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Abstract. We study positive bounded wave solutions u(t, x) = φ(ν · x + ct),

φ(−∞) = 0, of equation ut(t, x) = ∆u(t, x)−u(t, x)+ g(u(t−h, x)), x ∈ Rm (∗).
It is supposed that Eq. (∗) has exactly two non-negative equilibria: u1 ≡ 0 and

u2 ≡ κ > 0. The birth function g ∈ C(R+,R+) satisfies a few mild conditions: it

is unimodal and differentiable at 0, κ. Some results also require the positive feed-

back of g : [g(max g),max g] → R+ with respect to κ. If additionally φ(+∞) = κ,

the above wave solution u(t, x) is called a travelling front. We prove that every

wave φ(ν · x+ ct) is eventually monotone or slowly oscillating about κ. Further-

more, we indicate c∗ ∈ R+ ∪ {+∞} such that (∗) does not have any travelling

front (neither monotone nor non-monotone) propagating at velocity c > c∗. Our

results are based on a detailed geometric description of the wave profile φ. In

particular, the monotonicity of its leading edge is established. We also discuss

the uniqueness problem indicating a subclass G of ’asymmetric’ tent maps such

that given g ∈ G, there exists exactly one travelling front for each fixed admissible

speed.

Keyword: Time-delayed reaction-diffusion equation, slow oscillations, small so-

lution, semi-wavefront, travelling front, single species population model.
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1. Introduction and main results. We study travelling wave solutions of the

delayed reaction-diffusion equation

ut(t, x) = ∆u(t, x)− u(t, x) + g(u(t− h, x)), u(t, x) ≥ 0, x ∈ Rm, (1)

which has exactly two non-negative equilibria u1 ≡ 0, u2 ≡ κ > 0. The nonlin-

earity g is called the birth function, therefore it is non-negative. Throughout all

the paper we assume that g satisfies the following unimodality condition

(UM): g : R+ → R+ is continuous and has only one positive local extremum

point x = xM (global maximum point). Furthermore, g(0) = 0, g(κ) = κ

and there exist g′(0) > 1, g′(κ).

It is clear that (UM) implies that g is strictly monotone on [0, xM ] and on

[xM ,+∞). For example, (UM) is satisfied for the diffusive Nicholson’s blowflies

equation. Since the biological interpretation of u is the size of an adult population,

we consider only positive bounded wave solutions u(x, t) = φ(ν · x+ ct), ‖ν‖ = 1.

Before going further, let us fix some terminology. We say that wave solution

u(x, t) = φ(ν ·x+ ct), ‖ν‖ = 1, is a wavefront (or a travelling front), if the profile

function φ satisfies φ(−∞) = 0 and φ(+∞) = κ. In fact, such a profile φ is a

positive heteroclinic solution of the delay differential equation

εx′′(t)− x′(t)− x(t) + g(x(t− h)) = 0, t ∈ R, (2)

where ε = c−2 > 0. Notice that φ may not be monotone. Following [8], we

call positive bounded solutions φ(ν · x + ct) of (1) satisfying φ(−∞) = 0 semi-

wavefronts. Slightly abusing the terminology we will also call φ the wavefront (or

semi-wavefront) for Eq. (2).

If we take h = 0 in (1), we get a monostable reaction-diffusion equations without

delay. The problem of existence of travelling fronts for this equation is quite well

understood. In particular, for each such equation we can indicate a positive

real number c∗ such that, for every c ≥ c∗, it has exactly one travelling front

u(x, t) = φ(ν · x + ct), see [8, Theorem 8.3 (ii) and Theorem 8.7]. To find

c∗ we can use one of the variational principles for the front speeds, e.g., see

[4, 8, 10]. Furthermore, Eq. (1) does not have any travelling front propagating at

the velocity c < c∗. The profile φ is necessarily strictly increasing function, e.g.

see [8, Theorem 2.39].

However, the situation will change drastically if we take h > 0. In fact, at the

present moment, it seems that we are far from proving similar results concern-

ing the existence, uniqueness and geometric properties of wavefronts for delayed

equation (1). This despite that fact that the existence of travelling fronts in (1)

was recently intensively studied (e.g. see [6, 7, 12, 13, 18, 19, 20, 21, 22]) for some
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specific subclasses of birth functions. Certainly, so called monotone case (when g

is monotone on [0, κ]) is that one for which the most information is available. But

so far, even for equations with monotone birth functions nothing is known about

the number of wavefronts (modulo translation) for an arbitrary fixed c ≥ c∗. In

fact, we don’t know how to determine c∗ for a monotone g which does not meet

the sublinearity condition g(x) ≤ g′(0)x. The situation when g is not monotone

on [0, κ] is much more complicated. For example, it is not clear whether exists

Eq. (1) which does not have any travelling front.

The main results of this paper answer some questions raised above:

Theorem 1.1 (Monotonicity of the leading edge of semi-wavefronts).

Consider semi-wavefront u(x, t) = φ(ν ·x+ct), ‖ν‖ = 1, to Eq. (1). Then we can

indicate some τ3 > τ2 > τ1 ∈ R∪{+∞} such that φ′(s) > 0 on (−∞, τ1)∪ (τ2, τ3)

and φ′(s) < 0 on (τ1, τ2). Furthermore, τ1 is finite if and only if φ(τ1) > κ.

Similarly, τ2 is finite if and only if φ(τ2) < κ.

It is worth to mention that lim infs→+∞ φ(s) ≥ d > 0, where d does not depend

on c, φ. See [21] where the uniform permanence of semi-wavefronts was proved.

To state other theorems, we will need the concept of slowly oscillating solutions

to Eq. (2). In Definition 1, we follow closely [16].

Definition 1.1. Assume that the restriction g : [g(max g),max g] → R+ has the

positive feedback with respect to the equilibrium κ (i.e. (g(x) − κ)(x − κ) < 0 ,

x 6= κ). Set K = [−h, 0] ∪ {1}. For any φ ∈ C(K) \ {0} we define the number of

sign changes by sc(φ) =

sup{k ≥ 1 : there exist t0 < · · · < tk such that φ(tj−1)φ(tj) < 0 for j ≥ 1}.

We set sc(φ) = 0 if φ(s) ≥ 0 or φ(s) ≤ 0 for s ∈ K. Being x : [a− h,+∞) → R
a non-monotone solution of Eq. (2), we set (x̄t)(s) = x(t+ s)− κ if s ∈ [−h, 0],

and (x̄t)(1) = x′(t). We will say that x(t) is slowly oscillating about κ if, for each

t ≥ a, we have either sc(x̄t) = 1 or sc(x̄t) = 2.

The critical speeds c∗, c
∗ are defined below:

Definition 1.2. (a) c∗ ≥ 0 is the biggest real number such that equation

(c∗)−2z2 − z − 1 + g′(κ) exp(−zh) = 0

has only one root in the half plane {<z > 0}.
(b) c∗ ≥ 0 is the smallest real number such that equation

(c∗)
−2z2 − z − 1 + g′(0) exp(−zh) = 0

has at least one real root in the half plane {<z > 0}.
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Theorem 1.2 (Semi-wavefronts are either monotone or slowly oscillating).

Assume that g : [g(max g),max g] → R+ has the positive feedback with respect to

κ and g′(κ) < 0, g′(0) > 1. If u(x, t) = φ(ν ·x+ct), ‖ν‖ = 1, is a semi-wavefront

to Eq. (1), then φ is eventually either monotone or slowly oscillating around

κ. Furthermore, if c > c∗ then the profile φ has to develop non-decaying slow

oscillations around κ.

It follows from [17] that these non-decaying slow oscillations are asymptotically

periodic if g : [g(max g),max g] → R+ is decreasing.

Corollary 1.1 (Admissible wavefront speeds and non-existence of fronts).

If all the conditions of Theorem 1.2 are satisfied then Eq. (1) does not have any

travelling front (neither monotone nor non-monotone) propagating at velocity

c > c∗ or c < c∗. In consequence, if c∗ is less than c∗, then Eq. (1) does not

possess any travelling front.

The above result gives a strong argument supporting the conjecture from [21]

that if the Schwarz derivative of sublinear g is negative and c∗ ≤ c∗, then the

set of all admissible wavefront speeds coincides with the interval [c∗, c
∗]. Observe

that c∗ is the minimal speed of propagation of semi-wavefronts if g(x) ≤ g′(0)x,

x ≥ 0, e.g. see [21].

Finally, we discuss the uniqueness (up to translations) of positive wavefront for

a given admissible speed c. There exist a very few theoretical studies devoted to

this problem. To the best of our knowledge, the uniqueness was established only

in two limit cases: for small delays in [1] and for large speeds in [2]. Here, we

indicate a family G of unimodal and piece-wise linear g for which the problem of

the existence of travelling fronts can be solved in the closed form. The elements

of G are defined as follows:

Let d > 1, θ > 0, a ∈ [−1, 1) be given and satisfy aθ + b = dθ, aκ+ b = κ for

some b, κ. Then b > 0, κ > θ and the piece-wise linear function

g(x) = g(x, a, d, θ) :=

{
dx, for x ∈ [0, θ];

ax+ b, if x ∈ [θ,max{κ, dθ}],

is continuous and g(0) = 0, g(κ) = κ. Set G = {g(x, a, d, θ) : a ∈ [−1, 1), d >

1, θ > 0}. It is clear that G is sufficiently representative since ’asymmetric’ tent

maps mimic the main features of general unimodal birth functions. Thus we hope

that Theorem 1.3 below can be extended for all unimodal smooth nonlinearity g,

in this way the above mentioned uniqueness result from [8, Theorem 8.7] could

be proved for equations with delay.

Theorem 1.3 (On the uniqueness of the travelling front). For g ∈ G, there exists

exactly one wavefront for each fixed admissible speed.
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The structure of this paper is as follows: in the next section, we prove the

monotonicity of the leading edge of semi-wavefronts. This monotonicity will imply

that the initial segment of the semi-wavefronts considered within positive feedback

invariant domain is monotone or slowly oscillating. In the third section, we study

the dependence of roots to the characteristic equation in the positive steady state

of (2) on the parameter ε = c−2. In Section 4, under the positive feedback

condition, we establish that semi-wavefronts are (eventually) either monotone

or slowly oscillating. This section also contains the hardest part of the proof

of Theorem 1.2: if c > c∗ then the profile φ has to develop non-decaying slow

oscillations around κ. Finally, in Section 5 we show how the problem of travelling

wavefronts can be solved in the closed form for the birth functions in G. This

will imply that, given g ∈ G, there exists exactly one wavefront for each fixed

admissible speed.

2. Monotonicity of the leading edge of semi-wavefronts. For given ε > 0

we will denote by λ < 0 < µ the roots of εz2−z−1 = 0. Also, we set ε′ := ε(µ−λ).

In this section, always assuming (UM), we study the monotonicity properties of

semi-wavefronts to the equation

εx′′(t)− x′(t)− x(t) + g(x(t− h)) = 0, t ∈ R. (3)

Lemma 2.1. Let x be a semi-wavefront to Eq. (3). Then x′(t) > 0 on some

maximal interval (−∞, σ).

Proof. Looking for a contradiction, we admit that there exists a sequence

tn → −∞ such that x′(tn) = 0 for every n. Set ξ(t) = g(x(t − h))/x(t − h),

yn(t) = x(t+ tn)/x(tn). Since x(−∞) = 0, without the loss of generality we can

suppose that x(t) ≤ x(tn), ξ(s+ tn) < 2g′(0) for all t ≤ tn, s ≤ 0. It is clear that

yn(0) = 1 = maxt≤0 yn(t), y′n(0) = 0, and that yn(t) > 0 satisfies

εy′′(t)− y′(t)− y(t) + ξ(t+ tn)y(t− h) = 0. (4)

A partial integration of (4) yields

y′n(t) =
1

ε

∫ t

0

e(t−s)/ε(yn(s)− ξ(s+ tn)yn(s− h))ds, (5)

from which we deduce the uniform boundedness of the sequence {y′n(t)}:

|y′n(t)| ≤ 1 + 2g′(0), t ≤ 0, n ∈ N. (6)

Together with 0 < yn(t) ≤ 1, t ≤ 0, inequality (6) implies the pre-compactness

of {yn(t), n ∈ N} in the compact open topology of C(R−,R+). Therefore, by

the Arzelà-Ascoli theorem, there is a subsequence ynj
(t) converging uniformly on

bounded subsets of R− to a continuous function y(t). Integrating (5) between
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t and 0 and then taking the limit as nj → ∞ in the obtained expression, we

establish that y(t), t ≤ 0, satisfies

εy′′(t)− y′(t)− y(t) + g′(0)y(t− h) = 0. (7)

Additionally, y′(0) = 0 and 0 ≤ y(t) ≤ 1 = y(0), t ≤ 0. Since (3) possesses a

semi-wavefront x, equation (7) has exactly two real positive eigenvalues (counting

multiplicity) 0 < λ2(ε) ≤ λ1(ε) while other eigenvalues satisfy <λj(ε) < λ2(ε), see

[20, 21]. Therefore, for every b > λ1(ε), it holds that

y(t) = w(t) + exp(bt)o(1), t→ −∞,

where w(t) is a finite sum of eigensolutions of (7) associated to the eigenvalues

λj with <λj ≥ 0. Moreover, the positivity of y implies that

y(t) =

{
A2 exp(λ2(ε)t) + A1 exp(λ1(ε)t) + ζ(t), if λ2(ε) < λ1(ε);

exp(λ1(ε)t)(A2 + A1t) + ζ(t), if λ2(ε) = λ1(ε),

where ζ is a small solution of (7) at −∞ in the sense that lim
t→−∞

ζ(t) exp(bt) = 0

for every b ∈ R.

We claim that ζ(t) = 0 for all t ≤ 0. Indeed, suppose that ζ(q) 6= 0 for some

q ≤ 0 and consider another small solution u(t) = ζ(q + t), t ≤ 0, u(0) 6= 0, of (7).

Multiplying this equation by exp(−zt) and then integrating obtained expression

on (−∞, 0], we get that

û(z) = Φ(z)/∆(z), where û(z) =

∫ 0

−∞
e−zsu(s)ds, ∆(z) = εz2−z−1+g′(0)e−zh,

Φ(z) = ε(zu(0) + u′(0))− u(0)− g′(0)
∫ h

0
e−zsu(s− h)ds.

Since u is a small solution, we find that û is an entire function. Furthermore,

since g′(0)u(0) 6= 0 the entire functions Φ(z),∆(z) are of the same exponential

type h (see [5, Theorem 2.1, p. 137]). On the other hand, Φ(z),∆(z) are polyno-

mially bounded in the closed right half-plane. Thus, by [5, Corollary 2.3, p.138],

we get that û(z) is an entire function of exponential type 0. It is easy to see that

zû(z) is uniformly bounded in <z ≥ 0. Hence, an application of the Paley-Wiener

theorem (see [5, Theorem 2.1]) yields û = 0. Therefore u(t) = 0 for all t ≤ 0

contradicting to u(0) 6= 0.

In consequence, ynj
(t) converges to

y(t) =

{
A2 exp(λ2(ε)t) + A1 exp(λ1(ε)t), if λ2(ε) < λ1(ε);

exp(λ1(ε)t)(A2 + A1t), if λ2(ε) = λ1(ε).
(8)

Next, observe that ynj
(t), ynj

(0) = 1, y′nj
(0) = 0, satisfy, for all t ∈ R,

ynj
(t) =

µeλt − λeµt

µ− λ
+

1

ε′

∫ t

0

(
eλ(t−s) − eµ(t−s)

)
ξ(s+ tnj

)ynj
(s− h)ds. (9)



Slowly oscillating wave solutions 7

Taking limit, as j → ∞, in (9) on [0, h], we see that ynj
(t) converges to y(t)

uniformly on [0, h]. Repeating the above procedure consecutively on the intervals

[0, 2h], [0, 3h], . . . , we establish that, in fact, ynj
(t) converges to y(t) uniformly

on every bounded subset of R. Therefore y(t), t ∈ R, given by (8) must take only

the non-negative values. It is easy to see that this requirement is incompatible

with y(0) = 1, y′(0) = 0. �

Fix some semi-wavefront x of (3) and set Γ(t) := g(x(t − h)). Applying the

variation of constants formula to (3), we obtain that

x(t) = A′eλt +B′eµt +
1

ε′

{∫ t

a

eλ(t−s)Γ(s)ds+

∫ b

t

eµ(t−s)Γ(s)ds

}
. (10)

Suppose for a moment that Γ is of bounded variation on [a, b]. Differentiating

(10) and then integrating by parts Riemann-Stiltjes integrals [3, Theorem 7.6],

we find that, for some A,B ∈ R, the derivative z(t) = x′(t), t ∈ [a, b], satisfies

z(t) = Aeλt +Beµt +
1

ε′

{∫ t

a

eλ(t−s)dΓ(s) +

∫ b

t

eµ(t−s)dΓ(s)

}
. (11)

Lemma 2.2. If z meets the boundary conditions z(a) = z0, z(0) = 0, then

z(t) =
eλt − eµt

eλa − eµa

{
z0 +

1

ε′

∫ t

a

(eλ(a−u) − eµ(a−u))dΓ(u)

}
+

eµ(t−a) − eλ(t−a)

ε′

∫ 0

t

e−µu − e−λu

e−µa − e−λa
dΓ(u); (12)

z′(0) =
λ− µ

eλa − eµa

{
z0 +

1

ε′

∫ 0

a

(eλ(a−u) − eµ(a−u))dΓ(u)

}
;

z′(a) =
λeλa − µeµa

eλa − eµa
z0 +

µ− λ

ε′

∫ 0

a

e−µu − e−λu

e−µa − e−λa
dΓ(u).

Proof. Formula (12) follows from (11) after taking into consideration the bound-

ary conditions. The representations for z′(0), z′(a) can be obtained in the follow-

ing way: first, we integrate by parts the both Riemann-Stiltjes integrals in (12).

Then we find z′(t) differentiating the obtained expression with respect to t. To

get the above formulae for z′(0), z′(a), we need once more to integrate by parts.

Observe that, in general, we cannot differentiate Riemann-Stiltjes integrals in

(12). �

Remark 2.1 (Critical points of x(t) are isolated). Lemma 2.1 does not allow

to have Γ′(t) = 0 on any interval (p, q) since otherwise x′(t) = 0 for all t ∈
∪j≥1(p− jh, q− jh). Other consequence of Lemmas 2.1, 2.2 is that the closed set

K = {s : x′(s) = 0} does not have finite limit points. Indeed, let s1 be the first

limit point of K. Since function g(x(t − h)) is strictly monotone in both small
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one-sided neighborhoods Ol,Or of s1, we see that Γ(t) is of bounded variation on

Ol ∪Or. In consequence, Lemma 2.2 can be used near s1 to find that x′′(s1) 6= 0.

Therefore s1 must be isolated in K. Notice that, under additional conditions of

C2-smoothness of g at 0 and the hyperbolicity of Eq. (7), Lemma 2.1 was proved

in [21, Remark 5.5].

Remark 2.2 implies that, for a semi-wavefront x(t), function Γ(t) = g(x(t−h))
is piece-wise monotone, with finite number of local extrema on every compact

subinterval of R. In this way, Γ is locally of bounded variation, that is why we

don’t require this condition explicitly in Lemmas 2.2, 2.3.

Lemma 2.3. If z(t) = x′(t) satisfies z(−∞) = 0, z(0) = 0 then

z(t) =
1

ε′

{
(eλt − eµt)

∫ t

−∞
e−λsdΓ(s) + eµt

∫ 0

t

(e−µs − e−λs)dΓ(s)

}
=

1

ε′

{
(eλt − eµt)

∫ 0

−∞
e−λsdΓ(s) +

∫ t

0

(eλ(t−s) − eµ(t−s))dΓ(s)

}
. (13)

Proof. Formula (13) follows from (11) after taking into consideration the bound-

ary conditions. To justify the convergence of the improper Riemann-Stiltjes in-

tegrals, it suffices to integrate them by parts. �

Theorem 2.1. Let x be a semi-wavefront to Eq. (3). If τ ∈ R is the leftmost

point where x(τ) = κ then x′(t) > 0, t ∈ (−∞, τ ].

Proof. Take σ as in Lemma 2.1. Since σ = +∞ implies that x(+∞) = κ and

x(t) < κ, t ∈ R, we may assume that σ = 0 and z(0) = x′(0) = 0. Thus

z(t) = x′(t) > 0 for all t < 0. Next, arguing as in (5), (6), we find that x′(t) ≤
x(0)(1+2g′(0)). Due to (3), this yields the uniform boundedness of |x′′(t)| on R−.

Therefore x′(t) is uniformly continuous on R−. An application of the Barbalat

lemma (e.g. see [22, Lemma 2.3]) gives x′(−∞) = 0.

First, we consider the case when x(0) ≤ xM . Then Γ(t) = g(x(t − h)) is

strictly increasing on (−∞, h). Since z(t) = x′(t) satisfies boundary conditions

z(−∞) = 0, z(0) = 0, we get from (13) that z(t) < 0 for all t ∈ (0, h]. Thus

z(t) < 0 on some maximal interval (0, σ1). Notice that σ1 must be a finite real

number since otherwise x′(t) < 0 on (0,+∞) implying x(+∞) = 0. However, this

contradicts the uniform persistence of semi-wavefronts established in Lemma 4.3

of [21]. In consequence, σ1 > h is finite so that x′(σ1) = z(σ1) = 0, x′′(σ1) ≥ 0

and x(σ1) < x(σ1 − h). On the other hand, we see that (3) implies

εx′′(σ1)− x(σ1) + g(x(σ1 − h)) = 0,

from which we obtain x(σ1 − h) > x(σ1) ≥ g(x(σ1 − h)), a contradiction.
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Let us suppose now that x(0) ∈ (xM , κ]. Then x(t∗) = xM for a unique t∗ < 0.

Case I. If t∗ + h > 0, then we can again use Lemma 2.3 to find that z(t) < 0,

t ∈ (0, t∗ + h]. Moreover, x′′(0) = z′(0) < 0 in view of Lemma 2.2. Therefore, if

x(0) ≤ κ and if σ2 > 0 denotes the leftmost positive point where x′(σ2) = 0, then

σ2 > t∗ + h, x′′(σ2) ≥ 0 and x(σ2) < κ.

Case II. Now, assume that t∗+h ≤ 0. Then x′′(0) < 0, since x′′(0) = 0 implies

κ ≥ x(0) = g(x(−h)) > κ, what of course is not true. Suppose that x′(a) = 0

for some a ∈ (0, h]. Since Γ(t) = g(x(t − h)), t ∈ [0, a] is strictly decreasing, an

application of Lemma 2.2 yields x′(t) = z(t) < 0, t ∈ (0, a) and x′′(a) = z′(a) > 0.

Hence, we can find at most one critical point a ∈ (0, h]. In any case, we see that

if t∗ + h ≤ 0 then x′(t) < 0 on (0, a).

The above considerations show that if σ2 > 0 denotes the leftmost positive

point where x′(σ2) = 0, then σ2 > t∗ + h and x′′(σ2) ≥ 0, x(σ2) < κ.

Finally, let us suppose for a moment that x(σ2) < xM . Then σ2 > t∗+h implies

that x(σ2) < x(σ2 − h) ≤ κ, a contradiction in view of x(σ2) ≥ g(x(σ2 − h)) >

x(σ2 − h). Therefore we have to suppose that x(σ2) ≥ xM . But then σ2 > t∗ + h

implies that κ ≥ x(σ2− h) ≥ xM so that x(σ2) ≥ g(x(σ2− h)) ≥ κ. This is again

a contradiction.

The above said shows that x(t) is strictly increasing with x′(t) > 0, at least

until its first intersection with the positive equilibrium κ. �

Arguments used in the proof of Theorem 2.1 allows us to establish the strict

monotonicity of all semi-wavefronts of Eq. (3) once g is monotone on [0, κ]:

Corollary 2.1. Assume that continuous g : R+ → R+ is strictly increasing on

[0, κ], there exists g′(0) > 1 and equation g(x)− x = 0 has only two roots: 0 and

κ. Then every semi-wavefront x of Eq. (3) in fact is a travelling front. Moreover,

x′(t) > 0 for all t ∈ R.

Proof. Since we can set formally xM = +∞, we find from the proof of Theorem

2.1 that x′(t) > 0 on some maximal semi-infinite interval (−∞, σ). If σ = +∞,

Corollary 2.1 is proved. If σ is finite, then x(σ) > κ, x′(σ) = 0 and therefore,

by Lemma 2.2, x′′(σ) < 0. This leads to the following contradiction: x(σ) <

g(x(σ − h)) ≤ max{κ, x(σ − h)}. �

Lemma 2.4. Let x be a non-monotone semi-wavefront to Eq. (3). Then there

exist τ1 > τ such that x′(t) > 0 on (−∞, τ), x(τ) > κ, x′(τ1) = 0 and x′(t) < 0

on (τ, τ1). If τ1 is finite then x(τ1) < κ, x′′(τ1) ≥ 0. Finally, if τ1 ∈ (τ, τ + h]

then x′′(τ1) > 0 and x′(t) > 0 on (τ1, τ + h].

Observe that if τ1 = +∞, then wavefront x can have only one extremum (global

maximum) at τ . However, we don’t know whether this can happen under our

assumption (UM).



10 Trofimchuk, Tkachenko and Trofimchuk

Proof. Set τ = sup{t : x′(s) > 0, s ∈ (−∞, t)}. This number is finite since x

is not monotone and Theorem 2.1 implies that x(τ) > κ, x′(τ) = 0. Next, let t∗
be the unique point on (−∞, τ) where x(t∗) = xM . We will consider two cases

depending on possible mutual positions of the points t∗ + h and τ .

Case A First, suppose that t∗+h ≤ τ . ¿From Case II of the proof of Theorem

2.1, we find out immediately that either the inequality x′(t) < 0 on (τ, τ+h] or the

existence of a critical point a ∈ (τ, τ +h] of x imply all conclusions of Lemma 2.4

(with τ1 = a) but the inequality x(τ1) < κ. Now, to see that the latter inequality

holds, let us consider b := sup{t : x′(s) > 0, s ∈ (τ1, t)}. If x(τ1) ≥ κ then b is

finite, b− τ > h and x′(b) = 0, x′′(b) ≤ 0. This gives κ < x(b) ≤ g(x(b−h)) ≤ κ,

a contradiction. Finally, if we consider the third possibility that x′(t) > 0 on

(τ, τ + h] and set c := sup{t : x′(s) > 0, s ∈ (τ, t)}, then we find that c is finite,

x′(c) = 0 and Γ(t) = g(x(t − h)) strictly decreases on (τ, c). Applying Lemma

2.2, we get a contradiction: x′′(c) = z′(c) > 0.

Case B So we have only to study the case when t∗+h > τ . As we already have

established in Case I of the proof of Theorem 2.1, x′(t) < 0 on (τ, t∗ + h]. Let us

suppose for a moment that there exists a ∈ (t∗ + h, τ + h] such that x′(a) = 0.

Then applying Lemma 2.2 on [t∗ + h, a], we obtain that x′′(a) > 0 (and thus we

may set τ1 = a). This means that there is at most one critical point of x on

(t∗ + h, τ + h] (and, in consequence, on [τ, τ + h]). The proof of the inequality

x(a) = x(τ1) < κ is as above.

Now, if t∗ + h > τ and x′(t) < 0 on (τ, τ + h], we can set τ1 = sup{t : x′(s) <

0, s ∈ (τ, t)} > τ + h. When τ1 is finite, it holds x′(τ1) = 0, x′′(τ1) ≥ 0.

Furthermore, we claim that x′(t) > 0 in some right neighborhood of τ1 ∈ R.

Indeed, otherwise x′′(τ1) = 0 and therefore x(τ1) = g(x(τ1−h)). This implies that

x(τ1) < κ < x(τ1−h). In consequence, if x′(t) < 0 on (τ1, τ2) and x′(τ2) = 0 then

τ2− τ1 < h. Moreover, since κ < x(τ2−h) we find that Γ(t) = g(x(t−h)) strictly

increases on (τ1, τ2). Applying Lemma 2.2, we get a contradiction: x′′(τ1) > 0.

Finally, since x′(t) > 0 in some right neighborhood of τ1 ∈ R, we finalize our

studies of Case B proving the inequality x(τ1) < κ as it was done above. �

Corollary 2.2. Let x be a non-monotone semi-wavefront to Eq. (3). Let τ

be the leftmost critical point of x(t). Then sc(x̄τ+h) = 1 or sc(x̄τ+h) = 2 and

g(g(xM)) ≤ x(t) ≤ g(xM) = maxx>0 g(x) for all t ≥ τ .

Proof. We need only to prove that x(t) ≥ g(g(xM)). Let τ1 be as in Lemma 2.4.

First, we see that x(τ1) ≥ g(x(τ1−h)) ≥ g(g(xM)) because of x(τ1−h) > κ. Now,

suppose that τ̂ is the first critical point where x(τ̂) < g(g(xM)) < κ. We have

x′(τ̂) = 0, x′′(τ̂) ≥ 0, x(τ̂ − h) > κ > x(τ̂) and therefore x(τ̂) ≥ g(x(τ̂ − h)) ≥
g(g(xM)). �
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Remark 2.2 (Monotonicity without assuming the unimodality). Some of the

proofs given above don’t use the full force of condition (UM). For example, as it

can be easily checked, Lemma 2.1 holds true for all positive (including unbounded)

solutions x, x(−∞) = 0, if continuous g satisfies g′(0) > 0 and g(x) > 0, x ∈ R.

One can consider also the following assumption proposed in [21]:

(B): g : R+ → R+ is continuous and such that, for some 0 < ζ1 < ζ2,

1. g([ζ1, ζ2]) ⊆ [ζ1, ζ2] and g([0, ζ1]) ⊆ [0, ζ2];

2. mins∈[ζ1,ζ2] g(s) = g(ζ1);

3. g(x) > x for x ∈ (0, ζ1] and there exists g′(0) > 1;

4. In [0, ζ2], the equation g(x) = x has exactly two fixed points 0 and κ.

We can repeat the first part of the proof of Theorem 2.1 to establish

Proposition 2.1. Assume (B) with sups≥0 g(s) ≤ ζ2, and suppose that g in-

creases on [0, xM ], xM ∈ [ζ1, ζ2]. Let φ be a positive semi-wavefront to Eq. (3).

Then there exists a unique τ such that φ(τ) = xM and φ′(s) > 0 for all s ≤ τ .

3. Variational equation at the positive equilibrium. In this section, we

study the zeros of the characteristic function

ψ(z, ε) := εz2 − z − 1 + a exp(−zh), a = g′(κ) < 0,

associated with the variational equation

εx′′(t)− x′(t)− x(t) + ax(t− h) = 0 (14)

along the equilibrium κ of Eq. (3). It is easy to check (e.g., see [21]) that all

complex zeros of ψ are simple and that, for some ε0 > 0, equation ψ(z, ε0) = 0

has a negative real root z0 of the multiplicity 2. In fact, (z0, ε0) is a bifurcation

point where two real roots merge and disappear as ε→ ε0+.

Lemma 3.1. Fix a < 0, h > 0, p ∈ [0, 1], and suppose that ε > max{2,−2aeh}.
Then function

ψp(z, ε) := εz2 − p(z + 1) + a exp(−zh)
1) has exactly two roots λ0, λ1, in the half-plane <λ > −1. Furthermore, these

roots are real and λ1 < 0 < λ0;

2) does not have any root in the semi-infinite horizontal strips (−∞, 0]×(π(1+

2k)/h, π(2 + 2k)/h), (−∞, 0]× (−π(2 + 2k)/h,−π(1 + 2k)/h), k ∈ N∪{0};
3) has at most two roots (counting multiplicity) on the vertical line <z = α,

for every fixed α ∈ R.

Proof. 1). Let µ = µ(ε, p) ≤ 0, ν = ν(ε, p) ≥ 0, be the roots of εz2− pz− p = 0.

Since µ(ε, p) > −1/2 for ε > 2, we have that

|εz2 − pz − p| = ε|z − µ||z − ν| ≥ ε/2 > |a|e−<zh
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for all z from the boundary of sufficiently large rectangles [−1, A]× [−B,B] ⊂ C.

An application of the Rouché theorem ends the proof of 1).

2). Indeed, if we take z = x+ iy, x ≤ 0, yh ∈ (π + 2πk, 2π + 2πk), then

=ψp(z, ε) = 2εxy − py − ae−xh sin(yh) < 0.

3). Suppose that z1 = α + iv 6= z2 = α + iu, |u| 6= |v| satisfy ψp(zj, ε) = 0.

Then

|εz2
1 − pz1 − p|2 = |a|2 exp(−2αh) = |εz2

2 − pz2 − p|2,
that implies

ε2(u2 + v2) + 2(εα− 0.5p)2 + 2εp+ p2/2 = 0,

a contradiction. �

As it was observed in [21, Lemma 2.1 and Remark 2.2], if for fixed a < 0, h,

ε1 > 0, the equation ψ(λ, ε1) = 0 has a unique root in the half plane {<z > 0},
then this property will be maintained for all ε > ε1. In consequence, from Lemma

3.1 (with p = 1) we can deduce the following

Corollary 3.1. Fix a < 0, h > 0. Then there is a unique ε∗ ∈ [0,max{2,−2aeh}]
such that ψ(z, ε) has only one zero in the half plane {<z > 0} if and only if

ε ≥ ε∗.

Remarks 3.1, 3.2 below are motivated by [14, Section 6].

Remark 3.1. Fix a < 0, h > 0, p ∈ [0, 1], and suppose that ε > max{2,−2aeh}.
Then Lemma 3.1 implies that each zero λ, =λ ≥ 0, of ψp(λ, ε) belongs to the set

{λ0} ∪k≥0 Sk, where

S0 = (−∞, 0]× [0, π/h], Sk = (−∞, 0]× [π2k/h, π(1 + 2k)/h], k ∈ N.

Next, it is straightforward to see that |a| ≤ (ε|z|2 + |z|+1)e<zh for every zero z of

ψp(λ, ε). In consequence, for each j we can indicate xj(|a|, ε, h) < −1 such that

every root z ∈ Sj satisfies <z ∈ [xj(|a|, ε, h),−1]. Hence, equations ψ(z, ε) = 0

and

z2 = ρ exp(−zh), ρ = |a|/ε > 0, (15)

have the same number of roots in each Sj.

Remark 3.2. Consider (15) for ρ > 0. All complex roots of (15) are simple, and

the unique multiple (double) real root is z = −2/h, it appears when ρ = ρ] :=

4/(he)2. If ρ is sufficiently small then all roots z, =z ≥ 0, (excepting one positive)

of this equation belong to ∪k≥0Sk. Now, fix some j and take z = zj(ρ) ∈ Sj. If we

let ρ increase, then exp(<zj(ρ)h)|zj(ρ)|2 = ρ yields that <zj(ρ) > 0 for sufficiently

large ρ. If zj(ρj) = iνj, then we have

νjh = π(2j + 1), ρj = ν2 = (π/h)2(2j + 1)2, ρ0 > ρ].



Slowly oscillating wave solutions 13

In consequence, every strip Sj, j > 0 possesses a unique root zj(ρ) for all ρ ≤ ρj.

When ρ increases trough ρj, this root crosses the imaginary axis from left to right.

Hence, Sj does not contain any root of (15) for ρ > ρj. The same for the strip

S0, with the unique exception that S0 contains two real roots z01 ≤ z02 < 0 for

ρ ≤ ρ]. Furthermore, Lemma 3.1 (3) implies that <zj(ρ) < <zi(ρ), ρ > 0, if and

only if j > i. If ρ ≤ ρ], then

· · · < <z2(ρ) < <z1(ρ) < z01 ≤ z02.

Remarks 3.1, 3.2 imply the following

Lemma 3.2. Take a < 0, h > 0, and ε ≥ ε∗. Then the set

Λ = {λj}j>0 ∪ {λ0, λ01, λ02}

of all zeros λj,=λj ≥ 0, j > 0, of ψ can be enumerated in such a way that either

λ0 > 0 > λ01 ≥ λ02 > <λ1 > <λ2 > . . .

or

λ0 > 0 ≥ <λ01 = <λ02 > <λ1 > <λ2 > . . .

Furthermore, λj ∈ Sj and λ0k ∈ S0.

The next result is key to the proof of Theorem 1.2 :

Theorem 3.1. If ε∗ > 0 is as in Corollary 3.1, then ψ(z, ε) does not have any

zero in the strip S00 := (−∞, 0]× [−2π/h, 2π/h] for every ε < ε∗.

Proof. By Lemma 3.2, Theorem 3.1 holds if ε∗− ε > 0 is close to 0. Therefore, if

S00 contains zero λj(ε̂) of ψ for some ε̂ < ε∗, it should enter the strip S00 crossing

the interval J := [−2πi/h, 2πi/h] from right to left as ε is decreasing. This means

that λj(ε) crosses J from left to right as ε increases from ε̂ to ε∗.

Now, the root λj := λj(ε̂) 6∈ R of ψ(z, ε̂) = 0 determines a unique smooth

function λj(·) : (αj, βj) → C defined on some maximal open interval (αj, βj) ⊆
[0,+∞) containing ε̂ and such that λj(ε̂) = λj, ψ(λj(ε), ε) = 0. We claim that

the path λj(·) : (αj, βj) → C can not cross the imaginary axis from left to right.

Indeed, we have that

λ′j(ε) = − z2

2εz − 1 + h(εz2 − z − 1)
,

so that, at the moment ε̃ of the eventual intersection we have λj(ε̃) = iω and

<λ′j(ε̃) = −ω2(1 + h+ εhω2)/((1 + h(εω2 + 1))2 + ω2(2ε− h)2) < 0,

a contradiction. Theorem 3.1 is completely proved. �
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4. Proof of Theorem 1.2. Let x be a non-monotone semi-wavefront solution of

Eq. (3). By Remark 2.2, all critical points of x are isolated so that x(t) 6≡ const

on every open subinterval of R. Let τ be as in Lemma 2.4. Then Corollary 2.2

implies that x(t) ∈ [g(max g),max g] for every t > τ and that sc(x̄τ+h) = 1 or

sc(x̄τ+h) = 2. Applying [16, Theorem 2.1], we find that sc(x̄t) ∈ {0, 1, 2} for

every t > τ + h. It is immediate to check that sc(x̄s) > 0 for all s > τ + h.

Now, sc(x̄t) = 1 for all large t if and only if x(t) is eventually monotone. If

sc(x̄t) : (τ+h,∞) → {1, 2} is not constant, then x is a slowly oscillating solution.

It is easy to see that x can not be monotone if c > c∗. Indeed, if x is monotone

then necessarily x(+∞) = κ. However, if c > c∗ then the characteristic function

has not negative real roots (and therefore g′(κ) < 0). This means that x should

oscillate around κ, see [7], [20, Remark 3.2], [21, Remark 5.2]. Hence, if c > c∗,

then x is slowly oscillating around the positive steady state. In the remaining

part of this section, we show that these oscillations are non-decaying.

Arguing by contradiction, assume that x(+∞) = κ for some c > c∗. Then

w(t) = x(t)− κ, w(+∞) = 0, solves

εw′′(t)− w′(t)− w(t) + g1(w(t− h)) = 0, t ∈ R, (16)

where g1(u) := g(u + κ) − κ, g1(0) = 0, g′1(0) = g′(κ), satisfies the positive

feedback condition with respect to 0.

Since w(+∞) = 0, there exists a sequence tn → +∞ such that |w(tn)| =

maxs≥tn |w(s)|. It is evident that w(tn) 6= 0. Additionally, we can suppose that

w attains its local extremum at tn so that w′(tn) = 0, w′′(tn)w(tn) ≤ 0. Due to

the positive feedback condition, this implies immediately that w(tn)w(tn−h) < 0

and therefore sc(w̄tn) = 1 (observe that sc(w̄tn) must be an odd integer). In

fact, there are a unique zn ∈ (tn − h, tn) and a finite set Fn such that w(s) < 0

for s ∈ [tn − h, zn) \ Fn and w(s) ≥ 0 for s ∈ [zn, tn]. Without restricting the

generality, we can suppose that |w(tn)| = max{|w(s)| : s ∈ [zn, tn]}, and that

{rn}, rn := tn − zn ∈ (0, h), is monotonically converging to r∗ ∈ [0, h].

Now, yn(t) = w(t+ zn)/w(tn), t ∈ R, satisfies

εy′′(t)− y′(t)− y(t) + pn(t− h)y(t− h) = 0, (17)

where

pn(t) =

{
g1(w(t+ zn))/w(t+ zn), if w(t+ zn) 6= 0;

g′(κ), if w(t+ zn) = 0.

It is clear that yn(0) = 0 and |yn(t)| ≤ 1, t ≥ 0, and that limn→∞ pn(t) = g′(κ)

uniformly in t ∈ R+. As a consequence, we may suppose that pn(t)/g′(κ) ∈
[0.9, 1.1] for all n and t ≥ 0. We have also that yn(rn) = 1, yn(rn − h) < 0.

Next, we need to estimate |y′n(t)|. Let {sn}, lim(sn − zn) = +∞ be such that

w′(sn) = 0. Since vn(t) = y′n(t) solves the initial value problem vn(sn − zn) = 0



Slowly oscillating wave solutions 15

for

εv′(t)− v(t)− yn(t) + pn(t− h)yn(t− h) = 0, t ∈ R,
we obtain that

y′n(t) = vn(t) =
1

ε

∫ t

sn−zn

e(t−s)/ε(yn(s)− pn(s− h)yn(s− h))ds.

For all t ∈ [h, sn − zn], we have

|y′n(t)| ≤ |1
ε

∫ t

sn−zn

e(t−s)/ε(|yn(s)|+ sup
x>0

|g(x)− κ

x− κ
||yn(s− h)|)ds| ≤

≤ (sup
x>0

|g(x)− κ

x− κ
|+ 1)

1

ε

∫ sn−zn

t

e(t−s)/εds ≤ (sup
x>0

|g(x)− κ

x− κ
|+ 1) := ρ.

|y′′n(t)| ≤ ε−1[|y′n(t)|+ |yn(t)|+ |pn(t− h)||yn(t− h)|] ≤ 2ε−1ρ.

Hence, the sequences yn(t), y′n(t) have subsequences which converges on [h,+∞),

in the compact-open topology, to continuous function y∗(t), y
′
∗(t). Recalling the

properties of yn, we find that max{|y∗(s)|, s ≥ h} ≤ 1. Next, for all t ∈ [2h,+∞),

it holds that

gn(t) := pn(t− h)yn(t− h) → g∗(t) := g′(κ)y∗(t− h).

We have 0 ≤ |g∗(t)| ≤ |g′(κ)| for t ≥ 2h.

In order to establish some further properties of y∗(t), we find the family of all

solutions to (17) which are bounded at +∞:

y(t) = Aeλt +
1

ε(µ− λ)


t∫

2h

eλ(t−s)gn(s)ds+

+∞∫
t

eµ(t−s)gn(s)ds

 , t ≥ 2h. (18)

Replacing y(t) with yn(t) in (18) and taking limit as n→ +∞ (through passing

to a subsequence if necessary) we find that y∗(t), t ≥ 2h, satisfies

y∗(t) = Aeλt +
1

ε(µ− λ)


t∫

2h

eλ(t−s)g∗(s)ds+

+∞∫
t

eµ(t−s)g∗(s)ds

 , (19)

with some finite A. Next, (19) implies that y∗(t) satisfies the linear equation

εy′′(t)− y′(t)− y(t) + g′(κ)y(t− h) = 0, t ≥ 2h. (20)

We claim that y∗(t) is not a small solution, the proof of this claim, given below,

is motivated by [14, Section 10].

Indeed, on the contrary, let us suppose that y∗(t) has superexponential decay.

Then [11, Theorem 3.1] assures that y∗(t) = 0 for all t ≥ 3h. But then Eq. (20)

implies that y∗(t) = 0, y′∗(t) = 0 for all t ≥ 2h and, in consequence, y∗(t) = 0,

y′∗(t) = 0 all t ≥ h.
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Next, by the Banach-Alaoglu theorem, we can suppose that yn,h ⇀ φ in ∗-weak

topology of L∞[−h, 0]. Since yn(h) → y∗(h) = 0, then integrating (17) between

h and t ≥ h, we get

εy′n(t)− εy′n(h)− (yn(t)− yn(h))−
t∫

h

(yn(s) + pn(s− h)yn(s− h)ds = 0. (21)

After taking limit as n → ∞, we find that
∫ t

h
g′(κ)φ(s − 2h)ds = 0, t ∈ [h, 2h].

Hence, φ = 0 and therefore

lim
n→∞

inf
t∈[a,b]

|yn(t)| = 0 (22)

for every subinterval [a, b] ⊆ [0, h]. (Indeed, otherwise there exists ε0 > 0 and a

subsequence {ynk
} such that either ynk

(t) ≥ ε0 or ynk
(t) ≤ −ε0 for all t ∈ [a, b].

This means that
∫ b

a
ynk

(s)ds 6→ 0, contradicting to yn,h ⇀ 0).

We claim that there exists a sequence {snj
}, snj

∈ (rnj
, h), such that snj

→
r∗ and y′nj

(snj
) < 2g′(κ) − 1, y′′nj

(snj
) = 0. Below, we prove this statement

considering three different situations (i), (ii), (iii).

(i) If r∗ = h, then we can define sn by

y′n(sn) = min
s∈[rn,h]

y′n(s).

Recall that yn(h), y′n(h) → 0, so that, in fact, sn ∈ (rn, h). Thus y′′(sn) = 0.

(ii) Next, suppose that r∗ < h, and that {rn} is increasing. For an arbitrary j

satisfying −(2j − 2−j) < 2g′(κ)− 1, we will fix two intervals

I1 = [r∗, r∗ + 2−j−1], I2 = [r∗ + 2−j, r∗ + 3 · 2−j−1].

In view of (22), we can find dk ∈ Ik and integer nj such that r∗ − rnj
≤ 2−j−1;

|ynj
(dk)| ≤ 4−j. But then 1−4−j ≤ ynj

(rnj
)−ynj

(d1) = y′nj
(θnj

)(rnj
−d1) so that

y′nj
(θnj

) ≤ 1− 4−j

rnj
− d1

≤ −(2j − 2−j) < 2g′(κ)− 1.

Similarly,

−4−j − 4−j ≤ ynj
(d2)− ynj

(d1) = y′nj
(ξnj

)(d2 − d1),

so that

y′nj
(ξnj

) ≥ −2 · 4−j

d2 − d1

≥ −2 · 4−j

2−j−1
= −2−j+2 ≥ y′nj

(θnj
), θnj

< ξnj
.

Accordingly, if we set

y′nj
(snj

) = min
s∈[rnj ,r∗+3·2−j−1]

y′nj
(s),

then

y′′nj
(snj

) = 0, y′nj
(snj

) < 2g′(κ)− 1, snj
− rnj

≤ 2−j+1.



Slowly oscillating wave solutions 17

(iii) Finally, if r∗ < h, and {rn} is decreasing, a similar argument works, if we

take I1 = [r∗+2−j−2, r∗+2−j−1], I2 = [r∗+2−j, r∗+3·2−j−1], rnj
∈ [r∗, r∗+2−j−2).

Hence, the above claim and (17) imply that

ynj
(snj

− h) =
y′nj

(snj
) + ynj

(snj
)

pnj
(snj

− h)
≥ 2

pnj
(snj

− h)/g′(κ)
≥ 2/1.1 > 1,

a contradiction, since −h < rnj
− h < snj

− h < rnj
and

ynj
(s) ≤ 0, s ∈ [rnj

− h, 0), 0 ≤ ynj
(s) < 1, s ∈ [0, rnj

).

Therefore y∗(t) is not a small solution.

Hence, by [15, Proposition 7.2], for every sufficiently large ν < 0, we have that

y∗(t) = u(t) +O(exp(νt)), t→ +∞,

where u is a non empty finite sum of eigensolutions of (20) associated to the

eigenvalues λj ∈ F = {ν < <λj ≤ 0}. Now, Theorem 3.1 says that, for every

ε ∈ (0, ε0],

F ∩ (−∞, 0]× [−2π/h, 2π/h] = ∅.
In consequence, there exist A > 0, β > 2π/h, α ≥ 0, ϕ ∈ R, such that

y∗(t) = (A cos(βt+ ϕ) + o(1))e−αt, t ≥ 0.

This implies the existence of an interval (a, a+h), a > 3h, such that y∗(t) changes

its sign on (a, a+h) exactly three times. Since ynj
(t), y′nj

(t) → y∗(t) uniformly on

[a, a+h], we can conclude that sc(ȳnj ,a+h) ≥ 3 for all large j, a contradiction since

ynj
(t) is a slowly oscillating function. In consequence, the equality x(+∞) = κ

can not hold for c > c∗.

5. Uniqueness in the case of piece-wise linear birth functions. Let d > 1,

θ > 0, κ, b, and a ∈ [−1, 1) satisfy the relations aθ + b = dθ, aκ+ b = κ. Then

θ < κ, b > 0, and the piece-wise linear function

g(x) =

{
dx, for x ∈ [0, θ];

ax+ b, if x ∈ [θ,max{κ, dθ}],
is continuous and it holds that g(0) = 0 and g(κ) = κ. Moreover, if a ∈ [−1, 0)

then g : [g(max g),max g] → R+ is decreasing so that the positive feedback

condition is satisfied automatically.

In this section, given a ∈ [−1, 1), θ > 0, d > 1, we show how all the heteroclinic

solutions of the equation

εx′′(t)− x′(t)− x(t) + g(x(t− h)) = 0 (23)

can be found in the closed form. It should be noticed here that Eq. (23) has at

least one heteroclinic solution (say φ) for every ε ∈ (0, (c∗(a, h))
−2] independently

on the value of delay h, see [13, 21].
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Now, Lemma 2.4 (or Corollary 2.1) assures the existence of t0 such that φ′(t) > 0,

t ≤ t0 − h, and φ(t0 − h) = θ. Set t0 = 0. Then, for all t ≤ 0, such φ is a positive

solution of the linear equation

εx′′(t)− x′(t)− x(t) + dx(t− h) = 0. (24)

The characteristic equation for (24) is

ελ2 − λ− 1 + de−hλ = 0, (25)

and it has two positive real roots 0 < λ1 ≤ λ2 which dominate each complex root

λj of (25) in the sense that <λj < λ1, e.g. see [21, Lemma 2.3].

Case of the simple positive roots. At first we assume that λ1 < λ2. Then we

get, for some p ≥ 0, p+ q > 0, that

φ(t) = peλ1(t+h) + qeλ2(t+h), t ≤ 0. (26)

From (26) we get φ(−h) = p+ q = θ, so that p = θ − q.

By Corollary 2.2, we have that φ(t) ≥ θ for all t ≥ −h. Hence, if t > 0, then

εφ′′(t)− φ′(t)− φ(t) + aφ(t− h) + b = 0.

The change of variables φ = y + κ transforms this equation into

εy′′(t)− y′(t)− y(t) + ay(t− h) = 0. (27)

Set ψ(s) = φ(s)− κ, s ≥ −h. Then

ψ(s) = (θ − q)eλ1(h+s) + qeλ2(h+s) − κ, s ∈ [−h, 0],

ψ(0) = (θ − q)eλ1h + qeλ2h − κ, ψ′(0) = λ1(θ − q)eλ1h + qλ2e
λ2h.

Applying the Laplace transform (Ly)(z) =
∫∞

0
e−zsy(s)ds to Eq. (27), we get

χ(z)(Ly)(z) = ε(ψ′(0) + zψ(0))− ψ(0)− ae−zh

∫ 0

−h

ψ(s)e−zsds. (28)

Here χ(z) = εz2 − z − 1 + ae−hz. Since |a| ≤ 1, characteristic function χ has a

unique positive root ν while other characteristic values have negative real parts,

see [21]. Therefore lim y(t) = 0, t → ∞, only if (Ly)(ν) = 0. The last equation

has the form P (ν, λ1, λ2)q +Q(ν, λ1, λ2) = 0, where P (ν, λ1, λ2) =

ελ2e
λ2h − ελ1e

λ1h + (eλ2h − eλ1h)(εν − 1)− ae−hν

0∫
−h

e−νs(eλ2(h+s) − eλ1(h+s))ds,

Q(ν, λ1, λ2) = ε(θλ1e
λ1h +νθeλ1h−νκ)+κ−θeλ1h−ae−hν

0∫
−h

e−νs(θeλ1(h+s)−κ)ds.
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Next, we establish that P (ν, λ1, λ2) > 0, proving that the partial derivative

Pλ2(ν, λ1, λ2) > 0. Observe here that λ2 > λ1 and P (ν, λ1, λ1) = 0. Since

a < 1, λ2 > 0, we have

Pλ2(ν, λ1, λ2) = eλ2h (ε+ ελ2h+ h(εν − 1))− a

∫ 0

−h

e−ν(s+h)eλ2(h+s)(h+ s)ds ≥

≥ eλ2h (ε+ ελ2h+ h(εν − 1))− heλ2h

∫ 0

−h

e−ν(s+h)ds =

= eλ2h

(
ε+ ελ2h+ h(εν − 1) + h

e−νh − 1

ν

)
≥ eλ2h(ε+ ελ2h) > 0.

Notice that

h
e−νh − 1

ν
≥ h

−εν2 + ν

ν
= (−εν + 1)h

due to relations 0 = εν2 − ν − 1 + ae−νh ≤ εν2 − ν − 1 + e−νh.

Hence q = −Q(ν)/P (ν) is determined uniquely and we can find y(t) from (28)

using the inverse Laplace transform:

y(t) = L−1[
ε(ψ′(0) + zψ(0))− ψ(0)− ae−zh

∫ 0

−h
ψ(s)e−zsds

χ(z)
](t). (29)

We observe here that [21, Lemma 3.1] says that p > 0 and q < 0 in (26).

Case of the multiple positive roots. Now, let us consider the case when λ1 = λ2.

Then, for some p ≥ 0, p+ q > 0, we have

φ(t) = eλ1(t+h)(p+ q(t+ h)), t ≤ 0. (30)

From (30) we get φ(−h) = p = θ, so that p = θ.

Therefore ψ(s) = φ(s)− κ, s ∈ [−h, 0], satisfies :

ψ(s) = eλ1(h+s)(θ + q(s+ h))− κ, (31)

ψ(0) = eλ1h(θ + qh)− κ, ψ′(0) = eλ1h(λ1θ + λ1qh+ q).

We next apply Laplace transform to Eq. (27) considered together with initial

conditions (31). Considering relation (Ly)(ν) = 0 (which is necessary to have

y(+∞) = 0), we find that it can be written as P (ν, λ1)q + Q(ν, λ1) = 0, where

Q(ν, λ1) is as above (but with λ1 = λ2) and

P (ν, λ1) = eλ1h (ελ1h+ ε+ ενh− h)− ae−hν

0∫
−h

e−νs+λ1(h+s)(h+ s)ds.

Since a < 1, λ1 > 0, we have

P (ν, λ1) ≥ eλ1h

(
ελ1h+ ε+ (εν − 1)h− h

∫ 0

−h

e−ν(h+s)ds

)
=
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Figure 1. Non-monotone wavefront for Eq. (32).

= eλ1h

(
ελ1h+ ε+ (εν − 1)h+

h

ν
(e−νh − 1)

)
≥ eλ1h (ελ1h+ ε) > 0.

Hence q = −Q(ν)/P (ν) is determined uniquely and y(t) is given by (29).

Example. Partially, the above technique works even when a < −1. Consider

x′′(t)− x′(t)− x(t) + g(x(t− 1)) = 0, (32)

with continuous

g(x) =


2x, for x ∈ [0, 1];

−4x+ 6, if x ∈ [1, 1.4];

is positive decreasing when x > 1.4.

Eq. (32) has two non-negative equilibria x1 ≡ 0 and x2 ≡ 1.2.

It is easy to see that the characteristic equation z2− z− 1 + g′(0) exp(−z) = 0

has two positive real roots, and that the roots λ = (1−
√

5)/2 and µ = (1+
√

5)/2

of the equation z2 − z − 1 = 0 satisfy the condition

µ− λ

µe−λ − λe−µ
= 0.715... >

Γ2 + Γ

Γ2 + 1
= 0.705..., where Γ := g′(κ) = −4.

Therefore, the existence of non-monotone travelling front in (32) is guaranteed

by [21, Theorem 1.1]. Then we use the Laplace transform to find and picture the

non-monotone wavefront, see Fig. 1.
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