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ABSTRACT. The conical boundary integral equation method has been proposed to calculate the sen-

sitive optical response of 2D photonic band gaps (PBGs), including dielectric, absorbing, and high-

conductive rods of various shapes working in any wavelength range. It is possible to determine the

diffracted field by computing the scattering matrices separately for any grating boundary profile. The

computation of the matrices is based on the solution of a 2× 2 system of singular integral equations at

each interface between two different materials. The advantage of our integral formulation is that the dis-

cretization of the integral equations system and the factorization of the discrete matrices, which takes

the major computing time, are carried out only once for a boundary. It turned out that a small number

of collocation points per boundary combined with a high convergence rate can provide adequate de-

scription of the dependence on diffracted energy of very different PBGs illuminated at arbitrary incident

and polarization angles. The numerical results presented describe the significant impact of rod shape

on diffraction in PBGs supporting polariton-plasmon excitation, particularly in the vicinity of resonances

and at high filling ratios. The diffracted energy response calculated vs. array cell geometry parame-

ters was found to vary from a few percent up to a few hundred percent. The influence of other types

of anomalies (i.e. waveguide anomalies, cavity modes, Fabry-Perot and Bragg resonances, Rayleigh

orders, etc), conductivity, and polarization states on the optical response has been demonstrated.

1. INTRODUCTION

In the recent two decades, we have been witnessing exponentially growing interest, both of theoreti-

cians and experimenters, in the properties of photonic band gaps (PBGs) and metamaterials. Progress

in the technology of nanostructures with a characteristic surface relief size of the order of 10–100

nm has stimulated production of two- and three-dimensional periodic structures with periods shorter

than the wavelength λ of visible light, i.e. sub-wavelength diffraction gratings. Nowadays consider-

able effort is devoted to the investigation of polariton-plasmon PBGs with metallic or semiconducting

nanostructures supporting strong light-matter interaction. Large photonic band gaps, extraordinary

light transmission properties, negative refraction, and strong coupling between the electronic and pho-

tonic resonances can be supported in such structures. Though surface plasmon excitation plays a

predominant part in metallic sub-wavelength PBGs, other types of electromagnetic resonances can

also exist in complex material structures working in different wavelength ranges: Rayleigh anomalies,

Fabry-Perot and Bragg resonances, waveguiding anomalies, cavity modes, etc. In some cases it is

difficult to distinguish among these phenomena, owing to their gradual mutation from one into an-

other, and determine which is which even using electromagnetic field map distributions inside the slab

structure. There is therefore a growing need for methods based on a rigorous theory which would be

universal, accurate and fast enough.

Numerical methods are ordinarily employed in treating diffracting structures whose characteristic di-

mensions (more specifically, period d, slab (rod) width l, depth h, correlation length, etc) are compa-

rable with the wavelength of the incident radiation (λ/d ∼ 1), i.e., in the resonance region. Struc-

tures with sub-wavelength dimensions require solution of the problem in terms of electromagnetic

theory, in other words, of Maxwell’s equations with rigorous boundary conditions and radiation con-

ditions [1]. A wide range of various techniques that have been developed for the analysis of some

kinds of gratings may also be used for PBG analysis [2]. Theory offers presently rigorous numerical

methods to solve problems of diffraction from multi-boundary 1D and 2D gratings with arbitrary groove

profiles, which can conveniently be assigned to two branches, integral or differential, of electromag-

netic theory. The first of them includes, again by convention only, methods involving finite elements

(including boundary or volume, time or frequency domain), fictitious sources, and integral equations

(boundary or volume). Some methods resembling closely the differential approach, among them the

modal (sometimes referred to as characteristic-wave or characteristic-modal) method, coupled-wave

(Fourier-modal) method, and method of coordinate transformation are classed by some researchers
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among a special group [3, 4]. They all are based essentially on Maxwell’s equations in partial deriva-

tives. In a general case, differential theory includes typically integration of these equations over one

or two coordinates. Most of the currently used differential methods resort to one-dimensional inte-

gration or some other numerical approach in solving a system of conventional differential equations.

The method of boundary integral equations treats Maxwell’s equations in the integro-differential form,

with their subsequent numerical solution by curvilinear integration. Some versions of the finite-element

method can also be assigned to the integral theory. In contrast to the method of integral equations,

this approach assumes, as a rule, two-dimensional integration, the only exclusion being the method

of boundary integral elements. Drawing basically close to the method of integral equations is that of

fictitious sources [2]. For a comprehensive review of a large number of theoretical treatments and

their mathematical realizations, the Reader is referred to the above mentioned books and references

therein.

An approach most frequently followed when considering scattering from ordered or partially ordered

objects like PBGs is the straightforward and readily tractable plane wave expansion (PWE) method [5].

Although a plethora of more or less universal and effective rigorous analyses exists, this is a good in-

troduction to the business of band diagrams and is probably the easiest method to understand [6]. It

is well known that this method suffers from poor convergence for metallic gratings and needs large

computation times, especially for the TM-polarized incident light, because of its main accuracy param-

eter scaling cubically with time [7, 8]. In the theoretical investigations applied to diffraction gratings

this approach is well known as the rigorous coupled-wave analysis (CWA). We are going to dwell on

it in some detail to be able to compare its advantages and shortcomings with the method of boundary

integral equations employed by the present authors in treating the PBGs and other grating problems.

In many problems of diffraction monochromatic light is used and analysis of these problems requires

solution of the scalar or vector Helmholtz equation (in its wave form). If we restrict ourselves to con-

sideration of periodic objects only, for example, to 1D or 2D diffraction gratings, and 2D or 3D photonic

crystals, this method will turn out particularly appropriate for operation with the Helmholtz equation.

The first to apply it, albeit not in a rigorous formulation, to analysis of volume holograms was Kogelnik

in as far back as 1969. M. Moharam and T. Gaylord applied the coupled wave method to analysis of

diffraction gratings in its rigorous formulation, at any rate, to gratings with lamellar (rectangular) pro-

file in 1981 [9]. The CWA treats the electromagnetic field u(x, y) in homogeneous regions of space,

in front of a periodic object and behind it, as comprised of a linear combination of plane waves. For

a non-periodic confined object one has to accept, in place of a linear combination of plane waves,

a continuous expansion in plane waves in the form of the Fourier integral. In the region of the ob-

ject, Maxwell’s equations are solved by Fourier transformation. To find the unknown coefficients in the

Fourier expansions, a system of linear algebraic equations is formulated. Application of the CWA to

classical 2D diffraction problems with 1D-periodic boundaries, i.e., with a stepwise changing dielectric

and/or magnetic permeability at the boundary is essentially different for the TE and TM cases (with

the electric vector confined to the plane perpendicular to the plane of the incident wave vector k and

parallel to the grating grooves, or lying in the k plane, respectively). In the case of the TE polarization,

the unknown electromagnetic field and its normal derivative remain continuous at the boundary. For

the TM polarization, the normal derivative suffers a discontinuity, which is responsible for all subse-

quent problems associated with convergence and accuracy of the method, a factor that nobody has

yet found a way to combat. While the CWA intuitively appears to be tractable, the present authors are

unaware of any mathematical publications which would offer a rigorous substantiation of its conver-

gence, even for a smooth wavenumber k(x, y) relation. The main difficulty standing in the way of such

a substantiation is the exponential growth of the elements of transmission matrices along the rows and

columns [4]. This growth gives rise to numerical problems; matrices and the corresponding systems

of differential equations are poorly conditioned; indeed, their eigenvalues belong to different scales,

and this effect is the stronger, the more harmonics are taken into account [10]. Obviously enough,
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diffraction problems with a discontinuity of k at the interfaces will meet with the natural constraint on

the convergence rate for the CWA. Indeed, the Fourier coefficients of k2(x, y) and u(x, y) cannot

approach zero fast enough for the y = const line which crosses the boundary. The best version of

factorization available thus far for the CWA and other similar methods of the differential group in the TM

polarization called Fast Fourier Factorization [4], enjoys presently wide recognition. Its authors have,

however, revealed the remaining above mentioned limitations of a fundamental nature which place a

constraint on the use of this approach in cases of high conductivity in the TM polarization [11]. Besides,

application of the CAW to non-lamellar profiled gratings involves discretization into plane layers, the

so-called staircase approximation. This approximation was shown not to be rigorous [12]; indeed, as

the number of the layers increases, the result obtained in solution of the equations will not necessarily

tend to accurate values. In the case of the TE polarization and 1D gratings, the convergence of this

approximation is, as a rule, good, but in the TM case an increase in the number of layers does not

improve the results; on the contrary, they begin to diverge. This can also be seen from an analysis of

the properties of the solution in the case of one layer and TM polarization [13]. The conclusions drawn

for the case of 2D diffraction from 1D gratings with one boundary will naturally hold for multi-boundary

gratings, conical (3D) diffraction and bi-periodic gratings. Nevertheless, for lack of a better alternative,

the CWA is widely used for 1D and 2D gratings in micro-optics analysis and waveguide technology,

as well as in problems involving synthesis, for instance, of multi-order diffraction gratings or diffraction

optical elements (DOEs) with preset characteristics [14].

The method of boundary integral equations (briefly – IM) is presently universally recognized as one of

the most developed and flexible approaches to accurate numerical solution of diffraction grating prob-

lems (cf. Refs. [1, 15, 16] and references therein). Viewed in the historical context, this method was

the first to offer a solution to vector problems of light diffraction by optical gratings with a high enough

accuracy, and to demonstrate remarkable agreement with experimental data [3, 17]. This should be

attributed to the high accuracy and good convergence of the method, especially for the TM polarization

plane [16, 18]. It does not involve limitations similar to those characteristic of the CWA, and it provides

a better convergence. To disadvantages of this method belong its being mathematically complicated,

as well as numerous "peculiaritiesïnvolved in numerical realization. Besides, application of the IM to

cases of heterogeneous or anisotropic media meets with difficulties, however with the volume integral

method it is possible to overcome such difficulties. Nevertheless, it is on the basis of this theory that all

the well-known problems of diffraction by periodic and non-periodic structures in optics and other fields

have been solved. In many cases it offers the only possible way to follow in research [3, 19, 20]. The

flexibility and universality inherent in the IM, in particular, enable one rather easily to reduce the prob-

lem of radiation of Gaussian waves or of a localized source to that of plane wave incidence, for which

scientists all over the world have a set of numerical solutions. Generalizations of the IM have been

recently proposed for: arbitrarily profiled 1D multi-layer gratings [21]; randomly rough x-ray-extreme-

UV mirrors [22]; conical diffraction gratings including materials with negative permittivity and perme-

ability [18, 23, 24]; arbitrarily rough multi-layer 1D gratings and mirrors [25]; bi-periodic anisotropic

structures using a variation formulation [26]; Fresnel zone plates and DOEs [27, 28]; 3D PBGs of

some geometries using volume [7] and surface [29] integrals, etc. The motivation for the present work

is to introduce the new method as an exact and universal approach to be applied in areas where rapid

design and analysis of the most sensitive PBGs cases would be at a premium. The corresponding

theory is described in Section 2. The diffraction problem and boundary relations between values of

the fields across the boundary are formulated in Subsection 2.1. The method of scattering amplitude

matrices (S-matrix algorithm) expedient for the calculation of far-fields and polarization properties of

conical diffraction by PBGs is described in Subsection 2.2. The respective integral equations in terms

of boundary potentials can be found in Subsection 2.3. Numerical implementation of the developed

theory is described briefly in Section 3. Diverse numerical tests devoted to application of the method

and obtaining results for sensitive cases of various PBGs are given in Section 4. In Subsection 4.1
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we compare our results with data obtained by the other well-established approach and give examples

of the significant impact of rod shape and filling ratio on diffraction in metallic PBGs supporting the

polariton-plasmon excitation, particular close to resonances. In Subsection 4.2 we demonstrate the

influence of high conductivity on transmission spectra of lossless PBGs supporting waveguide modes

at different polarization states. In Subsection 4.3 we calculate transmission spectra of dielectric PBGs

supporting Bragg resonances in conical diffraction.

2. THEORY

We employed the IM for a theoretical description of the optical properties of PBGs. The theory of

diffraction on separated boundaries is covered here necessarily on the whole because its main parts

including mathematical aspects have been derived at considerable length in Refs. 18, 24, 28, 30,

31. The electromagnetic formulation of diffraction by gratings, which are modeled as infinite periodic

structures, can be reduced to a system of Helmholtz equations for the z-components of the electric

and magnetic fields in R
2, where the solutions have to be quasi-periodic in the x-direction, subject

to radiation conditions in the y-direction, and satisfy certain jump conditions at the interfaces between

different materials of the diffraction grating. In the case of classical diffraction, when k is orthogonal

to the z-direction, the system splits into independent problems for the two basic polarizations of the

incident wave, whereas in the case of conical diffraction (Fig. 1) the boundary values of the field z-

components, as well as their normal and tangential derivatives at the interfaces, are coupled. Thus the

unknowns are scalar functions in the case of classical diffraction, and two-component vector functions

in the conical case. A grating diffracts the incoming plane wave into a finite number of outgoing plane

waves, the so-called reflected and transmitted modes or orders. The program computes the energies

and polarizations of these modes for an arbitrary number of layers with different boundary profile

types including closed boundary profiles (i.e. inclusions). The boundary profiles of the layers must be

strictly separated, i.e. the maximal y-value of a given profile is strictly less than the minimal y-value

of the next profile above. In this case, it is possible to determine the diffracted field of the grating

by computing scattering amplitude matrices separately for any profile. For each interface between

two different materials the computation of the scattering amplitude matrices corresponds to solving

one-boundary conical diffraction problems with plane waves illuminating the interface from above and

below. Using the integral method one has to solve for each interface a 2×2 system of singular integral

equations with different right-hand sides. The equations are discretized with a collocation method, the

unknowns are sought as trigonometric polynomials which in the case of profiles with edges are partially

replaced by splines to improve the approximation of the solution near the edges.

2.1. Diffraction problem. In the multi-boundary diffraction problem one has to deal with cylindrical

surfaces Σn × R, n = 0, ..., N − 1, either open or closed, which are d-periodic in x and whose

generatrices are parallel to the z-axis (Fig. 2). The surfaces separate N +1 periodic regionsGn ×R,

x

y

2

1

−3−4 −1

0

−2

TE

z

TM

θφ

FIGURE 1. Schematic conical diffraction by a grating.
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filled with material of constant permittivity and permeability. The grating structure is characterized

by piecewise constant functions of electric permittivity ε and magnetic permeability µ, which are d-

periodic in x, homogeneous in z, and have jumps at the surfaces Σn. The values of these functions in

the semi-infinite regionsG0×R above andGN ×R below the inhomogeneous structure are denoted

by ε0, µ0 and εN , µN , respectively. We assume that λ = 2πc/ω with a light velocity c at a given

pulsatance ω and the incident time-harmonic field with polarization vectors p and s defined later is

given by

(Ei,Hi) = (p, s)e iωte i(αx−βy+γz),

where (α,−β, γ) = ω
√
ε0µ0(sin θ cosφ,− cos θ cosφ, sinφ), and |θ|, |φ| < π/2. Due to the pe-

riodicity of the surfaces the incident wave is scattered into a finite number of plane waves in G0 × R

and also in GN × R if εNµN > 0. The wave vectors of these outgoing orders lie on the surface

of a cone whose axis is parallel to the z-axis. Therefore one speaks of conical diffraction. Classical

diffraction corresponds to γ = 0, whereas γ 6= 0 characterizes conical diffraction. Using the repre-

sentation of the total field E(x, y, z) = E(x, y)e iγz, H(x, y, z) =
√

ε0/µ0B(x, y)e iγz the system

of time-harmonic Maxwell equations transforms to 2D Helmholtz equations in the domains Gn, where

ε and µ are constant,

(∆ + (ωκ)2)E(x, y) = (∆ + (ωκ)2)B(x, y) = 0(1)

with the coefficient function (ωκ)2 = ω2εµ− γ2 piecewise constant and d-periodic in x.

It can be shown that under the condition κ 6= 0, which will be assumed throughout, the z-components

Ez, Bz of the vector functions E and B determine the total electromagnetic field (E,H). The conti-

nuity of the tangential components of E and H on the surface Σn implies jump conditions for Ez, Bz

in the form (see Ref. 18)
[

Ez

]

Σn

=
[

Hz

]

Σn

= 0,
[ε ∂νEz

κ2

]

Σn

= −ε0 sinφ
[∂tBz

κ2

]

Σn

,
[µ ∂νBz

κ2

]

Σn

= µ0 sinφ
[∂tEz

κ2

]

Σn

,
(2)

where [.] denotes the jump of functions on Σn, and ∂ν = νx∂x + νy∂y and ∂t = −νy∂x + νx∂y are

the normal and tangential derivatives on Σn, respectively. The z-components of the incoming field

Ei
z(x, y) = pze

i(αx−βy), Bi
z(x, y) = sze

i(αx−βy)
√

µ0/ε0 = qze
i(αx−βy)

are α-quasiperiodic in x of period d. Here the vector s is orthogonal to the plane spanned by k and

the grating normal ν = (0, 1, 0) and p lies in that plane:

s = k × (0, 1, 0)/|k× (0, 1, 0)|, p = s × k/|k|.

y

x

. . . . .

d

ΣΣ Σ

3

Σ0

Σ

Σ

2

3

ΣN−1

1 11

u
d2

FIGURE 2. Cross section of a grating with separated boundaries.
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If k = (0,−k, 0), we set s = (0, 0, 1) and hence p = (1, 0, 0). Then, the incident plane wave is

given by its polarization angles

δ = arctan
(

|(Ei, s)|/|(Ei,p)|
)

, ψ = − arg
(

(Ei, s)/(Ei,p)
)

,

where δ ∈ [0, π/2], ψ ∈ (−π, π]. Since Ei is orthogonal to the wave vector, (Ei,k) = 0, one can

decompose Ei

Ei = (Ei, s) s + (Ei, p)p.

It is easy to see that for incident and also diffracted field components (E,q) and (E,p) with propa-

gation angles θ and φ and ρ = cos φ(sin2 θ cos2 φ+ sin2 φ)0.5

(E,q) = (Ez sin θ −Bz cos θ sinφ)/ρ, (E,p) = (Ez cos θ sin φ+Bz sin θ)/ρ,

where if k ‖ ν, then (Ei,q) = Ei
z and (Ei,p) = Bi

z. The incident values (Ei
z, B

i
z) can be

defined from these equations for the given incidence (θ, φ) and polarization (δ, ψ) angles under some

normalization condition [30].

We seek a bounded H1-regular solution (Ez, Bz) which is: α-quasi-periodic in x (u(x + d), y) =
e iαdu(x, y)) and satisfies the radiation conditions

(Ez, Bz) = (Ei
z, B

i
z) +

∑

m∈Z

(Em
0 , B

m
0 )e i(αmx+βm

0 y) for y ≥ sup Σ0,

(Ez, Bz) =
∑

m∈Z

(Em
N , B

m
N )e i(αmx−βm

N
y) for y ≤ inf ΣN−1,

(3)

where αm = α + 2πm/d, βm
n =

√

ω2εnµn − γ2 − α2
m with 0 ≤ arg βm

n < π. In the following it is

always assumed that besides ε0, µ0 > 0

0 ≤ arg ε, argµ ≤ π, arg (εµ) < 2π ,

which holds for all existing optical (meta)materials [24]. Then the electromagnetic formulation of conical

diffraction on multi-boundary gratings is equivalent to (1)–(3) for (Ez, Bz).

2.2. S-matrix approach. Since the grating profiles are strictly separated the problem (1)–(3) can

be treated using certain robust algorithms for modeling layered gratings [an overview is given, for

example, in Ref. 32]. The present method extends the S-matrix algorithm given in Ref. 33 for the

integral method and the in-plane case. As we know, the first description of the scattering amplitude

matrices algorithm has been done in Ref. 34. Its application to the off-plane case is described in Refs.

28 and 31. Here we give an exact description of the S-matrix algorithm combined effectively with the

conical integral equations formulated for solving such multilayer grating problems.

Between surfaces Σn−1 and Σn for all n = 1, ..., N there exist strips {un < y < dn−1} which are

not crossing the interfaces for n = 1, ..., N (Fig. 2). In any strip {un < y < dn−1} with the cut

wavenumber κn the solution (Ez, Bz) has the series expansion

(Ez, Bz) =
∑

m∈Z

(

(am
n , c

m
n )e iβm

n y + (bmn , d
m
n )e −iβm

n y
)

e iαmx.

Let yn ∈ (un, dn−1) and denote

(Am
n , C

m
n ) = e −iβm

n yn(am
n , c

m
n ), (Am

n , Cm
n ) = e −iβm

n+1
yn(am

n+1, c
m
n+1),

(Bm
n , D

m
n ) = e −iβm

n yn(bmn , d
m
n ), (Bm

n ,Dm
n ) = e −iβm

n+1yn(bmn+1, d
m
n+1).

Then in the strip {un < y < dn−1} above Σn

(Ez, Bz) =
∑

m∈Z

(

(Am
n , C

m
n )e iβm

n (y−yn) + (Bm
n , D

m
n )e −iβm

n (y−yn)
)

e iαmx
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and in the strip {un+1 < y < dn} below Σn

(Ez, Bz) =
∑

m∈Z

(

(Am
n , Cm

n )e iβm

n+1(y−yn) + (Bm
n ,Dm

n )e −iβm

n+1(y−yn)
)

e iαmx

with amplitudes of incoming An, Bn and diffracted Bn, An waves defined as

An = {(Am
n , C

m
n )}m∈Z, Bn = {(Bm

n ,Dm
n )}m∈Z,

Bn = {(Bm
n , D

m
n )}m∈Z, An = {(Am

n , Cm
n )}m∈Z.

The multi-profile problem (1)–(3) is solved if the scattering amplitude columns B0 and AN−1 are

expressed for given input A0 and vanishing BN−1. The S-matrix method looks for a recursion of

operators Rj , Tj such that

Bn = RnAn , AN−1 = TnAn , n = N − 1, . . . , 0.

The scattering amplitude columns are connected by two types of relations

An−1 = γ−1
n An−1, Bn−1 = γnBn, γn = diag{exp(iβm

n (yn−1 − yn)}m∈Z,

Bn = rnAn + t′nBn, An = t′nAn + r′nBn,

where rn or r′n and tn or t′n are reflection and transmission operators, respectively, for the illumination

of Σn from the above or below. This leads to a simple recursion starting from below

Rn−1 = rn−1 + t′n−1γnRn(I − γnr
′

n−1γnRn)−1γntn−1,

Tn−1 = Tn(I − γnr
′

n−1γnRn)−1γntn−1,
(4)

with the unity operator I and initial values

RN−1 = rN−1, TN−1 = tN−1.

Finally one gets the desired amplitude vectors

B0 = R0A0 , AN−1 = T0A0 .(5)

It is worth noting that the recursion is stable, since the elements of γn have norms ≤ 1, and can be

used for any number of closed and continuous boundaries having any conductivity.

2.3. Integral equations. The reflection and transmission operators rn, r
′
n, tn and t′n of a given profile

Σn, which separates two domains, are obtained from the response of that one-profile grating illumi-

nated by plane waves from above and below. For definiteness we label the domainsGn andGn+1 and

the corresponding material coefficients εn, µn and εn+1, µn+1. If the surface Σn is continuous, then

Gn+1 denotes the domain below Σn, whereas for closed boundary profiles the domainGn+1 denotes

one of the inclusions inside Σn. For off-plane diffraction one has to find the Rayleigh coefficients of

the diffracted fields for input waves with z-components
(

E+
δ

B+
δ

)

=

(

1 − δ

δ

)

e i(αmx−βm
n y), δ = 0, 1,

incident from above and
(

E−

δ

B−

δ

)

=

(

1 − δ

δ

)

e i(αmx+βm

n+1
y)

or

(

E−

δ

B−

δ

)

=

(

1 − δ

δ

)

e i(αmx+βm
n y), δ = 0, 1,

incident from below for continuous Σn or inclusions, respectively. For illumination from above one has

to solve the following problem: Setting

Ez =

{

un + E+
δ ,

un+1,
Bz =

{

vn +B+
δ in Gn,

vn+1 in Gn+1,
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find α-quasiperiodic solutions of the Helmholtz equations

(

∆ + (ωκn)2
)

un =
(

∆ + (ωκn)2
)

vn = 0 ,(6)
(

∆ + (ωκn+1)
2
)

un+1 =
(

∆ + (ωκn+1)
2
)

vn+1 = 0 ,(7)

where now κ2
n = εnµn − ε0µ0 sin2 φ. From equation (2) one gets the jump conditions on Σn

un+1 = un + E+
δ , vn+1 = vn +B+

δ ,

εn+1 ∂νun+1

κ2
n+1

− εn∂ν(un + E+
δ )

κ2
n

=
ε0 sinφ(κ2

n+1 − κ2
n)

κ2
nκ

2
n+1

∂tvn+1 ,

µn+1∂νvn+1

κ2
n+1

− µn∂ν(vn +B+
δ )

κ2
n

= −µ0 sinφ(κ2
n+1 − κ2

n)

κ2
nκ

2
n+1

∂tun+1 .

For illumination from below we set

Ez =

{

un,
un+1 + E−

δ ,
Bz =

{

vn in Gn,
vn+1 +B−

δ in Gn+1.

The α-quasiperiodic functions uj, vj have to satisfy the Helmholtz equations (6), (7) and the transmis-

sion conditions

un+1 + E−

δ = un , vn+1 +B−

δ = vn ,

εn+1 ∂ν(un+1 + E−

δ )

κ2
n+1

− εn∂νun

κ2
n

=
ε0 sinφ(κ2

n+1 − κ2
n)

κ2
nκ

2
n+1

∂tvn ,

µn+1∂ν(vn+1 +B−

δ )

κ2
n+1

− µn∂νvn

κ2
n

= −µ0 sinφ(κ2
n+1 − κ2

n)

κ2
nκ

2
n+1

∂tun .

The solution of these general one-boundary conical diffraction problems is derived by using a combi-

nation of the direct (Green’s formula) and indirect (via layer potentials) boundary integral approaches.

InGn+1 the functions un+1, vn+1 are represented as single layer potentials with densitiesw, τ on Γn,

denoting one period of Σn,

un+1(P ) =

∫

Γn

w(Q) Ψκn+1
(P −Q) dσQ, vn+1(P ) =

∫

Γn

τ(Q) Ψκn+1
(P −Q) dσQ,

where P = (X, Y ) and dσQ denotes the integration with respect to the arc length. The integral kernel

Ψκn+1
is the α-quasi-periodic fundamental solution of period d with logarithmic singularities at points

{(md, 0)} given by the infinite series

Ψκn+1
(P ) =

i

4

∞
∑

m=−∞

H
(1)
0

(

ωκn+1

√

(X −md)2 + Y 2
)

e imdα,

where H
(1)
0 is the first Hankel function of zero order. Based on the known jump relations for layer

potentials one concludes as in Ref. 18 that the transmission conditions on Σn are fulfilled only if the

functions w, τ are solutions of the system of integral equations

εn+1κ
2
n

εnκ2
n+1

Vn(Ln+1 − I)w − (I +Kn)Vn+1w + ε0 sin φ
(

1 − κ2
n

κ2
n+1

)

HnVn+1τ = U ,

µn+1κ
2
n

µnκ
2
n+1

Vn(Ln+1 − I)τ − (I +Kn)Vn+1τ − µ0 sin φ
(

1 − κ2
n

κ2
n+1

)

HnVn+1w = V
(8)
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with righthand sides U and V determined by the input waves E±

δ and B±

δ . Here the integral operators

Vn, Kn are the single and double layer potentials

Vnϕ(P ) = 2

∫

Γn

ϕ(Q) Ψκn
(P −Q) dσQ, Knϕ(P ) = 2

∫

Γn

ϕ(Q) ∂ν(Q)Ψκn
(P −Q) dσQ,

with P ∈ Σn and ν(Q) is the normal to Σn at Q pointing into Gn+1. These boundary integral

operators as well as the adjoint of the double layer potential

Lnϕ(P ) = 2

∫

Γn

ϕ(Q) ∂ν(P )Ψκn
(P −Q) dσQ

appear already in integral methods for classical diffraction. The presence of tangential derivatives in

the jump conditions for solutions of conical diffraction leads to a new boundary integral

Hnϕ(P ) = 2

∫

Γn

ϕ(Q) ∂t(Q)Ψκn
(P −Q) dσQ.

Since the kernel of this integral operator is strongly singular, Hnϕ has to be interpreted as principal

value integral and therefore (8) represents a system of singular integral equations.

Properties of this system are described in Refs. 18, 24 for the case of incident plane waves from

above, where one gets

U = −2E+
δ , V = −2B+

δ ,

as righthand sides of (8). Analogously, for illumination from below the transmission conditions on Σn

lead to the righthand sides

U =
εn+1κ

2
n

εnκ2
n+1

Vn∂νE
−

δ − (I +Kn)E−

δ + ε0 sin φ
(

1 − κ2
n

κ2
n+1

)

HnB
−

δ ,

V =
µn+1κ

2
n

µnκ2
n+1

Vn∂νB
−

δ − (I +Kn)B−

δ − µ0 sin φ
(

1 − κ2
n

κ2
n+1

)

HnE
−

δ .

in case of a continuous profile and

U = −2E−

δ , V = −2B−

δ

for closed boundary profiles.

The advantage of our integral formulation (4)–(8) is a clever combination of the integral equations

with the S-matrix algorithm allowing one to solve the single discrete problem for computing scattering

amplitude matrices of (4). As a result, the computation of the discrete matrix on the left of (8) and its

factorization have to be performed only once for that profile due to the unified treatment of different

incoming waves.

3. NUMERICAL IMPLEMENTATION

We discuss briefly the numerical solution of systems (4)–(8). In the computations the indices m ∈
[M0,M1] are chosen such that at least all propagating modes for all one-profile gratings are covered,

i.e. we require that βm
n /∈ R for allm /∈ [M0,M1] and n. Thus, by solving (8) forM = 2(M1−M0 +

1) incident waves E+
δ , B

+
δ and computing the scattering amplitudes for all modes m ∈ [M0,M1]

of un, vn and un+1, vn+1 we derive M × M reflection and transmission matrices rn and tn for

illumination from the above. Analogously, the M ×M reflection and transmission matrices r′n and

t′n are obtained from (8) with M incident waves E−

δ , B
−

δ , illuminating the profile from the below.

These reflection and transmission matrices for each boundary profile are computed simultaneously as

described above.
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The kernels of the integrals Vn have a logarithmic singularity like log |s − t| and Hn is a singular

integral operator with the kernel singularity 1/(s − t) as t → s. Therefore the discretization of the

integrals requires some caution, especially if the profile has corners, where additionally the kernels of

Kn and Ln have fixed singularities. The integral equations are discretized with a collocation method,

the unknowns are sought as trigonometric polynomials which in the case of gratings with edges are

partially replaced by splines to improve the approximation of the solution near the profile corners [18].

The trigonometric collocation method with special treatment of singular integrals gives for smooth

boundary profiles with the number of collocation points N the convergence rate of order O(N−3).

The hybrid trigonometric-spline collocation with mesh grading near corners gives the convergence

rate of order O(N−2).

Expressions (4) allow us to find amplitude matrices by a recursive procedure beginning with the lower

medium. To do this, we have to know, in a general case, four matrices of scattering amplitudes and

perform two matrix inversions in each iteration step. The computation time for one-boundary problems

was shown to scale quadratically with the main accuracy parameter (the number of collocation points)

[18]. The computation time is also linearly proportional to the number of boundaries. Using Hankel

functions as fundamental solutions for closed boundaries decreases the number of required colloca-

tion points in several times. The memory cache for amplitude matrices of multi-layer grating problems

(e.g. photonic crystals) with the same boundary profiles and the same pairs or quads of layers can be

used.

The code developed and tested is found to be accurate and efficient for solving various in-plane and

off-plane diffraction problems, including high-conductive gratings, surfaces with edges, real groove pro-

files, and gratings with non-function boundary profiles. Extension to rod gratings and two-dimensional

PBGs is naturally obtained. The high rate of convergence, the high accuracy, and the short computa-

tion time of the suggested solver are further demonstrated for various non-trivial numerical examples.

4. COMPUTATION OF PBG EXAMPLES IN SENSITIVE CASES

The workability of the code developed has been confirmed by numerous tests usually employed in

classical and conical diffraction cases, more specifically: the reciprocity theorem; stabilization of re-

sults under doubling of the number of collocation points and variation of the calculation accuracy of
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kernel functions; comparison with analytically amenable cases of plane interfaces; consideration of the

inverse (non-physical) radiation condition; use of different variants of collocation point distribution on

boundaries (mesh refinements); comparison with the results obtained by another of our codes or with

published data, or with information submitted to us by other researchers, including results of measure-

ments. A small part of such numerical tests devoted to the analysis of sensitive cases of various PBGs

is demonstrated in this Section. The presented results demonstrate the impact of rod shape on diffrac-

tion in PBGs supporting polariton-plasmon excitation and other types of anomalies (i.e. waveguiding

anomalies, cavity modes, Fabry-Perot resonances, Rayleigh orders, etc), particularly in the vicinity of

resonances and at high filling ratios. In conical diffraction, the influence of all possible types of waves

can be mixed.
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FIGURE 5. The same as in Figure 4, but for the same nanowire cross section area of

S = 5000 nm2.

4.1. PBGs with nano-rods supporting polariton-plasmon excitation. In this Subsection, we are

going to analyze numerically the optical response of photonic crystal slabs supporting polariton-

plasmon excitation with different cross sections of nanowires invariant with respect to the z axis and

different number of gratings stacked one upon the other. As far as we know from publications, there is
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no detailed description of the influence of very different rod geometries and of the filling factor on PBGs

with nanowires supporting polariton-plasmon excitation. The model contains N − 1 identical gratings

of arbitrary cross section displaced vertically (by Hn) and horizontally (by Ln) relative to one another

and embedded in a homogeneous medium with dielectric permittivity ε1 and magnetic susceptibility

µ1. We are going to deal here only with materials with µn = 1, although the model is applicable to

other cases as well, including metamaterials [18]. The dependence of the dielectric permittivity ε2 of

the material of nanorods on the incident photon frequency is assumed to be known. The lower medium

(substrate) and the upper one are likewise assigned pairs of material constants, but one may conceive

of more complicated cases of multi-layer structures as well. The model allows also arbitrary incidence

of, in the general case, elliptically polarized radiation on PBGs, which is prescribed by two angles of

incidence and two angles of polarization.

In Fig. 3, calculated spectra of reflected energy for PBGs with Au nanowires of rectangular cross

section, measuring 100 × 15 nm2 and N − 1 = 1 (H = L = 0) or N − 1 = 2 (H = 30 nm,

L = 0 and H = 30 nm, L = 100 nm) are compared with similar spectra derived in [35] (Fig. 3a

in Ref. 35) by the PWE approach. We consider here TM-polarized radiation (the plane of polarization

is perpendicular to the lines) incident normally with respect to the x-z plane) on a grating with a

period d = 200 nm and refractive indices of Au taken from [36]. To eliminate interference effects, the

Au nanorods are embedded in an infinite homogeneous fused silica matrix with dielectric permittivity

ε0,1,3 = 2.13. Examining the two figures, we see a very good agreement, which evidences applicability

of both rigorous numerical methods to analysis of diffraction on such PBGs with rectangular slabs.

Figure 4 displays for comparison theoretical spectra of energy reflected from, and absorbed by, a PBG

with Au nanowires of circular, square, rectangular, and triangular cross sections of the same area and

with N − 1 = 1 studied in the 1−3-eV range (visible and near infra-red). In this and subsequent

examples we consider the TM- polarized light normally falling on Au nanowires embedded in a SiO2

matrix with d = 200 nm and refractive indices of Au taken from [37]. The orientation of the rods

having edges is chosen in such a way that light normally falls on one side of the rods only. The

a × b dimensions of the rectangular rods selected for this example are 50 × 25 nm2 or 25 × 50
nm2 and the width of the squares or triangles and diameter of the circles were chosen to obtain equal

cross sectional area S = 1250 nm2. As seen from Fig. 4, reflection and, particularly, absorption

spectra exhibit a strong difference near the plasmon-polariton anomaly among the five shapes of
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the nanowire cross section chosen. These differences amount to several hundred percent for the

rectangles because of their different width-to-height ratio (two and a half) compared with the square or

the circle (one) and the equilateral triangle (0.866). One observes also a noticeable difference in the

positions of the absorption and reflection maxima among different grating profiles. Thus, the simple

effective medium theory cannot be applied to design and analysis of such PBGs, even for a small filling

ratio.

Figure 5 presents energy spectra similar to those displayed in Fig. 4 but for S four times that of the

preceding example. In this case, a × b = 100 × 50 nm2 or 50 × 100 nm2. We readily see that

the differences in the reflection and absorption spectra among gratings of different profiles increase

with increasing filling ratio and are observed now not only close to the plasmon resonances. Near

the resonances, they amount to a few tens of percent of energy (Fig. 5). The absorption spectra of

the triangular-shaped nanowires have an interesting band-gap-like structure that is not the case for

absorption spectra of nanowires of other rod shapes.

Figure 6 shows spectra similar to those depicted in Fig. 5 but forN−1 = 2,H = 50 nm, and L = 0.

In the case of two gratings, the plasmon-polariton resonance frequencies are subtracted or summed

[35], and one may expect still larger differences in the spectra of reflected and absorbed energy among

crystals with lattice cells of different shape. Indeed, Fig. 6 drawn on a log scale reveals enormous

differences, up to orders of magnitude, throughout the spectrum studied. The minimum reflectance of

∼ 10−6 is observed for a photonic bandgap with a rectangular cross section of 100 × 50 nm2. The

positions of the reflection minima are also very different for different rod shapes.

Only N = 50 and mesh grading were used to compute these examples which allocate ∼ 0.1 MB

memory. The relative error calculated from the energy balance for absorption gratings is ∼ 10−4. The

average time taken up by one point on a portable workstation IBMr ThinkPadr R50p with an Intelr

Pentiumr M 1.7 GHz processor and 2 GByte of RAM is ∼ 0.1 sec only when operating on Linux

(kernel 2.6.17).
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4.2. PBGs with high-conductive rods supporting waveguide modes. As it has been demon-

strated in the previous example, owing to the existence of surface plasmon resonance, even a single-

grating structure could almost totally transmit TM polarization (Figs. 3–6). One can exclude the influ-

ence of plasmon surface waves using a grating structure in the TE polarization, for which plasmons

cannot propagate, and investigate the role of waveguide modes and Fabry-Perot resonances.

Figure 7 displays transmission TE and TM spectra for PBGs with high-conductive lossless (Re [n2] =
0) rectangular rods of 7×1 mm2 with d = 10 mm embedded in matrix with n1 = 3.47 forN−1 = 2,

H = 1 mm, and L = 0 at λ = 15.24 mm. The outermost media have refractive index n0,3 = 1.

Very similar spectra were calculated in Ref. 38 (Fig. 10(a)) by the CWM for the TE polarization and

Im [n2] = 250 only. In addition, the efficiency simulation data based on the present IM were cross-

checked in both polarization states against the rigorous Generalized Finite Element Method (GFEM)

[39], in order to verify the reliability of the results obtained. The grating efficiencies calculated with

two different approaches mentioned above are in a good agreement for all compared Im [n2] data.

Obviously enough, the difference between the transmittance values calculated by the two independent

codes is bigger for the TM polarization state and higher Im [n2]. So the applicability of the IM and

GFEM to analyse both TE and TM diffraction on such PBGs for high values of the imaginary part of

the refractive index of rods is demonstrated. One can also compare the absolute efficiencies of this

example with values predicted by the perfect conductivity model (Fig. 7). The asymptotic transmittance

data calculated by using that model are ∼ 44% (TE) and ∼ 59% (TM). Interestingly, even at a very

high value of Im [n2] = 1000 the results obtained for the finite conductivity model differ significantly

from those obtained for the perfect conductivity model.

For this very hard-to-solve example (we do not know any rigorous numerical method that can do

computations for Re [n2] = 0 and Im [n2] = 1000) we will examine the convergence rate and the

accuracy of the prediction of reflection and transmission energies and absorption with respect to N .

For the efficiency convergence testing, the magnitude of computational errors cannot be reliably de-

duced from accuracy criteria based on a single computation such as the energy balance or the inverse

radiation condition tests. For this purpose comparative studies should be used, i.e., N -doubling [18].

As it can be seen from Fig. 8, the IM transmittance values for Im [n2] = 250 and Im [n2] = 500
stabilize, and the convergence is starting at N = 500 (TE) and N = 1000 (TM) and achieved with

high accuracy at N = 1000 (TE) and N = 2000 (TM). The absolute differences between the values
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calculated for N = 1000 and N = 4000 in the transmission energies for Im [n2] = 250 are 0.00353

for the TE polarization and 0.0111 for the TM one. Note that the energy balance errors are ∼ 10−5

and ∼ 10−6 for these values of N , respectively. However, transmittance values for the hard case of

Im [n2] = 1000 stabilize at N = 4000 only. Thus, the convergence rate is high enough, taking into

account the very difficult cases tested.

The computation time for a point calculated with (N = 2000) is ∼ 30 sec on the above mentioned

PC, and the required RAM is ∼ 1 GB. In this case the use of graded meshes gave the most accurate

results compared with data obtained by applying other computational options.

4.3. PBGs with dielectric rods supporting Bragg diffraction. In this example we consider numer-

ically some diffraction properties of non-absorbing PBGs with dielectric rods. The influence of the

geometry and number of crystal layers, the shape of rods, the filling ratio, the index of refraction of

materials and the polarization and diffraction angles of light can be investigated for this type of PBGs.

The vital role of the filling ratio, refractive index, and polarization was demonstrated for the classical
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diffraction [2, 33]. Here we demonstrate, as an example of possibilities of developed software, the vital

role of the filling ratio and polarization for conical diffraction.

Figures 9 and 10 display spectral transmission for PBG circular rods with d = 1µm and n2 = 2
embedded in vacuum at filling ratios of 0.125 and 0.5 for N − 1 = 15, H = 0.866µm, and L =
0.5µm (hexagonal crystal geometry) for θ = 0, ψ = 0, and δ = 90◦ (TE- or s-polarization) or δ = 0◦

(TM- or p-polarization). In Fig. 9 one can see in-plane diffraction efficiencies (φ = 0) and similar

transmittance data computed in Ref. 33 by the boundary integral equation method (Figs. 6 and 11 of

Ref. 33). In Fig. 10 for the off-plane diffraction φ = 30◦ and this is an additional parameter compared

with the classical diffraction case.

For both in-plane and off-plane examples there is a very different behavior in diffraction properties for

the TE and TM polarizations of the incident radiation, especially for big filling ratios. Comparing with

respective curves obtained in Figs. 9 and 10, it emerges that for s-polarized light the centers of the

conical diffraction gaps have shifted significantly to smaller wavelengths and the widths and depths of

the gaps have considerably decreased. In contrast to this behavior, for p-polarized light the centers

of the conical diffraction gaps compared with the in-plane ones have shifted a little bit in opposite

directions and the widths and depths of these gaps have considerably increased. The vital importance

of the azimuthal angle φ as well as the incidence polarization has become evident even for a small

filling ratio (0.125), however they are more important for a high filling ratio (0.5). Thus, using the conical

diffraction for dielectric PBGs gives an additional control parameters which significantly affect Bragg

diffraction and existing photonic band gaps.

Only N = 50 without mesh grading are required to compute this example that allocate ∼ 0.2 MB

memory. The relative error calculated from the energy balance for non-absorption gratings is ∼ 10−4.

The average time taken up by one point on the above mentioned PC is ∼ 1 sec.

5. SUMMARY AND CONCLUSIONS

The multi-layer integral-equation-based method is proposed to calculate the sensitive diffraction prop-

erties of PBGs with separated boundaries. It is possible to determine the diffracted field by computing

the scattering matrices separately for various grating boundary profiles including dielectric, absorbing,

and high-conductive rods working in any wavelength range. The computation of the matrices is based

on the solution of a 2 × 2 system of singular integral equations at each interface between two differ-

ent materials. The discretization of the integral equation system and the factorization of the discrete

matrices (which takes the major computing time for one-boundary problems as well) have to be per-

formed only once in order to compute these matrices for each boundary profile. It turned out that due

to a high convergence rate a small number of collocation points per boundary combined with a high

convergence rate can provide adequate description of the dependence on diffracted energy of very

different PBGs illuminated at arbitrary incident and polarization angles.

In the present numerical analysis of the optical response of PBGs, a significant impact of rod shapes on

diffraction supporting polariton-plasmon excitation, particularly in the vicinity of resonances and at high

filling ratios has been investigated. The most sensitive rod shapes are rectangular and triangular due

to their lower symmetry and special resonance features connected with edges. The diffracted energy

response calculated vs. array cell geometry parameters was found to vary from a few percent up to

a few hundred percent. The influence of other types of anomalies (i.e. waveguide anomalies, cavity

modes, Fabry-Perot and Bragg resonances, Rayleigh orders, etc), conductivity, and polarization states

has been demonstrated. Unexpectedly, the results obtained for the finite conductivity model of PBGs

with high-conductive lossless (Re [n2] = 0) rectangular rods at very high values of Im [n2] differ

significantly from those obtained for the perfect conductivity model. The vital role of conical diffraction

(φ 6= 0) as well as the incident polarization has been demonstrated for PBGs with dielectric circular
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rods supporting Bragg diffraction at different filling ratios. Thus, the rod and diffraction geometries,

conductivity, and polarization cannot be ignored in many sensitive cases and simple and inaccurate

theories cannot be applied to design and analysis of such complex PBGs. The multi-layer conical

solver developed and tested is found to be very accurate and fast for solving PBG diffraction problems

with high-conductive rods of arbitrary shapes, in particular with real boundary profiles, the case that

should be studied experimentally. Due to a good convergence, the considered IM can be extended to

handle 3D PBGs (2D multi-layer diffraction gratings) that will be addressed in future publications.
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