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A B S T R A C T

The novel approach was proposed for detailed high-resolution studies of morphology and physico-chemical
properties concomitantly at one measurement spot of E. coli bacterial cells culture immobilized onto silicon
wafer surface in UHV conditions applying PhotoEmission Electron Microscopy under Hg lamp irradiation. For
the E. coli characterization scanning electron microscopy (electron beam) and X-ray photoelectron spectroscopy
(X-ray tube radiation) were applied prior to PhotoEmission Electron Microscopy measurements. In spite of ir-
radiation doses collected for the cell arrays we were successful in detection of high-resolution images even of
single E. coli bacterium by PhotoEmission Electron Microscopy technique followed by detailed high-resolution
morphology studies by scanning electron microscopy. These results revealed widespread stability of the E. coli
membranes shape after the significant number of applied characterization techniques.

The combination of a few nanometers inorganic particles with
nature-like objects as a hybrid nanostructure can be a breakthrough
way for the modern applications developing driven by novel low-cost
and energy effective technology approaches of functional low-dimen-
sional materials formation [1–5]. One of the convenient objects for such
kind of technology development is E. coli bacterial cells that can be
easily grown in simple and controlled laboratory conditions [6–8].
Knowledge of surface properties and composition plays an important
role for such systems so the precision control is necessary to be applied.
Scanning Electron Microscopy (SEM) is one of the most developed and
useful tool for morphology studies of different functional materials
[9–11] including biosystems such as based on E. coli arrays [12–15].
Nevertheless, a precise and chemically sensitive microspot surface
studies on biological objects are still not well investigated field. Pho-
toEmission Electron Microscopy (PEEM) in coupling with laboratory or
synchrotron based excitation sources can play a keyrole for such tasks
[16–18]. PEEM technique provides the unique and powerful ability to
perform chemically sensitive (selective) microspot spectroscopy and
microscopy in one experiment run [19–21]. The crucial point for PEEM

studies of bio-objects is their stability under special conditions of sur-
face sensitive experiments.

E. coli K12 MG1665 bacteria colony were grown aerobically in LB
medium at 37 °C with constant mixing up to the stationary growth
phase [7] and precipitated by centrifugation (2500 rpm) then washed
twice with TE-NaCl buffer solution (50 mM Tris-HCl pH 7.5; 0.1 mM
EDTA; 50 mM NaCl) and twice with distilled water. The washed cells
were deposited to a cleaned silicon surface (20, 40, or 60 μl), dried at
37 °C and washed three times with distilled water. For preliminary SEM
studies JEOL JSM-6380LV microscope was used while for high resolu-
tion images Carl Zeiss ULTRA 55 microscope was applied. UHV X-ray
photoelectron spectrometer was equipped with high resolution SPECS
Phoibos 150 hemispherical electron energy analyzer with monochro-
matic X-ray source. Energy resolution was found in the range of 0.1 eV
with the analysis depth estimation of about 3 nm. The calibration of the
spectra was carried out using a signal of pure gold film and the position
of Au 4f level. Omicron Focus PEEM microscope of Russian-German Lab
at Helmholtz-Zentrum Berlin was used for PEEM studies.

Herein for the first time we present PEEM results for E. coli K12
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MG1665 cell line in combination with X-ray photoelectron spectro-
scopy (XPS) control that was preceded and followed by SEM studies.
SEM studies were performed to control the cells membrane morpho-
logical stability after accumulated electrons and photons radiation
doses during the PEEM and XPS studies. For all consistently performed
measurements the initial probes were stored for more than two months
in the ambient condition being deposited on clean silicon surfaces XPS
studies were performed under Al Kα radiation (1486.61 eV), SEM
measurements at accelerating voltages of 2, 5 and 20 kV. Aiming at
reducing the radiation damage of cells array during the PEEM mea-
surements we used Hg lamp with excitation energy of ~5 eV.

Initial SEM images are revealed distribution of E. coli bacteria lo-
calized on the silicon surface with a well-known shape and other
characteristics (e.g. sizes) of a single bacterium [12–14]. XPS verifica-
tion spectrum (Fig. 1) confirms the absence of any noticeable surface
contamination. All elements peculiar to the deposited bacterial cells
arrays are observed such as carbon, nitrogen and oxygen together with
buffer and working solutions residuals (Na, Cl, etc). Finally, Si core
levels are detected from the substrate because of silicon substrates
fragmentary coverage by E. coli array. All observed lines were identified
at XPS spectrum given in the Fig. 1.

PEEM images (Fig. 2) demonstrate a possibility of effective bioi-
maging of the E. coli bacterial cells array using such type of visualiza-
tion technique. Moreover, well distinguished observation of a single
bacterium is detected by PEEM technique that correlates well with SEM
results. The quality of the E. coli bacterial cells surface morphology
features are nearly the same as compared with SEM image (Fig. 2b).

SEM studies performed after XPS (X-ray irradiation) and PEEM (Hg
lamp irradiation) experiments demonstrate only partial bacteria mem-
brane destruction. Only partial destruction of the bacteria membrane
confirms the surprisingly strong stability of E. coli MG1665 culture and
its fragments. These easily observed dark parts of a single observed cells
membrane can be detected in SEM and even more in PEEM images.
These results suggest promising perspective of nanobiofunctional ma-
terials effective synchrotron studies [20–23] under feasibly low-dose
photons excitation for microspot chemically sensitive PEEM (i.e. spec-
tromicroscopy) surface analysis possibly performed in UHV condition
that as shown in present paper can be applied up to a single E. coli
bacterial cell bioimaging.
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Fig. 1. XPS survey spectrum of the E. coli array localized on the Si wafer. Main core level lines are indicated.

Fig. 2. High resolution PEEM images (a, two different surface areas) followed by SEM micrograph (b) of the E. coli array localized on the silicon substrate surface.
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