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Abstract
Probing the diffusion of molecules has become a routine measurement across the life sciences, 
chemistry and physics. It provides valuable insights into reaction dynamics, oligomerisation, 
molecular (re-)organisation or cellular heterogeneities. Fluorescence correlation spectroscopy 
(FCS) is one of the widely applied techniques to determine diffusion dynamics in two 
and three dimensions. This technique relies on the temporal autocorrelation of intensity 
fluctuations but recording these fluctuations has thus far been limited by the detection 
electronics, which could not efficiently and accurately time-tag photons at high count rates. 
This has until now restricted the range of measurable dye concentrations, as well as the data 
quality of the FCS recordings, especially in combination with super-resolution stimulated 
emission depletion (STED) nanoscopy.

Here, we investigate the applicability and reliability of (STED-)FCS at high photon count 
rates (average intensities of more than 1 MHz) using novel detection equipment, namely 
hybrid detectors and real-time gigahertz sampling of the photon streams implemented on a 
commercial microscope. By measuring the diffusion of fluorophores in solution and cytoplasm 
of live cells, as well as in model and cellular membranes, we show that accurate diffusion and 
concentration measurements are possible in these previously inaccessible high photon count 
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regimes. Specifically, it offers much greater flexibility of experiments with biological samples 
with highly variable intensity, e.g. due to a wide range of expression levels of fluorescent 
proteins. In this context, we highlight the independence of diffusion properties of cytosolic 
GFP in a concentration range of approx. 0.01–1 µm. We further show that higher photon 
count rates also allow for much shorter acquisition times, and improved data quality. Finally, 
this approach also pronouncedly increases the robustness of challenging live cell STED-
FCS measurements of nanoscale diffusion dynamics, which we testify by confirming a free 
diffusion pattern for a fluorescent lipid analogue on the apical membrane of adherent cells.

Keywords: diffusion, STED nanoscopy, fluorescence correlation spectroscopy, cells, 
membrane, photon detection

S  Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

Introduction

Fluorescence correlation spectroscopy (FCS) has, since its 
introduction almost 50 years ago, become a widely applied 
technique to study diffusion dynamics in synthetic and biolog-
ical applications [1–3]. It has greatly contributed to the under-
standing of molecular diffusion in model systems and living 
cells, both in 2D (in vitro models or cellular membranes) and 
in 3D (solution or cellular cytoplasm and nucleus) environ-
ments [4–8]. Notably, it has offered fundamental insights into 
the dynamic organisation of living systems at the molecular 
level, e.g. by characterising the transient, dynamic, yet struc-
tured nature of the organisation of fluid membranes [4, 5, 9].

FCS provides a plethora of information about molecular 
dynamics. The diffusion rates and local concentrations of fluo-
rescent molecules can be determined directly from the auto-
correlation functions [1, 10, 11]. The spatial variability can be 
further evaluated by laser-scanning [12–14] and imaging-based 
variants of FCS [15–18]. Further, molecular interactions can 
be probed either directly, e.g. binding of molecules detected 
by cross-correlation (FCCS) [19], or indirectly via variations 
of the apparent diffusion coefficient at different length scales, 
measured by spot-variation FCS [20] providing information on 
diffusion modes as in single particle tracking [21]. Finally, the 
combination of FCS with super-resolution stimulated emission 
depletion (STED) microscopy allows direct observation of 
nanoscale diffusion dynamics, shedding new light on molec-
ular organisation below the diffraction limit [22].

All these invaluable details are extracted from intensity 
fluctuations due to the transit of fluorescent molecules through 
the observation spot of the microscope. As the fluctuations (i.e. 
bursts in the fluorescence intensity trace) are most obvious for 
sparsely labelled samples, FCS is often considered a single 
molecule technique, and has thus been shown multiple times 
to perform accurately in the range of pico- and nanomolar 
concentrations [2]. These concentrations, though, can be far 
from physiological levels present in living systems, where 
molecular abundance can be much higher (e.g. average con-
centration of a protein in eukaryotic yeast cells is estimated to 
be around 1 µm [23]). Nevertheless, it has been theor etically 
predicted and experimentally verified that FCS can perform 

similarly and can generate accurate results also for much 
larger concentrations (>100 nM) [24]. In this regime, the 
main factors for signal quality of FCS, often described by the 
signal-to-noise ratio (SNR), are the acquisition time (T), and 
the number of detected photons per molecule (i.e. molecular 
brightness, B, which depends on the absorption cross sec-
tion and quantum yield of the dye, the power of the excitation 
laser, and the detection efficiency of the measurement setup): 
SNR ∝ B  ×  T1/2 (see for example [11, 25–28]).

For the most efficient and reliable detection of fluorescence 
fluctuations, sensitive single-photon-counting detectors are 
typically used, often coupled to fast electronics that enable 
accurate recording of photon arrival times thus also allowing 
additional photon filtering in post-processing [29]. One of the 
main drawbacks of this instrumentation, however, has been 
its rather long dead time after each photon detection (>100 
ns) [30], limiting photon count rates to a few MHz, which is 
far lower than the typical repetition rate of excitation lasers 
running at 20–80 MHz. This has posed a severe limitation to 
the accuracy and flexibility in FCS experiments at high fluo-
rophore concentrations, which are however unavoidable for 
many applications—for example when measuring binding 
dynamics of low affinity, or diffusion dynamics and concentra-
tions of cellular proteins at different expression levels. Several 
approaches have been developed to enable FCS measurements 
even in such cases: labelling of only a fraction of the mol-
ecules, reduction of the simultaneously visible fluorophores 
via fluorescence photoswitching [31, 32], splitting-up of the 
signal onto several detectors such as on custom-built detector 
banks [33], or reduction of the effective observation volume 
[34, 35] using for example small sample containers [36], near-
field structures [37, 38], plasmonic near-field optics [39–41], 
or super-resolution STED microscopy [5, 42]. Unfortunately, 
all of these techniques introduce more complexity and possible 
bias, for example due to required controls to check whether the 
fraction of labelled or photoswitched molecules truly reflects 
the entire population, influence on the sample and fluorescent 
molecules by surface or small volume effects, setup com-
plexity, or perplexing photophysics of the fluorescent label.

Here, we demonstrate the straightforward realisation of FCS 
measurements at high photon count rates on a commercially 
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available microscope, using novel photon counting instru-
mentation. By measuring the diffusion of fluorescent dyes in 
solutions, artificial and cell membranes, we explore perfor-
mance, capabilities, accuracy, applicability and limitations of 
confocal FCS and STED-FCS experiments at photon count 
rates of up to 20–30  MHz per detection channel, revealing 
great potential for FCS experiments at high count rates. As 
examples, we show the independence of cytosolic protein dif-
fusion on cellular expression levels and the application of high 
count rates to STED-FCS measuring the diffusion behaviour 
of lipids in apical cellular plasma membranes.

Materials and methods

Preparation of dyes in solution

Atto655 NHS-ester (AttoTec), Abberior STAR Red NHS-
ester also termed KK114 (Abberior), and 20 nm crimson 
beads (Thermofisher) were stored at concentration  >10 µm 
and diluted in PBS for measurements.

Preparation of supported lipid bilayers (SLBs)

SLBs were prepared by spin coating as described previously 
[43]. Briefly, a solution of 1 mg ml−1 DOPC (1,2-dioleoyl-sn-
glycero-3-phosphocholine, Avanti Polar Lipids) dissolved in 
1:2 methanol:chloroform was spin-coated at 3200 rpm for 45 s 
on a 25 mm diameter cover slip. The formed lipid film was 
rehydrated with SLB buffer (150 mM NaCl, 10 mM HEPES, 
pH 7.4) and washed several times. All cover slips for SLB 
preparation were piranha cleaned (3:1, H2S04:H2O2) and 
stored in water. SLBs were labelled with varying amounts 
of Abberior STAR Red-DPPE (1,2-dipalmitoyl-sn-glycero-
3-phosphoethanolamine, Abberior).

Tissue culture

HeLa cells were cultured at 37 °C at 5% CO2 in high-glu-
cose DMEM (Thermofisher) supplemented with 10% FBS 
(Thermofisher), L-Glutamine (Thermofisher) and penicillin/
streptomycin (Thermofisher). Cells were seeded onto 35 mm 
IBIDI glass bottom dishes coated with fibronectin (10 µg 
ml−1 for 5 min and washed with PBS) 24 h prior to performing 
the measurements.

CHO K1 cells were grown at 37 °C at 5% CO2 in DMEM/
F12 (Lonza) supplemented with 10% FBS (Sigma) and 
L-Glutamine (Sigma). CHO K1 cells were labelled in L15 by 
incubation with a fluorescent lipid analog at room temperature.

The transfections of GFP-SNAP (cytoplasmic GFP) with 
plasmids obtained from Dr Katharina Reglinski, were per-
formed with Turbofect (ThermoFisher) according to the manu-
facturer’s protocol.

Preparation of giant plasma membrane vesicles (GPMVs)

GPMVs were prepared as described previously [43, 44]. In 
brief, HeLa cells were cultured as described above but seeded 
on 35 mm plastic bottom petri dishes. At a confluency of about 

75%, the cells were washed with GPMV buffer (150 mM NaCl, 
2 mM CaCl2, 10 mM HEPES, pH 7.4) and then incubated with 
25 mM PFA and 10 mM DTT in GPMV buffer for 2 h at 37 °C. 
The GPMV containing supernatant was collected and labelled 
with Abberior STAR Red-PEG(2kDa)-cholesterol (Abberior) 
at a final concentration of 0.5 µg ml−1 for 10 min. GPMVs 
were non-specifically immobilised on poly-L-lysine (PLL) 
coated surfaces as described before [14]. All diffusion mea-
surements in GPMVs were performed on the top membrane.

Instrumentation and microscopy

All experiments were performed on a Leica SP8 STED 
FALCON (Leica Microsystems) equipped with the HC PL 
APO 100  ×  /1.40 Oil STED WHITE oil immersion objective 
lens (SLB measurements) and the HC PL APO 86  ×  /1.20 W 
motCORR STED WHITE water immersion objective lens with 
a motorised correction collar (for solution, cytosolic, and apical 
cell membrane measurements). The STED WHITE 86  ×  water 
lens has a working distance of 300 µm, and the motorised correc-
tion collar adjusts for refraction index mismatch by optimizing 
the signal for every sample (coverslip). It is worth noting that 
a single initial setting of the correction collar was sufficient to 
correct for varying depth over the investigated range of 100 µm  
(figure SI 5 (stacks.iop.org/JPhysD/53/164003/mmedia)). We 
used the 488 nm and 633 nm lines of a white light laser as the 
excitation source. STED-FCS experiments were performed 
using a 775 nm pulsed laser (80 MHz) for depletion with laser 
powers between 0 and 300 mW measured at the objective. 
STED delay time was optimised using an SLB sample and min-
imising the detected photon count rate under high-power STED 
illumination. The respective notch filters (775 nm, 633 nm or 
488 nm) were used for emission clean up. For all measurements 
with constant excitation power we stayed below saturation 
intensity (by checking proportionality of excitation laser power 
and fluorescence intensity) as triplet pumping may result in an 
additional source of deviations [45]. Fluctuations in laser inten-
sities, which in some other studies reflected in a pronounced 
correlation component with decay times on the order of seconds 
and had to be corrected for [33], were not observable in our 
case—all FCS curves converged to 0 (see examples in figures 1, 
SI 1 and SI 7).

All FCS experiments were performed using the hybrid 
detectors (HyD-SMDs), featuring very short dead times, and 
FALCON electronics allowing acquisition of TCSPC data 
at photon count rates of up to 80 Mcps per detection channel 
without the necessity for corrections, becoming comparable to or 
exceeding the repetition rates of commonly used pulsed excita-
tion lasers. This implementation is based on sampling the signal 
from the pulsed laser and detectors using fast FPGA electronics 
and applying pattern matching to the resulting bitstreams, pro-
ducing as output the photon arrival times with a resolution of 
97 ps and dead time  <1.5 ns, at GHz sampling rates (for more 
technical details, please see the Leica Falcon Application Note 
[46]). Though certain other detector types such as avalanche 
photodiodes (APDs) offer 2–3-fold higher quantum efficiency 
in the far-red part of the spectrum compared to HyD-SMDs, 
their dead times are typically around 30 ns, i.e. 20-fold longer. 
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The here-employed technology thus offers the highest currently 
achievable overall count rates, which are now on pair with the 
repetition rate of the excitation laser. Nevertheless, future devel-
opments towards increasing the detectors’ quantum efficiencies 
will allow further benefits, e.g. the use of lower excitation laser 
powers to achieve similarly high count rates or superior signal-
to-noise ratios at high STED powers.

Measurement times ranged as indicated from 10 to 60 s. 
Only for the lifetime measurements we used 40 MHz pulsing 
of the white light laser for excitation.

Data analysis

Correlation, time trace cropping, gating and fitting was 
performed using the built-in routines in LAS-X (Leica 
Microsystems). Time gates were applied in STED-FCS to 
remove confocal or laser scattering contributions and there-
fore improve resolution (see figure SI 7), while not affecting 
confocal measurements (figure SI 7; marginal deterioration of 
signal-to-noise or slightly larger spread of the fitted param-
eters were barely noticable). Solution and cytoplasmic GFP 
data were fitted with a free 3D diffusion model including 
offset and a triplet component [47] as appropriate (triplet cor-
relation decay time of GFP 40 µs with relative amplitude fixed 
to 14%, Atto655 no triplet population [48], Abberior STAR 
Red triplet correlation decay time 5 µs with triplet amplitudes 
within 5%–10%; crimson beads triplet correlation decay time 
10–100 µs with triplet amplitudes 3%–5%). SLB, GPMV and 
cell membrane data were fitted with a 2D anomalous diffu-
sion model [49] (including offset and triplet time for Abberior 
STAR Red-PEG-Chol or -DPPE: 5 µs with relative ampl-
itude around 10%, and up to 30% at the highest excitation 
powers). The parameter optimisation was performed using a 
Levenberg–Marquardt non-linear least-squares minimisation 
method with data-points weighted by their standard devia-
tions, which were estimated from variations in ACFs calcu-
lated from sub-sections of the intensity time trace [27]. Some 
representative autocorrelation curves together with their fits, 
non-weighted fitting residuals, and reduced χ2 values [27] are 
displayed in figures SI 1 and SI 8.

As a measure of data quality and curve smoothness, defining 
the precision of the extracted fitted parameters, nRMSD values 
were calculated by taking the root-mean-square difference 
between the measured FCS curve and its fit up to the transit 
time, and normalised to the fitted amplitude. Such measure 
yielded similar values as the experimental standard deviation 
of the autocorrelation curves [27] normalised to the amplitude 
(figures SI 1 and SI 8; for easier comparison to nRMSD, the 
main data quality assessment tool throughout this work, we 
there display non-weighted residuals, but plot also standard 
deviations to put the residuals in the right perspective relevant to 
fitting). Smooth data-points at longer lag times were excluded, 
to avoid the influence of model miss-fitting in extreme condi-
tions applied in this study, e.g. when curves were distorted due 
to saturation or photobleaching effects at the highest excitation 
powers, or by random bright transits occurring in cells. The con-
structed measure nRMSD thus correlates well with the relative 
standard deviation of the fitted transit times (figure SI 2(D)).

For concentration estimation, we assumed a confocal 
volume of 1 fl. Given that the correlation amplitude relates to 
the inverse average number of particles in the focal volume, 
concentrations can be estimated [10]. For STED-FCS experi-
ments the diffusion coefficient was calculated as described 
before [22] using the following formula:

D =
ω2

8 · ln (2) · τD
,

where D is the apparent diffusion coefficient (in confocal or 
STED), ω refers to the full width half max (FWHM) of the 
observation spot (in confocal or STED) and τD to the transit 
time extracted from the FCS fit. The FWHM was determined 
by confocal and STED imaging of fluorescent beads (20 nm 
crimson beads). Using the assumption that the fluorescently 
labelled lipids diffuse freely in a SLB, the FWHM can be 
calculated as a function of STED power using the following 
equation [22]:

ω (STED) = ω (confocal) ·
√
(
τD,STED

τD,confocal
).

Note that we used the top membrane of immobilised 
GPMVs labelled with Abberior STAR Red-PEG-cholesterol 
to determine the FWHM far away from the surface using a 
water immersion objective.

Results and discussion

Non-saturated photon detection at high dye concentrations 
and laser excitation powers

We first tested the advanced photon counting instrumentation, 
implemented on a confocal and STED-capable microscope, 
by recording fluorescence fluctuation data from a single dye 
(Atto655, chosen for its low population of triplet states) dif-
fusing in aqueous solution at different concentrations or 
excitation laser powers, resulting in different photon count 
rates. The photon counting instrumentation included hybrid 
detectors with very short dead times and fast FPGA elec-
tronics with real-time GHz sampling and pattern matching, 
which together with the 80 MHz pulsed fluorescence excita-
tion allows for detection of photon count rates of tens of MHz 
without corrections (as described in detail in the Materials and 
methods section). Figures 1(A) and (B) show fluctuations in 
the normalized photon count rates over time as recorded for 
three different dye concentrations and laser excitation powers, 
respectively. As expected from theory [10, 25–28], the rela-
tive fluctuations around the average count rate decrease with 
increasing dye concentration, but much less so with excita-
tion laser power. Most importantly, we could follow a linear 
increase of photon count rate with dye concentration and 
laser excitation power (figures 1(C) and (D)), as expected in 
the absence of limitations in detection electronics. Note that 
approximate linearity was maintained despite employing dye 
concentrations of up to 1 µm and registering photon count 
rates of up to 20–30  MHz. The non-linearity introduced at 
excitation laser powers larger than 40 µW (≈30 kW cm−2, 
figure 1(D)) were to be expected due to dye photobleaching 
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and saturation of excited state population and consequently 
fluorescence emission (i.e. not due to detector saturation, 
compare figure 1(C) at same count rate levels), while slight 
saturation effects at very high dye concentrations may result 
from photon re-absorption and dye self-quenching, as indi-
cated previously [33, 50]. In due consideration of acquisition 
count rate being the limiting factor in conventional equipment, 
we present the rest of the data as a function of this parameter.

FCS noise levels at different count rates

The ability to record photon time traces at high count rates 
consequently allowed us to acquire FCS data for Atto655 up 
to 1 µm high dye concentrations and excitation laser powers 
up to 40 µW (≈30 kW cm−2). The autocorrelation curves for 
these unconventional conditions show similar decays as for 
low dye concentrations and laser powers (figures 2(A) and 
(B)). From common FCS theory (assuming large particle con-
centrations and excluding non-linear photo-physical effects 
such as saturation and photobleaching), FCS-derived average 
transit times should be independent of dye concentration and 
laser power, while the amplitude of the autocorrelation curve 
should linearly decrease with dye concentration and stay con-
stant with laser power. We could well recover this behaviour 

from fitting our FCS data, even when recorded at count rates of 
up to 20–30 MHz (figures 2(C) and (D)). As before, deviations 
at the highest tested laser powers  >40 µW (primarily apparent 
as a drop in the values of the transit time and FCS amplitudes, 
figure 2(D)), can be attributed to dye photobleaching and fluo-
rescence emission saturation. For dyes other than Atto655, 
excessive pumping into their triplet states would result in 
additional deterioration at high excitation powers and would 
thus need to be carefully considered as well [47, 51].

An interesting feature of the FCS data recorded at different 
dye concentrations or excitation laser powers, i.e. photon 
count rates, are the different noise levels and resulting data 
quality. From theory [11, 24, 26], the noise in FCS data should 
linearly decrease with increasing excitation laser power and be 
independent of dye concentration. The latter has for example 
been experimentally verified for dye concentrations of up to 
around 100 nM [24]. Consequently, we set out to investigate 
noise levels for FCS data recorded at the large dynamic range 
of dye concentrations and laser powers, which became acces-
sible using the new equipment.

Already visual inspection of our FCS data recorded at the 
different conditions (figures 2(A) and (B)) indicated notable 
differences in noise levels (shown as the spread of the correla-
tion curve), especially for the different excitation laser powers, 
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Figure 1. Influence of varying concentration and excitation laser power on FCS measurements of the dye Atto655 in aqueous solution. 
(A), (B) Normalized detected photon count rate data (intensity) over time at different dye concentrations ((A) 0.1 nM, 50 nM, and 1 µm as 
labelled; excitation laser power 15.4 µW) and excitation laser powers ((B) as labelled; concentration 5 nM), highlighting the reduction in 
relative intensity fluctuations for higher concentrations and excitation laser powers. (C), (D) Detected photon count rates versus instituted 
dye concentration ((C) dashed lines indicate the expected linear increase; excitation laser power 15.4 µW) and instituted excitation laser 
power for 5 nM (blue) and 500 nM (green) ((D) dashed lines indicate the expected linear increase). Values are averages of three repetitions 
(acquisition time 15 s each), and standard deviations are smaller than the size of the symbols.
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which was most pronounced at short lag times (in this case up 
to around 40 µs, roughly corresponding to the transit time of 
the dye). The non-trivial estimation of noise levels in FCS data 
has been the subject of intense investigations [11, 24–29]. In 
our experience, the noise levels in the current FCS data were 

well estimated by the root-mean-square of the fitting residuals 
normalized to the amplitude (nRMSD, calculated for short lag 
times up to the transit time), with lower values indicating better 
data quality (note that nRMSD was not used as the residuals 
minimisation metric in our fitting protocol; see Materials  

G

n
R

M
S

D

Acquisition time [s]
1 10 100

0.001

0.01

0.1

1 low laser power (1.5 µW)

high laser power (15.4 µW)

n
R

M
S

D

Acquisition time [s]

Lag time [ms]

C
o

rr
el

at
io

n C
o

rrelatio
n

10-3 10-2 10-1 100 101 102
0

1 10-2

2 10-2

3 10-2

4 10-2

0

1 10-4

2 10-4

3 10-4
10 nM

1000 nM

C
o

rr
el

at
io

n

Lag time [ms]

Varying excitation powerVarying concentration

A B

n
R

M
S

D

Count rate [kHz]

1 10 100
0.001

0.01

0.1

Brightness, cpm

n
R

M
S

D

Atto655

KK114

CrimsonBeads

[kHz]

100 101 102 103 104 105
0.00

0.05

0.10

0.15

0.20

0.25

C

n
R

M
S

D

0.00

0.05

0.10

0.15

0.20

0.25 500 nM

5 nM

100 101 102 103 104 105

Count rate [kHz]

D

Tr
an

si
t 

ti
m

e 
in

 [
µ

s]

C
o

rrelatio
n

 am
p

litu
d

e
100 101 102 103 104 105 106

0

10

20

30

40

50

10-5

10-4

10-3

10-2

10-1

100

101

Amplitude
Transit time

Count rate [kHz]
E

Tr
an

si
t 

ti
m

e 
[µ

s]

C
o

rrelatio
n

 am
p

litu
d

e

0

10

20

30

40

50

10-4

10-3

10-2

10-1

Correlation amplitude
Transit time

100 101 102 103 104 105

Count rate [kHz]
F

H

10-3 10-2 10-1 100 101 102
0.00

0.05

0.10
5 nM, 38.8 µW

5 nM, 0.8 µW

1 10 100
0.001

0.01

0.1

1

1 nM

10 nM

100 nM

0.1 nM

1000 nM
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and methods section and figure SI 1 for details). The nRMSD 
provided us with a single value for the data quality of each 
measurement. Conveniently, this measure also roughly cor-
responded to the relative standard deviation of the values of 
the average transit time as determined from fitting of the data 
(figure SI 2, the nRMSD relates closely to the measurement 
error, i.e. the experimental standard deviation of the correlation 
at every data point, figure SI 1). In accordance with the theor-
etical predictions [11, 24, 26], the noise in the FCS data and 
thus nRMSD were only weakly affected by varying concentra-
tion (figure 2(E)), but could be greatly improved by increased 
excitation laser power (figure 2(F)). The excitation laser power 
directly increases the dyes’ excited state population and thus 
fluorescence emission rate and the average detected count rate 
per single dye (molecular brightness), which is the reason for 
the improvements in noise levels. Under comparable measure-
ment conditions, the nRMSD is therefore also a direct indi-
cator of the molecular brightness of the investigated dye (inset 
in figures 2(E) and SI 3). Deteriorated noise levels, i.e. higher 
nRMSD values, were again observed at dye concentrations 
around 1 µm, but were much less pronounced at the highest 
excitation laser powers above 20–40 µW, despite saturation of 

photon count rates due to photophysical limitations of the dye 
(figure 1(D)) and deviations of values of the transit times and 
correlation amplitudes (figure 2(D)) as highlighted above.

FCS noise levels at different acquisition times

Predicted from theory and to a certain extent verified exper-
imentally [11, 24, 26], the noise in FCS data should decrease 
with the square root of the acquisition time. We could well 
reproduce this dependence for different dye concentrations 
and excitation laser powers (figures 2(G) and (H); again, the 
same issues as outlined above caused deviations at high dye 
concentrations and excitation laser powers). This data estab-
lishes unique possibilities of adapting to experimental condi-
tions. Due to the absence of saturation effects in photon count 
rates in the 5–500 nM concentration range, the possibility 
of increasing the laser power and detecting correspondingly 
higher photon count rates does not only increase the data 
quality (i.e. lower nRMSD values), but alternatively allows 
for a significant reduction (up to two orders of magnitude) 
in the acquisition time required for generating similar data 
quality (figures 2(G), (H) and SI 2).
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FCS of cytosolic GFP in live cells at various expression levels

The possibility of acquiring accurate FCS data in a wide range 
of dye concentrations allows simplification or realization of 
experiments under challenging conditions. For example, FCS-
based measurements of diffusion or concentration of fluores-
cent proteins in cells are usually challenged by the naturally 
varying expression levels of the fluorescent proteins, as shown 
in the representative confocal image in figure 3(A) for HeLa 
cells expressing cytoplasmic GFP (green fluorescent protein). 
Using standard FCS instrumentation, only carefully chosen 
dim cells would be measurable, which may represent only a 
small, and not necessarily representative fraction of all cells, 
introducing a potential source of bias.

Using our current setup, we could now record FCS data 
for all HeLa cells irrespective of their fluorescence intensity, 
revealing average transit times of GFP over a wide range of 
photon count rates and thus concentrations resulting from dif-
ferent expression levels (figure 3(B)). The photon count rates 
are correlated with the correlation amplitude (figure 3(C)), 
which is inversely proportional to the average number of fluo-
rescent molecules in the observation volume (see Materials 
and methods) and thus concentration and expression level 
of GFP can be inferred. Taking our observation volume of  

about 1 fl, we can estimate concentrations of GFP of approx. 
0.01–5 µm between the differently expressing cells (see 
Materials and methods section). These data indicate that 
within the tested range the mobility of GFP is independent 
of expression level. In addition, the quality of the FCS data 
as quantified by the nRMSD values was maintained over 
the range of tested expression levels (figure 3(D)), as pre-
dicted from the behaviour of the organic dye in solution (see 
figure  2). Only in the regime beyond 10  MHz (in our case 
corresponding to concentrations around 1 µm), we observed 
a slight signal deterioration due to, for example, possible out-
of-focus and self-absorption contributions, reflected in an 
increase of the nRMSD (figure 3(D)) and a decrease in the 
amplitude beyond the predicted inverse relationship with the 
count rate (grey dashed guide line in figure 3(C)).

STED-FCS of lipid dyes in model membranes

The main strength of FCS on a super-resolution STED micro-
scope, STED-FCS, is the ability to directly report on nanoscale 
molecular mobility and thus determine apparent values of dif-
fusion coefficients from the average transit times (see Materials 
and methods section) for different observation spot sizes—
from conventional confocal spot sizes with lateral diameters 
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of around 200 nm, down to STED microscopy recordings with 
observation spot diameters of 30–40 nm. From the dependency 
of the apparent values of the diffusion coefficient on the obser-
vation spot diameter, STED-FCS has provided insights into the 
molecular diffusion modes, similar to spot-variation FCS [20], 
but now at the relevant molecular scale, which is particularly 
valuable for the elucidation of the nanoscale architecture of 
biological membranes [22]. However, measurements at var-
ious sizes of the effective observation spot inherently impose a 
large variation in the average number of fluorescent molecules 
in the observation spot (N) and thus detected photon count 
levels (figure 4(A), schematics). Large observation spots at the 
confocal recordings entail already high count rates and high 
values of N at rather low dye concentrations, while the smaller 
observation spots at the STED microscopy recordings require 
relatively large dye concentrations to reach photon count rates 
and values of N that are high enough for allowing reasonably 
low acquisition times (it has also been shown theoretically that 
too low count rates or concentrations lead to noisy and inac-
curate FCS data [11, 24, 26]). This has limited the range of 
useful dye concentrations in STED-FCS measurements using 
conventional detection electronics.

To evaluate the performance of the new detection elec-
tronics in STED-FCS, we recorded data at varying concen-
trations of the fluorescent lipid analogue Abberior STAR 
Red-DPPE (DPPE) diffusing in a fluid supported lipid mem-
brane bilayer (SLB, composed of lipids DOPC), which is a 
convenient and well characterised model membrane system, 
often used as a control sample in STED-FCS experiments 
[22]. While increasing the lipid analogue concentration 
and pushing the confocal count rates beyond the conven-
tional FCS range (figure 4(A)) did not influence the noise 
in confocal measurements (figure 4(B), green data points), 
it—as expected—significantly improved the data quality of 
the STED-FCS recordings (low nRMSD values, figure 4(B), 
purple data points; note that for plotting of these, the respec-
tive confocal count rates, which limit the experimental con-
ditions for STED recordings, were used as the x-value). 
Also as expected from theory, the values of transit times 
were smaller in the STED compared to the confocal record-
ings (due to the reduced observation spot size in the STED 
mode, here roughly 40 nm in diameter) and hardly changed 
with instituted concentrations of the fluorescent probe (i.e. at 
increased count rate, figure 4(C)). Similarly, the observation 
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spot diameters as determined from the recorded FCS data 
remained constant (figure 4(D), see Materials and methods 
for details about its calculation), all in all highlighting the 
great flexibility and improvement in STED-FCS experiments 
when employing non-saturating detection electronics.

For simplicity, we demonstrated the above effects at a 
single STED laser power (150 mW, observation spot diam-
eter of 40 nm), but the conclusions held also true for other 
STED laser powers (and thus observation spot sizes). Similar 
or even larger improvements of STED-FCS data quality as by 
increasing the dye concentration were achieved by increasing 
the excitation laser power (figure SI 4; note that we, in con-
trast to the previous data of Atto655, now included an addi-
tional decay due to triplet state population in FCS data model, 
see materials and methods and figure SI 4E). Effects due to 
saturation of the excited states (such as the triplet state) of 
the fluorescent label started to deteriorate the signal quality 
and bias the extracted parameter values only at laser powers 
beyond 25 µW, supporting the benefits of high count rates 
for STED-FCS experiments with the excellent dyes available 
nowadays.

STED-FCS in live cell membranes

Finally, we verified the reliability of STED-FCS measurements 
at high photon count rates for measurements in living cells. We 
labelled the plasma membrane of live HeLa cells using the flu-
orescent lipid analogue cholesterol-PEG-Abberior STAR Red 
(Chol-PEG-KK114, figure 5(A)), for which previous studies 
have consistently indicated free diffusion in cellular plasma 
membranes [52]. The resulting STED-FCS data show low 
nRMSD values, i.e. low noise levels in the correlation data, 
which can in the STED microscopy mode be significantly 
improved to almost confocal quality by increasing either the 
excitation laser power or concentration of Chol-PEG-KK114 
(i.e. total count rate, figure 5(B)) without biasing the resulting 
values of transit times (figure 5(C)).

Note that we here measured the diffusion in the apical 
membrane of HeLa cells, i.e. 5–10 µm above the microscope 
coverslip (figure 5(A)), rather than in the basal membrane as 
before [52]. This avoids potential biasing effects by the cov-
erslip surface. Yet, penetration through the aqueous cellular 
environment over such a distance causes spherical aberrations 
when employing a traditional oil-immersion STED micro-
scope objective (due to the refractive index mismatch between 
water and oil) [53], having detrimental effects on STED-FCS 
experiments (figure SI 5). Such aberrations can either be 
corrected for using adaptive optics [54, 55] or employing a 
water immersion objective [56], which shows constant signal 
levels and performance of for example STED and STED-FCS 
experiments in a wide range of focal depths (5–100 µm above 
the coverslip) without the need for depth-dependent readjust-
ments of the correction collar (figure SI 5). Taking the obser-
vation spot size as determined from calibration data (figure SI 
6, diameter of 100 nm), we could calculate apparent values of 
the diffusion coefficient D for both the confocal and STED 
mode (spot diameters of 280 and 100 nm, respectively; see 

Materials and methods), which were both in the same range 
(D  ≈  0.45 µm2 s−1, figure 5(D)) as observed before for the 
basal membrane [52], highlighting free diffusion and indi-
cating similar diffusion characteristics of the probe in the 
apical and basal plasma membrane [52], i.e. negligible bias by 
the coverslip surface.

Conclusions

We systematically evaluated the reduction in error and bias 
of FCS measurements recorded at high photon count rates, as 
enabled by novel detection electronics integrated into a turn-
key microscope. We were able to record highly accurate FCS 
data with detected photon count rates of up to about 10 MHz, 
i.e. dye concentrations up to 1 µm. This improved performance 
introduces huge flexibility for performing FCS experiments 
to measure diffusion or concentration, previously impossible 
due to limitations in the detection electronics (e.g. allowing 
only recordings of photon count rates of up to 1 MHz). This 
now enables: (1) FCS measurements at high dye concentra-
tions for e.g. low-affinity binding assays, (2) the recording of 
fluctuation data with reduced acquisition times by increasing 
the excitation power to higher count rates (dye photophysics 
permitting), (3) performing live-cell experiments in a wide 
range of expression levels of fluorescently tagged proteins, 
and (4) optimization of the data quality of STED-FCS record-
ings over a wide range of observation spot sizes by increasing 
dye concentration and/or excitation laser power. Using these 
features we could for example show that cytosolic diffusion of 
GFP was independent of expression level in live HeLa cells, 
and that the fluorescent lipid analogue was diffusing freely in 
the apical membrane similarly as reported before for the basal 
membrane [52].

Improved detection instrumentation as the one presented 
here are becoming increasingly available and will be further 
optimized, pushing the ease of use of FCS or related meas-
urements, such as fluorescence cross correlation spectroscopy 
(FCCS) [57], fluorescence lifetime correlation spectroscopy 
(FLCS) [58], number and brightness (N&B) analysis [59], or 
line- and raster-scanning correlation spectroscopy (RICS) [12, 
60]. In combination with high-throughput methods this could 
enable the systematic evaluation of overexpression of fluores-
cent proteins [61], tracking of dynamically changing diffusion 
properties, or other previously unattainable applications.
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