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On quenched homogenization of long-range random
conductance models on stationary ergodic point processes

Martin Heida

Abstract

We study the homogenization limit on bounded domains for the long-range random conduc-
tance model on stationary ergodic point processes on the integer grid. We assume that the con-
ductance between neares neighbors in the point process are always positive and satisfy certain
weight conditions. For our proof we use long-range two-scale convergence as well as methods
from numerical analysis of finite volume methods.

1 Introduction

We consider a stationary ergodic point process X = (xi)ieN in Z<. We furthermore consider a random
coefficient field

w: ZEx 7> [0,1],  (2,y) = way (1.1)
where
T=Yorr¢xory¢x = wy,=0. (1.2)
Furthermore we demand
Wey =Wyz, 0< E( > wo, |z|2) <00, (1.3)
zeZ4d

Given ¢ > 0 we consider the sets x¢, and the function w® : €Z% x ¢Z - R

-
z?y

X" = ex = (e2i);y = (¥]) s+ W Wz g .
Introducing the function spaces

Se={x*>R} and Si(Q):={ueS: Vafex\Q u(zi)=0}
we write u; := u(xf) for every u € S and introduce the linear operator on S5(Q):

VafeQnx®: (L5 uf), =g Zwiiw; (uj—u;) .

J#0
We are particularly interested in the limit behavior of the equation
_Ei,wua = fe ) (1 4)

where f¢ € S5(Q) is a sequence that converges weakly in a sense to be specify below.
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M. Heida 2

The homogenization of problem (T.4) has been studied successfully first in [8] for x = Z<. Writing
e1, .. .eq for the canonical basis of R<, in [8] some additional condition of the type

E(Zwa,lei)Q < o0 (1.5)

is needed. The condition imposed in [8] is more general, but reads similar. Recently, a more general
result has been optained in [3] under the condition that for some p, g € (1, 00) with 119 + % < % it holds

P

E( > wo,s |z|2) <oo and E ) wy? <oo. (1.6)
2€74 fe\Zd
z|=1

Since all recent results work on x = Z¢ and with w,, > 0 for [z —y| = 1, our result is indeed
new. Like in our previous work [8] we use stochastic two-scale methods developed in [8] to show
that stationary ergodic point processes x in Z¢ with weights Wy,y satisfying (T.1)—(1.3) as well as the
additional assumptions (1.8)—(1.10) lead to a homogenization result for (1.4). In this context we further
use recent results from finite volume analysis [1, 5] to prove our compactness and uniform Poincaré
inequalities in € > 0. Furthermore, the proof that the support of u € S$(Q) — regarded as a function
in L2(Q) - lies within a small ball around @ is inspired by recently developed ideas by the author for
continuous homogenization [10} [{1].

We note at this point that up to now only little is known on long-range interaction besides the two recent
work [3| 18]. Another approach in terms of a random resistor network [7] was recently established by
Faggionato. It however separates the edges inside (Q and accounts only for interaction between points
inside @ with thous outside @ but not for “inside —inside”, e.g. nearest neighbor interaction.

1.1 Notation

We write Br(z) = {y e R?: |z — y| < R} for the open ball of radius R around 2 € R? and more
general

Br(Q):={yeR?: JxeQst [z-y|<R}.

Given x¢ = (a:j)jeN we construct a Voronoi tessellation of cells G;T with center xj and with mass

mj = ‘Gﬂ (the Lebesgue measure) respectively. We furthermore use the following notations

o g 3 E o— E § . E
C(Ji’j o wmi’mj 9 wi’j o wmi’x? 9 = 9 o= .
i ieN i,j  i,jeN
i#]

The numbers wy; ; give rise to the following semi-norm on St

p
Vue Sy : [quvxs,ws = (€dp wa,j (u; - Ui)p)
,J

We will see below that under certain assumptions, |u |, .. . indeed is a norm on S%(Q).
For every x and every £ > 0 as well as for positive numbers (af)iEN we find the scalar product
(*, *)oxe o @nd the norm | - || on S¢ given by

£ oF
p?x 7&

1
P
<u7 U>2 X0t T ed Oég:u’ivi ; HUH xE.af = 5d QélaU}: .
k) k) p’ b

T;eXE T;exe
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Long-range random conductance model on point processes 3

Typical examples are the choices

«

s=1 or as =m; . (1.7)

K3 K3

When an additional time variable is involved, we write

to
<u7v>t1,t2,2,x5,oz6 ::/ (U(t), v(t)>2,x5,o<5 dt’ Hthl,tQ,Z,xg,a‘f = <u7u>t21,t2,2,x5,a5 ’
t1

L2(0,T;8(Q)) = {u: [0,T] > SUQ) : luly, 1) 2 < 0} -

In order to formulate convergence results of u¢ and U<, we need a family of injective maps from S<
onto L (R?). We define R.x : L (R?) - SZ and its adjoint R? , : S5 — L7 (R?) through

loc loc loc
(Rex®), = 1G5 [ ¢, and  (Riyu)[z]=u(zf) i zeGi.
6;

Again, we drop the index x if no confusion is possible.

The above (semi-) norms as well as R, can be restricted to S5(Q) using u,, = 0 for z; § x° N Q.

1.2 Our setting

We say that the Voronoi cells G and G are neighbored if the Hausdorff measure m ; := 0G5 n 8G§|
is positive. We write 7 ~ j if the cells G§ and G are neighbored and

N(z5,x5) = {xj extiin~ j} with N (z5,x%) := EN(%?,X). (1.8)

Two crucial assumptions for the existence of a Rellich-Sobolev inequality and a suitable compact
embedding are given by

1
fo(R)<R™P By>d+1,  where fo(R) := ﬁIP’(]B%R(O) Nx =) (1.9)
and for some p € (2%, 2) it holds
El > (wo. |z|2)_ﬂ (my.. |z|)% :0¢ x) <00, (1.10)
2eN(0,x)

Remark 1.1. Condition (1.9) is new compared to [8, 3] and is solely due to the fact that x # Z¢.

Example 1.2. If P(z € x) = pg € (0, 1) is distributed i.i.d. among all = € Z% it is easy to see that
fo(R) < C exp(-R%)
for some C' > 0 depending on pg.

Remark 1.3. Condition implies that also holds for the case p = 1. It will be used to prove
strict positivity of the homogenized matrix, while the other case is used to prove a Rellich-type theorem
(e.g. Theorem [3.4). Furthermore, condition can be understood as a generalization of (1.5): to
see this, it is sufficient to remark that |[mg .| = |2| = 1 in case x = Z? and to plug in p = 2% However,
in this particular case our setting is less general than (1.6) which illustrates that our condition

still could be improved.
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M. Heida 4

We make a few adjustments to the notation in order to account for the special structure of Z% in
accordance with the literature [8, 9]. First, we introduce in the following discrete derivatives on x.

Definition 1.4 (Discrete derivatives). For u: Z¢ — R we define the e-forward derivative in the direction
2 € Z% by

Ou(r) = (u(x +e2) —u(z)) , (1.11)
and the analogous backward derivative,
O u(z) = (u(z) —u(r -2)) . (1.12)

Further, we define Veu(z,z) = dcu(x) and write Veu(z) for the function that maps 2 € Z? to
Veu(x, z). Accordingly, we define Ve-u(x,z) = 05 u(z) and Ve-u(x). Moreover, for a function
v: Z4 x 7% - R we define

divio(z) = ) 9 v(z, 2). (1.13)

zeZd

We use this notation to clearly distinguish between V¢, an operator on discrete functions, and V, an
operator on the Sobolev space H' (R?). A direct calculation shows that when AS , maps v(z, 2)
we z,.v(, 2), then

1
~L5 0 = = div? (Ag,veur) . (1.14)
Moreover, for v¢: eZ?% — R we observe that
od
(U5 0% ) e = 5 > > wx,ﬁz(@;us(sa:))(821)5(533)). (1.15)
zeZd ze74d

Theorem 1.5. Let x a stationary ergodic point process x = (), with points solely in Z< with w

satisfying (1.1)—(1.3) and (1.9)—(1.10). Then almost surely the following properties are satisfied by x,
w and L5, , and Anom given by (4.13) below:

1 For some c > 0 it holds

VeeQ: c|§|zéf'z4hom($)§50_l |§|2

and L, , weakly G-converges to u + V - Anom Vu in the following sense: If € € S5(Q) is a
sequence and f € L*(Q) such that R, f¢ — f weakly in L?(R?) and if u® € S5(Q) is the
solution to

Vi e Qnx®: - (L';wu)i =m; f;,
then there exists a unique u € Hj(Q) such that R: ,u® — u strongly in L?(Q) ase — 0 and
u is the solution to

-V (Ahomvu) = f in Q with U|3Q =0.

2 There exists (3 € (0,1) such that for every u € S5(Q) it holds suppR? ,u c B.s(Q). Further-
more it holds R , R.x¢ — ¢ strongly in L*(R?) for every ¢ € L*(Q).

3 There exists a constant C > 0 such that for every € > 0 with a5 = m’. it holds

<C|U]|

e
,m

VUeS(Q): Ul

2,x% ,w*

and boundedness of e ¥ . wr ; (u; — u;)* implies precompactness of Rz in L2(R?).
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Long-range random conductance model on point processes 5

The proof of Theorem [1.5|will be given at the end of Section[4.4

Remark 1.6. The most surprising part of Theorem [1.5(is probably part 2., i.e. suppR? ,u ¢ B.s (Q)
instead of a result suppR; ,u Be-(Q) for some C' > 0. The reason for that is that Voronoi cells
G? in general might become arbitrary large, even for small €. However, it is “very unlikely” that their
diameter becomes larger than C's?. We highlight at this point that 3 € (0,1) implies e >case—0
but still 7 — 0.

2 Ergodic Theorems

By construction, the probability space is given by
Q= {0,1}%" x [0, +00 2%

and hence € with the product topology is a compact metric space (note that [0, +oco ] with the topology
of the half circle is compact). Furthermore, we make the following assumption throughout this work.

Assumption 2.1. The distribution P on () is stationary, that is: there exists a family (T, ) zez4 of mea-
surable bijective mappings T, : {2 — €, having the properties of a dynamical system on ({2, %, P),
i.e. they satisfy (i)-(iii):
(i) Ty 0Ty = Tysy, To = td (Group property)
(i) P(t_.B)=P(B) VxeR? B c) measurable (Measure preserving)
(i) A: Z3xQ - Q (z,w) ~ T,w is measurable (Measurability of evaluation)

We finally assume that the system (7,.) ,cza is ergodic. This means that for every measurable function
f :Q — R there holds

[f(w) = f(r,w) Yo e Z, a.e. we Q] = [f(w) = const for P —a.e. we ] . (2.1)

The major use of stationary and ergodicity are ergodic theorems:

Theorem 2.2 (Theorem 5.3 of [8]). For every f € L'(2,IP), for P-almost every w € <) the following
holds: Let (u®).~o be a sequence of functions from e — R with support in Q. such that R* ,,u® —

u pointwise a.e. in Q. Furthermore, let sup,. |u¢|,, < oo. Thenu € L*>(Q) and
: d € _
}_:1386 x% u (x)f(Tgw) —E[f}/Qu(x)dx (2.2)

and the Null-set depends on f but not on the sequence uf.

The last theorem can be generalized to our setting.

Theorem 2.3. For every f € L%(S2,P), for P-almost every w € € the following holds: Let (uf).-q be
a sequence of functions from x. — R with support in Q_ such that R} ,u® — w in L>(Q). Then

lime? 3 u(z)f (T2w) :E[f]/Qu(x)dx

e=0 reQ,

and the Null-set depends on f but not on the sequence uf.
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M. Heida 6

Proof. Applying to f2and u = 1 and u° = 1 we infer boundedness of R, f (T%W)Q in L2(Q).
Applying Theorem 2.2/ once more to u € C.(Q) with u¢(x) = u(x) and f implies R? , f (T%w) -
E[ f] weakly in L2(Q). The claim follows from

g Z u®(x) f (wa) = /QR;xf (Tgw) R:cu(v)dr — / E[f]u.

zeQ, Q

3 Properties of 52

In this section we provide some fundamental properties of functions in S<, particularly a Poincaré
inequality and a compact embedding result. For this we will use results from numerical analysis.
Furthermore, we will show that the support of functions in R;XS;(Q) lies almost surely within a
bounded region around Q while the support decreases towards Q as £ — 0. This will imply for every
¢ e L*(Q) that RZ ,R. x¢ — ¢ strongly in L*(Q) as € - 0.

3.1 Support of R;,S5(Q)

Lemma 3.1. Letx be a stationary point process in Z¢ with f, given in (T.9). Then, if G := (G;) .y IS
the Voronoi tessellation for x = (x;),. with maximal diameter
o(x;) = max |v -y, (3.1)
xayEGi
then 1
P(d> D)< fa(g D) (3.2)

Proof. We define for a unit vector v of unit length, 0 < a < 7 and 2 > 0 the cone
Cu,a,R(x) ={z€Br(x) : z-v>|z|cosa} .

Because of the stationarity and because of P(Au B) < P(A) + P(B) it holds for R € Z and
E:={ey,...eqt u{-e1,---—eq} ({e1,...eq} being the canonical basis of R9)

P(Je e E : Br(2Re) nx=93) < Zd:ZIP((IBR(i2Rei) nx=9)< fo(R).

In particular, for o = arctany/!/3 = & we have the smallest opening angle such that B (2Re¢) lies
completely inside C, , 3r (0) and we discover

P(VeeE: xnC,z3r(0) #2) 21~ fo(R). (3.3)

Now we take arbitrary points x; € (Jiej,%gR(O)mx. Then the planes given by the respective equations
(z - $z.;) - 2.; = 0 define a bounded cell around 0, with a maximal diameter D (v, R) = C'R which
is proportional to R. The constant C' > 1 depends solely on the opening angle « = % of the cones and
can be shown from some trigonometric calculations to be smaller than 6. Estimate now follows
from

P(2> D) =P(d>CR) <P (3eeE : xnCopsn(0)=2) < Hr(R) = fa(éD) |

DOI 10.20347/WIAS.PREPRINT.2942 Berlin 2022



Long-range random conductance model on point processes 7

Lemma 3.2. Let Q c R? be a bounded Lipschitz domain and let f, satisfy (1.9). Then for every
fe(0,1- %) there exists almost surely €y > 0 such that for every € < €y and every u € S2(Q) it
holds suppR;’xu c B.s(Q). Furthermore, for a given bounded Lipschitz domain Q we define

N(@Q,x) ={rex\Q: N(z)nQ # 2} . (3.4)

Then there exists almost surely eq > 0 and 3 € (0, 1) such that for every £ > ¢ it holds N (Q,x°) c

Bsﬁ(Q)'

Proof. Letu$(z) =1ifx e Q@ nx®andui(z) =0 else. Given N := 71, f; = 1 - /3 the event

By = ( U G; CBNﬁ()(NQ))

T, exNNQ

is equivalent with the event
suppR;uj c B.s(Q) .-

For the complementary event - B of By it holds

P(-By) <P(3z; exn NQ : By, (i) ¢ Byso (NQ))
< Y P(o>N)<C|QINfo(N™)

ZinNQ
< CNd—ﬁO/Ba .

If By € (B—da7 1) it holds N4-50f — () as N — oo and hence for almost every w there exists Ny such
that w € By for every N > N, and the first statement of the lemma holds.

The second statement can be proved similarly taking into account that every x ¢ N(NQ, X ) satisfies
x € Boy, (z;) for some z; e x N NQ. O

Lemma 3.3. Let Q c R? be a bounded Lipschitz domain and let f, satisfy (1.9). Then almost surely
for every ¢ € L*(Q) it holds R} ,R.x¢ = ¢ ase — .

Proof. Let Q o B1(Q) be a large ball that contains 0. Given ¢ € C1(Q) and using the notation (3.7)
we find

[ (ReReso-0f s T (@) vl (G

ziexne~1Q
2
<evoly, Y v(@)IGil

ziexne~1Q

Because of Lemma we know that almost surely for £y independent from ¢ and every € < gy it
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M. Heida 8

holds €0(x;) < diam@Q + 1 for every ez; € Q. Hence for every D > 1 we find

e N (@)?|Gi =Y o(@)?Gi+e? Y |eo(w)[P |Gl

ziexne—1Q ziexne ' Q ziexnetQ
o(z;)<D o(z;)>D
<2|QID+ (dam@+ 1)’ Y o(x)"
k=0 ziexne™1Q
D+k<o(w;)<D+k+1
SSQ‘Q|D2+(diamQ+1)2i > (D+Ek+1)¢
k=0 ziexne 1Q

D+k<d(z;)<D+k+1

—>(diam@+1)2i(D+k:+1)dIP’(D+k‘<D(-)<D+k+1)

<27 (diamQ + 1) i (D + k)% fy( (D+k;))

N 1\F =
S2d(diamQ+1) (6) Y (D + k).
k=0

Since B,(D) > d + 1 it follows

1\* = 2
3 + d 3 d+1-5»
!515%52 N a(x)? |Gl <2 (6) (diam@ +1)” D*1=F -

ziexne~1Q

as D — oo and we obtain that

lim [ (RixRoxd—0) <0. (3.5)

e—0 Rd

Furthermore for every ¢ € L2(Q) it holds

/Rd (Rg,st,xqf))Q ) ZZ: Gs (mif /Gf ¢)2 : Zz:/Gf mif /5 ¢ = /quQ‘ (36)

Now let ¢ € L?(Q) and let (¢.) .y © C2 (Q) be a sequence with | — @[ 12(g) < . Givend >0
we find

[SIE

( /R (RERext - qb)Q) <16 = bkl gy * [RExRen (6= 00) | 12

([ (ReRen - o))

We chose k € Nsuch that [|¢ — ¢ 12 < 30 and with help of (3.5) we choose &, such that for every
e <egitholds | R:,Rexr = x| 12 < 50. Due to @8) italso holds Rz, Rex (& = o)
0. Then in total for every & < & it holds

(/Rd (R;,xRa,x¢ - ¢)2)é <94.

12(Q) <

DOI 10.20347/WIAS.PREPRINT.2942 Berlin 2022



Long-range random conductance model on point processes 9

3.2 Rellich-type theorem for discrete functions

We recall the notation introduced in Section Furthermore, we write . for the sum over all pairs

of neighbors in x¢. Then the (semi-) norms on S we will work with read

i~j

1
p
= (= S
1

1
P —danE
P eP=ams .
. d-p _ e i
[qu,xf,’Y _( Z’Y |u] ;| ) , where 7} ; = - o
i~j |Il e
J

||u||p7x57m5;y€ = Hu||x,07p,s + lqu7x5,75 .

Theorem 3.4 (Asymptotic Rellich-Sobolev Theorem for x and w). Let x a stationary ergodic point

process X = (;),.y With points solely in Z< with w satisfying (T1)—(1-2) and ({-9)—{-10). Then there
almost surely exists a constant C,, > 0 such that for every € > 0 and every u® € S5(Q) it holds

’|1’L€H2,>c5 me < C [ JZ,}(E,Q.;6 . (37)
Furthermore, any sequence uF € SM(Q), k € N, with supy, |u [ J ok e < 00 IS precompact in the
sense that R},  u;* is precompact in L?(R?).

Proof. Due to Lemmawe can assume w.l.o.g that for € > 0 small enough it holds suppR*

B, (Q) for every u € S5. Provided p > =5 and 0 > 0 small enough we infer from the discrete Sobolev-
Poincaré inequality in Theorem 4.3 of [1] that for some constant C' > 0 depending only on p, d, é and
Q

”qu XE&,mé = ||uH2+§x5 me < CL Jp,x‘f;y6 . (38)

Using the discrete Gagliardo-Nirenberg-Sobolev inequality of Theorem 3.4 [1] we furthermore infer the
existence of C' > () depending only on p, d,  and @ such that

0

p,xc,me H ”p,xf,mg,'y‘E

A P— 7] (3.9)

1/p-1/2

7a - < 1. Finally, we obtain from Hélders inequality for %

where 6 =

2

2-p
[ty e < | 20 Zw;”(#) [ty e o - (3.10)

zeQnxE i~j i~ .I'j‘

2

= my " 2\"3% 2

-p vy — - E _ € - - E _ € -p

Wi p-1 = (ww o5 - 5| ) (i[5 - 5])
5 - 5]

i
In particular, the left hand side Inequalities (3.8)—(3.10) together with the ergodic theorem, i.e.

P

__p 2 __pr
> (sl —asf) 7 (mylef - a5) T S QIE Y (e |=) 7 (o )7

zEeQNXE i~j zeN(0,x)

imply (3.7).

Now let u;* € S¢*, k € N, be a sequence with

g
Sll:p [uk J2,x5k e <00

DOI 10.20347/WIAS.PREPRINT.2942 Berlin 2022



M. Heida 10

Inequalities (3.8) and (3.10) imply

€k
S%p ”uk Hp,xskﬁnek,fyak <00. (311)

From Lemma B.19 of [5] we infer that R? _u;* is precompact in LP(Q) and . Hence (817) implies
also precompactness of Rz u;* in L*(Q). O

4 Homogenization

For the rest of this work, it is convenient to modify the notation and to write

— g
We,z = We x4z waz,z sw

o8
o8

4z

It is obvious that w0, . is stationary in . We furthermore use the identification

Vue S)E((Q) : [qu,xf,wf = Lqu,xf,ws

4.1 Function spaces

Let @, . be stationary ergodic in = and satisfy (1.1)—(1.3). Recalling that €2 is metric compact we can
make sense of continuity on §2 and directly use the following theory from [8]. A function ¢ : QxZ? - R
is shift covariant if it fulfills

o(w,z+2) - p(w,z) = p(rw,2) (4.1)

for all 2, z € Z? (cf. [2] Eq. (3.14)), which implies that ¢ fulfills ¢ (zz,0) = 0. In particular, (#.7) directly
implies that

o(w, ) = —p(1,,-x) . (4.2)
We define on €2 x Z? the space L?(2 x Z%) induced by the following scalar product and norm

(@1, 02) 12(0xz) = E[ Z @0,-1(@, 2)pa(@, Z)] (4.3)

zeZ4

2
H%DHLQ(QXZ‘i) = E[ Z wO,z(p(w7 2)2] s

zeZ4

together with the following subspace
L2, ={pe L*(UxZ) : ¢ satisfies and o). <oo},

2
= H(:OHLQ(QXZ“’) = E[ Z wo,z%O(waZ)z] :

zeZ4

2
L2

cov

where ||

Lemma4.1. The space L2, is a closed subspace of szew and L2, and Lskew are closed orthogonal

cov sym

subspaces of L*(€) x Z4), i.e. (Lgym)l = L2 ., and where

sym?
L2 ={pe LX(QxZ%) : p(w,z) = p(r,,-2)} . (4.4)
szew = {90 € LQ(Q X Zd) : gp(w,x) = —@(me, —l‘)} : (45)

DOI 10.20347/WIAS.PREPRINT.2942 Berlin 2022



Long-range random conductance model on point processes 11

Proof. Closednes of L2 is immediate since (4.1) is preserved when taking the limit. For the same
reason L2, and L?

. p ,
Sym 2 . are closed. Given ¢ € L?() x Z?) we define

rom(,2) = 5 (9(,0) + 972, -2)) a0 Puen(,2) 3= 5 (9(@,2) ~ 0w, 1))

with the evident property Pskew € L. Psym € Lz, .- It remains to verify for o € L% and e L2,

that (0, ¥) 12(qxze) = 0. For this we first use the algebraic properties of L2 and L% and then
Wo,z = (TZYD)O’_ZZ

(0, Y) 12(0xz) = E[ Z wo, (@, 2)Y(w, z)] = —El Z wo, (T, —2)Y (T, —2)

zeZd zeZd

_ E[ S (@), p(rem ), —z)] .

zeZ4

Stationarity of zo now implies for every z € Z:

E (Tzw)o,—z QO(TZ?D, —Z)@D(Tzw, _Z) = ]Ewo,—ZQO(w? _Z)¢(w7 _Z)

and hence using once more the algebraic properties of L2 and L2

skew sym

El Y wop(w@, 2)Y(w, z)] = —E[ > wo.p(w, 2)i(w,2) [ =0.

zeZd zeZd

O
Remark 4.2. lt is typically assumed that L2 is the right space to work in [2, 8]. However, as we will
2

. . . . 1
see, the space Lg,,,, is more convenient. In fact, the space of solenoidals is larger than (Lfm) nL2 .,

1
) n L2, see below.

sym?

i.e. it is given by (L2

pot

As observed in [8] L?() x Z%) can also be identified with @ .4 L2(€, i1.), where yi., is the measure
on € defined by dy,(w) = wy .d Pr(w). Compactness of {2 implies separability of L2(£2, y.) for all
2z € 7 and thus also separability of the countable product space ® ..z« L2(€2, 1, ) and its subspaces.

Further, we note that for all ¢ : 2 — R it holds that D¢(w, z) = D,¢(w) = ¢(1,w) — ¢(w)
satisfies Do (w, x + 2) — Do(w, x) = Do(7,w0, 2) and

VzeZN\{0}: E(D.¢p)=Ep-E¢(r.-)=0. (4.6)

Therefore D¢ is in L2,,. A local function on € is a bounded, continuous function that only depends

on finitely many coordinates of [0, oo |¥. We define the closed subspaces

—_— 12,
L2 ={Do : glocaly ™, L% =(L%) nL%,

with the following operator on L2(Q x Z%):

Vbe L?(Qx Z%) : div (wb) = Y @y (b(w, 2) - b(1.,-2)) . (4.7)

It is evident that div(awb) = 0 for every b € L2, . Regarding b € L we have the following lemma.

sym*
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Lemma 4.3 ([2, Lemma 3.6]). Let w be given by some w satisfying (1.1)—(1.3). Then for every b €
L? it holds

skew

div (wb) = Y @ . (b(w@, 2) = b(T.w,-2)) =2 @0 .b(w, 2) . (4.8)
and moreover

div(wb) =0andbe L ifandonlyif ~ be L? (4.9)

2
skew sol -

Proof. (4.8) is straight forward.

If ¢ € C'(§2) is a local function, i.e. |[¢[ ., < oo we observe for b e L2 that

E(wo,.0(@) (b(:w,-2))) = E(@. .¢(7.w.) (b(w:, ~2)))
= E(wo,--0(7--w) (b(w, -2)))

and hence

E(¢div(wbd)) =E Z wo.d(w) (b(w, z) — b(T,w, —z)))
=E[ Y wo.0(w) b(w, z)) - E(Z wo,--(7-.w) (b(w, —z)))
=E( ) wo,.¢(w@) b(w, Z)) - E(Z @o,:¢(T.@) (b(w, Z)))

=E( ) wo,. (¢(@) - (r.w)) b(w, z)) .

Since the derivatives of local functions are dense in Lgot and the local functions are dense in L2(€2)
we conclude. o

Of particular importance will be the modified @ , given in the following way:

Wo,z =

5 mo.. |2 if0exand z e N(0,x)
0 else .

2

The parameter @ with corresponding w also satisfies (1.1)—(1.3) and gives rise to the supspaces ipot

and izol within the space L2 Lemmaallows us to show the following:

cov*

Corollary 4.4. Forevery k = 1,...,d it holds that py, : (w,z) v 2z, = z - e isin [201, where ¢;,
i=1,...,d, denote the unit base vectors of R?. Furthermore,
IENE E > 0.2z =0, (4.10)
zeN (0,x)
Vike{l,...d}: Z 90,25 = Mo x - (4.11)
zeN(0,x)
Proof. Given 0 € x we write v, = é for the outer normal of Gy on 0Gy N G, and observe that
s 1 1
div(wozr) = Z Mo, — 2k = — 2
2eN(0,x) | | 2eN(0,x) J 0GonIG Z|

= Z / l/z-ek:/ dive, =0.
2eN(0,x) J 0GonIG Go
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and hence the first claim by (4.9). To see that (4.10) holds we observe in a similar way

1 1
Z Mo 7= 2k%5 = T RkZg
zeN'(0,x) ] z|

ZEN(O,X) /BGoﬁan

= Z / Vz-eij:/ Okz; = 0.
zeN(0,x) Y 0GonIG. Go

Finally (4.11) follows from

~ 2
Z Wo,z2 = Z / UV, €L2k = / 1= |G0| .
zeN(0,x) 2eN(0,x) J 0GonIG Go

O
d
Using the above notation, we define x € (Lfm) component wise through
. - - d
Xj = argmin {El Z wO,z|Zj + X(wu Z)|2] X E (Ll?)ot) } ) (412)
zeZ4

i.e., x; is the orthogonal projection of z; € L2, on the space Lf)ot with respect to the scalar product

cov

defined in (4.3). We will see below that we can write the homogenized matrix as

e D ) [ CRRTE) ) e
zeZ4
where the ¢;, 7 = 1, ..., d, denote the unit base vectors of R<. In analogy to [6, Lemma 4.5] we know

the following result.

Lemma 4.5. Suppose that (T.1)—(1.3) and for p = 1 also (1.10). Then the matrix Aynom is strictly
positive definite. In particular, the vectorial space spanned by the following vectors

E[zzezd (0, 2) 2b(w, z)] eRY,  bel? (4.14)

sol

coincides with R?.

Proof. By (4.17) it holds for every £ € R¢:
& =&GE[mg' D &0z
2eN'(0,x)

We make twice use of Corollary(first E Zze/\/(o,x) wo,.2k%i = 0 then zj, € Egol), and then Holder’s
inequality together with mg > 1 to find

d
&=&GEl Y. mgt > gi@O,zszi)
1

2N (0,%)

d
=4E Zmal Z &wo 2k (21 + xi(w, z)))
i1

2N (0,%)

@QZ % n %
<[&|E Z i|Z|2) (Zf@jAhom,ij) .

2eN(0,x) V0,2 i,j=1
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Summing up over k and taking the square of both sides we find

|§|4s(;|sk|) (E > @M)(&-Ahomg)

2eN(0,x) “0,2

Due to (1.10) (note that it also holds for p = 1 by monotonicity of the exponents in p), the definition
of @y, . and the equivalence of norms in R the matrix Ayom is strictly positive definite. By following
literally the proof of [6, Lemma 4.5] we obtain the claim. O

4.2 Two-scale convergence

We rely on an adaptation [8] of stochastic two-scale convergence by Zhikov and Piatnitsky [12].

Separability of L2(2 x Z%) and L2, alows us to chose countable sets gy, ¢ L2, Py € L2 and

cov sym?
®po € L2 such that
D= Dy, ® Py @ Pt @ {21, ..., 2a) ® {1} (4.15)

is dense in L2(€2 x Z4) and where we can assume that every ¢ € @, is the gradient of a local
function. In particular, ¢ € @, has the property ¢ € L*(§2 x Z?) and by the characterization (#.4)
we can assume Py, ¢ L*(Q x Z4). This implies that 1) € L2(Q x Z4) for all € ®p,o and ¢ € .
We can iterate this procedure over a finite number of steps, still remaining with a countable family of
functions. Hence we set

~ N ~
>=de {w [1¢i: NeN, (9)iy. .y € Pporand 9 € <I>} .
i=1
Also there exists a countable subspace ¥ c C°(R?) such that ¥ is dense both in L?(R?) and in
C(R%). Together this implies that ¥ ® & is dense in L2(R%; L2 ).

Definition 4.6 (Typical realizations). We denote by {24 c {2 the set of all @ € {2 such that Theorem
holds

a) forall f(w) = cza wo .p(w, 2), where ¢ € P,

b) forall f(w) = ¥,cza @, (0ip;) (0, 2), where ;, 0; € @, and

c) and forall f(@) = ¥ ,cz4\ 7 @o,z|2|?, where Z is a finite subset of Z¢,

d) div(wb) o, =2, w, b(1,w,z) =0forallbe dy, and all x € Z4.
Definition 4.7. We call ()¢ the set of typical realizations.

Remark 4.8. Note that P(€2¢) = 1 (compare to [6, Lemma 4.4]).

Definition 4.9 (Two-scale convergence). Let w, : £Z% x Z® — R. We say that w. converges weakly
in two scales to w € L2(R%; L2(Q x Z4)) if

lirrolad > u(z) Y ws  We(, 2)p(Tew, 2) = v(a:)El > wo.w(z, @, 2)pe(w,2)|de
= xeeZ® 2€Z4 R4 2€Z4

(4.16)

2
for all v € C(R?) and all ¢ € ®. In this case we write w. — w.
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Long-range random conductance model on point processes 15

Corollary 4.10. For all typical realizations @ € g it holds: If w. : €Z% x Z¢ — R converges in
two-scales to w € L*(R%; L*(€2 x Z%)) and ¢ € ® o, then the function W.(z) := w.(z)¢(T2w)

. . 2s
converges in two scales: We — qu

Proof. If v € C>(IR%) and all © € P are test functions, then also ¢ € ® is a test function and from
here we conclude by applying the definition of two-scale convergence. O

Proposition 4.1. For all typical realizations w € Qg it holds: If w, : eZ% x Z% — R and C' < oo are
such that
et S N @i wi(z,z)<C Ve>0, (4.17)
reeZd zeZd
then there exists a subsequence w., andw € L2(R%; L2(Q) x Z%)) such that
2s

We, =W, HW”L?(Rd;L?(Qde)) < Slelp’fd Zd Zd w;zwz(% z). (4.18)
xec® zel

Proof. The proof is standard and follows (here) exactly the lines of the proof of Proposition 5.10 in
[8] O

Proposition 4.2. For all typical realizations @ € g it holds: If w. : €Z? x Z¢ — R converges
in two-scales to w € L*(R%; L2(Q x Z%)) and if (x.). is sequence of measurable functions with

2
SUP, || Xe o (ray < %0 and x. = x pointwise a.e. inIR?. Then w.x. 2 wy.

Proof. Let v € C>(IR?%) and ¢ € ®. By approximation with smooth functions one can show

lime! Y o(@)x(z) Y vz, 2)p(r2w. 2)

zeeld z€Z4
:/ v(x) X(w)E[ > wo,zw(x,w,z)go(w,z)] dz.
R4 2€Z4

Furthermore we observe that (. — x)> v — 0 pointwise and H(XE -x)’ UQHLOQ <4 x|z 0] .
Using the Holder inequality

el 3 v(@) (x(2) - xe(@) ) @i we(z, 2)p(Tew, 2)

reeZd zeZ4

1 1
2 2

<le? Y > @t wi(ew,z)

xeeZd zeZd

and Theorem [2.2] we eventually get

Y ) (0() - x0))” w2 > [ 0BT w0 () 0.

xreeZd zeZd

el 3 0*(2) (x(2) - x=(2)) ¥, @5 (rew, 2)

reeZd zeZd

O

In [8] some more intermediate results on two-scale convergence are demonstrated. They culminate in
the following two results.

Corollary 4.11. For all typical realizations wo € (g it holds: If w, k4 w, then

}_:iiroled oY @ we(z, 2)0u(x) = /RdE[ Y wo.w(z,@,2) (Vo(z)-z)[dz  (4.19)

reeZd zeZd zeZ4

for allv e C°(R9).
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4.3 Two-scale convergence of gradients

We restate the following result from the original Lemma 5.15 in [8]. However, the notion of two-scale
convergence in [8] was restricted to the subspace L2 .. Hence we have to exclude that v € L2

cov* sym-*

Furthermore we have to take into account that R, | is defined with respect to x° instead of eZ4.

Lemma 4.12. For all w € Qg the following holds. If u¢ : €Z% — R is a family of functions with
supp(uf) € Q neZ? for all e and

sup (5d Y @l (0zuf(2))* + |us ||oo) < oo, (4.20)

e>0 reeZd zeZd

then there exists a subsequence u®', u € H}(Q) and w € L2(R%; L2 ) such that
Ri e —win LA(RY), 05w (2) % Vu(z) z+w(x,w,2) ase 0. (4.21)

Proof. We take v € C°(R?) and ¢ € Dy, (i.6. ¢ € L=(2 x Z4)) as testfunctions in the two-scale
formula (@.16). Since Ozu®(z) = -0, u*(z +z) and (72w, 2) = p(Tz4,@, —2) we find

lim|e? > wv(z) Y, @8, 0u (2)p(Tew, 2)
= mede 2€Z4 :
< 111%6 =Y Y w ‘8§u8(:1c)<p(7'zw,z)‘ lo(z) —v(x+ez)|
= xez—:Z‘izeZd :

e :
el (£ 8 = omeor) el ( £ 8 =5.2)

zeeZd zeZ4 xeeZd zeZ4

=0.

In particular, 85u5(x) = w implies w € LQ(Q,( Sym) ). From here we can mostly proceed as in
Lemma 5.15 in [8]: We skip all (rather algebraic) calculations which are not affected by the change
from £Z¢ to x¢. We choose b € @, and v € C'°(R?) and calculate the discrete product rule

0% (vu®) (ex) = v(ex)Ous (ex) + v (ex + €2)O5v(ex)
to obtain that

0=¢? > > w;z<v(x)8§u€(a:) +ut(z+ sz)aiv(x))b(@w, z). (4.22)

zeeZd zeZ4

For the first term on the RHS of (4.22), we obtain from the two-scale convergence of Veu* that

et 3 w(x) Y, w; . 0su (2)b(T2w, 2) —>/]R v(x)E[ Y wo.w(z,w,2)b(w, z)] dz. (4.23)

reeZd zeZd zeZd

For the second term on the RHS of (4.22), it follows similar as in Lemma 5.15 in [8] that

hrrégd > > @ (2 +e2)0v(2)b(T2, 2)

zreeZd zeZd

=lim > miu(z)Vu(z)- (Ezzjd )

N
e=0 rex®
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where we use that @;, , = 0if © ¢ x°. By the assumptions on w and b, the last bracket on the above
RHS is in L!(2,P). By Theorem[3.4/and Lemma it holds that the subsequence R, u® — u in
L?(R?), where u € H}(Q), there exists a further subsequence, which we still index by £ — 0, where
R% cu® converges pointwise a.e. in Q [4, Theorem 4.9]. Moreover, for € small enough, u° has support
in B1(Q) and sup,. |u*]« < oo by assumption. It follows that we can apply Theorem [2.3along the
above subsequence and obtain that

Ws.» w0,
> miut(z)Vo(z) - ( Y x> b(Tzw,z)) - / u(x)Vo(z) E[ Y oz % b(w,z)] dz.
TEXE 2e7d mf c R4 sezd 1O
(4.24)
From here we conclude exactly as in Lemma 5.15 in [8]. O

Lemma 4.13. Let (1.1)—(1.3) and (1.9)—(1.10) hold. Then for all 7o € ()¢ the following holds. If u¢ €
S2(Q) is a family of functions and

Sup |u],, e e < 00, (4.25)

e>0

then there exists a subsequence u® and u € Hg(Q) andw € L>(R%; L2 ) such that

R;,xua' - in L*(RY), o5 us () 2 Vu(z)-z+w(r,w,z) ase —0. (4.26)
Proof. Given M e N we define the Lipschitz continuous functions
Fuy(u) :=max {-M, min {M,u}}
and set 5, := Fy(u®) with —M < uf < M. Due to it holds for some Cj < oo

sup [uJ%xE,ws +supe? Z Z w;, , (8§u§\4($))2 <Cy, (4.27)

e>0 e>0 zeeZd zeZ4

Step 1: By Lemma 4.12]for every M e N there exists uns € Hj(Q), wasr € L*(R?; L2 ) such that
R;}xu‘}:\} >y in L2RY), 05 us, () % Vupn(x) - z+wy(z,0,2) ase’ - 0. (4.28)

The existence of uy; € H (Q) such that R*, _u5, — uys strongly in L2(IR?) follows from Theorem
B.4land LemmaB.2

Step 2: By a Cantor diagonal argument the sequence ¢’ in (4.28) is independent from M. In a similar
way, Theorem Hand Lemma imply R, us" — u strongly in L*(Q) for some u € H}(Q). For
readability, we furtheron write ¢ instead of €’. Since F; is Lipschitz, it holds

un < REudy = Fu(REcu®) - Fuy(u).
We further know

|Vuns () - 2+ war (2,0, 2) | o gz, Ssupe? 3o 3 @i (95us,(2))
e>0 zreeZd zeZ4

and by (4.6) it holds for every canonical basis vector e; that E(Vuy () - e; + wa (2,0, €;)) = 0.
This implies also

sup [ Vuny () |2 gy < supe’ 2 3 % (95 ()’
£>

reeZd zeZ4
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and hence Vuy, — Vu as M — oo. Thus w)y is bounded in L*(Q; L2 ;) and Wy (7, @, 2) = W
weakly for some w € L*(Q; L2 ).

Step 3: Now we observe for every v € C°(R?) and every ¢ € ® that

€ M. M M,
IF<i"+ I + 1577,

where

=t 3 Y @l 0iu () v(a:)ga(Trw)

xeeZd 274
_ / v(x)El Y o (Vu+w(z,@,2)) (@, z)] dz
Q 2€Z4
L= et Y 3 @h . (S (2) - 95w (@) v(@)p(rew, 2)

xeeZd 274

M= / v(w)E[ > @o. (Vu - Vuy +w(z, @, 2) - wy(z,@, 2)) @(w,Z)] dz
Q 2€Z

135 = e Y Y @S 0ug () (x)go(Tgw)

xeeZd zeZd

_/Qv(x)]ElZwo’,g(VuM+WM(x,w,z))<p(w,z)]dx

zeZ4

Two-scale convergence of dsu3, implies Iéw’e — (0 as ¢ — 0. Furthermore, weak convergence implies
for every 0 > 0 that there exists M € N such that 121 < § for every M > M;.

In order to derive an estimate on I, *, we define

Vue LA(RY): yulu](z) = {1 Fyr(u)(z) —u(z) #0

0 else

and write for simplicity x. a7 (%) = xa[RZu®](7) and xar(x) = xar[u](x). Since if us,(x) -
us(z) = 0 and xc,nr(x) = Lif ug, (v) —u(x) # 0. Because R; ,u® — u strongly in L?(R?) and
F is Lipschitz continuous we conclude that along a subsequence X a(z) — xas() strongly in
LP(Q), 1 < p < o0, and pointwise. Since

Oufy(x) - Ous(x) £0 = zr,x+ezex®and [xem(x)=1lorxepm(z+ez)=1]
we find

Mecet Y Y w200t (@)] 2ol (e, )|

xex®  zeZd
Xe,m (2)=1

However, since

sup 0 ) s (10507 (2)] o)) < oo

€ zextnQ zeZd
we infer that ¢ (x, z) := 4|0sus(x)| |v|,, converges weakly in two scales to ¢ € L2(Q; L?(2 x
Z%)). Moreover, Proposition [4.2] implies that x. /()¢ (x, 2) converges weakly in two scales to
X mY. Hence

. M,e
lim S(}lp I <
E—>

/ W Y wot(w, 2) 6w, 2)]|
Q z
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Again, there exists M; > M, such that

VM>M]_:

/Q WE St (w, 2) 6w, 2)l| <5

Together we find for every M > M that

lim I¢ < 20,

e—0

which implies the claim. O

4.4 Convergence of solutions

Lemma 4.14. Let f*:QQ nZ¢ — R be a sequence of functions such that R} f¢ —~ f weakly in L>(Q)
for some f € L2(Q)) and such thatsup, | f¢| ., < oo. Then for almost all zo € S it holds: The sequence
of solutions u® € S(Q) to the problem

||OO

Ve, e @QnNx®: - (E;wua)i =m; f; (4.29)
satisfies R:u — w strongly in L?(Q), where u € H}(Q) n H%(Q) solves the limit problem
V- (Apom VL) = f (4.30)

Proof. We test Equation (4.29) with an arbitrary test function ¢g° : x° — R with suppg® € Q n eZ?
and obtain by (1.15) that

(~Lou, 0 ) e n =0 D0 D0 w5 00w (2)029°(2) = (£, 0% g e e - (4.31)

TEXE He7d

We now choose ¢g° = uf and apply (3.7) and Cauchy-Schwarz to obtain that

2 2
||U’€H2,x5 me < C{f Z Z wﬂsc,z (aius(l')) < 20 ”,UEHQ,xE,mE

TEXE ye7d

It follows that by virtue of Theorem [3.4/and Lemmal4.13} there exists u € H}(Q), v € L2(Q; L2 )
and a subsequence, which we still index by ¢, such that

i P (4.32)

R u® = u, stronglyin L*(Q) and d5u 5(:1:) Vu(z)-z+v(z,w,z)ase >0  (4.33)

for all o € Q.

Let us choose 1) € C(R?) with suppv € Q and ¢ € . with o = D¢ for some bounded local
function ©. When we insert g = ¢ into (4.31), then we observe for all € > 0 that

Z}mife(sx) (c0(c0)P())
—e Y Y w05t () (Ve +e2) () - 0(@) ()

zreeZd zeZd
=et Y Y w0t (2) [(2) (P(rzeew) - G(Tew)) + e@(T2 @) D2¢(7) ]
xeeZd zeZd
=et ) Y wiL 0 (2) Y(2)p(rew, 2)
reeZl zeZd
vt Y Y @0t (2) e @) 05 () (4.34)
xeeZd zeZd
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The second summand on the above RHS vanishes as € — 0 since

el Y ) w0 (2) ep(re @) OU(2) <Pl D) Y w05 (2) 5 ()

reeZd zeZd reeZd zeZd
1/2 1/2
~ 2 2
celila (=0 B T @ @)r) (% % et @)
zreeZd zeZd zeeZd zeZd

(4.35)

By assumption @]« is bounded. The second factor is bounded due to (4:32) and the third factor is
bounded due to (1.3) and the Lipschitz regularity of 1. Since the LHS of (4.34) vanishes as well, (4.33)
and (4.34) imply that in the limit ¢ — 0 and along the chosen subsequence we obtain

/Qw(x)E[ Y o (Vu(z) -2 +v(z,@,2)) p(w, z)] =0. (4.36)

zeZd

Since @, is dense in L2, and V is dense in Hj(Q), Equation (#.36) holds for all ¢ € L2 and all
ve HJ(Q).

d -
Let x € (Lgot) be given through @#12). Since u € H(Q) is given, the function v(z,, z) :=

Vu(z) - x (@, 2) is the unique solution to (4.36). We have thus identified v.
Now we observe that if we test (4.37) by an arbitrary g € C'°(IR?) with support in 9, we obtain that

Y Y @ 0 (@) Dg(a) = Y 2ml e (0)g(e).

xeeZd zeZd TEX®

Passing to the limit, we obtain by virtue of Corollary[4.11]and v(z, @, ) = Vu(z) - x(w, 2) that

[E] S o0 o) o0y a2 as= [ 2ruras. wan

zeZd

When we now insert 1) = 0;g and ¢ = y; fori = 1,...,d into (4.36) and add the resulting equations
to (4.37), then we obtain that

/ E[ > 0. (Vu(z) - (= + 1) (Vg(a) - (z+x>>] do= [ 2@ de. @9

zeZ4

A comparison with the definition of A}, in (@.13) finally yields that u solves
/ Vu - (ApomVg) = / 2fg  forall g e C(IR?) with suppg € Q. (4.39)
Q Q

Since Ayom is non-degenerate, we find that (4.39) is the weak formulation of (4.30). Hence, from
elliptic regularity theory, we obtain that u € H2(Q) n H} (Q).

Since the solution wu of (4.30) is unique, it follows that (4.33) holds for the entire sequence. O

4.5 Proof of Theorem 1.5

Part 1 of the theorem follows almost surely from Lemmal4.14
Part 2 follows from on one hand from Lemmas[3.21and[3.3]
On the other hand Part 3 of of the theorem is proved by Theorem 3.4
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