
Ω
hrel(u(τ), u) dxdτ,

where the last estimate follows from the logarithmic Sobolev inequality applied pointwise in time. A suitable
version of Gronwall’s inequality now implies that∫

Ω
hrel(u(t), u) dx ≤

∫
Ω
hrel(u(0), u) dx exp(−ε2κt)

for all t ≥ 0. By a classical Csiszár–Kullback type inequality (see e.g. [20]), the left-hand side is bounded below
by ε3‖u(t)− ū‖2L1(Ω) for some ε3 = ε3(ū) > 0. This proves the asserted inequality (1.10).

4. EXISTENCE AND TIME ASYMPTOTICS FOR PARTIAL INTERACTIONS

In this section, we perform a global weak existence analysis for systems where not necessarily all species
are interacting. Except for the case of full interactions, which is covered by [11, Theorem 2] (cf. Theorem 2.5),
no systematic existence analysis is available in the literature for system (1.1). Here, we take advantage of
this result for full interactions, which easily gives rise to a family of approximate solutions to more general,
partially interacting systems, and then perform a vanishing-interaction limit. The weak solutions obtained upon
this construction further enjoy certain entropy dissipation inequalities that allow us to prove convergence to
equilibrium as t → ∞. Since the gradient bounds obtained from entropy dissipation may be quite poor, the
asymptotic analysis involves some non-standard arguments when it comes to specifying a weak formulation of
the equations and determining the long-time behaviour of solutions.

4.1. Definitions and results. In this section, we only assume in addition to (H1), (H2) the following hypothesis:

(H3) There exists i0 ∈ {0, . . . , n} such that Ki0j > 0 for all j 6= i0.

Hypothesis (H3) is quite natural from a modelling point of view, and one may think of the species Xi0 as
representing the vacancies.

Depending on their interaction properties {Kij}, the speciesX0, . . . , Xn differ in their (mathematical) charac-
ter. Our analysis suggests classifying them as follows.

Definition 4.1 (Types A, B and C). Let {Kij}ni,j=0 satisfy (H3) and let i ∈ {0, . . . , n}.

� We call the species Xi of type A if Kij > 0 for all j 6= i.
� Let the species Xi not be of type A. We say that Xi is of type B if Ki` = 0 for all species X`, ` 6= i,

that are not of type A.
� A species that is neither of type A nor of type B will be referred to as type C.

We informally write i ∈ A to express the situation thatXi is of type A and use analogous notations for types B
and C. Moreover, the symbol α will be reserved as an index for species of type A, and we frequently abbreviate∑

uα :=
∑
α∈A

uα :=
∑

{α:Xα is of type A}

uα.

With this convention we have {0, . . . , n} = A ∪̇B ∪̇C.

In terms of regularity, species of type A play a distinguished role. In view of Lemma 2.3 we expect their densities
to have gradients in L2.
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We should further remark that hypothesis (H3) does not really make sense if one admits initial data uin sat-
isfying uin

i0
≡ 0. Indeed, in this case mass conservation and non-negativity enforce that ui0 ≡ 0 and prob-

lem (1.1) effectively reduces to an n-species system that does not necessarily conform to (H3) any longer. More
generally, the present approach to cross-diffusion system (1.1) in the (more degenerate) partially interacting
regime primarily aims at understanding flows emanating from suitably regular initial data satisfying in particular
infΩ

∑
α∈A u

in
α > 0 or at least

∑
α∈A u

in
α > 0; the latter condition turns out to be sufficient for the generalised

solutions to be constructed below to relax to the steady state in the long-time limit (cf. Theorem 4.4).

Let us now turn to the statement of our main result regarding existence for general interactions. Loosely speak-
ing, we obtain global existence of weak solutions extending previous results in [5, 21], where only species
of type A and B were considered and where A = {0}. (The method of proof in the present paper is,
however, different.) For the precise sense, in which gradients appearing in Theorem 4.2 below are gener-
ally to be understood, we refer to Remark 4.3 following the statement of this theorem. We further recall that
C([0,∞);L2

weak(Ω)) denotes the space of functions v : [0,∞)→ L2(Ω) such that t 7→ v(t) is continuous
with respect to the weak topology on L2(Ω).

Theorem 4.2 (Existence for general interactions). Let {Kij}ni,j=0 satisfy (H1), (H2) and (H3). Let further

uin ∈ L1(Ω)1+n satisfy uin(x) ∈ S for a.e. x ∈ Ω. There exists u = (ui)
n
i=0 ∈ L∞((0,∞) × Ω)1+n ∩

C([0,∞);L2
weak(Ω))1+n with u(t, x) ∈ S for a.e. (t, x) ∈ (0,∞)× Ω enjoying the regularity

∂tui ∈ L2
loc([0,∞);H1(Ω)∗) for all i ∈ {0, . . . , n},√

uα ∈ L2
loc([0,∞);H1(Ω)) for all α ∈ A,√

uαui ∈ L2
loc([0,∞);H1(Ω)) for all α ∈ A and all i ∈ {0, . . . , n},

taking the initial data uin and obeying for every i ∈ {0, . . . , n} the conservation law∫
Ω
ui(t, x) dx =

∫
Ω
uin
i (x) dx for all t > 0, (4.1)

and satisfying the cross-diffusion system (1.1) in the following weak sense:

for all i, k ∈ {0, . . . , n} such that Kik > 0, there exists Yik ∈ L2(0,∞;L2(Ω))d with Yik = −Yki and the
properties that4

Yik = uk∇ui − ui∇uk a.e. in
{∑
α∈A

uα > 0
}
, (4.2a)

and if {i, k} ∩ A 6= ∅,

Yik = uk∇ui − ui∇uk a.e. in (0,∞)× Ω, (4.2b)

such that for all T <∞ and all ψ ∈ C∞([0, T ]× Ω)∫ T

0
〈∂tui, ψ〉dt = −

∫ T

0

∫
Ω

∑
k

KikYik · ∇ψ dxdt. (4.3)

Furthermore, there exists a measurable set J ⊂ (0,∞) with L1(J) = 0 such that the following entropy
dissipation inequalities hold for all T ∈ (0,∞) :

H(u(T )) +

∫ T

0

∫
Ω
P(u)χ{

∑
uα>0} dxdt ≤ H(uin), (4.4a)

H(u(T )) +

∫ T

s

∫
Ω
P(u)χ{

∑
uα>0} dxdt ≤ H(u(s)) + CLd{

∑
uα(s) = 0}

for all s ∈ (0, T ) \ J.
(4.4b)

Here, P(u) = 1
2

∑
i,jKijuiuj |∇uiui

− ∇ujuj
|2 in {

∑
uα > 0} and C <∞ is a fixed constant.

4See Remark 4.3 for the meaning of the terms uk∇ui.
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Remark 4.3 (Generalised Sobolev gradients). It is necessary to comment on the meaning of the gradients
appearing in identity (4.2a) (resp. (4.4)), since for i, k 6∈ A terms of the form uk∇ui (resp.

√
uk∇
√
ui) may not

define a distribution in the classical sense. Let us first note that the regularity
√
uα ∈ L2

loc([0,∞);H1(Ω)) and√
uαui ∈ L2

loc([0,∞);H1(Ω)) for α ∈ A ensures that the products
√
uα∇
√
ui and uα∇ui are well-defined

in the distributional sense and agree with theL2
t,x functions∇(

√
uαui)−

√
ui∇
√
uα and∇(uαui)−ui∇uα,

respectively. This in turn determines measurable functions „ ∇√ui “ and „ ∇ui “ almost everywhere in the
set {uα > 0} and uniquely in the weighted Lebesgue space L2(uαdxdt). The „maximal“ set where for
all i ∈ {0, . . . , n} gradients ∇√ui, ∇ui can be defined in this sense is obtained by repeating the above
reasoning for the sums

∑
α∈A
√
uα or

∑
α∈A uα, which allows us to define ∇√ui and ∇ui in a pointwise

sense L1+d-a.e. in the set {
∑

α∈A uα > 0}. Simple examples show that under the general hypotheses of
Theorem 4.2, we cannot expect gradients to exist on a set larger than this. In fact, letting B 6= ∅, C = ∅ and
uin
α ≡ 0 for all α ∈ A, the function u(t) ≡ uin ∈ L1(Ω) would be the natural candidate for a solution.

Yet, under the hypotheses of Theorem 4.2, the distributional gradient ∇uin does not need to have a pointwise
meaning. If one focuses on the question of giving a meaning, on a set (possibly) larger than {

∑
uα > 0}, to

products of the form uk∇ui for i, k ∈ C, the problem becomes more delicate and is out of the scope of this
manuscript. Here, we content ourselves with the fact that, as we will see in Theorem 4.4 below, the information
contained in Theorem 4.2 suffices to uniquely determine the long-time asymptotic behaviour of such weak
solutions, provided they emanate from data uin for which

∑
α∈A u

in
α is non-trivial.

Observe that for i ∈ A ∪B identity (4.2b) implies that
n∑
k=0

KikYik =
n∑
j=0

Aij(u)∇uj a.e. in (0,∞)× Ω

with Aij(u) as in (1.4), so that in this case eq. (4.3) agrees with the classical weak form of the i-th component
of (1.1).

Theorem 4.4 (Convergence to equilibrium). Assume the hypotheses of Theorem 4.2 and let u ∈ L∞((0,∞)×
Ω)1+n ∩ C([0,∞);L2

weak(Ω))1+n be an entropy-dissipating weak solution of (1.1) in the sense that it enjoys

the properties listed in Theorem 4.2. Suppose further that
∑

α∈A u
in
α > 0 with · denoting the average 1

|Ω|
∫

Ω · .
Then

lim
t→∞
‖u(t)− u‖L1(Ω) = 0,

where u ≡ uin is the steady state associated with the initial data uin.

See Section 4.3 for the proof of Theorem 4.4. Note that in models without C-type species the vanishing of∑
α∈A u

in
α means that a trivial ‘solution’ of (1.1) can be obtained by letting u ≡ uin.

4.2. Construction via vanishing-interaction limit. The purpose of this section is to prove Theorem 4.2.

Observe that A is non-empty by hypothesis (H3), and abbreviate

K := min
α∈A

min
i:i 6=α

Kαi > 0.

Our construction is based on taking a vanishing-interaction limit in the family of models of full interaction type
defined by Kε

ij := max{Kij , ε} for all 0 ≤ i 6= j ≤ n (and as before Kε
ii = 0 for all i), where 0 < ε � 1

is a small parameter which we assume to satisfy ε ≤ min{Kij : Kij > 0}. Then, by Theorem 2.5, there
exists a global weak solution uε of system (1.1) with parameters {Kij} := {Kε

ij} satisfying uε(t, x) ∈ S for
a.e. (t, x) and enjoying the extra regularity (cf. (2.12))√

uεi ∈ L
2
loc([0,∞);H1(Ω)) for all i ∈ {0, . . . , n}.

Thanks to Proposition 3.1 and Lemma 2.2, uε obeys the entropy dissipation balance∫
Ω
h(uε(T )) dx+

∫ T

s

∫
Ω

Pε(uε) dxdt =

∫
Ω
h(uε(s)) dx (4.5)
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for all 0 ≤ s < T <∞, where

Pε(uε) =
1

2

∑
i,k

Kε
iku

ε
iu
ε
k

∣∣∇uεi
uεi
− ∇u

ε
k

uεk

∣∣2 = 2
∑
i,k

Kε
ik

∣∣√uεk∇√uεi −√uεi∇√uεk∣∣2.
Observe that, as a consequence of Lemma 2.3,

Pε(uε) &
∑
α∈A
|∇
√
uεα|2 +

∑
α∈A

∑
i

uεα|∇
√
uεi |

2 + ε
∑
i

|∇
√
uεi |

2 (4.6)

+
∑
i,k

Kε
ik

∣∣√uεk∇√uεi −√uεi∇√uεk∣∣2 +
∑
α∈A

∑
i

|∇
√
uεαu

ε
i |

2,

where the bound for
∑

α∈A
∑

i |∇
√
uεαu

ε
i |2 follows a posteriori by estimating |∇

√
uεαu

ε
i |2 . |∇

√
uεα|2 +

uεα|∇
√
uεi |2. Since h ≥ 0 and

∫
Ω h(uε(0)) dx =

∫
Ω h(uin) dx < ∞, we infer the following (ε, T )-uniform

bounds:∫ T

0

∫
Ω

( ∑
α∈A
|∇
√
uεα|2 +

∑
α∈A

∑
i

uεα|∇
√
uεi |

2 +
∑
α∈A

∑
i

|∇
√
uεαu

ε
i |

2

+
∑
i,k

Kε
ik

∣∣√uεk∇√uεi −√uεi∇√uεk∣∣2 + ε
∑
i

|∇
√
uεi |

2

)
dxdt ≤ C <∞.

(4.7)

Using the ε-uniform control of the term
√
Kε
ik(
√
uεk∇

√
uεi −

√
uεi∇

√
uεk) in L2

t,x in (4.7) and the weak
equation satisfied by uεi , we further deduce the ε-uniform bound

‖∂tuεi‖L2(0,T ;H1(Ω)∗) ≤ C <∞

for all i ∈ {0, . . . , n}.

Thanks to the above estimates and the control uε(t, x) ∈ S , there exists a subsequence ε ↓ 0 (not relabelled)
such that for all i ∈ {0, . . . , n} and suitable ui ∈ L∞((0,∞) × Ω), 0 ≤ ui ≤ 1, satisfying

√
uα ∈

L2
loc([0,∞);H1(Ω)) whenever α ∈ A the following convergence properties hold:

uεi ⇀ ui in L2
loc([0,∞);L2(Ω)), (4.8)

∂tu
ε
i
∗
⇀ ∂tui in L2

loc([0,∞);H1(Ω)∗) (4.9)

uεi (t) ⇀ ui(t) in L2(Ω), locally uniformly in t ∈ [0,∞), (4.10)

where the last line exploits the fact that for every T < ∞, the family {uεi} is ε-uniformly bounded in
L∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)∗), giving compactness in C([0, T ];L2

weak(Ω)) (cf. [14, Lemma C.1]).

Additionally, the subsequence ε ↓ 0 will be chosen such that for all α ∈ A√
uεα ⇀

√
uα in L2

loc([0,∞);H1(Ω)),

uεα → uα a.e. in (0,∞)× Ω.
(4.11)

Since the constraint
∑n

i=0 u
ε
i = 1 is linear, the weak convergence (4.8) implies that

∑n
i=0 ui(t, x) = 1 for

a.e. (t, x) ∈ (0,∞)×Ω. Line (4.8) further yields
∫ T

0

∫
Ω uiϕdxdt ≥ 0 for all ϕ ∈ Cc((0, T )×Ω) with ϕ ≥ 0;

hence ui ≥ 0 a.e., allowing us to conclude that u(t, x) ∈ S for a.e. (t, x) ∈ (0,∞)× Ω.

Next, we assert that for all α ∈ A and i ∈ {0, . . . , n}

uεαu
ε
i → uαui in L2

loc([0,∞);L2(Ω)). (4.12)

The convergence (4.12) follows from the Aubin–Lions lemma applied to uεαu
ε
i . To verify the required control on

the time derivative, we compute in the sense of distributions

∂t
(
uεαu

ε
i

)
= ∂tu

ε
αu

ε
i + ∂tu

ε
iu
ε
α.
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Let now T < ∞. For the first term on the right-hand side we compute for ψ ∈ C∞([0, T ] × Ω) using the
equation satisfied by uεα∫ T

0
〈∂tuεαuεi , ψ〉dt =

∫ T

0
〈∂tuεα, uεiψ〉dt = −

∫ T

0

∫
Ω

∑
j

Aαj(u
ε)∇uεj · ∇(uεiψ) dxdt

= −
∫ T

0
〈F ε,

√
uεα∇(uεiψ)〉 dt,

whereF ε := 1√
uεα

∑
j Aαj(u

ε)∇uεj ∈ L2
t,x. By (4.7) the termF ε is ε-uniformly bounded inL2(0, T ;L2(Ω)).

Hence, recalling also the uniform bounds

‖uεα‖L2([0,T ];H1(Ω)) + ‖
√
uεα∇uεi‖L2(0,T ;L2(Ω)) + ‖∂tuεi‖L2(0,T ;H1(Ω)∗) ≤ CT <∞,

we find that ∂t
(
uεαu

ε
i

)
is ε-uniformly bounded in

L1(0, T ; (H1 ∩ L∞)(Ω)∗).

Observing further the ε-uniform bound of ∇
(
uεαu

ε
i

)
in L2

loc([0,∞);L2(Ω)) (cf. (4.7)), we infer (4.12) by ap-
pealing to the Aubin–Lions lemma (see e.g. [18, Lemma 7.7]).

Thus, upon extraction of a subsequence, we may henceforth assume that

uεαu
ε
i → uαui a.e. in (0,∞)× Ω.

We next assert that this convergence implies pointwise convergence a.e. of uεi to ui in the set Vα := {uα > 0},
where for definiteness we let uα(t), ui(t) denote the precise representatives of the corresponding Lebesgue
classes. To show this assertion, let us fix N ⊂ (0,∞) × Ω measurable with L1+d(N) = 0 in such a way
that uεα → uα and uεαu

ε
i → uαui pointwise in ((0,∞) × Ω) \ N . In particular, for every (t, x) ∈ Vα, we

have uεα(t, x) > 0 for ε > 0 small enough, allowing us to infer that uαuεi = uα
uεα
· uεαuεi → uαui pointwise in

Vα \N , since for each (t, x) ∈ Vα \N the expression uεαu
ε
i · uαuεα is well-defined for small enough ε. We have

thus shown that for all i ∈ {0, . . . , n}

uεi → ui pointwise a.e. in
⋃
α∈A
{uα > 0} =

{∑
α∈A

uα > 0
}
. (4.13)

Lemma 4.5. For all i, k ∈ {0, . . . , n} with Kik > 0 there exist vector fields Wik,Yik ∈ L2(0,∞;L2(Ω))d,
Wik = −Wki, Yik = −Yki that satisfy

Wik =
√
uk∇
√
ui −

√
ui∇
√
uk a.e. in

{∑
α∈A

uα > 0
}
, (4.14)

Yik = uk∇ui − ui∇uk a.e. in
{∑
α∈A

uα > 0
}
, (4.15)

and if {i, k} ∩ A 6= ∅,

Wik =
√
uk∇
√
ui −

√
ui∇
√
uk a.e. in (0,∞)× Ω, (4.16)

Yik = uk∇ui − ui∇uk a.e. in (0,∞)× Ω, (4.17)

and are such that√
uεk∇

√
uεi −

√
uεi∇

√
uεk ⇀Wik in L2((0,∞)× Ω), (4.18)

uεk∇uεi − uεi∇uεk ⇀ Yik in L2((0,∞)× Ω). (4.19)

Moreover, for all i ∈ {0, . . . , n} one has

ε∇
√
uεi → 0 in L2((0,∞)× Ω). (4.20)

Proof. Properties (4.13), (4.11) and (4.7) imply that for all α ∈ A√
uεi∇

√
uεα ⇀

√
ui∇
√
uα in L2((0,∞)× Ω) for all i ∈ {0, . . . , n}. (4.21)
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Furthermore, using (4.13) and (4.11), it is easy to see for all α ∈ A that
√
uεα∇

√
uεi converges to

√
uα∇
√
ui

in the sense of distributions and hence, by (4.7),√
uεα∇

√
uεi ⇀

√
uα∇
√
ui in L2((0,∞)× Ω) for all i ∈ {0, . . . , n}. (4.22)

Let us now prove (4.18), (4.14). Since Kik > 0, the term Wε
ik := (

√
uεk∇

√
uεi −

√
uεi∇

√
uεk) is ε-

uniformly bounded in L2((0,∞)×Ω). Hence, by weak compactness in L2((0,∞)×Ω), there exists Wik ∈
L2((0,∞)× Ω) such that along a subsequence ε ↓ 0, Wε

ik ⇀Wik in L2((0,∞)× Ω). Thus,

η
(∑
α∈A

uεα
)
Wε
ik ⇀ η

(∑
α∈A

uα
)
Wik

for all η ∈ C∞([0, 1]) with supp η ⊂ (0, 1]. At the same time, for any such η we have weakly in L2
t,x the

convergence

η
(∑
α∈A

uεα
)
Wε
ik =

η
(∑

α∈A u
ε
α

)∑
α∈A u

ε
α

∑
α∈A

(
√
uεku

ε
α∇
√
uεi −

√
uεiu

ε
α∇
√
uεk)

⇀
η
(∑

α∈A uα
)∑

α∈A uα

∑
α∈A

(
√
ukuα∇

√
ui −

√
uiuα∇

√
uk)

= η
(∑
α∈A

uα
)
(
√
uk∇
√
ui −

√
ui∇
√
uk),

where we also used (4.22). Uniqueness of the weak limit in L2 implies that

η
(∑
α∈A

uα
)
Wik = η

(∑
α∈A

uα
)
(
√
uk∇
√
ui −

√
ui∇
√
uk).

Since η ∈ C∞c ((0, 1]) was arbitrary, we infer that Wik =
√
uk∇
√
ui−
√
ui∇
√
uk a.e. in {

∑
α∈A uα > 0}.

Note that the antisymmetry of W follows from that of Wε. If {i, k}∩A 6= ∅, then (4.21), (4.22) and uniqueness
of the weak limit in L2 immediately yield Wik =

√
uk∇
√
ui−
√
ui∇
√
uk a.e. in (0,∞)×Ω. This proves the

first assertions (4.18), (4.14), (4.16). The assertions (4.19), (4.15), (4.17) concerning Yik can be shown along
similar lines.

The convergence (4.20) follows from the fact that
√
ε∇
√
uεi is ε-uniformly bounded in L2

t,x (cf. (4.7)).

We are now in a position to complete the proof of Theorem 4.2.

Proof of Theorem 4.2. Let u denote the limiting candidate constructed on page 18 (see (4.8)–(4.11)). We have
already seen that it enjoys the asserted regularity properties and satisfies u(t, x) ∈ S for a.e. (t, x).

The convergence properties (4.9), (4.19) and (4.20) allow to pass to the limit ε ↓ 0 in the weak form satis-
fied by uεi , i ∈ {0, . . . , n}, for any test function ψ, giving the asserted equation (4.3) with Yik = −Yki
satisfying (4.2a) and, if {i, k} ∩ A 6= ∅, (4.2b) (cf. (4.15), (4.17)).

We next show the conservation law (4.1). It is a consequence of the convergence

∂tu
ε
i
∗
⇀ ∂tui in L2

loc([0,∞);H1(Ω)∗),

the fact that
∫ t

0 〈∂tu
ε
i , 1〉dτ ≡ 0, which follows from the equation for uεi , and the identity5∫ t

0
〈∂tui, 1〉dτ =

∫
Ω
ui(t, x) dx−

∫
Ω
ui(0, x) dx. (4.23)

It remains to prove the entropy dissipation inequalities (4.4). The proof of inequality (4.4a) being somewhat
simpler, we only provide details on how to derive (4.4b), where we rely on the entropy balance law (4.5) for uε.
For passing to the limit in the entropy at the final time T it is convenient to use (4.10), which gives, thanks to
the weak lower semicontinuity in L2(Ω) of the entropy functional, H(u(T )) ≤ lim infε→0H(uε(T )). Note

5Identity (4.23) can be shown by approximation, using the density of the set C1([0, T ];L2(Ω)) in the Sobolev-Bochner space
{v ∈ L2(0, T ;L2(Ω)) : dv

dt
∈ L2(0, T ;H1(Ω)∗)} equipped with the standard norm.
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that here we have specified u = u(T ) on a set of times of measure zero in such a way that (4.10) holds for
all T ∈ [0,∞). To deal with the entropy at times s ∈ (0, T ), we observe that thanks to (4.13) there exists a
measurable set J ⊂ [0,∞) with L1(J) = 0 such that for all t ∈ [0,∞) \ J

uε(t)→ u(t) a.e. in
{∑

uα(t) > 0
}
.

Since |uε| . 1, Lebesgue’s dominated convergence theorem thus gives for s 6∈ J

lim sup
ε→0

∫
Ω
h(uε(s)) dx ≤

∫
Ω
h(u(s)) dx+ CLd

({∑
uα(s) = 0

})
,

where C <∞ is a universal constant.

We are left with estimating below the liminf of the dissipation term. First recall that

Pε(uε) ≥P(uε) = 2
∑
i,k

Kik|
√
uεk∇

√
uεi −

√
uεi∇

√
uεk|

2 = 2
∑
i,k

Kik|Wε
ik|2,

where for Kik > 0 we have Wε
ik :=

√
uεk∇

√
uεi −

√
uεi∇

√
uεk ⇀Wik in L2

t,x with Wik as in Lemma 4.5.
Thus, weak lower semicontinuity of the norm in L2

t,x yields∫ T

0

∫
Ω
P(u)χ{

∑
uα>0} dxdt ≤

∫ T

0

∫
Ω

2
∑
i,k

Kik|Wik|2 dxdt ≤ lim inf
ε→0

∫ T

0

∫
Ω
Pε(uε) dxdt.

The proof of Theorem 4.2 is now complete.

4.3. Convergence to equilibrium.

Proof of Theorem 4.4. Below, the mass conservation property (4.1) will, in places, be used without explicit refer-
ence. Let J be such that (4.4) holds. Thanks to (4.4a) there exists a sequence {tk} ⊂ [0,∞)\J with tk →∞
such that

lim
k→∞

∫
Ω

P(u(tk))χ{
∑
α∈A uα(tk)>0} dx = 0. (4.24)

Similarly to (4.6), we infer from Lemma 2.3 the uniform bound

P(u)χ{
∑
α∈A uα>0} &

∑
α∈A
|∇
√
uα|2 +

∑
α∈A

∑
i

|∇
√
uαui|2 (4.25)

+
∑
i,l

Kil

∣∣√ul∇√ui −√ui∇√ul∣∣2χ{∑α∈A uα>0},

where we recall that the gradients in the last line are to be understood as explained in Remark 4.3.

Hence, (4.24) implies that limk→∞ ‖∇
√
uα(tk)‖L2(Ω) = 0 for all α ∈ A, which further yields, by classical

properties for Sobolev weak derivatives,
√
uα(tk)→

√
uα in H1(Ω).

We assert that this further gives

ui(tk)→ ui in L2(Ω) for all i ∈ {0, . . . , n}. (4.26)

To show (4.26), pick α̂ ∈ A such that uα̂ > 0 (such α̂ exists by hypothesis) and observe that (4.24) combined
with (4.25) implies the convergence

χ{uα̂(tk)>0}
(√
uα̂∇
√
ui −

√
ui∇
√
uα̂
)
|tk

k→∞→ 0 in L2(Ω),

and hence χ{uα̂(tk)>0}
√
uα̂(tk)∇

√
ui(tk) =

√
uα̂(tk)∇

√
ui(tk)→ 0 in L2(Ω). Recalling that√

uα̂(tk)∇
√
ui(tk) := ∇(

√
uα̂(tk)

√
ui(tk))− (∇

√
uα̂(tk))

√
ui(tk)

(cf. Remark 4.3) and using again classical arguments for Sobolev weak derivatives, we find that√
uα̂(tk)ui(tk)→ c ≡ const in H1(Ω).
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An elementary argument similar to that leading to (4.13) finally gives, upon possibly passing to a subsequence,
ui(tk)→ ui a.e. in Ω, which implies (4.26).

Let now {τj} ⊂ (0,∞) with τj →∞ be arbitrary. Then there exists a subsequence {tkj} of {tk} (with kj not
necessarily strictly increasing, but limj→∞ kj = ∞) and j0 ∈ N such that tkj < τj for all j ≥ j0. From the
strong entropy dissipation inequality (4.4b) (and mass conservation) we infer for all τ > 0 and all s ∈ (0, τ)\J

Hrel(u(τ), u) ≤ Hrel(u(s), u) + CLd
({∑

uα(s) = 0
})
. (4.27)

Inserting τ := τj and s := tkj in inequality (4.27) and sending j →∞ yields

lim
j→∞

Hrel(u(τj), u) = 0.

Here we used the strong convergence (4.26) and the hypothesis
∑
uα > 0 to ensure that the right-hand side

of (4.27) vanishes as s = tkj →∞.

APPENDIX A. AN AUXILIARY ESTIMATE

The estimate asserted in the lemma below has previously been employed in [10, Theorem 2.8, Case A+] in a
similar context. For the purpose of being self-contained, we here also recall its elementary proof.

Lemma A.1 (Cf. [10]). Let G ⊂ RN be convex, let f ∈ C3
b (G) and let v ∈ H1(Ω)N , ṽ ∈ C0,1(Ω, G). Then,

for a.e. x ∈ Ω such that v(x) ∈ G

∣∣∇(f(v)− f(ṽ)−
N∑
j=1

Djf(v)(vj − ṽj)
)∣∣

.‖f‖C3(G)
|∇v −∇ṽ||v − ṽ|+ ‖∇ṽ‖L∞ |v − ṽ|2 at the point x,

where we abbreviated∇f(v) :=
∑N

k=1Dkf(v)∇vk.

Proof. Using the definition of∇f(v) and rearranging terms, we may rewrite

∇
(
f(v)− f(ṽ)−

N∑
j=1

Djf(v)(vj − ṽj)
)

=

N∑
k=1

(
Dkf(v)∇vk −Dkf(ṽ)∇ṽk

)
−

N∑
j=1

Djf(ṽ)(∇vj −∇ṽj)−
N∑

j,l=1

Dljf(ṽ)(vj − ṽj)∇ṽl

=

N∑
k=1

(Dkf(v)−Dkf(ṽ))(∇vk −∇ṽk)

+

N∑
l=1

(
Dlf(v)−Dlf(ṽ)−

N∑
j=1

DjDlf(ṽ)(vj − ṽj)
)
∇ṽl.

The assertion now follows by means of the Cauchy–Schwarz inequality and an application of Taylor’s theorem
to Dlf ∈ C2

b (G), l ∈ {1, . . . , N}.

APPENDIX B. NOTATIONS

For definiteness, we here provide some details concerning our notations, most of which are quite classical.

� The convention Kii := 0 for all i ∈ {0, . . . , n} is adopted throughout the paper.
� We will further adopt the convention that Kij ·Q ≡ 0 whenever Kij = 0, even if the quantity ‘Q’ is not

well-defined mathematically. This will simplify notations as it avoids having to restrict sums involving Kij

to pairs {i, j} satisfying Kij > 0.
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� Summation: since we are dealing not only with (n + 1) but also with n dimensional systems, we
avoid the usual summation convention. Unspecified sums involving a Latin summation index (such as
i, j, k) always indicate summing over all indices, that is, we let

∑
i :=

∑n
i=0 etc. Likewise

∑
i 6=j :=∑

i∈{0,...,n}
∑

j∈{0,...,n}\{i} and
∑

j:j 6=i :=
∑

j∈{0,...,n}\{i}. In Section 4, sums of the form
∑

α (with

the Greek index α) will appear that are defined as the summation
∑

α :=
∑

α∈A over α in a specific
subset A ⊂ {0, . . . , n}.

� We further let mini 6=j = mini∈{0,...,n}minj∈{0,...,n}\{i} and mini:i 6=j = mini∈{0,...,n}\{j}.

� The notation A(u)∇u for u = u(x) ∈ R1+n and A(u) ∈ R(1+n)×(1+n) will be used as a short hand
for the d × (1 + n) matrix (A(u)∇u)i =

∑
j Aij(u)∇uj . Analogous short-hand notations will be

adopted for the matrices M̂(U), Â(U) ∈ Rn×n.
� For an interval I ⊆ [0,∞), C(I;L2

weak(Ω)) denotes the space of functions v : I → L2(Ω) such that
t 7→ v(t) is weakly continuous in L2(Ω).

� For non-negative quantities A,B, we write A . B to indicate that there exists a constant C ∈ (0,∞)
that only depends on fixed parameters such that A ≤ CB. We define A & B by B . A, and A ∼ B
by [A . B and A & B].

� For a smooth manifold M and p ∈M , we denote by TpM the tangent space of M at p.
� For a sufficiently smooth function f = f(u), u ∈ RN , and i ∈ {1, . . . , n}, we write Dif := ∂

∂ui
f .

Analogous notations are used if f = f(u0, . . . , uN ) etc. We further abbreviate Dikf := DkDif.
� Unless specified otherwise, we abbreviate ui := 1

|Ω|
∫

Ω ui dx for all i.
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