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On quenched homogenization of long-range random
conductance models on stationary ergodic point processes

Martin Heida

Abstract

We study the homogenization limit on bounded domains for the long-range random conduc-
tance model on stationary ergodic point processes on the integer grid. We assume that the con-
ductance between neares neighbors in the point process are always positive and satisfy certain
weight conditions. For our proof we use long-range two-scale convergence as well as methods
from numerical analysis of finite volume methods.

1 Introduction

We consider a stationary ergodic point process x = (xi)i∈N in Zd. We furthermore consider a random
coefficient field

ω ∶ Zd ×Zd → [0,1] , (x, y) ↦ ωx,y (1.1)

where
x = y or x /∈ x or y /∈ x ⇒ ωx,y = 0 . (1.2)

Furthermore we demand

ωx,y = ωy,x , 0 < E(∑
z∈Zd

ω0,z ∣z∣2) < ∞ . (1.3)

Given ε > 0 we consider the sets xε, and the function ωε ∶ εZd × εZd → R

xε ∶= εx = (εxi)i∈N = (xεi)i∈N , ωεx,y = ωx
ε
, y
ε
.

Introducing the function spaces

Sεx ∶= {xε → R} and Sεx(Q) ∶= {u ∈ Sεx ∶ ∀xεi ∈ xε/Q u(xεi) = 0}

we write ui ∶= u(xεi) for every u ∈ Sεx and introduce the linear operator on Sεx(Q):

∀xεi ∈Q ∩ xε ∶ (Lεx,ωuε)i ∶= ε
−2∑

j≠i

ωεxεj ,xεi (uj − ui) .

We are particularly interested in the limit behavior of the equation

−Lεx,ωuε = f ε , (1.4)

where f ε ∈ Sεx(Q) is a sequence that converges weakly in a sense to be specify below.
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M. Heida 2

The homogenization of problem (1.4) has been studied successfully first in [8] for x = Zd. Writing
e1, . . . ed for the canonical basis of Rd, in [8] some additional condition of the type

E(∑
i

ω−1
0,ei

)
d
2

< ∞ (1.5)

is needed. The condition imposed in [8] is more general, but reads similar. Recently, a more general
result has been optained in [3] under the condition that for some p, q ∈ (1,∞) with 1

p +
1
q <

2
d it holds

E(∑
z∈Zd

ω0,z ∣z∣2)
p

< ∞ and E ∑
z∈Zd
∣z∣=1

ω−q0,z < ∞ . (1.6)

Since all recent results work on x = Zd and with ωx,y > 0 for ∣x − y∣ = 1, our result is indeed
new. Like in our previous work [8] we use stochastic two-scale methods developed in [8] to show
that stationary ergodic point processes x in Zd with weights ωx,y satisfying (1.1)–(1.3) as well as the
additional assumptions (1.8)–(1.10) lead to a homogenization result for (1.4). In this context we further
use recent results from finite volume analysis [1, 5] to prove our compactness and uniform Poincaré
inequalities in ε > 0. Furthermore, the proof that the support of u ∈ Sεx(Q) – regarded as a function
in L2(Q) – lies within a small ball around Q is inspired by recently developed ideas by the author for
continuous homogenization [10, 11].

We note at this point that up to now only little is known on long-range interaction besides the two recent
work [3, 8]. Another approach in terms of a random resistor network [7] was recently established by
Faggionato. It however separates the edges inside Q and accounts only for interaction between points
inside Q with thous outside Q but not for “inside –inside”, e.g. nearest neighbor interaction.

1.1 Notation

We write BR(x) ∶= {y ∈ Rd ∶ ∣x − y∣ < R} for the open ball of radius R around x ∈ Rd and more
general

BR(Q) ∶= {y ∈ Rd ∶ ∃x ∈Q s.t. ∣x − y∣ < R} .

Given xε = (xεj)j∈N we construct a Voronoi tessellation of cells Gε
j with center xεj and with mass

mε
j = ∣Gε

j ∣ (the Lebesgue measure) respectively. We furthermore use the following notations

ωi,j ∶= ωxi,xj , ωεi,j ∶= ωεxεi ,xεj , ∑
i

∶= ∑
i∈N
, ∑

i,j

∶= ∑
i,j∈N
i≠j

.

The numbers ωεi,j give rise to the following semi-norm on Sεx:

∀u ∈ Sεx ∶ ⌊u⌋p,xε,ωε ∶= (εd−p∑
i,j

ωεi,j (uj − ui)
p)

1
p

We will see below that under certain assumptions, ⌊u⌋2,xε,ωε indeed is a norm on Sεx(Q).

For every x and every ε > 0 as well as for positive numbers (αεi )i∈N we find the scalar product
⟨ ⋅ , ⋅ ⟩2,xε,αε and the norm ∥ ⋅ ∥p,xε,αε on Sεx given by

⟨u, v⟩2,xε,αε ∶= εd ∑
xi∈xε

αεiuivi , ∥u∥p,xε,αε ∶= (εd ∑
xi∈xε

αεiu
p
i)

1
p

.
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Long-range random conductance model on point processes 3

Typical examples are the choices

αεi ≡ 1 or αεi =mε
i . (1.7)

When an additional time variable is involved, we write

⟨u, v⟩t1,t2,2,xε,αε ∶=
ˆ t2

t1

⟨u(t), v(t)⟩2,xε,αε dt , ∥u∥t1,t2,2,xε,αε ∶= ⟨u,u⟩
1
2
t1,t2,2,xε,αε

,

L2(0, T ;Sεx(Q)) ∶= {u ∶ [0, T ] → Sεx(Q) ∶ ∥u∥t1,t2,2,xε,mε < ∞} .

In order to formulate convergence results of uε and U ε, we need a family of injective maps from Sεx
onto L2

loc(Rd). We defineRε,x ∶ L2
loc(Rd) → Sεx and its adjointR∗

ε,x ∶ Sεx → L2
loc(Rd) through

(Rε,xφ)i = ∣Gε
i ∣−1

ˆ
Gεi

φ , and (R∗
ε,xu) [x] = u(xεi) if x ∈ Gε

i .

Again, we drop the index x if no confusion is possible.

The above (semi-) norms as well asR∗
ε,x can be restricted to Sεx(Q) using uxi = 0 for xi /∈ xε ∩Q.

1.2 Our setting

We say that the Voronoi cellsGε
i andGε

j are neighbored if the Hausdorff measuremε
i,j ∶= ∣∂Gε

i ∩ ∂Gε
j ∣

is positive. We write i ∼ j if the cells Gε
i and Gε

j are neighbored and

N(xεi ,xε) ∶= {xεj ∈ xε ∶ i ∼ j} with N(xεi ,xε) ∶= εN(
xεi
ε
,x) . (1.8)

Two crucial assumptions for the existence of a Rellich-Sobolev inequality and a suitable compact
embedding are given by

fd(R) < R−βd , βd > d + 1 , where fd(R) ∶= 1

2d
P(BR(0) ∩ x = ∅) (1.9)

and for some p ∈ ( 2d
d+2 , 2) it holds

E
⎛
⎝ ∑
z∈N(0,x)

(ω0,z ∣z∣2)
−

p
2−p (m0,z ∣z∣)

2
2−p ∶ 0 ∈ x

⎞
⎠
< ∞ . (1.10)

Remark 1.1. Condition (1.9) is new compared to [8, 3] and is solely due to the fact that x ≠ Zd.

Example 1.2. If P(x ∈ x) = p0 ∈ (0,1) is distributed i.i.d. among all x ∈ Zd it is easy to see that

fd(R) < C exp(−Rd)

for some C > 0 depending on p0.

Remark 1.3. Condition (1.10) implies that (1.10) also holds for the case p = 1. It will be used to prove
strict positivity of the homogenized matrix, while the other case is used to prove a Rellich-type theorem
(e.g. Theorem 3.4). Furthermore, condition (1.10) can be understood as a generalization of (1.5): to
see this, it is sufficient to remark that ∣m0,z ∣ = ∣z∣ = 1 in case x = Zd and to plug in p = 2d

d+2 . However,
in this particular case our setting is less general than (1.6) which illustrates that our condition (1.10)
still could be improved.

DOI 10.20347/WIAS.PREPRINT.2942 Berlin 2022



M. Heida 4

We make a few adjustments to the notation in order to account for the special structure of Zd in
accordance with the literature [8, 9]. First, we introduce in the following discrete derivatives on x.

Definition 1.4 (Discrete derivatives). For u∶ Zdε → R we define the ε-forward derivative in the direction
z ∈ Zd by

∂εzu(x) = ε−1 (u(x + εz) − u(x)) , (1.11)

and the analogous backward derivative,

∂ε−z u(x) = ε−1 (u(x) − u(x − εz)) . (1.12)

Further, we define ∇εu(x, z) ∶= ∂εzu(x) and write ∇εu(x) for the function that maps z ∈ Zd to
∇εu(x, z). Accordingly, we define ∇ε−u(x, z) ∶= ∂ε−z u(x) and ∇ε−u(x). Moreover, for a function
v ∶ Zdε ×Zd → R we define

divεv(x) = ∑
z∈Zd

∂ε−z v(x, z) . (1.13)

We use this notation to clearly distinguish between ∇ε, an operator on discrete functions, and ∇, an
operator on the Sobolev space H1 (Rd). A direct calculation shows that when Aεx,ω maps v(x, z) ↦
ωx
ε
,x
ε
+zv(x, z), then

−Lεx,ωuε = −
1

2
divε (Aεx,ω∇εuε) . (1.14)

Moreover, for vε∶ εZd → R we observe that

⟨uε, vε⟩x,ε,ω =
εd

2
∑
x∈Zd

∑
z∈Zd

ωx,x+z(∂εzuε(εx))(∂εzvε(εx)) . (1.15)

Theorem 1.5. Let x a stationary ergodic point process x = (xi)i∈N with points solely in Zd with ω
satisfying (1.1)–(1.3) and (1.9)–(1.10). Then almost surely the following properties are satisfied by x,
ω and Lεx,ω and Ahom given by (4.13) below:

1 For some c > 0 it holds

∀x ∈Q ∶ c ∣ξ∣2 ≤ ξ ⋅Ahom(x)ξ ≤ c−1 ∣ξ∣2

and Lεx,ω weakly G-converges to u ↦ ∇ ⋅Ahom∇u in the following sense: If f ε ∈ Sεx(Q) is a
sequence and f ∈ L2(Q) such that R∗

ε,xf
ε ⇀ f weakly in L2(Rd) and if uε ∈ Sεx(Q) is the

solution to
∀xεi ∈Q ∩ xε ∶ − (Lεx,ωu)i =m

ε
if

ε
i ,

then there exists a unique u ∈ H1
0(Q) such thatR∗

ε,xu
ε → u strongly in L2(Q) as ε → 0 and

u is the solution to
−∇ ⋅ (Ahom∇u) = f in Q with u∣∂Q ≡ 0 .

2 There exists β ∈ (0,1) such that for every u ∈ Sεx(Q) it holds suppR∗
ε,xu ⊂ Bεβ(Q). Further-

more it holdsR∗
ε,xRε,xφ→ φ strongly in L2(Rd) for every φ ∈ L2(Q).

3 There exists a constant C > 0 such that for every ε > 0 with αεi =mε
xεi

it holds

∀U ∈ Sεx(Q) ∶ ∥U∥2,xε,mε ≤ C ⌊U⌋2,xε,ωε

and boundedness of εd−2∑j≠i ω
ε
i,j (uj − ui)

2 implies precompactness ofR∗
ε,xu in L2(Rd).
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Long-range random conductance model on point processes 5

The proof of Theorem 1.5 will be given at the end of Section 4.4.

Remark 1.6. The most surprising part of Theorem 1.5 is probably part 2., i.e. suppR∗
ε,xu ⊂ Bεβ(Q)

instead of a result suppR∗
ε,xu ⊂ BCε(Q) for some C > 0. The reason for that is that Voronoi cells

Gε
i in general might become arbitrary large, even for small ε. However, it is “very unlikely” that their

diameter becomes larger than Cεβ . We highlight at this point that β ∈ (0,1) implies εβ ≫ ε as ε→ 0
but still εβ → 0.

2 Ergodic Theorems

By construction, the probability space is given by

Ω = {0,1}Zd × [0,+∞]Zd×Zd .

and hence Ω with the product topology is a compact metric space (note that [0,+∞] with the topology
of the half circle is compact). Furthermore, we make the following assumption throughout this work.

Assumption 2.1. The distribution P on Ω is stationary, that is: there exists a family (τx)x∈Zd of mea-
surable bijective mappings τx ∶ Ω ↦ Ω, having the properties of a dynamical system on (Ω,F ,P),
i.e. they satisfy (i)-(iii):

(i) τx ○ τy = τx+y , τ0 = id (Group property)

(ii) P(τ−xB) = P(B) ∀x ∈ Rd, B ⊂ Ω measurable (Measure preserving)

(iii) A ∶ Zd ×Ω→ Ω (x,ω) ↦ τxω is measurable (Measurability of evaluation)

We finally assume that the system (τx)x∈Zd is ergodic. This means that for every measurable function
f ∶ Ω→ R there holds

[f(ω) = f(τxω) ∀x ∈ Zd , a.e. ω ∈ Ω] ⇒ [f(ω) = const for P − a.e. ω ∈ Ω] . (2.1)

The major use of stationary and ergodicity are ergodic theorems:

Theorem 2.2 (Theorem 5.3 of [8]). For every f ∈ L1(Ω,P), for P-almost every ω ∈ Ω the following
holds: Let (uε)ε>0 be a sequence of functions from εZd → R with support in Qε such thatR∗

ε,Zdu
ε →

u pointwise a.e. in Q. Furthermore, let supε>0 ∥uε∥∞ < ∞. Then u ∈ L∞(Q) and

lim
ε→0

εd ∑
x∈Qε

uε(x)f (τx
ε
ω) = E[f]

ˆ
Q

u(x)dx (2.2)

and the Null-set depends on f but not on the sequence uε.

The last theorem can be generalized to our setting.

Theorem 2.3. For every f ∈ L2(Ω,P), for P-almost every ω ∈ Ω the following holds: Let (uε)ε>0 be
a sequence of functions from xε → R with support in Qε such thatR∗

ε,xu
ε → u in L2(Q). Then

lim
ε→0

εd ∑
x∈Qε

uε(x)f (τx
ε
ω) = E[f]

ˆ
Q

u(x)dx

and the Null-set depends on f but not on the sequence uε.
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M. Heida 6

Proof. Applying (2.2) to f 2 and u = 1 and uε = 1 we infer boundedness ofR∗
ε,xf (τx

ε
ω)2

in L2(Q).

Applying Theorem 2.2 once more to u ∈ Cc(Q) with uε(x) = u(x) and f implies R∗
ε,xf (τx

ε
ω) ⇀

E[f] weakly in L2(Q). The claim follows from

εd ∑
x∈Qε

uε(x)f (τx
ε
ω) =

ˆ
Q

R∗
ε,xf (τx

ε
ω)R∗

ε,xu
ε(x)dx→

ˆ
Q

E[f]u .

3 Properties of Sεx
In this section we provide some fundamental properties of functions in Sεx, particularly a Poincaré
inequality and a compact embedding result. For this we will use results from numerical analysis.
Furthermore, we will show that the support of functions in R∗

ε,xSεx(Q) lies almost surely within a
bounded region around Q while the support decreases towards Q as ε → 0. This will imply for every
φ ∈ L2(Q) thatR∗

ε,xRε,xφ→ φ strongly in L2(Q) as ε→ 0.

3.1 Support ofR∗ε,xSεx(Q)

Lemma 3.1. Let x be a stationary point process in Zd with fd given in (1.9). Then, if G ∶= (Gi)i∈N is
the Voronoi tessellation for x = (xi)i∈N with maximal diameter

d(xi) ∶= max
x,y∈Gi

∣x − y∣ , (3.1)

then

P(d >D) < fd(
1

6
D) (3.2)

Proof. We define for a unit vector ν of unit length, 0 < α < π
2 and R > 0 the cone

Cν,α,R(x) ∶= {z ∈ BR(x) ∶ z ⋅ ν > ∣z∣ cosα} .

Because of the stationarity and because of P(A ∪B) ≤ P(A) + P(B) it holds for R ∈ Z and
E ∶= {e1, . . . ed} ∪ {−e1, ⋅ ⋅ ⋅ − ed} ({e1, . . . ed} being the canonical basis of Rd)

P(∃e ∈ E ∶ BR(2Re) ∩ x = ∅) ≤
d

∑
i=1

∑
±

P((BR(±2Rei) ∩ x = ∅) ≤ fd(R) .

In particular, for α = arctan
√

1/3 = π
6 we have the smallest opening angle such that BR(2Re) lies

completely inside Ce,α,3R (0) and we discover

P(∀e ∈ E ∶ x ∩Ce,π
6
,3R(0) ≠ ∅) ≥ 1 − fd(R) . (3.3)

Now we take arbitrary points x±j ∈ C±ej ,α,3R(0)∩x. Then the planes given by the respective equations
(x − 1

2x±j) ⋅ x±j = 0 define a bounded cell around 0, with a maximal diameter D(α,R) = CR which
is proportional toR. The constant C > 1 depends solely on the opening angle α = π

6 of the cones and
can be shown from some trigonometric calculations to be smaller than 6. Estimate (3.2) now follows
from

P(d >D) = P(d > CR) ≤ P (∃e ∈ E ∶ x ∩Ce,α,3R (0) = ∅) ≤ fd(R) = fd(
1

6
D) .
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Long-range random conductance model on point processes 7

Lemma 3.2. Let Q ⊂ Rd be a bounded Lipschitz domain and let fd satisfy (1.9). Then for every
β ∈ (0,1 − d

βd
) there exists almost surely ε0 > 0 such that for every ε < ε0 and every u ∈ Sεx(Q) it

holds suppR∗
ε,xu ⊂ Bεβ(Q). Furthermore, for a given bounded Lipschitz domain Q we define

N(Q,xε) ∶= {x ∈ xε/Q ∶ N (x) ∩Q ≠ ∅} . (3.4)

Then there exists almost surely ε0 > 0 and β ∈ (0,1) such that for every ε0 > ε it holds N(Q,xε) ⊂
Bεβ(Q).

Proof. Let uε1(x) = 1 if x ∈Q ∩ xε and uε1(x) = 0 else. Given N ∶= ε−1, β0 = 1 − β the event

BN ∶= ( ⋃
xi∈x∩NQ

Gi ⊂ BNβ0(NQ))

is equivalent with the event

suppR∗
ε,xu

ε
1 ⊂ Bεβ(Q) .

For the complementary event ¬BN of BN it holds

P(¬BN) ≤ P(∃xi ∈ x ∩NQ ∶ Bdi(xi) /⊂ BNβ0(NQ))
≤ ∑

Zd∩NQ

P(d ≥ Nβ0) ≤ C ∣Q∣Ndfd(Nβ0)

≤ CNd−β0βd .

If β0 ∈ ( d
βd
,1) it holds Nd−β0βd → 0 as N → ∞ and hence for almost every ω there exists N0 such

that ω ∈ BN for every N > N0 and the first statement of the lemma holds.

The second statement can be proved similarly taking into account that every x ∈ N(NQ,x) satisfies
x ∈ B2di(xi) for some xi ∈ x ∩NQ.

Lemma 3.3. Let Q ⊂ Rd be a bounded Lipschitz domain and let fd satisfy (1.9). Then almost surely
for every φ ∈ L2(Q) it holdsR∗

ε,xRε,xφ→ φ as ε→ 0.

Proof. Let Q̃ ⊃ B1(Q) be a large ball that contains 0. Given φ ∈ C1
c (Q̃) and using the notation (3.1)

we find

ˆ
Rd

(R∗
ε,xRε,xφ − φ)

2 ≤ ∑
xi∈x∩ε−1Q̃

(εd(xi) ∥∇φ∥∞)2
εd ∣Gi∣

≤ ε2+d ∥∇φ∥2
∞ ∑
xi∈x∩ε−1Q̃

d(xi)2 ∣Gi∣ .

Because of Lemma 3.2 we know that almost surely for ε0 independent from φ and every ε < ε0 it

DOI 10.20347/WIAS.PREPRINT.2942 Berlin 2022
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holds εd(xi) < diamQ̃ + 1 for every εxi ∈ Q̃. Hence for every D > 1 we find

ε2+d ∑
xi∈x∩ε−1Q̃

d(xi)2 ∣Gi∣ = ε2+d ∑
xi∈x∩ε

−1Q̃
d(xi)≤D

d(xi)2 ∣Gi∣ + εd ∑
xi∈x∩ε

−1Q̃
d(xi)>D

∣εd(xi)∣2 ∣Gi∣

≤ ε2 ∣Q̃∣D2 + (diamQ̃ + 1)2
∞

∑
k=0

∑
xi∈x∩ε

−1Q̃
D+k<d(xi)<D+k+1

d(xi)d

≤ ε2 ∣Q̃∣D2 + (diamQ̃ + 1)2
∞

∑
k=0

∑
xi∈x∩ε

−1Q̃
D+k<d(xi)<D+k+1

(D + k + 1)d

→ (diamQ̃ + 1)2
∞

∑
k=0

(D + k + 1)dP(D + k < d( ⋅ ) <D + k + 1)

≤ 2d (diamQ̃ + 1)2
∞

∑
k=0

(D + k)dfd(
1

6
(D + k))

≤ 2d (diamQ̃ + 1)2 (1

6
)
βd ∞

∑
k=0

(D + k)d−βd .

Since βd(D) > d + 1 it follows

lim
ε→0

ε2+d ∑
xi∈x∩ε−1Q̃

d(xi)2 ∣Gi∣ ≤ 2d (1

6
)
βd

(diamQ̃ + 1)2
Dd+1−βd → 0

as D →∞ and we obtain that

lim
ε→0

ˆ
Rd

(R∗
ε,xRε,xφ − φ)

2 ≤ 0 . (3.5)

Furthermore for every φ ∈ L2(Q) it holds

ˆ
Rd

(R∗
ε,xRε,xφ)

2 = ∑
i

ˆ
Gεi

( 1

mε
i

ˆ
Gεi

φ)
2

≤ ∑
i

ˆ
Gεi

1

mε
i

ˆ
Gεi

φ2 =
ˆ
Q

φ2 . (3.6)

Now let φ ∈ L2(Q) and let (φk)k∈N ⊂ C1
c (Q) be a sequence with ∥φ − φk∥L2(Q) < 1

k . Given δ > 0
we find

(
ˆ
Rd

(R∗
ε,xRε,xφ − φ)

2)
1
2

≤∥φ − φk∥L2(Q) + ∥R∗
ε,xRε,x (φ − φk)∥L2(Q)

+ (
ˆ
Rd

(R∗
ε,xRε,xφk − φk)

2)
1
2

.

We chose k ∈ N such that ∥φ − φk∥L2(Q) ≤ 1
3δ and with help of (3.5) we choose ε0 such that for every

ε < ε0 it holds ∥R∗
ε,xRε,xφk − φk∥L2(Q)

< 1
3δ. Due to (3.6) it also holds ∥R∗

ε,xRε,x (φ − φk)∥L2(Q)
<

1
3δ. Then in total for every ε < ε0 it holds

(
ˆ
Rd

(R∗
ε,xRε,xφ − φ)

2)
1
2

< δ .
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Long-range random conductance model on point processes 9

3.2 Rellich-type theorem for discrete functions

We recall the notation introduced in Section 1.1. Furthermore, we write∑i∼j for the sum over all pairs
of neighbors in xε. Then the (semi-) norms on Sεx we will work with read

∥u∥p,xε,mε ∶= (εd∑
i

mε
i ∣ui∣

p)
1
p

⌊u⌋p,xε,γε ∶= (εd−p∑
i∼j

γεi,j ∣uj − ui∣
p)

1
p

, where γεi,j ∶=
εp−dmε

i,j

∣xεi − xεj ∣
p−1

∥u∥p,xε,mε,γε ∶= ∥u∥x,0,p,ε + ⌊u⌋p,xε,γε .

Theorem 3.4 (Asymptotic Rellich-Sobolev Theorem for x and ω). Let x a stationary ergodic point
process x = (xi)i∈N with points solely in Zd with ω satisfying (1.1)–(1.2) and (1.9)–(1.10). Then there
almost surely exists a constant Cω > 0 such that for every ε > 0 and every uε ∈ Sεx(Q) it holds

∥uε∥2,xε,mε ≤ Cω ⌊uε⌋2,xε,ωε . (3.7)

Furthermore, any sequence uεkk ∈ Sεkx (Q), k ∈ N, with supk ⌊u
εk
k ⌋

2,xεk ,ωεk
< ∞ is precompact in the

sense thatR∗
εk,x

uεkk is precompact in L2(Rd).

Proof. Due to Lemma 3.2 we can assume w.l.o.g that for ε > 0 small enough it holds suppR∗
ε,xu ⊂

B1(Q) for every u ∈ Sεx. Provided p > 2d
d+2 and δ > 0 small enough we infer from the discrete Sobolev-

Poincaré inequality in Theorem 4.3 of [1] that for some constant C > 0 depending only on p, d, δ and
Q

∥u∥p,xε,mε ≤ ∥u∥2+δ,xε,mε ≤ C ⌊u⌋p,xε,γε . (3.8)

Using the discrete Gagliardo-Nirenberg-Sobolev inequality of Theorem 3.4 [1] we furthermore infer the
existence of C > 0 depending only on p, d, δ and Q such that

∥u∥2,xε,mε ≤ C ∥u∥1−θ
p,xε,mε ∥u∥

θ
p,xε,mε,γε (3.9)

where θ = 1/p−1/2
1/d < 1. Finally, we obtain from Hölders inequality for 2−p

2

⌊u⌋p,xε,γε ≤
⎛
⎜
⎝

∑
xεi ∈Q∩xε

∑
i∼j

ω
−p
2−p

ij

⎛
⎝

mij

∣xεi − xεj ∣
p−1

⎞
⎠

2
2−p⎞

⎟
⎠
⌊u⌋2,xε,ωε . (3.10)

ω
−p
2−p

ij

⎛
⎝

mij

∣xεi − xεj ∣
p−1

⎞
⎠

2
p−2

= (ωij ∣xεi − xεj ∣
2)

−
p

2−p (mij ∣xεi − xεj ∣)
2

2−p

In particular, the left hand side Inequalities (3.8)–(3.10) together with the ergodic theorem, i.e.

∑
xεi ∈Q∩xε

∑
i∼j

(ωij ∣xεi − xεj ∣
2)

−
p

2−p (mij ∣xεi − xεj ∣)
2

2−p → ∣Q∣E ∑
z∈N(0,x)

(ω0,z ∣z∣2)
−

p
2−p (m0,z ∣z∣)

2
2−p

imply (3.7).

Now let uεkk ∈ Sεkx , k ∈ N, be a sequence with

sup
k

⌊uεkk ⌋
2,xεk ,ωεk

< ∞ .
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Inequalities (3.8) and (3.10) imply

sup
k

∥uεkk ∥
p,xεk ,mεk ,γεk

< ∞ . (3.11)

From Lemma B.19 of [5] we infer that R∗
εk,x

uεkk is precompact in Lp(Q) and . Hence (3.11) implies
also precompactness ofR∗

εk,x
uεkk in L2(Q).

4 Homogenization

For the rest of this work, it is convenient to modify the notation and to write

$x,z ∶= ωx,x+z , $ε
x,z ∶= ωx

ε
,x
ε
+z .

It is obvious that $x,z is stationary in x. We furthermore use the identification

∀u ∈ Sεx(Q) ∶ ⌊u⌋p,xε,$ε ∶= ⌊u⌋p,xε,ωε

4.1 Function spaces

Let $x,z be stationary ergodic in x and satisfy (1.1)–(1.3). Recalling that Ω is metric compact we can
make sense of continuity on Ω and directly use the following theory from [8]. A functionϕ ∶ Ω×Zd → R
is shift covariant if it fulfills

ϕ($,x + z) − ϕ($,x) = ϕ(τx$,z) (4.1)

for all x, z ∈ Zd (cf. [2] Eq. (3.14)), which implies that ϕ fulfills ϕ($,0) = 0. In particular, (4.1) directly
implies that

ϕ($,x) = −ϕ(τx$,−x) . (4.2)

We define on Ω ×Zd the space L2(Ω ×Zd) induced by the following scalar product and norm

⟨ϕ1, ϕ2⟩L2(Ω×Zd) ∶= E [∑
z∈Zd

$0,zϕ1($,z)ϕ2($,z)] (4.3)

∥ϕ∥2
L2(Ω×Zd) ∶= E [∑

z∈Zd
$0,zϕ($,z)2] ,

together with the following subspace

L2
cov ∶= {ϕ ∈ L2(Ω ×Zd) ∶ ϕ satisfies (4.1) and ∥ϕ∥L2

cov
< ∞} ,

where ∥ϕ∥2
L2
cov

∶= ∥ϕ∥2
L2(Ω×Zd) = E [∑

z∈Zd
$0,zϕ($,z)2] .

Lemma 4.1. The spaceL2
cov is a closed subspace ofL2

skew andL2
sym andL2

skew are closed orthogonal

subspaces of L2(Ω ×Zd), i.e. (L2
sym)� = L2

sym, and where

L2
sym ∶= {ϕ ∈ L2(Ω ×Zd) ∶ ϕ($,x) = ϕ(τx$,−x)} . (4.4)

L2
skew ∶= {ϕ ∈ L2(Ω ×Zd) ∶ ϕ($,x) = −ϕ(τx$,−x)} . (4.5)
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Long-range random conductance model on point processes 11

Proof. Closednes of L2
cov is immediate since (4.1) is preserved when taking the limit. For the same

reason L2
sym and L2

cov are closed. Given ϕ ∈ L2(Ω ×Zd) we define

ϕsym($,x) ∶= 1

2
(ϕ($,x) + ϕ(τx$,−x)) and ϕskew($,x) ∶=

1

2
(ϕ($,x) − ϕ(τx$,−x)) ,

with the evident property ϕskew ∈ L2
skew, ϕsym ∈ L2

sym. It remains to verify for ϕ ∈ L2
skew and ψ ∈ L2

sym

that ⟨ϕ,ψ⟩L2(Ω×Zd) = 0. For this we first use the algebraic properties of L2
skew and L2

sym and then
$0,z = (τz$)0,−z:

⟨ϕ,ψ⟩L2(Ω×Zd) = E [∑
z∈Zd

$0,zϕ($,z)ψ($,z)] = −E [∑
z∈Zd

$0,zϕ(τz$,−z)ψ(τz$,−z)]

= −E [∑
z∈Zd

(τz$)0,−z ϕ(τz$,−z)ψ(τz$,−z)] .

Stationarity of $ now implies for every z ∈ Zd:

E (τz$)0,−z ϕ(τz$,−z)ψ(τz$,−z) = E$0,−zϕ($,−z)ψ($,−z)

and hence using once more the algebraic properties of L2
skew and L2

sym

E [∑
z∈Zd

$0,zϕ($,z)ψ($,z)] = −E [∑
z∈Zd

$0,zϕ($,z)ψ($,z)] = 0 .

Remark 4.2. It is typically assumed that L2
cov is the right space to work in [2, 8]. However, as we will

see, the spaceL2
sym is more convenient. In fact, the space of solenoidals is larger than (L2

pot)
�∩L2

cov,

i.e. it is given by (L2
pot)

� ∩L2
sym, see below.

As observed in [8] L2(Ω×Zd) can also be identified with⊗z∈Zd L
2(Ω, µz), where µz is the measure

on Ω defined by dµz($) =$0,zd Pr($). Compactness of Ω implies separability of L2(Ω, µz) for all
z ∈ Zd and thus also separability of the countable product space⊗z∈Zd L

2(Ω, µz) and its subspaces.

Further, we note that for all φ ∶ Ω → R it holds that Dφ($,z) ∶= Dzφ($) ∶= φ(τz$) − φ($)
satisfies Dφ($,x + z) −Dφ($,x) = Dφ(τx$,z) and

∀z ∈ Zd/ {0} ∶ E(Dzφ) = Eφ −Eφ(τz ⋅ ) = 0 . (4.6)

Therefore Dφ is in L2
cov. A local function on Ω is a bounded, continuous function that only depends

on finitely many coordinates of [0,∞]E . We define the closed subspaces

L2
pot ∶= {Dφ ∶ φ local}

L2
cov
, L2

sol ∶= (L2
pot)

� ∩L2
sym ,

with the following operator on L2(Ω ×Zd):

∀b ∈ L2(Ω ×Zd) ∶ div ($b) ∶= ∑
z

$0,z (b($,z) − b(τz$,−z)) . (4.7)

It is evident that div($b) = 0 for every b ∈ L2
sym. Regarding b ∈ L2

skew we have the following lemma.
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Lemma 4.3 ([2, Lemma 3.6]). Let $ be given by some ω satisfying (1.1)–(1.3). Then for every b ∈
L2

skew it holds

div ($b) = ∑
z

$0,z (b($,z) − b(τz$,−z)) = 2∑
z

$0,zb($,z) . (4.8)

and moreover

div ($b) = 0 and b ∈ L2
skew if and only if b ∈ L2

sol . (4.9)

Proof. (4.8) is straight forward.

If φ ∈ C(Ω) is a local function, i.e. ∥φ∥
∞
< ∞ we observe for b ∈ L2

skew that

E($0,zφ($) (b(τz$,−z))) = E($z,−zφ(τ−z$z) (b($z,−z)))
= E($0,−zφ(τ−z$) (b($,−z)))

and hence

E(φdiv ($b)) = E(∑
z

$0,zφ($) (b($,z) − b(τz$,−z)))

= E(∑
z

$0,zφ($) b($,z)) −E(∑
z

$0,−zφ(τ−z$) (b($,−z)))

= E(∑
z

$0,zφ($) b($,z)) −E(∑
z

$0,zφ(τz$) (b($,z)))

= E(∑
z

$0,z (φ($) − φ(τz$)) b($,z)) .

Since the derivatives of local functions are dense in L2
pot and the local functions are dense in L2(Ω)

we conclude.

Of particular importance will be the modified $̃0,z given in the following way:

$̃0,z =
⎧⎪⎪⎨⎪⎪⎩

m0,z ∣z∣−1 if 0 ∈ x and z ∈ N(0,x)
0 else

.

The parameter $̃ with corresponding ω̃ also satisfies (1.1)–(1.3) and gives rise to the supspaces L̃2
pot

and L̃2
sol within the space L̃2

cov. Lemma 4.3 allows us to show the following:

Corollary 4.4. For every k = 1, . . . , d it holds that pk ∶ ($,z) ↦ zk = z ⋅ ek is in L̃2
sol, where ei,

i = 1, . . . , d, denote the unit base vectors of Rd. Furthermore,

∀k ≠ j ∶ E ∑
z∈N(0,x)

$̃0,zzkzj = 0 , (4.10)

∀k ∈ {1, . . . d} ∶ ∑
z∈N(0,x)

$̃0,zz
2
k =m0,x . (4.11)

Proof. Given 0 ∈ x we write νz = z
∣z∣ for the outer normal of G0 on ∂G0 ∩ ∂Gz and observe that

div($̃0zk) = ∑
z∈N(0,x)

m0,z
1

∣z∣
zk = ∑

z∈N(0,x)

ˆ
∂G0∩∂Gz

1

∣z∣
zk

= ∑
z∈N(0,x)

ˆ
∂G0∩∂Gz

νz ⋅ ek =
ˆ
G0

divek = 0 .
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and hence the first claim by (4.9). To see that (4.10) holds we observe in a similar way

∑
z∈N(0,x)

m0,z
1

∣z∣
zkzj = ∑

z∈N(0,x)

ˆ
∂G0∩∂Gz

1

∣z∣
zkzj

= ∑
z∈N(0,x)

ˆ
∂G0∩∂Gz

νz ⋅ ekzj =
ˆ
G0

∂kzj = 0 .

Finally (4.11) follows from

∑
z∈N(0,x)

$̃0,zz
2
k = ∑

z∈N(0,x)

ˆ
∂G0∩∂Gz

νz ⋅ ekzk =
ˆ
G0

1 = ∣G0∣ .

Using the above notation, we define χ ∈ (L2
pot)

d
component wise through

χj = argmin{E [∑
z∈Zd

$0,z ∣zj + χ̃($,z)∣2] ∶ χ̃ ∈ (L2
pot)

d} , (4.12)

i.e., χj is the orthogonal projection of zj ∈ L2
cov on the space L2

pot with respect to the scalar product
defined in (4.3). We will see below that we can write the homogenized matrix as

(Ahom)i,j = E [∑
z∈Zd

$0,z (ei ⋅ [z + χ($,z)]) (ej ⋅ [z + χ($,z)])] , (4.13)

where the ei, i = 1, . . . , d, denote the unit base vectors of Rd. In analogy to [6, Lemma 4.5] we know
the following result.

Lemma 4.5. Suppose that (1.1)–(1.3) and for p = 1 also (1.10). Then the matrix Ahom is strictly
positive definite. In particular, the vectorial space spanned by the following vectors

E[∑z∈Zd$(0, z) zb($,z)] ∈ Rd, b ∈ L2
sol (4.14)

coincides with Rd.

Proof. By (4.11) it holds for every ξ ∈ Rd:

ξ2
k = ξkE

⎛
⎝
m−1

0 ∑
z∈N(0,x)

ξk$̃0,zz
2
k

⎞
⎠

We make twice use of Corollary 4.4 (first E∑z∈N(0,x) $̃0,zzkzi = 0 then zk ∈ L̃2
sol), and then Hölder’s

inequality together with m0 > 1 to find

ξ2
k = ξkE

⎛
⎝

d

∑
i=1

m−1
0 ∑

z∈N(0,x)

ξi$̃0,zzkzi
⎞
⎠

= ξkE
⎛
⎝

d

∑
i=1

m−1
0 ∑

z∈N(0,x)

ξi$̃0,zzk (zi + χi($,z))
⎞
⎠

≤ ∣ξk∣
⎛
⎝
E ∑
z∈N(0,x)

$̃2
0,z

$0,z

∣z∣2
⎞
⎠

1
2

(
n

∑
i,j=1

ξiξjAhom,ij)
1
2

.
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Summing up over k and taking the square of both sides we find

∣ξ∣4 ≤ (∑
k

∣ξk∣)
2 ⎛
⎝
E ∑
z∈N(0,x)

$̃2
0,z

$0,z

∣z∣
⎞
⎠
(ξ ⋅Ahomξ)

Due to (1.10) (note that it also holds for p = 1 by monotonicity of the exponents in p), the definition
of $̃0,z and the equivalence of norms in Rd the matrix Ahom is strictly positive definite. By following
literally the proof of [6, Lemma 4.5] we obtain the claim.

4.2 Two-scale convergence

We rely on an adaptation [8] of stochastic two-scale convergence by Zhikov and Piatnitsky [12].

Separability of L2(Ω×Zd) and L2
cov alows us to chose countable sets Φsym ⊂ L2

sym, Φsol ⊂ L2
sol and

Φpot ⊂ L2
pot such that

Φ ∶= Φsym ⊕Φsol ⊕Φpot ⊕ {z1, . . . , zd} ⊕ {1} (4.15)

is dense in L2(Ω × Zd) and where we can assume that every ϕ ∈ Φpot is the gradient of a local
function. In particular, ϕ ∈ Φpot has the property ϕ ∈ L∞(Ω × Zd) and by the characterization (4.4)
we can assume Φsym ⊂ L∞(Ω×Zd). This implies that ϕψ ∈ L2(Ω×Zd) for all ϕ ∈ Φpot and ψ ∈ Φ̃.
We can iterate this procedure over a finite number of steps, still remaining with a countable family of
functions. Hence we set

Φ ∶= Φ̃⊕ {ψ
N

∏
i=1

φi ∶ N ∈ N, (ϕi)i=1,...,N ⊂ Φpot and ψ ∈ Φ̃} .

Also there exists a countable subspace Ψ ⊂ C∞
c (Rd) such that Ψ is dense both in L2(Rd) and in

C∞
c (Rd). Together this implies that Ψ⊗Φ is dense in L2(Rd;L2

cov).

Definition 4.6 (Typical realizations). We denote by ΩΦ ⊂ Ω the set of all $ ∈ Ω such that Theorem
2.3 holds

a) for all f($) ∶= ∑z∈Zd$0,zϕ($,z), where ϕ ∈ Φ,

b) for all f($) ∶= ∑z∈Zd$0,z (ϕiϕj) ($,z), where ϕi, ϕj ∈ Φ, and

c) and for all f($) ∶= ∑z∈Zd/Z$0,z ∣z∣2, where Z is a finite subset of Zd,
d) div($b) ○ τx = 2∑z$x,zb(τx$,z) = 0 for all b ∈ Φsol and all x ∈ Zd.

Definition 4.7. We call ΩΦ the set of typical realizations.

Remark 4.8. Note that P(ΩΦ) = 1 (compare to [6, Lemma 4.4]).

Definition 4.9 (Two-scale convergence). Let wε ∶ εZd × Zd → R. We say that wε converges weakly
in two scales to w ∈ L2(Rd;L2(Ω ×Zd)) if

lim
ε→0

εd ∑
x∈εZd

v(x) ∑
z∈Zd

$ε
x,zwε(x, z)ϕ(τx

ε
$,z) =

ˆ
Rd
v(x)E [∑

z∈Zd
$0,zw(x,$, z)ϕ($,z)]dx

(4.16)

for all v ∈ C∞
c (Rd) and all ϕ ∈ Φ. In this case we write wε

2s⇀ w.
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Corollary 4.10. For all typical realizations $ ∈ ΩΦ it holds: If wε ∶ εZd × Zd → R converges in
two-scales to w ∈ L2(Rd;L2(Ω × Zd)) and φ ∈ Φpot then the function w̃ε(x) ∶= wε(x)φ(τx

ε
$)

converges in two scales: w̃ε
2s⇀ wφ.

Proof. If v ∈ C∞
c (Rd) and all ϕ ∈ Φ are test functions, then also ϕφ ∈ Φ is a test function and from

here we conclude by applying the definition of two-scale convergence.

Proposition 4.1. For all typical realizations $ ∈ ΩΦ it holds: If wε ∶ εZd × Zd → R and C < ∞ are
such that

εd ∑
x∈εZd

∑
z∈Zd

$ε
x,zw

2
ε(x, z) ≤ C ∀ε > 0 , (4.17)

then there exists a subsequence wεk and w ∈ L2(Rd;L2(Ω ×Zd)) such that

wεk

2s⇀ w , ∥w∥L2(Rd;L2(Ω×Zd)) ≤ sup
ε
εd ∑

x∈εZd
∑
z∈Zd

$ε
x,zw

2
ε(x, z) . (4.18)

Proof. The proof is standard and follows (here) exactly the lines of the proof of Proposition 5.10 in
[8]

Proposition 4.2. For all typical realizations $ ∈ ΩΦ it holds: If wε ∶ εZd × Zd → R converges
in two-scales to w ∈ L2(Rd;L2(Ω × Zd)) and if (χε)ε is sequence of measurable functions with

supε ∥χε∥L∞(Rd) < ∞ and χε → χ pointwise a.e. in Rd. Then wεχε
2s⇀ wχ.

Proof. Let v ∈ C∞
c (Rd) and ϕ ∈ Φ. By approximation with smooth functions one can show

lim
ε→0

εd ∑
x∈εZd

v(x)χ(x) ∑
z∈Zd

$ε
x,zwε(x, z)ϕ(τx

ε
$,z)

=
ˆ
Rd
v(x)χ(x)E [∑

z∈Zd
$0,zw(x,$, z)ϕ($,z)] dx .

Furthermore we observe that (χε − χ)2
v2 → 0 pointwise and ∥(χε − χ)2

v2∥
L∞

≤ 4 ∥χ∥2
L∞ ∥v∥2

L∞ .
Using the Hölder inequality

∣εd ∑
x∈εZd

v(x) (χ(x) − χε(x)) ∑
z∈Zd

$ε
x,zwε(x, z)ϕ(τx

ε
$,z)∣

≤ ∣εd ∑
x∈εZd

∑
z∈Zd

$ε
x,zw

2
ε(εx, z)∣

1
2

∣εd ∑
x∈εZd

v2(x) (χ(x) − χε(x))2 ∑
z∈Zd

$ε
x,zϕ

2(τx
ε
$,z)∣

1
2

.

and Theorem 2.2 we eventually get

εd ∑
x∈εZd

v2(x) (χ(x) − χε(x))2 ∑
z∈Zd

$ε
x,zϕ

2(τx
ε
$,z) →

ˆ
Rd

0 dxE∑
z

$0,zϕ
2(τx

ε
$,z) = 0 .

In [8] some more intermediate results on two-scale convergence are demonstrated. They culminate in
the following two results.

Corollary 4.11. For all typical realizations $ ∈ ΩΦ it holds: If wε
2s⇀ w, then

lim
ε→0

εd ∑
x∈εZd

∑
z∈Zd

$ε
x,zwε(x, z)∂εzv(x) =

ˆ
Rd

E [∑
z∈Zd

$0,zw(x,$, z) (∇v(x) ⋅ z)] dx (4.19)

for all v ∈ C∞
c (Rd).
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4.3 Two-scale convergence of gradients

We restate the following result from the original Lemma 5.15 in [8]. However, the notion of two-scale
convergence in [8] was restricted to the subspace L2

cov. Hence we have to exclude that v ∈ L2
sym.

Furthermore we have to take into account thatR∗
ε′,x is defined with respect to xε instead of εZd.

Lemma 4.12. For all $ ∈ ΩΦ the following holds. If uε ∶ εZd → R is a family of functions with
supp(uε) ⊆ Q ∩ εZd for all ε and

sup
ε>0

(εd ∑
x∈εZd

∑
z∈Zd

$ε
x,z (∂εzuε(x))

2 + ∥uε∥
∞
) < ∞ , (4.20)

then there exists a subsequence uε
′

, u ∈H1
0(Q) and w ∈ L2(Rd;L2

pot) such that

R∗
ε′,xu

ε′ → u in L2(Rd) , ∂ε
′

z u
ε′(x) 2s⇀ ∇u(x) ⋅ z +w(x,$, z) as ε′ → 0 . (4.21)

Proof. We take v ∈ C∞
c (Rd) and ϕ ∈ Φsym (i.e. ϕ ∈ L∞(Ω × Zd)) as testfunctions in the two-scale

formula (4.16). Since ∂εzu
ε(x) = −∂ε−zuε(x + εz) and ϕ(τx

ε
$,z) = ϕ(τx

ε
+z$,−z) we find

lim
ε→0

∣εd ∑
x∈εZd

v(x) ∑
z∈Zd

$ε
x,z∂

ε
zu

ε(x)ϕ(τx
ε
$,z)∣

≤ lim
ε→0

εd
1

2
∑
x∈εZd

∑
z∈Zd

$ε
x,z ∣∂εzuε(x)ϕ(τxε$,z)∣ ∣v(x) − v(x + εz)∣

≤ lim
ε→0

εd
1

2
∥ϕ∥

∞
( ∑
x∈εZd

∑
z∈Zd

$ε
x,z ∣∂εzuε(x)∣

2)
1
2

ε ∥∇v∥
∞

( ∑
x∈εZd

∑
z∈Zd

$ε
x,zz

2)
1
2

= 0 .

In particular, ∂εzu
ε(x) 2s⇀ w implies w ∈ L2(Q; (L2

sym)�). From here we can mostly proceed as in
Lemma 5.15 in [8]: We skip all (rather algebraic) calculations which are not affected by the change
from εZd to xε. We choose b ∈ Φsol and v ∈ C∞

c (Rd) and calculate the discrete product rule

∂εz(vuε)(εx) = v(εx)∂εzuε(εx) + uε(εx + εz)∂εzv(εx)

to obtain that

0 = εd ∑
x∈εZd

∑
z∈Zd

$ε
x,z(v(x)∂εzuε(x) + uε(x + εz)∂εzv(x))b(τxε$,z) . (4.22)

For the first term on the RHS of (4.22), we obtain from the two-scale convergence of ∇εuε that

εd ∑
x∈εZd

v(x) ∑
z∈Zd

$ε
x,z∂

ε
zu

ε(x)b(τx
ε
$,z) →

ˆ
Rd
v(x)E [∑

z∈Zd
$0,zw(x,$, z)b($,z)]dx . (4.23)

For the second term on the RHS of (4.22), it follows similar as in Lemma 5.15 in [8] that

lim
ε→0

εd ∑
x∈εZd

∑
z∈Zd

$ε
x,zu

ε(x + εz)∂εzv(x)b(τxε$,z)

= lim
ε→0

∑
x∈xε

mε
xu

ε(x)∇v(x) ⋅ (∑
z∈Zd

z
$ε
x,z

mx
ε

b(τx
ε
$,z)) ,
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Long-range random conductance model on point processes 17

where we use that $ε
x,z = 0 if x /∈ xε. By the assumptions on $ and b, the last bracket on the above

RHS is in L1(Ω,P). By Theorem 3.4 and Lemma 3.2 it holds that the subsequence R∗
ε,xu

ε → u in
L2(Rd), where u ∈H1

0(Q), there exists a further subsequence, which we still index by ε→ 0, where
R∗
ε,xu

ε converges pointwise a.e. in Q [4, Theorem 4.9]. Moreover, for ε small enough, uε has support
in B1(Q) and supε>0 ∥uε∥∞ < ∞ by assumption. It follows that we can apply Theorem 2.3 along the
above subsequence and obtain that

∑
x∈xε

mε
xu

ε(x)∇v(x) ⋅ (∑
z∈Zd

z
$ε
x,z

mx
ε

b(τx
ε
$,z)) →

ˆ
Rd
u(x)∇v(x) ⋅E [∑

z∈Zd
z
$0,z

m0

b($,z)]dx .

(4.24)

From here we conclude exactly as in Lemma 5.15 in [8].

Lemma 4.13. Let (1.1)–(1.3) and (1.9)–(1.10) hold. Then for all $ ∈ ΩΦ the following holds. If uε ∈
Sεx(Q) is a family of functions and

sup
ε>0

⌊u⌋p,xε,$ε < ∞ , (4.25)

then there exists a subsequence uε
′

and u ∈H1
0(Q) and w ∈ L2(Rd;L2

pot) such that

R∗
ε′,xu

ε′ → u in L2(Rd) , ∂ε
′

z u
ε′(x) 2s⇀ ∇u(x) ⋅ z +w(x,$, z) as ε′ → 0 . (4.26)

Proof. Given M ∈ N we define the Lipschitz continuous functions

FM(u) ∶= max{−M,min{M,u}}

and set uεM ∶= FM(uε) with −M ≤ uε ≤M . Due to (4.25) it holds for some C0 < ∞

sup
ε>0

⌊u⌋p,xε,$ε + sup
ε>0

εd ∑
x∈εZd

∑
z∈Zd

$ε
x,z (∂εzuεM(x))2 ≤ C0 , (4.27)

Step 1: By Lemma 4.12 for every M ∈ N there exists uM ∈H1
0(Q), wM ∈ L2(Rd;L2

pot) such that

R∗
ε′,xu

ε′

M → uM in L2(Rd) , ∂ε
′

z u
ε′

M(x) 2s⇀ ∇uM(x) ⋅ z +wM(x,$, z) as ε′ → 0 . (4.28)

The existence of uM ∈ H1
0(Q) such that R∗

ε′,xu
ε′

M → uM strongly in L2(Rd) follows from Theorem
3.4 and Lemma 3.2.

Step 2: By a Cantor diagonal argument the sequence ε′ in (4.28) is independent from M . In a similar
way, Theorem 3.4 and Lemma 3.2 imply R∗

ε′,xu
ε′ → u strongly in L2(Q) for some u ∈ H1

0(Q). For
readability, we furtheron write ε instead of ε′. Since FM is Lipschitz, it holds

uM ←R∗
ε,xu

ε
M = FM(R∗

ε,xu
ε) → FM(u) .

We further know

∥∇uM(x) ⋅ z +wM(x,$, z)∥L2(Rd;L2
cov)

≤ sup
ε>0

εd ∑
x∈εZd

∑
z∈Zd

$ε
x,z (∂εzuεM(x))2

and by (4.6) it holds for every canonical basis vector ei that E(∇uM(x) ⋅ ei +wM(x,$, ei)) = 0.
This implies also

sup
M

∥∇uM(x)∥L2(Q) ≤ sup
ε>0

εd ∑
x∈εZd

∑
z∈Zd

$ε
x,z (∂εzuεM(x))2

,
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and hence ∇uM ⇀ ∇u as M → ∞. Thus wM is bounded in L2(Q;L2
pot) and wM(x,$, z) ⇀ w

weakly for some w ∈ L2(Q;L2
pot).

Step 3: Now we observe for every v ∈ C∞
c (Rd) and every ϕ ∈ Φ that

Iε ≤ IM,ε
1 + IM2 + IM,ε

3 ,

where

Iε ∶= ∣εd ∑
x∈εZd

∑
z∈Zd

$ε
x,z∂

ε
zu

ε(x) v(x)ϕ(τx
ε
$)

−
ˆ
Q

v(x)E [∑
z∈Zd

$0,z (∇u +w(x,$, z))ϕ($,z)]dx∣

IM,ε
1 ∶= ∣εd ∑

x∈εZd
∑
z∈Zd

$ε
x,z (∂εzuεM(x) − ∂εzuε(x)) v(x)ϕ(τxε$,z)∣

IM2 ∶= ∣
ˆ
Q

v(x)E [∑
z∈Zd

$0,z (∇u −∇uM +w(x,$, z) −wM(x,$, z))ϕ($,z)]dx∣

IM,ε
3 ∶= ∣εd ∑

x∈εZd
∑
z∈Zd

$ε
x,z∂

ε
zu

ε
M(x) v(x)ϕ(τx

ε
$)

−
ˆ
Q

v(x)E [∑
z∈Zd

$0,z (∇uM +wM(x,$, z))ϕ($,z)]dx∣

Two-scale convergence of ∂εzu
ε
M implies IM,ε

3 → 0 as ε→ 0. Furthermore, weak convergence implies
for every δ > 0 that there exists Mδ ∈ N such that IM2 ≤ δ for every M ≥Mδ.

In order to derive an estimate on IM,ε
1 , we define

∀u ∈ L2(Rd) ∶ χM[u](x) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 FM(u)(x) − u(x) ≠ 0

0 else
,

and write for simplicity χε,M(x) ∶= χM[R∗
ε,xu

ε](x) and χM(x) ∶= χM[u](x). Since if uεM(x) −
uε(x) = 0 and χε,M(x) ∶= 1 if uεM(x) − uε(x) ≠ 0. Because R∗

ε,xu
ε → u strongly in L2(Rd) and

FM is Lipschitz continuous we conclude that along a subsequence χε,M(x) → χM(x) strongly in
Lp(Q), 1 ≤ p < ∞, and pointwise. Since

∂εzu
ε
M(x) − ∂εzuε(x) ≠ 0 ⇒ x,x + εz ∈ xε and [χε,M(x) = 1 or χε,M(x + εz) = 1 ]

we find

IM,ε
1 ≤ εd ∑

x∈xε

χε,M (x)=1

∑
z∈Zd

$ε
x,z2 ∣∂εzuε(x)∣ 2 ∥v∥

∞
∣ϕ(τx

ε
$,z)∣ .

However, since
sup
ε

∑
x∈xε∩Q

∑
z∈Zd

$ε
x,z (∣∂εzuε(x)∣ ∥v∥∞)2 < ∞

we infer that ψε(x, z) ∶= 4 ∣∂εzuε(x)∣ ∥v∥∞ converges weakly in two scales to ψ ∈ L2(Q;L2(Ω ×
Zd)). Moreover, Proposition 4.2 implies that χε,M(x)ψε(x, z) converges weakly in two scales to
χMψ. Hence

lim sup
ε→0

IM,ε
1 ≤ ∣

ˆ
Q

χME∑
z

ω0,zψ(ω, z) ∣φ(ω, z)∣∣ .
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Again, there exists M1 ≥M0 such that

∀M >M1 ∶ ∣
ˆ
Q

χME∑
z

ω0,zψ(ω, z) ∣φ(ω, z)∣∣ < δ .

Together we find for every M ≥M1 that

lim
ε→0

Iε ≤ 2δ ,

which implies the claim.

4.4 Convergence of solutions

Lemma 4.14. Let f ε∶Q∩Zdε → R be a sequence of functions such thatR∗
εf

ε ⇀ f weakly in L2(Q)
for some f ∈ L2(Q) and such that supε ∥f ε∥∞ < ∞. Then for almost all$ ∈ Ω it holds: The sequence
of solutions uε ∈ Sεx(Q) to the problem

∀xi ∈Q ∩ xε ∶ − (Lεx,$uε)i =m
ε
if

ε
i (4.29)

satisfiesR∗
εu

ε → u strongly in L2(Q), where u ∈H1
0(Q) ∩H2(Q) solves the limit problem

−∇ ⋅ (Ahom∇u) = f . (4.30)

Proof. We test Equation (4.29) with an arbitrary test function gε ∶ xε → R with suppgε ⊆ Q ∩ εZd
and obtain by (1.15) that

⟨−Lε$uε, gε⟩2,xε,1 = εd ∑
x∈xε

∑
z∈Zd

$ε
x,z∂

ε
zu

ε(x)∂εzgε(x) = ⟨f ε, gε⟩2,xε,mε . (4.31)

We now choose gε = uε and apply (3.7) and Cauchy-Schwarz to obtain that

∥uε∥2
2,xε,mε ≤ Cεd ∑

x∈xε
∑
z∈Zd

$ε
x,z (∂εzuε(x))

2 ≤ 2C ∥uε∥2,xε,mε ∥f ε∥2,xε,mε . (4.32)

It follows that by virtue of Theorem 3.4 and Lemma 4.13, there exists u ∈ H1
0(Q), v ∈ L2(Q;L2

pot)
and a subsequence, which we still index by ε, such that

R∗
ε,xu

ε → u , strongly in L2(Q) and ∂εzu
ε(x) 2s⇀ ∇u(x) ⋅ z + v(x,$, z) as ε→ 0 (4.33)

for all $ ∈ ΩΦ.

Let us choose ψ ∈ C∞
c (Rd) with suppv ∈ Q and ϕ ∈ Φpot with ϕ = Dϕ̃ for some bounded local

function ϕ̃. When we insert gε = εψϕ̃ into (4.31), then we observe for all ε > 0 that

∑
x∈xε

2mε
xf

ε(εx) (εψ(εx)ϕ̃(τx$))

= εd ∑
x∈εZd

∑
z∈Zd

$ε
x,z∂

ε
zu

ε(x) (ψ(x + εz)ϕ̃(τx
ε
+z$) − ψ(x)ϕ̃(τx

ε
$))

= εd ∑
x∈εZd

∑
z∈Zd

$ε
x,z∂

ε
zu

ε(x) [ψ(x) (ϕ̃(τx
ε
+z$) − ϕ̃(τx

ε
$)) + εϕ̃(τx

ε
+z$)∂εzψ(x)]

= εd ∑
x∈εZd

∑
z∈Zd

$ε
x,z∂

ε
zu

ε(x)ψ(x)ϕ(τx
ε
$,z)

+ εd ∑
x∈εZd

∑
z∈Zd

$ε
x,z∂

ε
zu

ε(x) εϕ̃(τx
ε
+z$)∂εzψ(x) . (4.34)
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The second summand on the above RHS vanishes as ε→ 0 since

εd ∑
x∈εZd

∑
z∈Zd

$ε
x,z∂

ε
zu

ε(x) εϕ̃(τx
ε
+z$)∂εzψ(x) ≤ εd+1∥ϕ̃∥∞ ∑

x∈εZd
∑
z∈Zd

$ε
x,z∂

ε
zu

ε(x)∂εzψ(x)

≤ ε∥ϕ̃∥∞ (εd ∑
x∈εZd

∑
z∈Zd

$ε
x,z (∂εzuε(x))

2)
1/2

(εd ∑
x∈εZd

∑
z∈Zd

$ε
x,z (∂εzψ(x))

2)
1/2

(4.35)

By assumption ∥ϕ̃∥∞ is bounded. The second factor is bounded due to (4.32) and the third factor is
bounded due to (1.3) and the Lipschitz regularity of ψ. Since the LHS of (4.34) vanishes as well, (4.33)
and (4.34) imply that in the limit ε→ 0 and along the chosen subsequence we obtain

ˆ
Q

ψ(x)E [∑
z∈Zd

$0,z (∇u(x) ⋅ z + v(x,$, z))ϕ($,z)] = 0 . (4.36)

Since Φpot is dense in L2
pot and Ψ is dense in H1

0(Q), Equation (4.36) holds for all ϕ ∈ L2
pot and all

v ∈H1
0(Q).

Let χ ∈ (L2
pot)

d
be given through (4.12). Since u ∈ H1

0(Q) is given, the function v(x, $̃, z) ∶=
∇u(x) ⋅ χ($̃, z) is the unique solution to (4.36). We have thus identified v.

Now we observe that if we test (4.31) by an arbitrary g ∈ C∞
c (Rd) with support in Q, we obtain that

εd ∑
x∈εZd

∑
z∈Zd

$ε
x,z ∂

ε
zu

ε(x)∂εzg(x) = ∑
x∈xε

2mε
xf

ε(x)g(x) .

Passing to the limit, we obtain by virtue of Corollary 4.11 and v(x,$, z) = ∇u(x) ⋅ χ($,z) that

ˆ
Rd

E [∑
z∈Zd

$0,z (∇u(x) ⋅ (z + χ)) (∇g(x) ⋅ z)] dx =
ˆ
Rd

2f(x)g(x)dx . (4.37)

When we now insert ψ = ∂ig and ϕ = χi for i = 1, . . . , d into (4.36) and add the resulting equations
to (4.37), then we obtain that

ˆ
Rd

E [∑
z∈Zd

$0,z (∇u(x) ⋅ (z + χ)) (∇g(x) ⋅ (z + χ))] dx =
ˆ
Rd

2f(x)g(x)dx . (4.38)

A comparison with the definition of Ahom in (4.13) finally yields that u solves
ˆ
Q

∇u ⋅ (Ahom∇g) =
ˆ
Q

2f g for all g ∈ C∞
c (Rd) with suppg ⊆ Q. (4.39)

Since Ahom is non-degenerate, we find that (4.39) is the weak formulation of (4.30). Hence, from
elliptic regularity theory, we obtain that u ∈H2(Q) ∩H1

0(Q).

Since the solution u of (4.30) is unique, it follows that (4.33) holds for the entire sequence.

4.5 Proof of Theorem 1.5

Part 1 of the theorem follows almost surely from Lemma 4.14.

Part 2 follows from on one hand from Lemmas 3.2 and 3.3.

On the other hand Part 3 of of the theorem is proved by Theorem 3.4.
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