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REVIEW OF THE METHODS OF REFLECTIONS∗

G. CIARAMELLA† , M. J. GANDER‡ , L. HALPERN§ , AND J. SALOMON¶

Abstract. The methods of reflections were invented to obtain approximate solutions of the
motion of more than one particle in a given environment, provided that one can represent the
solution for one particle rather easily. This motivation is quite similar to the motivation of the
Schwarz domain decomposition method, which was invented to prove existence and uniqueness of
solutions of the Laplace equation on complicated domains, which are composed of simpler ones, for
which existence and uniqueness of solutions was known. Like for Schwarz methods, there is also
an alternating and a parallel method of reflections, but interestingly, the parallel method is not
always convergent. We carefully trace in this paper the historical development of these methods of
reflections, give several precise mathematical formulations, an equivalence result with the alternating
Schwarz method for two particles, and also an analysis for a one dimensional model problem with
three particles of the alternating, parallel, and a recent averaged parallel method of reflections.

Key words. Alternating method of reflections; Parallel method of reflections; Averaged parallel
method of reflections; alternating Schwarz method; stationary iterative methods, Laplace’s equation.

AMS subject classifications. 65N55, 65F10, 35J05, 35J57.

1. Historical Introduction. The idea underlying the method of reflections is
very old; it can be found already in the book of Murphy [21, page 93] from 1833
under the name “principle of successive influences”. Murphy uses the principle as an
iterative method to obtain more and more accurate approximations for the interaction
between two objects, and he says that the principle can be used for two purposes:

“First. To obtain numerical approximations to the state of electri-
sised bodies influencing each other, by calculating the effects of 4 or
5 successive acts of influence.
Second. To obtain the analytical expression for that state; for the
consideration of a few successive influences will show what the form
of the quantity V is, and assuming a corresponding form with inde-
terminate coefficients, we may get the form for the state of B due to
the influence of A, and then the state due to the influence of B or its
own reflected influence, comparing the form thus obtained with that
assumed, the indeterminate coefficients may be found.”

We see that the term ’reflection’ already appears here. Murphy then used this principle
to compute the solution for the concrete example of two spheres in form of an infinite
series expansion.

This same approach was also used by Lamb [16, page 122] for Laplace’s equation
in 1906:

“The motion of a liquid bounded by two spherical surfaces can be
found by successive approximations in certain cases”.

He first solves the problem with one surface only, using the method of images to obtain
a zero normal velocity at its surface. The velocity field so obtained does however not
satisfy the zero normal velocity condition on the second surface, and he thus needs
to compute a correction, again using the method of images, which will then however
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when added to the first approximation lead to a violation of the zero normal velocity
condition on the first surface. Continuing this process of correction, Lamb notices:

“The images continually diminish in intensity, and this very rapidly
if the radius of either sphere is small compared with the shortest
distance between the two surfaces.”

A method which was later called “Spiegelungsmethode” (method of reflections), see
[10, page 928], is attributed to the work of Lorentz, who describes such a method in
[19, page 29]:

“Der allgemeine Fall, dass in der Flüssigkeit eine Anzahl von Körpern
mit gegebener Bewegung liegen, lässt sich wegen der linearen Gestalt
der Gleichungen auf die Spezialfälle zurückführen, in welchen jedes-
mal nur ein Körper eine vorgeschriebene Bewegung hat, die übrigen
aber in Ruhe erhalten werden [...] Indem wir in dieser Weise fort-
fahren und uns alle die Zustände 1, 2, 3 usw. superponiert denken,
erhalten wir für die Komponenten der Geschwindigkeit unendliche
Reihen, die, wenn sie konvergent sind, offenbar allen Bedingungen
der Aufgabe genügen. In einfachen Fällen könnte man die Berech-
nung wirklich durchführen; z.B. kann man die Störung oder, wie man
auch sagen kann, die ’Zurückwerfung” eines bekannten Bewegungszu-
standes durch eine ruhende Kugel immer bestimmen.”

Here, ’Zurückwerfung’ can be understood as ’reflection’, and we thus also find the
term in the name of the method.

The method of reflections was then presented in concrete mathematical notation
by Smoluchowski in 1911 with the goal to understand how the motion of a sphere
in a viscous fluid is influenced by the presence or motion of one or several other
spheres [23]:

“Die nachfolgende Untersuchung bezweckt die Beantwortung der Frage,
inwieweit die Bewegung einer in einem zähen Medium befindlichen
Kugel durch die Anwesenheit (oder Bewegung) einer oder mehrerer
anderer Kugeln modifiziert wird.”

Smoluchowski used the Stokes equations for the fluid, and started first investigating
the case of two spheres, where he states:

“Um die Wechselwirkung zweier Kugeln zu studieren, kann man
eine Annäherungsmethode anwenden, welche auf sukzessiver Super-
ponierung partikulärer Lösungen beruht, analog den Spiegelungsmeth-
oden zur Lösung verschiedener Probleme der mathematischen Physik.”

In the case of the Stokes equation, the analytical solution for one sphere is already a
series expansion, and thus Smoluchowski assumes that the radii of the two spheres are
small compared to their distance, and then uses the method of reflections to compute
a series expansion of the coupled solution up to some order in the inverse distance of
the spheres, and says:

“Wollte man in der Entwicklung auch noch höhere Glieder berücksichtigen,
so müsste man natürlich eine entsprechend grössere Anzahl von ’vielfachen
Reflexionen’ in Rechnung ziehen.”

In the case of Smoluchowski, the method is thus not considered as an iterative method
where an infinite number of iterations are needed to converge, but a direct method to
obtain a series solution in the inverse of the distance, up to some order. Smoluchowski
then generalizes the method of reflections to the case of more than two spheres, where
he explains:

“Beschränkt man sich auf die Glieder derselben Grössenordnung wie
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vorhin, so ist in jedem dieser Bewegungszustände nicht nur der di-
rekte [. . . ] Einfluss der bewegten Kugel auf die betrachtete Kugel zu
berücksichtigen, sondern auch die einmaligen ’Relfexionen’ desselben
an den übrigen ruhenden Kugeln.”

So in the case of more than two spheres, the method also seems to be applicable,
leading to similar series approximations in the inverse of the distance like in the case
of two spheres.

In 1934, Golusin introduced a parallel method of reflections for Laplace’s equation
for J objects [8, 7], and derived a condition for its convergence. He then says in [7,
page 280]

“For J = 2 this condition is always satisfied. For J > 2 this is
however not always the case. It would be possible, changing the
equation as this was done in the previous work, to increase the area
of applicability of the preceding results; but we confine ourselves here
to the above simplest case.”

However in the previous paper [8] in the same volume, Golusin just says:
“For J = 2 for a doubly connected region, this condition is always
satisfied. For J > 2 however this is not always the case. For a 5-
connected region, it is probably satisfied if the range of C is separated
from the rest by more than its radius.”

So we see that the parallel method of reflections in the case of more than two objects
seems to converge only under certain additional conditions, which Golusin conjectures
to depend on the distance between objects and their radius, an issue we will more
closely investigate in Section 3.

In 1942, Burgers [3, 4] investigated the influence of the concentration of spherical
particles on the sedimentation velocity for the Stokes equation, mentioning the work
of Smoluchowski, but without describing precisely an algorithm, and using to a large
extend physical intuition.

The idea of simply summing two solutions corresponding to two particles alone
can be found in the work of Kinch [15, page 197] from 1959, under the assumption that
the distance between their centers is large, again for the Stokes equation. This could
be interpreted as a parallel method of reflections, where the separate contributions
are also summed, but again, no algorithm is given.

Happel and Brenner explain in 1983 a different parallel version of the method of
reflections which alternates between one fixed object and the group of all the others
treated in parallel, see [9]. The goal of their method is to increase the order of
approximation of the expansion of the solution in a neighborhood of a given object.
Therefore, if one wants a good approximation for all the objects, the method has to
be applied (independently) for each particle.

A first convergence analysis for the alternating method of reflections was given
by Luke in 1989 for the Stokes equation, see [20], and Luke states:

“This paper considers a reflection method in the spirit of Schwarz’s
alternating procedure that reduces the calculation of a Stokes flow in
a complex geometry of a suspension to a sequence of calculations of
flows around single particles.”

The analysis is using a variational characterization of the method based on projections,
similar in style of one of the classical convergence analyses of the Schwarz method
given by Lions in the first of his three seminal papers [18].

The entire Chapter 8 in the book from 1991 by Kim and Karrila [14] is dedicated
to the parallel method of reflections for the Stokes problem, and the method is already
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Fig. 1. Figure from the book of Dhont [6] for the alternating method of reflections with three
objects.

mentioned in Chapter 7:
“For widely separated particles, a general asymptotic method know
as the method of reflections is available. The solution can be ex-
pressed analytically as a series in terms of particle size over separa-
tion.”

The method is first motivated like in [15] by just summing two one-particle solutions:
“In the zeroth order approximation, the solution for two widely sep-
arated particles is formed by superposition of the fields produced by
the isolated particle solutions. In other words, we neglect hydrody-
namic interactions between particles. [. . . ] The method of reflections
is based on the idea that the ambient field about each particle con-
sists of the original ambient field plus the disturbance field produced
by the other particle(s). The method is iterative, since a correction of
the ambient field about a given particle generates a new disturbance
solution for that particle, which in turn modifies the ambient field
about another particle.”

The authors also start first by explaining the parallel method of reflections for two
objects, and then generalize it to the case of three objects. Just the first terms in the
series expansion are obtained, and no convergence of the method is discussed.

A special section is also dedicated to the alternating method of reflections for the
Stokes equation in the 1996 book of Dhont [6, Section 5.12]. The case of two objects
is described on page 258, where Dhont says for the coupled boundary value problem
of two objects:

“This boundary value problem is too complicated to solve in closed
analytical form. Instead the problem is solved by iteration [. . . ] re-
sulting in a series expansion representation of the flow field in powers
of [. . . ] the distance between the spheres.

The method is then also described for three objects on page 274, where Dhont goes
cyclically through the three object in the algorithm, see Figure 1.

Balabane proved in 1997 convergence of the alternating method of reflections for
the Helmholtz equation in unbounded domains in [2], and generalized his results to
the parallel method of reflections in [1]. These convergence results are valid however
only in low frequency regimes.

In 2001, Ichiki and Brady presented the parallel method of reflections [12] for
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Fig. 2. Figures from the paper by Ichiki and Brady [12] for the alternating method of reflections
with three objects arranged on the vertices of an equilateral triangle. Left: error as a function of
iteration for different distances between the object. Right: spectral radius of the iteration operator
of the parallel method of reflections as a function of the distance of the objects.

Stokes type problems. They start with the two particle case and then state:
“It is easy to extend this procedure to the N -body problem by su-
perposing disturbances by the other particles.”

They are thus summing all contributions that were computed in parallel, and present
this iterative approach also in matrix form, relating it to a stationary iteration based
on a matrix splitting. They then show by numerical experiments that the method
does not converge for three particles, if the separation distance of the particles is not
large enough, and thus the parallel method of reflections might diverge in that case,
see Figure 2. To alleviate this situation, they use their matrix formulation of the
algorithm to consider the method at the fixed point, and then propose solving the
fixed point equation by Krylov methods, which is equivalent to using the method of
reflections as a preconditioner.

Traytak poses in 2006 in a short note directly the parallel method of reflections for
N objects, written in PDE form for Laplace’s equation [24, Section 2], and then uses
a theorem proved by Golusin [7] to derive sufficient conditions for the convergence
based on the distances between the objects.

More recently, Höfer and Velázquez used the parallel method of reflections as an
analytic tool to prove homogenization results [11] (see also [13]), and they modified the
usual parallel method by adding different weighting coefficients. They were interested
in the theoretical case of an infinite number of objects, and thus an alternating method
can not be considered. Laurent, Legendre and Salomon studied the alternating and
parallel methods of reflections in [17], introducing also an averaged version of the
parallel method. They proved convergence based on the alternating projection method
in Hilbert spaces, see for example [22], and also using techniques like in [2, 1].

We have seen that there are two main variants of the method of reflections: the al-
ternating one and the parallel one. There are also two different approaches to analyze
the convergence of the method of reflections: first people worked on direct estimates
performed on the single/double layer formulation of the boundary value problems in-
volved in the iterations, see [7, 24, 2, 1]. There is however also the interpretation of
the method as alternating projections in Hilbert spaces, see [20, 17]. In the case of
orthogonal projections this interpretation leads to convergence estimates.

Our goal here is to formulate the different variants of the method of reflections as
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Ω

O1

O2

O3

Fig. 3. Example of a domain Ω (a disk) with three objects Oj (holes).

iterative methods for the simple model involving the Laplacian. We start by presenting
in Section 2 a class of Laplace problems on perforated domains. We then present the
different forms of the methods of reflections: in Subsection 2.1 the alternating method
of reflections; in Subsection 2.2 the parallel method of reflections; in Subsection 2.3 an
averaged version of the parallel method introduced in [17]; and finally in Subsection
2.4 a variant introduced by Happel and Brenner in [9]. In Section 3, we give a
convergence analysis of the alternating and parallel methods of reflections in the case
of one space dimension and three objects.

2. Methods of reflections. Consider a simply connected domain Ω ⊂ Rn with
a smooth boundary ∂Ω, and assume that J objects Oj (holes) are present in Ω. The
objects Oj ⊂ Ω are simply connected open sets with smooth boundaries ∂Oj , and
they are not allowed to overlap or touch,

(1) Oj ∩Ok = ∅ for any j 6= k,

for an example, see Figure 3. They are also not allowed to touch the boundary,
∂Ω ∩ ∂Oj = ∅. Our goal is to compute an approximate solution u to the Laplace
problem

∆u = 0 in Ω \ ∪jOj , u = 0 on ∂Ω,

u = gj on ∂Oj for j = 1, . . . , J ,
(2)

where we assume that the gj are sufficiently smooth functions on ∂Oj . We now
present the various methods of reflections for the model problem (2). They all use as
a common building block solutions of the problem with only one of the objects.

2.1. The alternating method of reflections. We formalize now the natural
descriptions of the different methods of reflections from Section 1. The alternating
method of reflections (AMR) for J objects starts with some u0 that satisfies1

∆u0 = 0 in Ω \ ∪j∂Oj , u
0 = 0 on ∂Ω,

but not necessarily the boundary conditions on the holes

u0 = gj on ∂Oj for j = 1, . . . , J.

1Historically the method starts with a u0 solution for the first object, neglecting all the other
objects. Such a solution is often available in closed form or as a series expansion for spherical
objects. We want to formulate the methods here for arbitrary initial guesses, and the equivalent to
the historical case would be obtained by starting with u0 = 0, see also the comment before Algorithm
1.
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The sequence of approximate solutions {uk}k of the AMR is then defined for k =
1, 2, . . . by

uk−1+
1
J = uk−1 + dk1 ,

uk−1+
2
J = uk−1 + dk1 + dk2 ,

uk−1+
3
J = uk−1 + dk1 + dk2 + dk3 ,

...

uk = uk−1 +

J∑
j=1

dkj ,

where the correction dkj for the j-th object is computed in such a way that, when

added to uk−1+
j−1
J , the new approximation uk−1+

j
J equals on the boundary ∂Oj of

the j-th object the correct boundary value gj specified in the underlying problem (2),
that is

uk−1+
j
J = uk−1+

j−1
J + dkj = gj on ∂Oj .

This means that dkj must be the solution to

∆dkj = 0 in Ω \ ∂Oj , d
k
j = 0 on ∂Ω,

dkj = gj − uk−1+
j−1
J = gj − uk−1 −

j−1∑
`=1

dk` on ∂Oj .
(3)

Note that when adding the correction dkj to the current approximation uk−1+
j−1
J , dkj

is defined in all of the domain Ω except the hole Oj , whereas uk−1+
j−1
J is not defined

in any of the holes Ol, l = 1, . . . , J , so the sum is to be understood only in the domain

of definition of the overall approximation uk−1+
j−1
J .

Problem (3) can be written in another form, by rewriting the boundary condition
of (3) on ∂Oj as follows (see for example [2, 1, 17]):

dkj = gj − uk−1 −
j−1∑
`=1

dk` = gj − uk−2 −
J∑

`=1

dk−1` −
j−1∑
`=1

dk`

= gj − uk−2 −
j∑

`=1

dk−1` −
J∑

`=j+1

dk−1` −
j−1∑
`=1

dk` .

Notice that gj −uk−2−
∑j

`=1 d
k−1
` = 0, since dk−1j solves problem (3) at the iteration

k − 1, that is

∆dk−1j = 0 in Ω \ ∂Oj , d
k−1
j = 0 on ∂Ω,

dk−1j = gj − uk−2 −
j−1∑
`=1

dk−1` on ∂Oj .

Therefore, we have obtained that dkj can be expressed on ∂Oj only as combination of
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other differences dk` and dk−1` ,

(4) dkj = −
J∑

`=j+1

dk−1` −
j−1∑
`=1

dk` ,

and the explicit dependence on gj and uk−1 disappeared. Hence, problem (3) becomes

∆dkj = 0 in Ω \ ∂Oj , d
k
j = 0 on ∂Ω,

dkj = −
j−1∑
`=1

dk` −
J∑

`=j+1

dk−1` on ∂Oj ,
(5)

which is the form of the alternating method of reflections presented in [17], see also
[2, 1]. Obviously, the sequences {dkj }k have to be initialized for all j. To do so, it is

sufficient, for example, to set u0 = 0 and to consider the initialization problems

∆d1j = 0 in Ω \ ∂Oj , d
1
j = 0 on ∂Ω,

d1j = gj −
j−1∑
`=1

d1` on ∂Oj .
(6)

We show in Algorithm 1 how the AMR can be implemented using pseudo-code:

Algorithm 1 Alternating Method of Reflections (AMR)

Input: K (maximum number of iterations), tol (tolerance).
1: Set u0 = 0 and k = 1;
2: for j = 1:J do
3: Initialize d1j solving the problem (6);
4: end for
5: Compute u1 =

∑J
j=1 d

1
j ;

6: while k < K and ‖uk − uk−1‖ > tol do
7: Update k = k + 1;
8: for j = 1:J do
9: Compute dkj solving (5);

10: Compute the approximation uk+1− j
J =

∑k
n=1

∑j
`=1 d

n
` ;

11: end for

12: end while

To illustrate the behavior of the AMR, we consider the one-dimensional problem

−∆u = 0 in (0, 1) \ (∂O1 ∪ ∂O2),

u(0) = u(1) = 0,

u(aj) = gaj , for j = 1, 2,

u(bj) = gbj , for j = 1, 2,

where Oj = (aj , bj), and gaj and gbj are given boundary data in R, j = 1, 2. We
assume that 0 < a1 < b1 < a2 < b2 < 1, such that the two objects O1 and O2 are
disjoint. In this special case of two objects, Algorithm 1 becomes Algorithm 2. To
get an understanding how the AMR functions, we now discuss the first four iterations
performed by Algorithm 2 in detail, and also provide their graphical representation.
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Algorithm 2 Alternating Method of Reflections (AMR) for two objects

Input: K (maximum number of iterations), tol (tolerance);
1: Set u0 = 0 and k = 1;
2: Initialize d11 and d12 solving sequentially the problems

−∆d11 = 0 in (0, 1) \ ∂O1,

d11(0) = d11(1) = 0,

d11(a1) = ga1 ,

d11(b1) = gb1,

and

−∆d12 = 0 in (0, 1) \ ∂O2,

d12(0) = d12(1) = 0,

d12(a2) = ga2 − d11(a2),

d12(b2) = gb2 − d11(b2).

(7)

3: Compute the approximation u1 = d11 + d12;
4: while k < K and ‖uk − uk−1‖ > tol do
5: Update k = k + 1;
6: Compute dk1 and dk2 solving (sequentially) the problems

−∆dk1 = 0 in (0, 1) \ ∂O1,

dk1(0) = dk1(1) = 0,

dk1(a1) = −dk−1
2 (a1),

dk1(b1) = −dk−1
2 (b1),

and

−∆dk2 = 0 in (0, 1) \ ∂O2,

dk2(0) = dk2(1) = 0,

dk2(a2) = −dk1(a2),

dk2(b2) = −dk1(b2).

(8)

7: Compute the approximation uk = uk−1 + dk1 + dk2 ;

8: end while

Iteration k = 1

0 1a1 b1 a2 b2

ga1

gb1 ga2

gb2

Fig. 4. Iteration k = 1: The black thick line is the exact solution u. The first approximation u1

is computed setting the exact boundary values for the object O1. At the first iteration, u1 coincides
with the difference d11 that is represented by the thin black line. The two black vertical segments
correspond to the errors e1(a2) and e1(b2), which are used in iteration k = 2 to compute d22.

The first approximation u1 is computed setting the exact boundary values on ∂O1

and solving (7) (recall that u1 = d11 because u0 = 0). The solution u is represented
by the black thick line in Figure 4. The approximation u1 (thin black line) allows
us to compute the errors at a2 and b2, which are e1(a2) = ga2 − u1(a2) and e1(b2) =
gb2 − u1(b2). These errors are used to compute d22 (solving (7) (right)) represented by
the dashed line in Figure 5. We can then compute the approximation u2 = u1 + d22
(thin line in Figure 5), which is exact on ∂O2 = {a2, b2}. Once again, we compute
the error on ∂O1: e2(a1) = ga1 − u2(a1) and e2(b1) = gb1 − u2(b1) that we use to
solve (8) to obtain d31 represented by the dashed line in Figure 6. The approximation
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Iteration k = 2

0 1a1 b1 a2 b2

ga1

gb1
ga2

gb2

Fig. 5. Iteration k = 2: The thick solid line is the exact solution u. The difference d22 (black
dashed line) is computed using the errors e1(a2) and e1(b2) as boundary condition on ∂O2. The
current approximation u2 (black thin line) is obtained by summing d22 to u1. Notice that u2 = u1+d22
is exact on ∂O2. The two vertical segments correspond to the errors e2(a1) and e2(b1), which are
used in Step 3 to compute d31.

Iteration k = 3

0 1

a1 b1 a2 b2

ga1

gb1 ga2

gb2

Fig. 6. Iteration k = 3. The black thick line is the exact solution u. The difference d13 (black
dashed line) is computed using the errors e2(a1) and e2(b1) as boundary condition on ∂O1. The
current approximation u3 (thin black line) is obtained by summing d31 to u2. Notice that u3 = u2+d31
is exact on ∂O1. The two vertical segments correspond to the errors e3(a2) and e3(b2), which will
be used in iteration k = 4 to compute d42.

u3 is then obtained as u3 = u2 + d31 (thin line in Figure 6). Similar arguments are
used to obtain d42 and u4 = u3 + d42 (thin line in Figure 7). The iterative process
continues in this way until convergence is reached. In order to show the contracting
behavior of the AMR, we show the absolute value of the differences in Figure 8: |d22|
(coarse dashed line), |d31| (fine dashed line), and |d42| (solid line). The figure shows that
the maximum of the absolute value of the differences dkj decreases in the iterations,
showing the contracting behavior of the AMR. Figure 8 also shows a close relation
of the contraction of the absolute values of the differences |dkj | with the convergence
of an overlapping Schwarz method: if the overlapping Schwarz method was using as
subdomains Ω1 := (0, a2) and Ω1 := (b1, 1) and was used to solve simply a Poisson
equation on the interval (0, 1),

(9) ∂xxv = f, v(0) = v(1) = 0,
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Iteration k = 4

0 1a1 b1 a2 b2

ga1

gb1 ga2

gb2

Fig. 7. Iteration k = 4. The black thick line is the exact solution u. The difference d24 (black
dashed line) is computed using the errors e3(a2) and e3(b2) as boundary condition on ∂O2. The
current approximation u4 (thin black line) is obtained by summing d42 to u3. Notice that u4 = u3+d42
is exact on ∂O2. The errors e4(a1) and e4(b1) will be used in iteration k = 5 to compute d51.

Contraction of the |dkj |

0 1a1 b1 a2 b2

ga1

gb1 ga2

gb2

Fig. 8. Absolute value of the differences: |d22| (coarse dashed line), |d31| (fine dashed line), and
|d42| (solid line). It is clear that the maximum of the absolute value of the differences dkj decreases
in the iterations, showing the contracting behavior of the AMR.

the Schwarz iteration would be

(10)
∂xxv

k
1 = f in Ω1, ∂xxv

k
2 = f in Ω2,

vk1 (a2) = vk−12 (a2), vk2 (b1) = vk1 (b1),
vk1 (0) = 0, vk2 (1) = 0.

The equations for the errors ekj := v − vkj of this alternating Schwarz method are by
linearity just the homogeneous counterpart of (10),

∂xxe
k
1 = 0 in Ω1, ∂xxe

k
2 = 0 in Ω2,

ek1(a2) = ek−12 (a2), ek2(b1) = ek1(b1),
ek1(0) = 0, ek2(1) = 0,

and we see that the errors of the alternating Schwarz method, which are just affine
functions, coincide with the modulus of the differences of the alternating method of
reflections, |dkj | = ek3−j , provided the second error satisfies e21(a2) = |d22(a2)|. So for
the two-object case, the AMR converges at the same rate as the alternating Schwarz
method. Note that the overlapping subdomains Ω1 and Ω2 could also be replaced
with Ω̃1 := Ω\O2 and Ω̃2 := Ω\O1 without changing the contraction, so in the two
object case, the AMR converges like an alternating overlapping Schwarz method with
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domains representing the entire domain, just with the corresponding object removed,
a result which also holds in higher dimensions for two objects, for more details see [5].

2.2. The parallel method of reflections. The parallel method of reflections
is obtained by replacing on the right-hand side of the boundary condition (4) the
differences at the iteration k with the corresponding differences at the iteration k− 1.
Hence, problem (5) becomes

∆dkj = 0 in Ω \ ∂Oj , d
k
j = 0 on ∂Ω,

dkj = −
J∑

`=1, 6̀=j

dk−1` on ∂Oj .
(11)

The sequences {dkj }k are initialized by solving for each j = 1, . . . , J the problem

∆d1j = 0 in Ω \ ∂Oj , d
1
j = 0 on ∂Ω, d1j = gj on ∂Oj ,(12)

and the approximate solution at the kth iteration is defined by

uk = uk−1 +

J∑
j=1

dkj ,

where u0 = 0. The PMR (11)-(12) leads to Algorithm 3.

Algorithm 3 Parallel Method of Reflections (PMR)

Input: K (maximum number of iterations), tol (tolerance);
1: Set u0 = 0 and k = 1;
2: for j = 1:J do
3: Compute d1j solving the problem (12);
4: end for
5: Compute the approximation u1 =

∑J
j=1 d

1
j ;

6: while k < K and ‖uk − uk−1‖ > tol do
7: Update k = k + 1;
8: for j = 2:J (this loop is executed in parallel) do
9: Compute dkj solving the problem (11);

10: end for
11: Compute the approximation uk = uk−1 +

∑J
j=1 d

k
j ;

12: end while

2.3. The averaged parallel method of reflections. The PMR discussed in
Section 2.2 is not always convergent. This fact has been mentioned in several publica-
tions, see, e.g., [7, 12], and we will illustrate this in Section 3 with a concrete example.
In order to improve the convergence behavior of the PMR, Laurent et al. proposed in
[17] a modified version that is obtained (as mentioned by the authors) by averaging
the different components dkj : the problem (11) is modified as

∆dkj = 0 in Ω \ ∂Oj , d
k
j = 0 on ∂Ω,

dkj =
(

1− 1

J

)
dk−1j − 1

J

J∑
`=1, 6̀=j

dk−1` on ∂Oj ,
(13)
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for j = 1, . . . , J , with the initialization problems

∆d1j = 0 in Ω \ ∂Oj , d
1
j = 0 on ∂Ω, d1j = gj on ∂Oj ,(14)

for j = 1, . . . , J . The approximate uk can then be obtained from uk−1 by

(15) uk = uk−1 +
1

J

J∑
j=1

dkj ,

assuming that u0 = 0. As for the PMR, this new formulation of the method, which
we call averaged parallel method of reflections (APMR), can be interpreted as an
alternating projection procedure in Hilbert spaces. If the projections are orthogonal,
the APMR is proved to be always convergent in [17]. A pseudo-algorithm of the
APMR is given by Algorithm 4.

Algorithm 4 Averaged Parallel Method of Reflections (APMR)

Input: K (maximum number of iterations), tol (tolerance);
1: Set u0 = 0 and k = 1;
2: for j = 1:J do
3: Compute d1j solving the problem (14);
4: end for
5: Compute the approximation u1 =

∑J
j=1 d

1
j ;

6: while k < K and ‖uk − uk−1‖ > tol do
7: Update k = k + 1;
8: for j = 2:J (this loop is executed in parallel) do
9: Compute dkj solving the problem (13);

10: end for
11: Compute the approximation uk = uk−1 + 1

J

∑J
j=1 d

k
j ;

12: end while

2.4. Variant of Happel and Brenner. The version appearing in Happel and
Brenner [9] is different from the parallel method of reflections described in Sections
2.2 and 2.3. In this procedure, one focuses on one specific object, say the first,
and the updates of the J − 1 other objects are done in parallel. We give the concrete
implementation of their variant, which we call HBMR, in Algorithm 5. This algorithm
is the first parallelizable version of the method after the original one of Golusin [7].
However, it still (sequentially) alternates between one object and all the others that
are treated in parallel.

3. One-dimensional convergence analysis. In this section, we present a con-
vergence analysis of AMR, PMR, and APMR for the solution of a one-dimensional
problem. In particular, we are interested in the influence of the distance between
the objects on the convergence of the methods of reflections. We consider a domain
Ω = (0, 1) with three holes Oj = (aj , bj) for j = 1, 2, 3 with 0 < a1 < b1 < a2 < b2 <
a3 < b3 < 1, and the Laplace problem

∆u = 0 in (0, 1) \ ∪j∂Oj , u(0) = u(1) = 0,

u(aj) = gaj , u(bj) = gbj for j = 1, . . . , 3,
(16)

where gaj and gbj are given real numbers. We fix the size of the objects to h :=

bj − aj = 1
10 and denote by d the distance between their centers; see Figure 9. In
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Algorithm 5 Happel-Brenner Method of Reflections (HBMR)

Input: K (maximum number of iteration), tol (tolerance);
1: Set u0 = 0, d0j = 0 for j = 1, . . . , J , and k = 1;
2: Compute d11 solving

∆d11 = 0 in Ω \O1, d
1
1 = 0 on ∂Ω,

d11 = g1 on ∂O1.

3: for j = 2:J do
4: Compute d1j in Ω \Oj solving the problem

∆d1j = 0 in Ω \Oj , d
1
j = 0 on ∂Ω,

d1j = gj − d11 on ∂Oj .

5: end for
6: Compute the approximation u1 =

∑J
j=1 d

1
j in Ω \ ∪jOj ;

7: while k < K and ‖uk − uk−1‖ > tol do
8: Update k = k + 1;
9: Compute dk1 solving

∆dk1 = 0 in Ω \O1, d
k
1 = 0 on ∂Ω,

dk1 = g1 − uk−1 on ∂O1.

10: for j = 2:J (this loop is executed in parallel) do
11: Compute dkj in Ω \Oj solving the problem

∆dkj = 0 in Ω \Oj , d
k
j = 0 on ∂Ω,

dkj = gj − (uk−1 + dk1) on ∂Oj .

12: end for
13: Compute the approximation uk = uk−1 +

∑J
j=1 d

k
j in Ω \ ∪jOj ;

14: end while

0 a1 b1 a2 b2 a3 b3 1

h h h
d d

Fig. 9. Geometry of the one-dimensional domain [0, 1] with three equidistant holes of size h.
The distance between the holes is denoted by d. The black dots are the centers of the objects.

particular, the object O2 is centered at the midpoint of the domain. Therefore, we
have a1 = 1

2 − d −
h
2 , b1 = 1

2 − d + h
2 , a2 = 1

2 −
h
2 , b2 = 1

2 + h
2 , a3 = 1

2 + d − h
2 ,

and b3 = 1
2 + d + h

2 . Notice that to guarantee that hypothesis (1) is satisfied, that

is Oj ∩ Ok = ∅ for any j 6= k, the distance d has to satisfy the relation d > h = 1
10 .

Moreover, to have that a1 > 0 and b3 < 1 it is required that d < 1
2 −

h
2 .

We begin with the AMR that, for the solution to (16), is given by{
∆dk1 = 0 in Ω1, dk1(0) = dk1(1) = 0,

dk1(x̃) = −dk−12 (x̃)− dk−13 (x̃) for x̃ = a1, b1,
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{
∆dk2 = 0 in Ω2, dk2(0) = dk2(1) = 0,

dk2(x̃) = −dk1(x̃)− α2,3d
k−1
3 (x̃) for x̃ = a2, b2,{

∆dk3 = 0 in Ω3, dk3(0) = dk3(1) = 0,

dk3(x̃) = −dk1(x̃)− dk−12 (x̃) for x̃ = a3, b3.

The general solutions of these three problems are

dk1(x) =

{
Ak

1x
a1

x ∈ [0, a1],
Bk

1 (1−x)
1−b1 x ∈ [b1, 1],

dk2(x) =

{
Ak

2x
a2

x ∈ [0, a2],
Bk

2 (1−x)
1−b2 x ∈ [b2, 1],

dk3(x) =

{
Ak

3x
a3

x ∈ [0, a3],
Bk

3 (1−x)
1−b3 x ∈ [b3, 1],

where Ak
j and Bk

j are constants depending on the transmission conditions. Defining

vk := [Ak
1 , B

k
1 , A

k
2 , B

k
2 , A

k
3 , B

k
3 ]> and using the transmission conditions, we obtain a

stationary iteration in matrix form,

(I + L̃)vk = −Ũvk−1,

where

L̃ = −



0 0 0 0 0 0
0 0 0 0 0 0
0 − 1−a2

(1−b1) 0 0 0 0

0 − 1−b2
(1−b1) 0 0 0 0

0 − 1−a3

(1−b1) 0 − 1−a3

1−b2 0 0

0 − 1−b3
(1−b1) 0 − 1−b3

1−b2 0 0


and Ũ = −



0 0 −a1

a2
0 −a1

a3
0

0 0 − b1
a2

0 − b1
a3

0

0 0 0 0 −a2

a3
0

0 0 0 0 − b2
a3

0

0 0 0 0 0 0
0 0 0 0 0 0

 .

The iteration matrix of the AMR is therefore

GAMR := −(I + L̃)−1Ũ =



0 0 20d−9
9 0 20d−9

20d+9 0

0 0 20d−11
9 0 20d−11

20d+9 0

0 0 − 220d−121
180d+81 0 − 400d−40

400d2+360d+81 0

0 0 − 20d−11
20d+9 0 − 400d

400d2+360d+81 0

0 0 0 0 − 220d−121
180d+81 0

0 0 0 0 − 220d−99
180d+81 0


,

where we used the expressions of aj and bj . The spectral radius of GAMR can be
explicitly calculated,

ρ(GAMR) =
121− 220d

180d+ 81
,

and one can show that ρ(GAMR) < 1 for any d > 1
10 , i.e. the objects are not touching.

Hence, the AMR is convergent. The spectral radius ρ(GAMR) as a function of d is
shown in Figure 10 (left).
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Fig. 10. Spectral radii ρ(GAMR) (left) and ρ(GPMR) (left) as functions of the distance d.

Next,we consider the PMR, that is{
∆dk1 = 0 in Ω1, dk1(0) = dk1(1) = 0,

dk1(x̃) = −dk−12 (x̃)− dk−13 (x̃) for x̃ = a1, b1,{
∆dk2 = 0 in Ω2, dk2(0) = dk2(1) = 0,

dk2(x̃) = −dk−11 (x̃)− α2,3d
k−1
3 (x̃) for x̃ = a2, b2,{

∆dk3 = 0 in Ω3, dk3(0) = dk3(1) = 0,

dk3(x̃) = −dk−11 (x̃)− dk−12 (x̃) for x̃ = a3, b3.

Proceeding as for the AMR, we obtain a stationary iteration in matrix form,

vk = GPMRvk−1,

where the iteration matrix GPMR is

GPMR =



0 0
10(2d− 9

10 )
9 0 − 2d− 9

10

−2d− 9
10

0

0 0 − 10( 11
10−2d)
9 0

11
10−2d
−2d− 9

10

0

0 11

10(−2d− 9
10 )

0 0 9

10(−2d− 9
10 )

0

0 9

10(−2d− 9
10 )

0 0 11

10(−2d− 9
10 )

0

0
11
10−2d
−2d− 9

10

0 − 10( 11
10−2d)
9 0 0

0 − 2d− 9
10

−2d− 9
10

0
10(2d− 9

10 )
9 0 0


,

whose spectral radius is

ρ(GPMR) =
33− 60d+

√
−28400d2 − 760d+ 9009

120d+ 54
.

As shown in Figure 10 (right), if the objects are close, the spectral radius ρ(GPMR) is
bigger than 1, which means that the PMR does not always converge. This result is in
agreement with the convergence analyses in [17, 24]. This loss of convergence moti-
vated Laurent et al. to introduce the APMR that, for our one-dimensional example,
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Fig. 11. Spectral radius ρ(GAPMR) as a function of the distance d.

is given by  ∆dk1 = 0 in Ω1, dk1(0) = dk1(1) = 0,

dk1(x̃) =
2

3
dk−11 (x̃)− 1

3
dk−12 (x̃)− 1

3
dk−13 (x̃) for x̃ = a1, b1, ∆dk2 = 0 in Ω2, dk2(0) = dk2(1) = 0,

dk2(x̃) =
2

3
dk−12 (x̃)− 1

3
dk−11 (x̃)− 1

3
α2,3d

k−1
3 (x̃) for x̃ = a2, b2, ∆dk3 = 0 in Ω3, dk3(0) = dk3(1) = 0,

dk3(x̃) =
2

3
dk−13 (x̃)− 1

3
dk−11 (x̃)− 1

3
dk−12 (x̃) for x̃ = a3, b3.

In this case, the iteration matrix GAPMR is given by

GAPMR =



2
3 0

10(2d− 9
10 )

27 0 − 2d− 9
10

−6d− 27
10

0

0 2
3 − 10( 11

10−2d)
27 0

11
10−2d
−6d− 27

10

0

0 11

10(−6d− 27
10 )

2
3 0 9

10(−6d− 27
10 )

0

0 9

10(−6d− 27
10 )

0 2
3

11

10(−6d− 27
10 )

0

0
11
10−2d
−6d− 27

10

0 − 10( 11
10−2d)
27

2
3 0

0 − 2d− 9
10

−6d− 27
10

0
10(2d− 9

10 )
27 0 2

3


,

and its spectral radius is

ρ(GAPMR) =
75 + 300d+

√
−28400d2 − 760d+ 9009

360d+ 162
.

It is possible to show that ρ(GAPMR) < 1 for d > h = 1
10 , as shown in Figure 11. In

particular, the convergence of the APMR deteriorates as d approaches h = 1
10 , but in

contrast to the PMR the spectral radius remains bounded by 1, and thus the method
is convergent.

4. Conclusion. We traced the history of the method of reflections, and showed
that there are two main variants of it, the alternating method of reflections and the
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parallel method of reflections. For the parallel method of reflections there is also a
very recent variant using averaging. We then gave a precise mathematical formulation
of the methods, and indicated for the two object case a relation with the alternating
Schwarz method. We finally studied the convergence properties of these methods
for a one dimensional model problem and three objects. Our results show that the
alternating method of reflections is always convergent, while the parallel method of
reflections is only converging if the objects are far enough apart. This convergence
problem can be alleviated using averaging in the parallel method of reflections. This
manuscript is just the beginning of a more complete analysis of these methods of
reflections, and improved variants which we are currently developing, see [5].
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