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Unconventional superconductivity 
and interaction induced Fermi 
surface reconstruction in the  
two-dimensional Edwards model
Dai-Ning Cho1, Jeroen van den Brink1, Holger Fehske2, Klaus W. Becker3 & Steffen Sykora1

We study the competition between unconventional superconducting pairing and charge density wave 
(CDW) formation for the two-dimensional Edwards Hamiltonian at half filling, a very general two-
dimensional transport model in which fermionic charge carriers couple to a correlated background 
medium. Using the projective renormalization method we find that a strong renormalization of 
the original fermionic band causes a new hole-like Fermi surface to emerge near the center of the 
Brillouin zone, before it eventually gives rise to the formation of a charge density wave. On the new, 
disconnected parts of the Fermi surface superconductivity is induced with a sign-changing order 
parameter. We discuss these findings in the light of recent experiments on iron-based oxypnictide 
superconductors.

In a number of superconducting (SC) materials the pairing interaction is not predominantly mediated by pho-
nons, but rather by electron-electron interactions, for instance in the guise of spin fluctuations in the recently 
discovered extended family of iron-based superconductors1–3. Electron-electron interactions, however, are also 
driving the metallic ground state towards other long-range ordered states, in particular spin4,5- or charge-density 
waves6–8 (CDWs). A minimal model to effectively describe these interactions considers fermionic charge carriers 
in the presence of a correlated background that is provided by bosonic modes in the particle’s immediate vicinity 
which take an active part in the transport of the fermions9. Such a picture is very general with wide applicabil-
ity, for example to the case of charge transport in high-temperature SC materials10–12 where superconductivity 
appears close to magnetically ordered phases13.

The fundamental question arises whether there is a SC state where the Cooper pairing is solely based on 
electron-electron interaction and in particular whether and how such a phase competes with other ordered states 
mediated by the same generic background correlations. An effective lattice model which mimics quantum trans-
port in a correlated background is the Edwards fermion-boson model14,
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which is here considered for a 2D square lattice. It describes the hopping of spinless fermions between 
nearest-neighbor sites i and j affected by a correlated background medium modelled by bosonic degrees of free-
dom. Local excitations and quantum fluctuations in the background medium are parametrized by dimensionless 
parameters Ω and Λ , which give the energy cost of a bosonic excitation and the ability of the background to 
relax, respectively. Originally, the Edwards model was introduced to describe the motion of a spinless particle 
in an antiferromagnetic correlated spin background - like a hole in the t-J model. In this context the Edwards 
model is relevant to charge transport in high-temperature superconductors at doping levels close to an antiferro-
magnetically ordered state15 but also in other materials with related models with spin degrees of freedom16. The 
advantage of the Edwards model is that the correlated spin background is parametrized by bosonic degrees of 
freedom, which might be represented, for example, by Schwinger bosons. Thus, in the Edwards model the charge 
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carriers are modelled by spinless fermions, whereas the background spin correlations are represented by bosons. 
Therefore, the 2D Edwards Hamiltonian (1) also allows the study of superconductivity using spinless fermions 
and the spin degrees of freedom are modelled by bosons in a way described above.

Shortly after its introduction the model (1) was solved numerically for a single particle in 1D by a varia-
tional diagonalization technique15, and in 2D treated approximatively by the momentum-average approach17. 
The many-particle case has been studied intensively for the 1D system within DMRG, where a surprisingly rich 
phase diagram has been found, including metallic repulsive and attractive Tomonaga-Luttinger-liquid phases, 
insulating CDW states at half-filling18,19 and one-third-filling20, and regions with phase separation21.

In this work, we exploit the projective renormalization method (PRM)22 to the Edwards model at half-filling 
and find an intricate interplay between stable superconducting and charge-density wave states, that strongly 
depends on the excitation energy of the correlated background medium. The original fermionic band is strongly 
renormalized by the coupling to the bosonic modes, which can give rise to an entirely new hole-like part of the 
Fermi surface (FS) close to the center of the Brillouin zone. The superconducting order parameter has a different 
sign on the two disconnected parts of the FS that subsequently emerge. Such an interaction induced Fermi sur-
face reconstruction has been observed in recent experiments on oxypnictide superconductors where indeed also 
sign-changing s± superconductivity is present.

Before discussing the results of our many-particle method for the Edwards model in 2D we start with an 
appropriate reformulation of Hamiltonian (1) in such a way that a coupled system of free fermions and bosons is 
obtained. Fourier transformation, introduction of fluctuation operators for fermions, and elimination of the lin-
ear term of bosonic operators as shown in ref. 19 allows the following decomposition   = +0 1 in momen-
tum space,
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where εk =  − 2t(cos kxa +  cos kya), gk =  − 2tb(cos kxa +  cos kya), and = Ω Λ − ∑ †t t N g t c c(2 / )[ (1/ ) ( / ) ]b bk k k k . 
Here a  is the lattice constant of the 2D square lattice with N  sites.  Fluctuation operators 
δ = − 〈 〉+ + +

† † †c c c c c c( )k k q k k q k k q  were introduced in order to attribute the mean-field contributions to the free 
term 0, which simplifies the solution of the many-body problem by the projective renormalization method 
(PRM).

Results
One of the main aims of our work is to discuss the question whether the Edwards model provides an attractive 
pairing interaction. If so, we have to clarify its structure in momentum space and in which parameter space the 
SC phase is stable with respect to other ordered states. To reveal a possible SC pairing mechanism an approximate 
BCS-like relation between the SC order parameter and pairing correlation function can be derived from the PRM 
renormalization equations, ∆ ≈ ∑ 〈 〉−

˜ N V c c(1/ )k q k q q q, , where V k q,  is an approximate analytic expression for the 
momentum-dependent pairing potential, ω ω ε ε= − − −+ + 

 
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2 2 . The momentum-dependent 
quantities εk and ω

q are determined self-consistently by the PRM approach and they describe the fully renormal-
ized one-particle energies of the fermions and bosons, respectively (compare Eq. (5) from the Methods section). 
According to the prefactor gk =  −2tb(cos kxa +  cos kya), the pairing potential becomes strongly 
momentum-dependent with a sign-change indicating an unconventional Cooper pairing mechanism.

We have evaluated the PRM renormalization equations in the half-filled band case, i.e. for Ne/N =  0.5, where 
Ne is the number of fermionic particles, and have varied the parameter Ω. The second parameter Λ  was fixed to a 
very small value Λ  =  0.001 describing a rather stiff, strongly correlated background which supports the formation 
of ordered states, as for example the SC and CDW states. As a result we found that the 2D Edwards model forms 
three different ground states. A metallic state at small values of Ω, a SC state in a narrow region for intermediate 
values of the bosonic energy, Ω ≈ . .2 8 3 5, and a quantum phase transition to a CDW state for large values of Ω, 
which is a characteristic ground state in the limit of large background excitations energies.

In Fig. 1(a) a SC solution at Ω =  3.27 is shown. Here the SC pairing correlation function −c ck k  and the pair-
ing potential Vk=0,q/tb are given along momentum cuts in the main symmetry directions. Most notably, we find a 
pronounced tendency towards electron pairing in a certain momentum region around the Γ  point k =  (0, 0), 
where also an attractive pairing potential evolves. As is shown further below, the SC state is accompanied by the 
appearance of a new Fermi surface formed around the Γ  point in the course of band renormalization, which 
appears for a specific range of Ω values. Note that the pairing potential is also negative around (π, π), where, how-
ever, SC pairing is suppressed due to the absence of fermionic low-energy states. The jump in the pairing potential 
appearing in Fig. 1(a) at momenta where ε ω≈

k q is an artifact of the specific perturbative shape of Vk,q. In the 
actual calculations this divergency is removed by renormalization contributions up to infinite order in gk.

Figure  1(b) shows solutions of the renormalized SC and CDW order parameters ∆ = ∆̃SC SC
k F

 and 
∆ = ∆̃CDW CDW

k F
 (kF: Fermi momentum) as a function of Ω. Thereby the normalization factors BW in Fig. 1(b) are 

the band widths of the corresponding renormalized fermionic quasiparticle bands.
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To characterize the three phases in more detail, in Fig. 2 we have considered the fully renormalized 
one-particle energies εk (left panels) and ω

q (right panels) in the entire Brillouin zone. First, for a small value 
Ω =  2, we find typical metallic behavior with a strong dispersion εk , which corresponds to the quasiparticle 
energy. For larger values of Ω, εk changes dramatically as can be seen for Ω =  3.27. In this regime, the bosonic 
energy is in the same order as the renormalized fermionic bandwidth. Moreover, εk is shifted to values very close 
to the Fermi level in a certain region in momentum space. The strong renormalization leads to a new hole-like 
Fermi surface appearing at momentum kF ≈  0.16π, which describes an unoccupied area around the Γ  point. 
According to Fig. 1(a) the states inside this region have been detected to be responsible for the formation of the 
SC state. However, the low-energy states along the outer Fermi surface are not involved in the SC pairing, because 
there the pairing potential is zero. For the same reason, combinations of inter-pocket scattering vectors between 
inner and outer Fermi surface parts do not contribute to the pairing. For still larger Ω inside the CDW regime the 
SC state is suppressed, due to the absence of a Fermi surface in a momentum region with negative pairing poten-
tial. As in the metallic state, the normal state Fermi surface runs along the line where gk is zero, leading to a sup-
pression of the pairing potential.

For the SC gap we find constant values along the two Fermi surface parts and a characteristic sign change 
between them. At Ω =  3.27 we have computed the values Δ1 =  1.3 · 10−2 and Δ2 =  − 2.0 · 10−4 (in terms of the 
renormalized bandwidth) for the inner hole pocket and the outer part, respectively. Thus, along the outer Fermi 
surface the gap value is non-zero but very small, ∆ ∆2 1 , which suppresses the pairing function −c ck k  in 
Fig. 1(a) upon crossing the outer Fermi surface. The sign-change on disconnected parts of the Fermi surface, with 
s-wave pairing on each disjunct part is often denoted as s± superconductivity in the context of iron-based pnictide 
superconductors23. The remarkable feature in the half-filled Edwards model is not as much the s± symmetry of the 
superconducting order parameter, but rather that the interactions induce a change in the topology of the Fermi 
surface – a Lifshitz transition. Such an interaction-induced Fermi-surface reconstruction was recently observed 
in a prototypical compound 1111-type iron-based oxypnictide superconductor, SmFe0.92Co0.08AsO, which has a 
Tc of 55 K. Angle resolved photoemission (ARPES) experiments show that its Fermi surface is reconstructed by 
the edges of several bands that are pulled to the Fermi level from the depths of the theoretical band structure24. 
This type of Fermi surface reconstruction is argued to be correlated with the maximally attainable superconduct-
ing transition temperature in iron-based superconductors. In particular our observation of a rather high density 
of states in the vicinity of the inner hole pocket giving rise to the strong Cooper pairing around the Γ  point is 
consistent with these ARPES results.

For larger Ω >  4.19 the hole-like Fermi surface disappears again. For Ω >  6.2 we find a CDW ordered state 
characterized by a gap in the fermionic quasiparticle spectrum. A representative CDW solution is shown in 
Fig. 2 at Ω =  8 (left panel). The gap opens along the black solid line connecting the momentum vectors (0, ± π) 
and (± π, 0) and is reflected in a jump of the color code. Note that between Ω ≈  3.5 and Ω ≈  6.1 no stable CDW 
solution was found so that no reliable statement can be given for this interval.

Finally, let us characterize the different regimes from the viewpoint of the background correlations. In Fig. 2 
(right panel) the renormalized bosonic energy ω Ω


t/( )bq  describes the excitations in the background which have 

acquired a dispersion from the coupling to the fermions. This renormalization is a consequence of an effective 
non-local interaction between bosons, which is mediated by higher-order contributions in the fermion-boson 
coupling. As a result the frequency of the boson either increases (hardens) or decreases (weakens). However, a 

Figure 1.  Panel (a): Momentum cuts along the symmetry directions Γ ⇒ ⇒ ⇒ ΓX M  in the SC regime at 
Ω =  3.27 for the pairing correlation function −c ck k  (left axis) and approximate pairing potential Vk,q/tb (right 
axis) where k is set to k =  (0, 0). The pairing potential is negative in a certain region around the Γ -point leading 
to attractive pairing inside the inner hole pocket which is indicated by a non-zero pairing correlation function. 
Panel (b): Renormalized SC order parameter ΔSC (red solid line) and charge-density wave order parameter ΔCDW 
(blue dashed line) as a function of the bosonic energy Ω. The order parameter values are related to the respective 
band widths (BW) of the renormalized fermionic bands for the two cases. The lattice grid is 100 ×  100 and the 
temperature is set to zero.
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real soft-mode behavior as it is discussed for instance in the context of structural phase transitions is not observed 
in the Edwards model in any parameter regime. First, the metallic state (Ω =  2.0) is characterized by a lowering of 
the effective background energy indicating an attractive Fermi liquid. Here the transport is accompanied by a 
‘cloud’ of bosonic excitations similar to the large polaron formation in the presence of phonons. In particular, in 
the SC state (Ω =  3.27) an interesting structure of the background energy distribution is found in momentum 
space. The figure shows that ω

q increases inside a Brillouin zone region (green and yellow color), which is 
bounded by scattering vectors q that roughly fulfill the resonance condition ε ε ω| − | ≈+ 

k k q q. This leads to  

Figure 2.  Fully renormalized quasiparticle energies ε ε= λ= t t/ /b bk k, 0  (left panels) and ω ωΩ = Ωλ=
t t/( ) /( )b bq q, 0  

(right panels) of fermions and bosons in the 2D square lattice Brillouin zone for Λ  =  0.001 and different values 
of Ω. Ωtb is the bare bosonic energy. The Fermi surface (black dotted line) and the strong dispersion of ε t/ bk  
indicate metallic behavior at Ω =  2. In the SC state (Ω =  3.27) the momentum dependence of ε t/ bk  changes 
qualitatively, forming a new hole-like Fermi surface around the center of the Brillouin zone. The momentum 
vectors with ε < ∆

SC
k  (white dots), where ΔSC is the SC gap, indicate the position of the respective normal state 

Fermi surface. It is split into two disconnected parts. Arrows mark representative dominant processes stabilizing 
the SC state by virtual bosons. For Ω =  8 a CDW state is found. The formation of the CDW gap is indicated by 
the black lines, which also encompass the reduced Brillouin zone in the CDW phase. The remaining area 
describes the second quasiparticle band which can be back folded by the CDW ordering vector Q =  (π, π) to the 
reduced Brillouin zone.
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a large renormalization with a characteristic change from hardening to weakening. Such a behavior is also seen in 
the jump of the pairing potential in Fig. 1(b) which, however, appears at different momentum vectors due to the 
fixed k vector. Inside the boson hardening region we can identify the momentum vectors of the particular bosons 
which are involved in the SC pairing (represented by two purple arrows in Fig. 2). They connect states inside the 
new inner hole pocket where the pairing correlation function is non-zero. Finally, in the CDW regime (Ω =  8.0) 
the weakening area disappears completely and no states are available to form Cooper pairs. Here ω Ω >


t/( ) 1bq  

throughout the Brillouin zone and the momentum dependence of the background excitation energy is inverted 
with respect to the metallic state emphasizing strongly repulsive particle-particle interaction, leading immediately 
to a breakup of any pairing. The hardening is a characteristic feature of the CDW phase and has already been 
found in 1D19.

Conclusions
We have studied the interplay between unconventional superconductivity and CDW order within a generic 
fermion-boson transport model in 2D. In the half-filled case stable SC solutions besides a CDW state were found. 
The SC state is stabilized by an attractive pairing on an additional hole-like Fermi surface around the center of the 
Brillouin zone which arises through a strong renormalization of the bare fermionic bandstructure. The highly 
unconventional pairing mechanism is due to interaction processes of infinite order in the coupling gk between 
spinless fermions and background correlations, leading to a momentum-dependent pairing potential which 
forms a SC state with possible variation of the order parameter phase. Fourier transformation of the ∆̃k solution 
to real space leads to a rather local pairing between next nearest lattice sites. It follows that the character of the SC 
pairing is influenced by fluctuations of the competing charge ordered state. These results are highly relevant for 
the currently investigated iron-based oxypnictides.

Methods
Following the basic idea of ref. 19 the interaction part 1 , given by Eq. (3), is integrated out by a series of unitary 
transformations starting from large to zero transition energies. Assuming that all transitions with energies larger 
than some energy cutoff λ have already been integrated out, the transformed Hamiltonian λ  consists of a part 
which has the same operator structure as Eqs (2) and (3), but with λ-dependent parameters, and an additional 
term of the form ∑ ∆ + ∆λ λ− −

† † ⁎c c c c[ ]k k k k k k k, ,  allowing for possible SC solutions based on an unconventional 
Cooper pairing of spinless fermions.

Evaluating the unitary transformation up to order gk
2, discrete renormalization equations for all λ-dependent 

parameters are obtained, which connect the parameters at cutoff λ with those at λ −  Δλ. The discrete renormali-
zation equation for the SC order parameter function reads

∑
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where the Θ -functions Θ = Θ − Θλ
λ

λ λ λ
∆

−∆(1 )k q k q k q, , , , , ,  with λ ε ε ωΘ = Θ − | − + |λ λ λ λ+( )k q k k q q, , , , ,  restrict the 
momentum sum to excitation energies within a small energy shell Δλ. This allows to apply perturbation theory in 
each small renormalization step. However, the overall renormalization is far beyond perturbation theory and 
renormalization processes to infinite order in the coupling gk are taken into account. Furthermore, note that in 
each single renormalization step a factorization approximation leads to the appearance of expectation values in 
the renormalization equations19.

The renormalization approach starts by reducing λ in steps Δλ until λ =  0 is reached. This is achieved by 
numerical evaluation of the renormalization equations. Then, all transitions from 1 are used up and the fully 
renormalized Hamiltonian  = λ=

˜
0 describes an uncoupled system of bosons and spinless fermions, which 

can be SC ∆ ≠˜( 0)k  depending on the chosen initial parameter set: The fully renormalized Hamiltonian reads

∑ ∑ε ω= + ∆ + . . + .−


˜ ˜† † † †c c c c b b[ ( h c )]
(5)k

k k k k k k
q

q q q

The PRM described in ref. 19 also allows the calculation of expectation values, A A
H

= ∼˜ , where ̃ is the 
fully renormalized quantity using the same set of unitary transformations as for ̃. An example is the pairing 
expectation value −c ck k  from Eq. (4). In a second step the renormalization procedure starts again with the 
improved expectation values −c ck k  by reducing again the cutoff from its maximum value λ to λ =  0. After a 
sufficient number of such cycles, the expectation values are converged and the renormalization equation (4) is 
solved self-consistently. Besides SC order we also take into account a possible CDW order (not included in 
Eq. (5)), a phase that is expected to be present at half-filling18,19.
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