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Abstract

Quasi-Monte Carlo algorithms are studied for designing discrete approximations of two-stage
linear stochastic programs with random right-hand side and continuous probability distribution.
The latter should allow for a transformation to a distribution with independent marginals. The two-
stage integrands are piecewise linear, but neither smooth nor lie in the function spaces considered
for QMC error analysis. We show that under some weak geometric condition on the two-stage
model all terms of their ANOVA decomposition, except the one of highest order, are continuously
differentiable and that first and second order ANOVA terms have mixed first order partial deriva-
tives and belong to L2. Hence, randomly shifted lattice rules (SLR) may achieve the optimal rate
of convergence O(n−1+δ) with δ ∈ (0, 1

2 ] and a constant not depending on the dimension if the
effective superposition dimension is at most two. We discuss effective dimensions and dimension
reduction for two-stage integrands. The geometric condition is shown to be satisfied almost every-
where if the underlying probability distribution is normal and principal component analysis (PCA)
is used for transforming the covariance matrix. Numerical experiments for a large scale two-stage
stochastic production planning model with normal demand show that indeed convergence rates
close to the optimal are achieved when using SLR and randomly scrambled Sobol’ point sets
accompanied with PCA for dimension reduction.

1 Introduction

Two-stage stochastic programs arise as deterministic equivalents of improperly posed random linear
programs

min{〈c, x〉 : x ∈ X, Tx = h(ξ)}, (1)

where X is a convex polyhedral subset of Rm, T a matrix, ξ is a d-dimensional random vector,
h(ξ) = (ξ, h̄)> for some h̄ ∈ Rr−d, d ≤ r, and 〈·, ·〉 denotes the inner product in Rm. The modeling
idea consists in the compensation of a possible deviation h(ξ(ω))−Tx for a given realization ξ(ω) of
ξ, by introducing additional costs Φ(x, ξ(ω)) whose mean with respect to the probability distribution
P of ξ is added to the objective of (1). In two-stage stochastic programming it is assumed that the
additional costs represent the optimal value of a second-stage linear program, i.e.,

Φ(x, ξ) = inf{〈q, y〉 : y ∈ Rm̄, Wy = h(ξ)− Tx, y ≥ 0}, (2)

where W is a (r, m̄)-matrix called recourse matrix, q ∈ Rm̄ the recourse costs and y the recourse
decision. The deterministic equivalent program then is of the form

min
{
〈c, x〉+

∫
Rd

Φ(x, ξ)P (dξ) : x ∈ X
}
. (3)

In practical applications of stochastic programming the dimension d is often large, e.g., in economics,
energy, finance or transportation (see [62] for a survey of applied models). It is worth noting that the
option pricing models that served as motivating examples for the further development of Quasi-Monte
Carlo algorithms (e.g. in [65, 66, 69]) may be reformulated as linear two-stage stochastic programs
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whose stochastic inputs are means of geometric Brownian motions paths. So, in a sense, the models
considered here may be regarded as extensions of such financial models (see Example 4).

The standard approach to solving the optimization model (3) consists in approximating the underlying
probability distribution by discrete distributions Pn based on a finite number n of samples or scenarios
ξj ∈ Rd with probabilities pj , j = 1, . . . , n, and to consider the approximate stochastic program

min
{
〈c, x〉+

n∑
j=1

pjΦ(x, ξj) : x ∈ X
}
.

The case of random samples is studied in detail at least for independent and identically distributed (iid)
samples (see e.g. Chapters 6 and 7 in [51], [49, Sect. 4]), where the convergence rate (in probability
or quadratic mean) is O(n−

1
2 ). Only a few papers related to stochastic programming deal with the

situation of deterministic samples with identical weights pj = n−1 and proved (general) convergence
results (see [7, 45, 19, 46], [23] for randomized samples or [50] for an overview).

There exist two main approaches for the generation of discrete approximations to P based on de-
terministic samples with identical weights. The first one is called optimal quantization of probability
distributions (see [12], [42]) and determines such quantizations by (approximately) solving best ap-
proximation problems for P in terms of the Lp-minimal (or Lp-Wasserstein) metric `p, p ≥ 1 (see
Section 2.5 in [48]). The primal and dual representations of `1 together with a classical result (see [8,
Proposition 2.1]) imply that

c n−
1
d ≤ `1(P, Pn) = sup

f∈Fd, ‖f‖L≤1

∣∣∣ ∫
Rd
f(ξ)(P − Pn)(dξ)

∣∣∣ ≤ `p(P, Pn)

holds for sufficiently large n and some constant c > 0 if P has a density on Rd and Fd denotes the
Banach space of Lipschitz functions on Rd equipped with the Lipschitz norm ‖ · ‖L. This shows that
the convergence rate of `p(P, Pn) is at best O(n−

1
d ). This rate is indeed established in [12, Theorem

6.2] under certain additional conditions on P . It is well known that the unit ball {f ∈ Fd : ‖f‖L ≤ 1}
is too large for obtaining better rates.

The second approach utilizes Quasi-Monte Carlo algorithms that are of the form

Qn,d(f) = n−1

n∑
j=1

f(xj) (n ∈ N)

and relies on the concept of equidistributed or low discrepancy point sets {xj}nj=1 or sequences
(xj)j∈N in [0, 1)d (see [56, 33, 29, 5]). As observed in [16] certain reproducing kernel Hilbert spaces
Fd of functions f : [0, 1]d → R are particularly useful for estimating the quadrature error. Let K :
[0, 1]d × [0, 1]d → R be a kernel satisfying K(·, y) ∈ Fd and 〈f,K(·, y)〉 = f(y) for each
y ∈ [0, 1]d and f ∈ Fd. If 〈·, ·〉 and ‖ · ‖ denote the inner product and norm in Fd, and the integral

Id(f) =

∫
[0,1]d

f(x)dx

is a continuous functional on Fd, the worst-case quadrature error en(Fd) allows the representation

en(Fd) = sup
f∈Fd ,‖f‖≤1

∣∣Id(f)−Qn,d(f)
∣∣ = sup

‖f‖≤1

|〈f, hn〉| = ‖hn‖ (4)
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according to Riesz’ representation theorem for linear bounded functionals on Hilbert spaces. The
representer hn ∈ Fd of the quadrature error is of the form

hn(x) =

∫
[0,1]d

K(x, y)dy − n−1

n∑
j=1

K(x, xj) (∀x ∈ [0, 1]d).

Here, we consider the weighted tensor product Sobolev space [54, 3]

Fd =W(1,...,1)
2,mix ([0, 1]d) =

d⊗
i=1

W 1
2 ([0, 1]) (5)

equipped with a weighted norm ‖f‖γ where the index γ refers to a positive and nonincreasing se-
quence (γi). The norm is given by ‖f‖2

γ = 〈f, f〉γ and the inner product (see Section 4 for the
notation)

〈f, g〉γ =
∑

u⊆{1,...,d}

γ−1
u

∫
[0,1]|u|

Iu(f)(xu)Iu(g)(xu)dxu , (6)

where Iu(f) and γu are defined for any subset u of {1, . . . , d} by

Iu(f)(xu) =

∫
[0,1]d−|u|

∂|u|

∂xu
f(x)dx−u and γu =

∏
i∈u

γi .

The space Fd is also a reproducing kernel Hilbert space with the kernel

Kd,γ(x, y) =
d∏
i=1

(
1 + γi(0.5B2(|xi − yi|) +B1(xi)B1(yi))

)
(x, y ∈ [0, 1]d),

where B1(x) = x − 1
2

and B2(x) = x2 − x + 1
6

are the Bernoulli polynomials of order 1 and 2,
respectively [3, 25].

Another example is a weighted tensor product Walsh space consisting of Walsh series (see [5, Exam-
ple 2.8] and [4]). These spaces became important for analyzing the recently developed randomized
lattice rules, namely, randomly shifted lattice rules [55, 24, 26, 35] and random digitally shifted poly-
nomial lattice rules (see [4, 5]). Both are special cases of randomized Quasi-Monte Carlo algorithms
(RQMC) which will be discussed in Section 2.

Here, we just mention that randomly shifted lattice rules

Qn,d(∆, f) = n−1

n−1∑
j=0

f

({
jg

n
+ ∆

})
(7)

can be constructed, where ∆ is uniformly distributed in [0, 1)d, g ∈ Zd is the generator of the lattice
which is obtained by a component-by-component algorithm [24] and {·}means taking componentwise
the fractional part. For f belonging to the weighted (un)anchored tensor product Sobolev space Fd
the root mean square error of such randomly shifted lattice rules can be bounded by [55, 24, 3]√

E∆ |Id(f)−Qn,d(∆, f)|2 ≤ C(δ)n−1+δ‖f‖γ (δ ∈ (0, 0.5]), (8)

where the constant C(δ) does not depend on the dimension d if the sequence of nonnegative weights
(γj) satisfies

∞∑
j=1

γ
1

2(1−δ)
j <∞ . (9)
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Unfortunately, typical integrands in linear two-stage stochastic programming (see Section 3) do not
belong to such tensor product Sobolev or Walsh spaces and are even not of bounded Hardy and
Krause variation (on [0, 1]d). The latter condition represents the standard requirement on the integrand
f to justify Quasi-Monte Carlo algorithms via the Koksma-Hlawka theorem [33, Theorem 2.11].

Alternatively, it is suggested in the literature to study the so-called ANOVA decomposition (see Section
4) of such integrands, the smoothness of the ANOVA terms, effective dimensions and/or sensitivity
indices of the integrands.

The aim of the present paper is to follow the suggestions and to derive theoretical arguments that
explain why modern RQMC methods, with focus on randomly shifted lattice rules (7), converge with
nearly the optimal rate (8) for the considered class of stochastic programs although the integrands do
not satisfy standard requirements in QMC analysis, e.g., do not belong to the weighted tensor product
Sobolev space (5).

As a first step in this direction we show in Section 5 that all ANOVA terms except the one of highest
order are continuously differentiable and possess second order partial derivatives almost everywhere
under some geometric condition on the second stage program. In particular, the first and second order
ANOVA terms belong to a mixed Sobolev space which is defined in Section 4. Error estimates show
that the QMC convergence rate dominates the error if the effective superposition dimension is equal to
2 (Remark 10 in Section 5). In addition, we show in Section 6 that the geometric condition is satisfied
for almost all covariance matrices if the underlying random vector is Gaussian. The meaning of ”almost
all” is also explained there. We also provide estimates of sensitivity indices and mean dimension in
Section 7 and discuss techniques for dimension reduction. In accordance with the theoretical results
in Section 5 our preliminary computational results in Section 8 show that scrambled Sobol’ sequences
and randomly shifted lattice rules applied to a large scale two-stage stochastic program achieve con-
vergence rates close to the optimal rate (8) if principal component analysis (PCA) is employed for
dimension reduction. Both randomized QMC algorithms clearly outperform Monte Carlo methods.

2 Randomized Quasi-Monte Carlo methods

Randomized Quasi-Monte Carlo algorithms (RQMC) permit us to combine the good features of Monte
Carlo within Quasi-Monte Carlo methods for practical error estimation.

If f has mixed partial derivatives of second order in each variable in L2([0, 1]d), then the convergence
rate (8) can be improved to nearly O(n−2) by embedding the function into an appropriate Korobov
space through the so called tent or baker’s transformation (see [6, Section 5]). Although this is theoret-
ically true, this “extra” improved rate of convergence (over the already good O(n−1+δ)) for smoother
integrands is rarely observed for RQMC in practical applications of high-dimensional integration where
only moderate or small sample sizes n are affordable for computations [17].

A large class of QMC rules that can be randomized are the well known (t,m, d)-nets and (t, d)-
sequences [33]. The randomization techniques for these constructions follow mainly two schemes:
random digital shifts and random scramblings. Random digital shifting of (t,m, d)-nets and (t, d)-
sequences can be performed in a similar way as mentioned for randomly shifting lattice rules, but the
operations to add the shift must be carried out in the basis b used to define the (t,m, d)-nets (see [6,
Section 6]). The resulting RQMC point set preserves the original net structure. Similar bounds for the
root mean square error as in (8) can be obtained for integrands belonging to the weighted (anchored
and unanchored) tensor product Sobolev space Fd by using a special class of (t,m, d)-nets called
polynomial lattice rules, see again [6, Section 6].

4



The random scrambling method was first introduced by Owen in [36]. The basic properties of Owen’s
scrambling are the following:

Proposition 1 (Equidistribution)
A randomized (t,m, d)-net in base b using Owen’s scrambling is again a (t,m, d)-net in base b

with probability 1. A randomized (t, d)-sequence in base b using Owen’s scrambling is again a (t, d)-
sequence in base b with probability 1.

Proposition 2 (Uniformity)
Let z̃i be the randomized version of a point zi originally belonging to a (t,m, d)-net in base b or a

(t, d)-sequence in base b, using Owen’s scrambling. Then z̃i has a uniform distribution in [0, 1)d, that
is, for any Lebesgue measurable set G ⊆ [0, 1)d, P (z̃i ∈ G) = λd(G), with λd the d-dimensional
Lebesgue measure.

Note that the uniformity property stated above ensures that the resulting RQMC estimator Q̂n,d(.) is
unbiased. We mention here the general results about the variance of a RQMC estimator Q̂n,d(.) after
Owen’s random scrambling technique to (t,m, d)-nets in base b for functions f ∈ L2([0, 1]d) (see
[37]).

Theorem 3 Let z̃i, 1 ≤ i ≤ n, be the points of a scrambled (t,m, d)-net in base b, and let f be a
function on [0, 1)d with integral I and variance σ2 :=

∫
(f(z) − Id(f))2dz < ∞. Let Q̂n,d(f) =

n−1
∑n

i=1 f(z̃i) with n = bm be the RQMC estimator. Then its variance Var(Q̂n,d(f)) has the
properties

Var(Q̂n,d(f)) = o(n−1) as n→∞ and Var(Q̂n,d(f)) ≤ bt

n

(
b+ 1

b− 1

)d
σ2.

For t = 0 we have

Var(Q̂n,d(f)) ≤ 1

n

(
b

b− 1

)d−1

σ2 ≤ 1

n
eσ2.

Note that the last inequality for t = 0 above holds since in this case one must have b ≥ d. If the
function f has bounded variation in the sense of Hardy and Krause VHK(f) < ∞, then by the
equidistribution property stated above the classical Koksma-Hlawka inequality holds with probability
1 for random scrambled (t,m, d)-nets, therefore the classical discrepancy bounds for (t,m, d)-nets
[33] lead to

Var(Q̂n,d(f)) = O
(
n−2(log n)2(d−1)

)
.

If the integrand f has a mixed partial derivative of order d which satisfies a Hölder condition, the above
rate of convergence can be improved to [37, 38]

Var(Q̂n,d(f)) = O
(
n−3(log n)d−1

)
.

Further improved results for functions having finite generalized Hardy and Krause variation can be
found in [5, Theorem 13.25]. Note, however, that distinct from (8) sequences of the form (n−α(log n)d−1)
increase as long as n < exp d−1

α
and, hence, require extremely large sample sizes n for higher di-

mensions d to get small.
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The piecewise linear convex functions arising in stochastic programming (see Section 3) do not even
have mixed partial derivatives (in the sense of Sobolev) in general. They do not have finite (gen-
eralized) Hardy and Krause variation either. The latter is shown for the classical Hardy and Krause
variation of the special function fd(x) = max{x1 +x2 + · · ·+xd− 1

2
, 0}, d ≥ 3, in [40, Proposition

17], but its proof carries over to the generalized variation. Thus, none of the results stated or mentioned
above for RQMC can be used to formally justify an observed root mean square error convergence near
to O(n−1) (see Section 8) for integrands appearing in linear two-stage stochastic programming.

Several modifications of the original scrambling method proposed by Owen have been investigated in
order to provide efficient implementations of scramblings for practical applications, see the survey [28]
and [31, 20, 60, 41] for example.
Recent QMC constructions that aim to advantage from a setting with even higher smoothness of the
integrands are the so called higher order digital nets in combination with higher order scramblings. For
further information on this topic we refer the reader to [1, 5].

3 Integrands of linear two-stage stochastic programs

As described in the introduction, the integrands of two-stage linear stochastic programs with random
right-hand sides are

Φ(x, ξ) = φ(h(ξ)− Tx), (10)

where φ denotes the optimal value function assigning to each t ∈ Rr the infimum φ(t) = inf{〈q, y〉 :
Wy = t, y ≥ 0} in R̄ = R ∪ {−∞,+∞}. Due to duality in linear programming, the function φ is
finite and

φ(t) = sup{〈t, z〉 : W>z ≤ q}, (11)

if t ∈ domφ = {t ∈ Rr : φ(t) < ∞} and the dual feasible set D = {z ∈ Rr : W>z ≤ q}
is nonempty. Here, q ∈ Rm̄, W is a (r, m̄)-matrix and t varies in the polyhedral cone domφ =
W (Rm̄

+ ). If D is nonempty, it is of the form

D = conv{v1, . . . , v`}+ (domφ)∗,

where v1, . . . , v` are the vertices of D, conv means convex hull and (domφ)∗ is the polar cone to
the cone domφ = W (Rm̄

+ ), i.e.,

(domφ)∗ = {d ∈ Rr : 〈d, t〉 ≤ 0,∀t ∈ W (Rm̄
+ )} = {d ∈ Rr : W>d ≤ 0}.

Furthermore, there exist polyhedral cones Kj , j = 1, . . . , `, decomposing domφ. The cone Kj is
the normal cone to the vertex vj , i.e.,

Kj = {t ∈ domφ : 〈t, z − vj〉 ≤ 0, ∀z ∈ D} (j = 1, . . . , `) (12)

= {t ∈ domφ : 〈t, vi − vj〉 ≤ 0, ∀i = 1, . . . , `, i 6= j}. (13)

Moreover,

φ(t) = 〈vj, t〉 (∀t ∈ Kj) and φ(t) = max
j=1,...,`

〈vj, t〉 (∀t ∈ domφ) (14)

and ∪j=1,...,`Kj = domφ. The intersection Kj ∩ Kj′ for j 6= j′ coincides with a common closed
face of dimension less than r. It is a common closed face of dimension r − 1 iff the two cones are
adjacent. In the latter case, the intersection is contained in

{t ∈ domφ : 〈t, vj′ − vj〉 = 0}. (15)
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If there exists k ∈ {1, . . . , d} such that the kth components of vj and vj
′

coincide, the common
closed face of Kj and Kj′ contains at least one of the two one-dimensional cones

{(0, . . . , 0, tk, 0, . . . , 0) : tk ≥ 0} and {(0, . . . , 0, tk, 0, . . . , 0) : tk ≤ 0}.

The cones Kj may also be represented by

Kj =
{∑
i∈Ij

λiw
i : λi ≥ 0, i ∈ Ij

}
,

where wi ∈ Rr are the columns of W and Ij = {i ∈ {1, . . . , m̄} : 〈wi, vj〉 = qi}. Each vertex vj

is determined by r linear independent equations out of the m̄ equations 〈wi, v〉 = qi, i = 1, . . . , m̄.

In the following sections we need the conditions
(A1) h(ξ)− Tx ∈ W (Rm̄

+ ) for all ξ ∈ Rd, x ∈ X (relatively complete recourse).
(A2) The dual feasible set D is nonempty (dual feasibility).
(A3)

∫
Rd ‖ξ‖

2P (dξ) <∞ (finite second order moment).

(A4) P has a density of the form ρ(ξ) =
∏d

i=1 ρi(ξi) (ξ ∈ Rd), where ρi is a continuous (marginal)
density on R, i = 1, . . . , d (independent components).
(A5) The first d components of the adjacent vertices of D are distinct, i.e., all common closed faces
of the normal cones to two adjacent vertices of D do not parallel the first d coordinate axes in Rr

(geometric condition).
Conditions (A3) and (A4) are needed for defining and using the ANOVA decomposition in Sections 4
and 5. Our present analysis applies to random vectors ξ of the form ξ = Bζ , whereB is a nonsingular
(d, d)-matrix and the d-dimensional random vector ζ has independent components. Then the equality
constraint Wy = h(ξ)− Tx in (2) has to be replaced by B̂−1Wy = h(ζ)− B̂−1Tx, where

B̂ =

(
B 0
0 I

)
(16)

and I denotes the (r − d, r − d) identity matrix. The structure ξ = Bζ applies, in particular, to
multivariate normal probability distributions where the matrix B may be chosen to be orthogonal (see
Section 6). The geometric condition (A5) has technical character and will be further discussed in
Section 6.

Conditions (A1), (A2), (A3) imply that the two-stage stochastic program (3) is well defined and rep-
resents an optimization problem with finite convex objective and polyhedral convex feasible set. If X
is compact its optimal value v(P ) is finite and its solution set S(P ) is nonempty, closed and convex.
The quantitative stability results [49, Theorems 5 and 9] for general stochastic programs imply the
perturbation estimate

|v(P )− v(Q)| ≤ L sup
x∈X

∣∣∣ ∫
Rd

Φ(x, ξ)(P −Q)(dξ)
∣∣∣ (17)

∅ 6= S(Q) ⊆ S(P ) + ψ−1
P

(
sup
x∈X

∣∣∣ ∫
Rd

Φ(x, ξ)(P −Q)(dξ)
∣∣∣)B, (18)

where B is the unit ball in Rm, ψP is the growth function of the objective

ψP (τ) = inf
{
〈c, x〉+

∫
Rd

Φ(x, ξ)P (dξ)− v(P ) : d(x, S(P )) ≤ τ, x ∈ X
}

(τ ≥ 0),

its inverse is defined by ψ−1
P (t) = sup{τ ∈ R+ : ψP (τ) ≤ t}, and Q is a probability measure

satisfying (A3), too.
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For further information on linear parametric programming and two-stage stochastic programming we
refer to [61, 34] and [51, 52, 70].

To give an example for (3) we show that option pricing models considered as stimulating examples for
the recent developments in QMC theory (see e.g. [66, 67]) may be reformulated as linear two-stage
stochastic programs.

Example 4 Let the first stage variable x represent the strike price at the expiration date Te. The
dimensions are set to m = 1, m̄ = 2 and the matrix W is set to W = (w,−w) with w = exp (rTe)
and r denoting the risk-free interest rate. The second stage program and its dual are

min{y1 : Wy = ξ − x, y ∈ R2, y ≥ 0} = max{(ξ − x)z : z ∈ R,W>z ≤ (1, 0)>}
= max{(ξ − x)z : 0 ≤ wz ≤ 1}.

The terminal payoff is exp (−rTe) max{0, ξ−x} and v = 0 and v = 1
w

are the only vertices. Taking
the expectation then leads to the optimization model

min
{
− x+

∫
R

exp (−rTe) max{0, ξ − x}ρ(ξ)dξ : x ≥ 0
}

for maximizing the strike price. Now, it depends on the kind of option how the random variable ξ
depends on the geometric Brownian motion S given by

St = S0 exp ((r − 1
2
σ2)t+ σBt)

with volatility σ and standard Brownian motion (Bt)t≥0. For example, for arithmetic Asian options one
has [65]

ξ =
1

d

d∑
i=1

Sti with ti =
iTe
d
, i = 1, . . . , d.

Hence, in a sense, the integrand (10) extends the situations encountered in such option pricing models.
It is, however, much more involved.

4 ANOVA decomposition of integrands and effective dimension

The analysis of variance (ANOVA) decomposition of a function was first proposed as a tool in statistical
analysis (see [18] and the survey [59]). In [56] it was first used for the analysis of quadrature methods.

We consider a density function ρ on Rd and assume (A4) from Section 3. As in [15] we consider the
weighted Lp space over Rd, i.e., Lp,ρ(Rd), with the norm

‖f‖p,ρ =


( ∫

Rd
|f(ξ)|pρ(ξ)dξ

) 1
p

if 1 ≤ p < +∞,

ess sup
ξ∈Rd
|f(ξ)| if p = +∞.

Let D = {1, . . . , d} and f ∈ L1,ρ(Rd). The projection Pk, k ∈ D, is given by

(Pkf)(ξ) :=

∫ ∞
−∞

f(ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (ξ ∈ Rd).
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Clearly, the function Pkf is constant with respect to ξk. For u ⊆ D we use |u| for its cardinality, −u
for D \ u and write

Puf =
(∏
k∈u

Pk

)
(f),

where the product means composition. We note that the ordering within the product is not important
because of Fubini’s theorem. The function Puf is constant with respect to all ξk, k ∈ u. Note that Pu
satisfies the properties of a projection, namely, Pu is linear and P 2

u = Pu.

The ANOVA decomposition of f ∈ L1,ρ(Rd) is of the form [65, 27]

f =
∑
u⊆D

fu (19)

with fu depending only on ξu, i.e., on the variables ξj with indices j ∈ u. It satisfies the property
Pjfu = 0 for all j ∈ u and the recurrence relation

f∅ = Id,ρ(f) := PD(f) and fu = P−u(f)−
∑
v(u

fv .

It is known from [27] that the ANOVA terms are given explicitly by

fu =
∑
v⊆u

(−1)|u|−|v|P−vf = P−u(f) +
∑
v(u

(−1)|u|−|v|Pu−v(P−u(f)), (20)

where P−u and Pu−v mean integration with respect to ξj , j ∈ D \ u and j ∈ u \ v, respectively. The
second representation motivates that fu is essentially as smooth as P−u(f) due to the Inheritance
Theorem [15, Theorem 2]. The following result is well known (e.g. [65]).

Proposition 5 If f belongs to L2,ρ(Rd), the ANOVA functions {fu}u⊆D are orthogonal in L2,ρ(Rd).

We define the variance of f and fu by σ2(f) = ‖f − Id,ρ(f)‖2
2,ρ, σ

2
u(f) = ‖fu‖2

2,ρ, and have

σ2(f) = ‖f‖2
2,ρ − (Id,ρ(f))2 =

∑
∅6=u⊆D

‖fu‖2
2,ρ =

∑
∅6=u⊆D

σ2
u(f).

In the literature, the ANOVA decomposition is often considered for functions g ∈ L1([0, 1]d). Then
the projections are defined by

(P ?
k g)(υ) :=

∫ 1

0

g(υ1, . . . , υk−1, s, υk+1, . . . , υd)ds (υ ∈ [0, 1]d)

and
P ?
ug :=

(∏
k∈u

P ?
k

)
(g) (u ⊆ D).

Similarly to the case in Rd the ANOVA decomposition of g ∈ L1([0, 1]d) is of the form

g =
∑
u⊆D

gu, g∅ := Id(g) := P ?
D(g) and gu := P ?

−u(g)−
∑
v(u

gv

with gu depending only on υu, i.e., on the variables υj with indices j ∈ u. Note that P ?
u is indeed

again a projection and, assuming that g ∈ L2([0, 1]d), the same orthogonality property (now over
L2([0, 1]d)) as in Proposition 5 follows.
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Assuming now for simplicity that ρj(t) > 0 for all t ∈ R, j = 1, . . . , d, an integrand f ∈ L1,ρ(Rd)
can be transformed into a function g defined on [0, 1]d by inverting the function

ϕ := (ϕ1, . . . , ϕd), ϕi(t) :=

∫ t

−∞
ρi(s)ds (i ∈ D) (21)

and by defining

g(υ) :=

{
(f ◦ ϕ−1)(υ) if υ ∈ (0, 1)d,

0 if υ ∈ [0, 1]d \ (0, 1)d.
(22)

Then the ANOVA terms gu of g satisfy

fu(ξ
u) = gu ◦ ϕu(ξu) for ξu ∈ R|u|, gu(υ

u) = (fu ◦ ϕ−1
u )(υu) for υu ∈ (0, 1)|u|, (23)

where

ϕu := (ϕj1 , . . . , ϕj|u|), ϕ
−1
u := (ϕ−1

j1
, . . . , ϕ−1

j|u|
), (jk ∈ u, 1 ≤ k ≤ |u|, jk < jl, k < l).

When setting σ2
u(g) :=

∫
[0,1]|u|

g2
u(υ

u)dυu for ∅ 6= u ⊆ D and σ2
∅(g) := 0 one obtains σ2

u(g) =

σ2
u(f) for u ⊆ D.

We return to the Rd case and assume σ(f) > 0 in the following to avoid trivial cases. The normalized

ratios σ2
u(f)
σ2(f)

serve as indicators for the importance of the variable ξu in f . They are used in [57] to
define global sensitivity indices of a set u ⊆ D by

Su =
1

σ2(f)

∑
v⊆u

σ2
v(f) and S̄u = 1− S−u =

1

σ2(f)

∑
v∩u6=∅

σ2
v(f).

If S̄u is small, then the variable ξu is considered inessential for f in [57].

The normalized ratios are also used in [39, 30] to define and study the dimension distribution of a
function f in two ways. The dimension distribution of f in the superposition (truncation) sense is a
probability measure νS (νT ) defined on the power set of D by

νS(s) := νS({s}) =
∑
|u|=s

σ2
u(f)

σ2(f)

(
νT (s) =

∑
max{j:j∈u}=s

σ2
u(f)

σ2(f)

)
(s ∈ D).

Hence, the mean dimension in the superposition (truncation) sense is

d̄S =
∑
∅6=u⊆D

|u|σ
2
u(f)

σ2(f)

(
d̄T =

∑
∅6=u⊆D

max{j : j ∈ u}σ
2
u(f)

σ2(f)

)
. (24)

It is proved in [30, Theorem 2] that the mean dimension d̄S in the superposition sense is closely related
to the global sensitivity indices of subsets of D containing a single element. Namely,

d̄S =
d∑
j=1

S̄{j}. (25)

The paper [30] also provides a formula for the dimension variance based on S̄u for all subsets u of D
containing two indices.
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For small ε ∈ (0, 1) (ε = 0.01 is suggested in a number of papers), the effective superposition
(truncation) dimension dS(ε) ∈ D (dT (ε) ∈ D) is the (1− ε)-quantile of νS (νT ), i.e.,

dS(ε) = min{s ∈ D : νS(u) ≥ 1− ε, |u| ≤ s}
dT (ε) = min{s ∈ D : νT ({1, . . . , s}) ≥ 1− ε}.

Note that dS(ε) ≤ dT (ε) and (see [65, 13])

max
{∥∥∥f − ∑

|u|≤dS(ε)

fu

∥∥∥
2,ρ
,
∥∥∥f − ∑

u⊆{1,...,dT (ε)}

fu

∥∥∥
2,ρ

}
≤
√
εσ(f). (26)

Small effective superposition dimension dS(ε), even if dT (ε) is large, suggests that we may expect
superiority of QMC over MC. We note that there exist algorithms based on MC or QMC to compute
global sensitivity indices and effective dimensions approximately (see [57, 65, 58, 66] for example).
Since the algorithms are often described for functions on [0, 1]d, we mention that

� the dimension distribution and, hence, any effective dimension of f is the same as for g given
by (22).

� The algorithm of [65] for estimating the effective truncation dimension can be carried out equiv-
alently for f , with its obvious adaption to the Rd setting.

All these notions are discussed in [39] for different classes of functions, including additive and multi-
plicative functions. We record here the results for additive functions for later reference.

Example 6 For functions f having separability structure, i.e., f is of the form

f(ξ) =
d∑
j=1

gj(ξj) (ξ ∈ Rd)

with gj ∈ L2,ρj(R), j = 1, . . . , d, the second and higher order ANOVA terms vanish (see [39]).
Hence, the effective superposition dimension dS(ε) is equal to 1 for every ε ∈ (0, 1) while the effective
truncation dimension dT (ε) = s if

d∑
j=s+1

σ2
j ≤ ε

( d∑
j=1

σ2
j

)
,

where σj is the variance of gj , j = 1, . . . , d.

The importance of the ANOVA decomposition in the context of this paper is due to the fact that the
ANOVA terms fu with |u| < d may be (much) smoother than the original integrand f under certain
conditions (see [14, 15]). As in [15] we use the notation Dif for i ∈ D to denote the classical partial
derivative ∂f

∂xi
. For a multi-index α = (α1, . . . , αd) with αi ∈ N0 we set

Dαf =
d∏
i=1

Dαi
i f =

∂|α|f

∂xα1
1 · · · ∂x

αd
d

,

and call Dαf the partial derivative of order |α| =
∑d

i=1 αi. The function Dαf is called weak or
Sobolev derivative of order |α| if it is measurable on Rd and satisfies∫

Rd
(Dαf)(ξ)v(ξ)dξ = (−1)|α|

∫
Rd
f(ξ)(Dαv)(ξ)dξ for all v ∈ C∞0 (Rd),
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whereC∞0 (Rd) denotes the space of infinitely differentiable functions with compact support in Rd and
Dαv is a classical derivative. Then classical derivatives are also weak derivatives. In accordance with
the notation (5) we consider in the next section the mixed Sobolev space

W(1,...,1)
2,ρ,mix(Rd) =

{
f ∈ L2,ρ(Rd) : Dαf ∈ L2,ρ(Rd) if αi ≤ 1, i ∈ D

}
.

5 ANOVA decomposition of linear two-stage integrands

According to Section 3 the integrands in linear two-stage stochastic programming map from Rd to R
and are given by

f(ξ) = fx(ξ) = max
j=1,...,`

〈vj, (ξ, h̄)− Tx〉 (x ∈ X), (27)

where the vj , j = 1, . . . , `, are the vertices of the dual feasible set D = {z ∈ Rr : W>z ≤ q} and
Kj are the normal cones to vj , j = 1, . . . , `.

The integrands are parametrized by the first-stage decision x varying in X . Such functions do not
belong to the tensor product Sobolev spaces described in Section 1 and, in general, are not of bounded
variation in the sense of Hardy and Krause (see [40, Proposition 17]).

Next we intend to compute projections Pk(f) for k ∈ D. Let x ∈ X be fixed, ξi ∈ R, i = 1, . . . , d,
i 6= k, be given. We set ξk = (ξ1, . . . , ξk−1, ξk+1, . . . , ξd) and ξks =
(ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd). We assume (A1)–(A5) and have according to Section 3

(ξks , h̄)− Tx ∈ domφ =
⋃̀
j=1

Kj

for every s ∈ R and by definition of the projection

(Pkf)(ξk) =

∫ ∞
−∞

f(ξks )ρk(s)ds =

∫ ∞
−∞

f(ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds. (28)

The one-dimensional affine subspace {(ξks , h̄) − Tx : s ∈ R} intersects a finite number of the
polyhedral cones Kj . Hence, there exist p = p(k) ∈ N ∪ {0}, si = ski ∈ R, i = 1, . . . , p, and
ji = jki ∈ {1, . . . , `}, i = 1, . . . , p+ 1, such that si < si+1 and

(ξks , h̄)− Tx ∈ Kj1 ∀s ∈ (−∞, s1]

(ξks , h̄)− Tx ∈ Kji ∀s ∈ [si−1, si] (i = 2, . . . , p)

(ξks , h̄)− Tx ∈ Kjp+1 ∀s ∈ [sp,+∞).

By setting s0 := −∞, sp+1 :=∞, we obtain the following explicit representation of Pkf

(Pkf)(ξk) =

p+1∑
i=1

∫ si

si−1

〈vji , (ξks , h̄)− Tx〉ρk(s)ds, (29)

where the points si, i = 1, . . . , p, satisfy the equations

0 = 〈(ξksi , h̄)− Tx, vji+1 − vji〉 = 〈(ξksi , 0) + (0, h̄)− Tx, vji+1 − vji〉

=
d∑
j=1
j 6=k

ξj(v
ji+1

j − vjij ) + si(v
ji+1

k − vjik ) + 〈(0, h̄)− Tx, vji+1 − vji〉
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according to (15). By setting wi = vji+1 − vji for i = 1, . . . , p and z(x) = (0, h̄)− Tx this leads to
the explicit formula

si = si(ξ
k, x) =

1

wik

[
−

d∑
j=1
j 6=k

wijξj − 〈z(x), wi〉
]

(i = 1, . . . , p). (30)

Hence, all si, i = 1, . . . , p, are affine functions of the remaining components ξj , j 6= k. The first step
in our analysis consists in studying smoothness properties of the projection Pkf on Rd. We note that
f and Pkf are finite convex functions on Rd and Rd−1, respectively and, hence, twice differentiable
almost everywhere on their domains due to Alexandroff’s theorem (see, for example, [10, Section 6.4]).
Our analysis shows that the integration in (28) even improves the smoothness properties.

In the following, we consider a point ξk0 ∈ Rd−1 and an open ball Bε0(ξ
k
0 ) around ξk0 with radius ε0.

Assume that the ball Bε0(ξ
k
0 ) is small enough such that the set of cones

Kε(ξk0 ) :=
{
Kj : Kj ∩ {(ξks , h̄)− Tx : s ∈ R} 6= ∅ for some ξk ∈ Bε(ξ

k
0 )
}

(31)

satisfiesKε(ξk0 ) = Kε0(ξk0 ) for 0 < ε < ε0. Thus, the relevant intersecting cones are fixed in Bε(ξ
k
0 ).

We consider also the sets of intersecting cones at an arbitrary point ξk ∈ Bε(ξ
k
0 )

K(ξk) :=
{
Kj : Kj ∩ {(ξks , h̄)− Tx : s ∈ R} 6= ∅

}
. (32)

Because any affine one-dimensional space {(ξks , h̄)− Tx : s ∈ R} for some ξk ∈ Bε(ξ
k
0 ) is in fact

a parallel translation of {(ξk0,s, h̄) − Tx : s ∈ R}, ε0 can be chosen even small enough such that
K(ξk) ⊆ Kε0(ξk0 ) for every ξk ∈ Bε0(ξ

k
0 ). Therefore we have

K(ξk0 ) = Kε0(ξk0 ). (33)

Moreover, since the conesKj ∈ Kε0(ξk0 ) are convex, their intersection with the affine one-dimensional
space {(ξk0,s, h̄)− Tx : s ∈ R} is given either by an interval or by a single point. The latter can only
appear if the intersection meets just the vertex or an edge (i.e., faces of dimension zero or one) of a
polyhedral cone belonging to K(ξk0 ). Hence, the subset of Rd that corresponds to such single points
has Lebesgue measure 0 in Rd. In case that the intersection is given by an interval IKj(ξ

k
0 ), we have

due to (A5) that the interior of IKj(ξ
k
0 ), denoted I◦Kj(ξ

k
0 ), contains only interior points of Kj . This is

true because otherwise the interval IKj(ξ
k
0 ) must lie in a facet of Kj , and this would imply that there

is a facet that is parallel to one of the canonical basis elements ek, 1 ≤ k ≤ d, in contradiction to
(A5). This implies that we can partition the affine one-dimensional space {(ξk0,s, h̄) − Tx : s ∈ R}
by considering the intervals (si, si+1), 0 ≤ i ≤ p(ξk0 ), s0 = −∞ and sp(ξk0 )+1 = +∞, such that

{(ξk0,s, h̄)− Tx : s ∈ (si, si+1)} ⊂ K◦ji .

Now, we are ready to state our first result on smoothness properties of Pkf .

Theorem 7 Let k ∈ D and x ∈ X . Assume (A1)–(A5) and let f = fx be the integrand (27) of the
linear two-stage stochastic program (3). Then the kth projection Pkf of f is continuously differentiable
on Rd−1. Pkf is s-times continuously differentiable almost everywhere if the density ρk belongs to
Cs−2(R) for some s ∈ N, s ≥ 2.

Proof. We consider the two possible cases for open balls around ξk0 :
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P1.) There exists ε0 > 0 such that K(ξk) = K(ξk0 ) for all ξk ∈ Bε0(ξ
k
0 ).

P2.) For each ε > 0 there exists ξk ∈ Bε(ξ
k
0 ) such that K(ξk) ( K(ξk0 ).

In case P1.), the functions si are differentiable in the entire neighborhood Bε0(ξ
k
0 ), because they

admit a representation as an affine function. Thus, we obtain from (29) for any l ∈ D, l 6= k, that Pkf
is partially differentiable with respect to ξl at ξk and

∂Pkf

∂ξl
(ξk) =

p+1∑
i=1

∂

∂ξl

∫ si

si−1

〈vji , (ξks , h̄)− Tx〉ρk(s)ds

=

p+1∑
i=1

∫ si

si−1

vjil ρk(s)ds+

p∑
i=1

〈vji , (ξksi , h̄)− Tx〉ρk(si)
∂si
∂ξl

−
p+1∑
i=2

〈vji , (ξksi−1
, h̄)− Tx〉ρk(si−1)

∂si−1

∂ξl

=

p+1∑
i=1

vjil

∫ si

si−1

ρk(s)ds =

p+1∑
i=1

vjil (ϕk(si)− ϕk(si−1)),

where we used the identity 〈vji , (ξksi , h̄) − Tx〉 = 〈vji+1 , (ξksi , h̄) − Tx〉 for each i = 1, . . . , p and
ϕk denotes the marginal distribution function with density ρk. By reordering the latter sum we have

∂Pkf

∂ξl
(ξk) = −

p∑
i=1

wilϕk(si) + v
jp+1

l . (34)

Hence, the behavior of all first order partial derivatives of Pkf only depends on the kth marginal
distribution function ϕk. The latter are again differentiable and it follows for r ∈ D, r 6= k,

∂2Pkf

∂ξr∂ξl
(ξk) =

p∑
i=1

wilw
i
r

wik
ρk(si). (35)

Hence, Pkf is second order continuously differentiable on the neighborhood Bε0(ξ
k
0 ). More generally,

if ρk ∈ Cs−2(R) for some s ∈ N, s ≥ 2, Pkf is s-times continuously differentiable on the neighbor-
hood Bε0(ξ

k
0 ).

In case P2.), we use the identity (33) and consider all cones belonging to K(ξk0 ). Let Ki, i =
1, . . . , p+ 1, denote all such cones which are normal cones to the vertices vji ofD. Furthermore, let
si, i = 1, . . . , p, be nondecreasing and defined by

(ξksi , h̄)− Tx ∈ Ki ∩ Ki+1

and we set s0 = −∞ and sp+1 = +∞. We allow explicitly that si−1 = si holds for some i ∈
{1, . . . , p− 1}. Then we have

Pkf(ξk0 ) =

p+1∑
i=1

∫ si

si−1

〈vji , (ξk0,s, h̄)− Tx〉ρk(s)ds,

where p = p(ξk0 ) and si = si(ξ
k
0 , x), i = 1, . . . , p, is given by (30).

Now, let ξk ∈ Bε0(ξ
k
0 ). Due to (33) Pkf(ξk) may be represented by a subset of the set K(ξk0 ).

Of course, K1 and Kp+1 and all cones Ki such that si−1(ξk0 , x) < si(ξ
k
0 , x) appear also in the
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representation of Pkf(ξk). Those cones Ki with si−1(ξk0 , x) = si(ξ
k
0 , x) may either disappear or

appear with si−1(ξk, x) < si(ξ
k, x). If they disappear we set si−1(ξk, x) = si(ξ

k, x) and include
them formally into the representation which is of the form

Pkf(ξk) =

p+1∑
i=1

∫ si(ξ
k,x)

si−1(ξk,x)

〈vji , (ξks , h̄)− Tx〉ρk(s)ds.

In a small ball around ξk this representation doesn’t change. Hence, Pkf is differentiable also in case
P2.) and the partial derivative is of the form

∂Pkf

∂ξl
(ξk) =

p+1∑
i=1

vjil

∫ si(ξ
k,x)

si−1(ξk,x)

ρk(s)ds (36)

as in case P1.) and, hence, continuous. The integrals with si−1(ξk, x) = si(ξ
k, x) are again formally

included into (36). The second order partial derivative at ξk

∂2Pkf

∂ξr∂ξl
(ξk)

for r ∈ D, r 6= k, is, however, not of the form (35) in general since summands are missing that
correspond to integrals with si−1(ξk, x) = si(ξ

k, x). Moreover, note that the points ξk0 ∈ Rd−1 with
the property si−1(ξk0 , x) = si(ξ

k
0 , x) and si−1(ξk, x) < si(ξ

k, x) for some ξk in Bε0(ξ
k
0 ), ξk 6= ξk0 ,

and i ∈ {1, . . . , p}, belong to a solution set of linear (see (30)) equations in d − 1 variables of the
form si−1(ωk, x) = si(ω

k, x) with si−1 and si being not parallel each other, i ∈ {1, . . . , p}. Thus,
those singular points ξk0 ∈ Rd−1, where the second order partial derivatives may not exist, belong to
a subset of a finite union of hyperplanes in Rd−1, each one of dimension less than or equal to d− 2,
and thus they are a measure-zero subset of Rd−1. Hence, Pkf is continuously differentiable on Rd−1,
but the mixed second order partial derivatives may exist only almost everywhere on Rd−1. �

Corollary 8 Let ∅ 6= u ⊆ D and x ∈ X . Assume (A1)–(A5). Then the projection Puf is continuously
differentiable on Rd−|u| and second order continuously differentiable almost everywhere in Rd−|u|.

Proof. If |u| = 1 the result follows from Theorem 7. For u = {k, j} with k, j ∈ D, k 6= j, we obtain
from the Leibniz theorem [15, Theorem 1] for l 6∈ u and r 6∈ u

DlPuf(ξu) :=
∂

∂ξl
Puf(ξu) = Pj

∂

∂ξl
Pkf(ξu)

DrDlPuf(ξu) :=
∂2

∂ξl∂ξr
Puf(ξu) = Pj

∂2

∂ξl∂ξr
Pkf(ξu)

if the derivatives exist, and since integration by Pj preserves the smoothness (see [15, Theorem 2]),
the claim is proved. Moreover, from the proof of Theorem 7 we obtain the explicit form

DlPuf(ξu) = −
p∑
i=1

wil

∫
R
ϕk(si(ξ

k))ρj(ξj)dξj + v
jp+1

l , for all ξu in Rd−|u| (37)

DrDlPuf(ξu) =

p∑
i=1

wilw
i
r

wik

∫
R
ρk(si(ξ

k))ρj(ξj)dξj, a.e. in Rd−|u|. (38)

If u contains more than two elements, the integrals on the right-hand side become multiple integrals. In
all cases, however, such an integral is a continuous function of the remaining variables ξi, i ∈ D \ u.
This can be shown using Lebesgue’s theorem as ϕk and ρk are continuous and bounded on R. �

The following is the main result of this section.
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Theorem 9 Assume (A1)–(A5). Then all ANOVA terms of f except the one of highest order are first
order continuously differentiable on Rd and all second order partial derivatives exist and are continu-
ous except in a set of Lebesgue measure zero and quadratically integrable with respect to the density
ρ. In particular, the first and second order ANOVA terms of f belong to the mixed Sobolev space
W(1,...,1)

2,ρ,mix(Rd).

Proof. According to (20) the ANOVA terms of f are defined by

fu = P−u(f) +
∑
v(u

(−1)|u|−|v|P−v(f)

for all nonempty subsets u of D. Hence, all ANOVA terms of f for u 6= D are continuously differen-
tiable on Rd. Second order partial derivatives of those ANOVA terms exist and are continuous almost
everywhere in Rd. The non-vanishing first order partial derivatives of the second order ANOVA terms
are of the form

Dlf{l,r}(ξl, ξr) = DlPD\{l,r}f(ξl, ξr)−DlPD\{l}f(ξl)

= −
p∑
i=1

wil

∫
R
ϕk(si(ξ

k))
∏

i∈D\{l,r}
i 6=k

ρi(ξi)dξ
−{l,r} −DlPD\{l}f(ξl)

for all l, r ∈ D and some k ∈ D. Sinceϕk is Lipschitz continuous, the functionsDlf{l,r} andDrf{l,r}
are Lipschitz continuous with respect to each of the two variables ξl and ξr independently when the
other variable is fixed almost everywhere. Hence, Dlf{l,r} and Drf{l,r} are partially differentiable
with respect to ξr and ξl, respectively, in the sense of Sobolev (see, for example, [10, Section 4.2.3]).
Furthermore, the second order partial derivative is almost everywhere bounded (see also (35)) and
due to (A3) quadratically integrable with respect to ρ. �

Remark 10 The second order ANOVA approximation of f , i.e.,

f (2) :=
2∑
|u|=1
u⊆D

fu (39)

belongs to the tensor product Sobolev spaceW(1,...,1)
2,mix (Rd). Hence, if the effective superposition di-

mension is at most 2, f (2) is a good approximation of f due to (26) and a favorable behavior of
randomly shifted lattice rules may be expected.

The following two examples provide some more insight into the smoothness of the first order pro-
jections. The first example verifies that some projection is not continuously differentiable if (A5) is
violated while the second example shows that conditions (A1)–(A5) do not imply second order partial
differentiability of all projections.

Example 11 Let m̄ = 3, d = 2, Ξ = R2, P denote a probability distribution with independent
marginal densities ρi, i = 1, 2, whose means are w.l.o.g. equal to 0. We assume that (A3) is satisfied
for P . Let the vector q and matrix W

W =

(
−1 1 0
1 1 −1

)
q =

 1
1
0


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be given. Then (A1) and (A2) are satisfied and the dual feasible set D (Figure 1) is

D = {z ∈ R2 : W>z ≤ q} = {z ∈ R2 : −z1 + z2 ≤ 1, z1 + z2 ≤ 1,−z2 ≤ 0},

i.e., D is a triangle and has the three vertices

v1 =

(
1
0

)
v2 =

(
−1
0

)
v3 =

(
0
1

)
.

Hence, the second component of the two adjacent vertices v1 and v2 coincides. According to (13) the
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Figure 1: Illustration of D, its vertices vj and the normal cones Kj to its vertices

normal cones Kj to D at vj , j = 1, 2, 3, are

K1 = {z ∈ R2 : z1 ≥ 0, z2 ≤ z1}, K2 = {z ∈ R2 : z1 ≤ 0, z2 ≤ −z1},
K3 = {z ∈ R2 : z2 ≥ z1, z2 ≥ −z1}.

The function φ (see (11)) and the integrand are of the form

φ(t) = max
i=1,2,3

〈vi, t〉 = max{t1,−t1, t2} = max{|t1|, t2}

f(x, ξ) = max{|ξ1 − [Tx]1|, ξ2 − [Tx]2}.

The ANOVA projection P1f is defined by

(P1f)(ξ2) =

∫ +∞

−∞
max{|ξ1 − [Tx]1|, ξ2 − [Tx]2}ρ1(ξ1)dξ1 (ξ2 ∈ R).

For ξ2 − [Tx]2 ≤ 0 one obtains

(P1f)(ξ2) =

∫ +∞

−∞
|ξ1 − [Tx]1|ρ1(ξ1)dξ1

=

∫ +∞

−∞
(ξ1 − [Tx]1)ρ1(ξ1)dξ1 − 2

∫ [Tx]1

−∞
(ξ1 − [Tx]1)ρ1(ξ1)dξ1

and in case ξ2 − [Tx]2 ≥ 0

(P1f)(ξ2) =

∫ +∞

−∞
|ξ1 − [Tx]1|ρ1(ξ1)dξ1 −

∫ ξ2−[Tx]2

0

(ξ1 + ξ2 − [Tx]1 − [Tx]2)ρ1(ξ1)dξ1.

17



Hence, P1f belongs to C1(R) for all x ∈ X if ρ is continuous.
When calculating the ANOVA projection P2f , notice that assumption (A5) is violated. We obtain

(P2f)(ξ1) = |ξ1 − [Tx]1|
∫ |ξ1−[Tx]1|

−∞
ρ2(ξ2)dξ2 +

∫ +∞

|ξ1−[Tx]1|
(ξ2 − [Tx]2)ρ2(ξ2)dξ2

and P2f does not belong to C1(R) for all x ∈ X .

Example 12 Let m̄ = 3, d = 2, P denote a two-dimensional probability distribution with independent
continuous marginal densities ρi, i = 1, 2, whose means are w.l.o.g. equal to 0. Again we assume
that (A3) is satisfied for P . Let the vector q and matrix W

W =

(
−1 1 1
1 1 3

)
q =

 1
1
−1


be given. Then (A1) and (A2) are satisfied and the dual feasible set D (Figure 2) is

D = {z ∈ R2 : W>z ≤ q} = {z ∈ R2 : −z1 + z2 ≤ 1, z1 + z2 ≤ 1,−z1 − 3z2 ≤ 1},

i.e., D is also a triangle and has the three vertices

v1 =

(
2
−1

)
v2 =

(
−1
0

)
v3 =

(
0
1

)
.

Hence, both components of the vertices vj , j = 1, 2, 3, are distinct. This means that (A4) and (A5)
are satisfied. The normal cones Kj to D at vj , j = 1, 2, 3, are

K1 = {z ∈ R2 : z2 ≤ z1, z2 ≤ 3z1}, K2 = {z ∈ R2 : z2 ≥ 3z1, z2 ≤ −z1},
K3 = {z ∈ R2 : z2 ≥ z1, z2 ≥ −z1}.
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Figure 2: Illustration of D, its vertices vj and the normal cones Kj to its vertices

The function φ in (11) and the integrand are of the form

φ(t) = max
i=1,2,3

〈vi, t〉 = max{2t1 − t2,−t1, t2}

f(x, ξ) = φ(ξ1 − [Tx]1, ξ2 − [Tx]2).
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The ANOVA projection P1f is given by

(P1f)(ξ2) =

∫ +∞

−∞
max{2(s− [Tx]1)− ξ2 + [Tx]2,−s+ [Tx]1, ξ2 − [Tx]2}ρ1(s)ds

for every ξ2 ∈ R. For simplicity let x = 0. First let ξ2 > 0.

(P1f)(ξ2) =

∫ +∞

−∞
max{2s− ξ2,−s, ξ2}ρ1(s)ds

=

∫ s1

−∞
−sρ1(s)ds+

∫ s2

s1

ξ2ρ1(s)ds+

∫ +∞

s2

(2s− ξ2)ρ1(s)ds,

where s1 = s1(ξ2) = −ξ2 and s2 = s2(ξ2) = ξ2. Hence,

(P1f)(ξ2) = 3

∫ +∞

ξ2

sρ1(s)ds+ ξ2

(∫ ξ2

−ξ2
ρ1(s)ds−

∫ +∞

ξ2

ρ1(s)ds
)
.

Now, we compute the partial derivatives for ξ2 > 0 and obtain

∂P1f

∂ξ2

(ξ2) = −ξ2(ρ1(ξ2)− ρ1(−ξ2)) + (2ϕ1(ξ2)− ϕ1(−ξ2)− 1)

∂P1f

∂ξ2

(0+) = ϕ1(0)− 1

∂2P1f

∂ξ2
2

(ξ2) = 2ρ1(ξ2) + ρ1(−ξ2) = 3ρ1(ξ2).

P1f is for ξ2 > 0 s-times continuously differentiable if ρ1 ∈ Cs−2(R) for any s ∈ N.
Now, let ξ2 < 0. Then we obtain with s1(ξ2) = ξ2

3

(P1f)(ξ2) =

∫ +∞

−∞
max{2s− ξ2,−s, ξ2}ρ1(s)ds

=

∫ s1

−∞
−sρ1(s)ds+

∫ +∞

s1

(2s− ξ2)ρ1(s)ds

∂P1f

∂ξ2

(ξ2) = − ξ2
3
ρ1( ξ2

3
) + (ϕ1( ξ2

3
)− 1) + ξ2

3
ρ1( ξ2

3
) = ϕ1( ξ2

3
)− 1

∂P1f

∂ξ2

(0−) = ϕ1(0)− 1

∂2P1f

∂ξ2
2

(ξ2) = 1
3
ρ1( ξ2

3
).

P1f is for ξ2 < 0 s-times continuously differentiable if ρ1 ∈ Cs−2(R) for any s ∈ N.
Hence, P1f belongs to C1(R), but its second derivative is discontinuous at ξ2 = 0. The same holds
for P2f .

Remark 13 (error estimate)
If the assumptions of Theorem 9 are satisfied and all marginal densities ρj , j ∈ D, are positive
and continuously differentiable, all ANOVA terms gu, |u| = 1, 2, of g given by (23) are continuously
differentiable on Rd and the second order partial derivatives exist in the sense of Sobolev. However, as
observed already in [53], the partial derivatives are not quadratically integrable and, hence, gu does
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not belong to the tensor product Sobolev space (5). Meanwhile, a theory was developed in [26] in
which a suitable weight function is incorporated into the integrals defining the inner product (6) and
into the kernel to remedy this issue. In this way, the same convergence rate (8) is obtained in [26] for
a number of probability distributions (including the normal distribution).

In order not to complicate the argument with technical details we assume here for simplicity that the
ANOVA terms gu, |u| = 1, 2, belong to (5). Then the QMC quadrature error may be estimated as
follows:∣∣∣ ∫

Rd
f(ξ)ρ(ξ)dξ − n−1

n∑
j=1

f(ξj)
∣∣∣ =

∣∣∣ ∫
[0,1]d

g(x)dx− n−1

n∑
j=1

g(xj)
∣∣∣

≤
∑

0<|u|≤d

∣∣∣ ∫
[0,1]d

gu(x
u)dxu − n−1

n∑
j=1

gu(x
j)
∣∣∣

≤
2∑
|u|=1

Discn,u(x
1, . . . , xn)‖gu‖γ + (40)

d∑
|u|=3

∣∣∣ ∫
[0,1]d

gu(x)dx− n−1

n∑
j=1

gu(x
j)
∣∣∣, (41)

where xji = ϕi(ξ
j
i ) ∈ (0, 1)d, j = 1, . . . , n, i = 1, . . . , d, are the QMC points and Discn,u is the

weighted L2- discrepancy

Disc2
n,u(x

1, . . . , xn) = γu

∫
[0,1]|u|

disc2
u(x

u)dxu,

where the discrepancy disc is given by

discu(x
u) =

∏
i∈u

xi − n−1
∣∣{j ∈ {1, . . . , n} : xj ∈ [0, xu)}

∣∣,
and ‖gu‖γ the weighted norm of gu given by (6) in the weighted tensor product Sobolev space (5).
Recalling the arguments in the introduction one may conclude that all terms in (40) converge with the
optimal rate (8) while all terms in (41) also converge to 0 due to Proinov’s convergence result [47] (as
the gu are continuous). In addition, the sum (41) can be further estimated by

d∑
|u|=3

(∫
[0,1]d

g2
u(x)dx+ n−1

n∑
j=1

g2
u(x

j)
) 1

2
=

d∑
|u|=3

(
‖fu‖2

L2
+ n−1

n∑
j=1

f 2
u(ξj)

) 1
2
. (42)

Since (26) implies
∑d
|u|=3 ‖fu‖2

L2
≤ εσ2(f) if dS(ε) ≤ 2 and the second term on the right-hand

side of (42) represents a QMC approximation of the first term, we may conclude that the term in (41)
is of the form O(

√
ε). Hence, we obtain the estimate∣∣∣ ∫

Rd
f(ξ)ρ(ξ)dξ − n−1

n∑
j=1

f(ξj)
∣∣∣ ≤ C(δ)n−1+δ +O(

√
ε) (43)

if the condition dS(ε) ≤ 2 is satisfied. The latter may eventually be achieved by applying dimension
reduction techniques (see Section 7).

20



Moreover, when recalling the results in [68], one may hope that the convergence rate for the terms in
(40) is even better.

Finally, we note that the constants involved in the estimate (43) may be chosen to be uniform with
respect to x ∈ X . Together with the perturbation estimates (17) and (18) in Section 3 one, hence,
obtains

|v(P )− v(Pn)| ≤ Ĉ(δ)n−1+δ +O(
√
ε),

S(Pn) ⊆ S(P ) + ψ−1
P (Ĉ(δ)n−1+δ +O(

√
ε))

if dS(ε) ≤ 2. Here, Pn is the discrete probability measure representing the QMC method, i.e., Pn =
n−1

∑n
j=1 δξj , where δξ denotes the Dirac measure placing unit mass at ξ.

6 Orthogonal transformations and the Gaussian case

We consider the stochastic program (3) with

Φ(x, ξ) = φ(h(ξ)− Tx)

and the infimal function (11) of the second stage problem given by (14). Assume that (A1)–(A3) is
satisfied. Further we assume that ξ is of the form ξ = Qζ with some orthogonal (d, d) matrix Q and
with ζ satisfying (A4). Then the relevant integrand is of the form

f(ξ) = max
j=1,...,`

〈vj, (Qζ, h̄)− Tx〉 = max
j=1,...,`

〈Q̂>vj, (ζ, h̄)− Q̂>Tx〉,

where the (r, r) matrix Q̂ is defined as in (16) with B replaced by Q. Hence, the results of Section 5
apply if the vertices Q̂>vj , j = 1, . . . , `, of the linearly transformed dual feasible set Q̂>D satisfy the
corresponding assumption (A5). The set Q̂>D may be represented in the form

Q̂>D = {Q̂>z : W>z ≤ q} = {z ∈ Rr : (Q̂>W )>z ≤ q}.

The geometric condition (A5) is violated only if some facet of Q̂>D is parallel to some of the first d
coordinate axis. To study the set of orthogonal (d, d) matrices Q such that the latter property is true,
we consider the set M of all nonsingular (d, d) matrices as elements of Rd2 and the subset Mo

of all orthogonal (d, d) matrices. We recall thatMo is a compact subset ofM and is of dimension
l(d) = 1

2
d(d − 1). Hence,Mo can be considered as a subset of Rl(d) which is equipped with the

Lebesgue measure λl(d). The (d, d) matrices Q cause rotations of Rd and, thus, changes of the first
d variables of the elements ofD. If all d variables change, i.e., if Q causes a full-dimensional rotation,
then there exist only countably many matrices Q such that (A5) is violated for Q̂D. All orthogonal
matrices Q such that less than d variables change, form a subset ofMo of dimension smaller than
l(d). In both situations the set of all orthogonal matrices Q ∈ Mo such that (A5) is violated for Q̂D
has Lebesgue measure λl(d) zero. Hence, we may say that (A5) is satisfied for almost every orthogonal
matrix Q if ξ is given in the form ξ = Qζ with ζ satisfying (A4). We note that this argument applies
to the principal component analysis (PCA) decomposition of a normal random vector with nonsingular
covariance matrix (see Section 7).

Corollary 14 Let x ∈ X be fixed and assume (A1), (A2) and that ξ is normal with nonsingular
covariance matrix Σ. For almost every covariance matrix the ANOVA approximation f (2) of f given by
(39) belongs to the mixed Sobolev spaceW(1,...,1)

2,ρ,mix(Rd).
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Proof. First we note that normal random vectors satisfy (A3). Now, let λj denote the positive eigen-
values and uj , j = 1, . . . , d, the corresponding orthogonal eigenvectors of Σ. Then it holds Σ =
QDQ>, where Q = (u1 · · ·ud) and D is the diagonal matrix with λ1, . . . , λd in the main diagonal.
Hence, ζ = Q>ξ is normal with covariance matrix D, thus, ratifies (A4) and we may apply the result
derived before stating the corollary. The result then follows from Theorem 9. �

7 Sensitivity and dimension reduction of two-stage stochastic
programs

In this section we discuss sensitivity and possibilities for reducing the effective dimension of two-stage
models. First, we derive an upper bound for the global sensitivity indices S̄{i}, i = 1, . . . , d, and the
mean dimension d̄S in the superposition sense, respectively.

Proposition 15 Let (A1)–(A4) with h(ξ) = (ξ, h̄) with fixed h̄ ∈ Rr−d be satisfied and σ2
i denote

the variance of ξi, i = 1, . . . , d. Then

S̄{i} ≤
σ2
i

σ2(f)
max
j=1,...,`

|vji |2 (i = 1, . . . , d)

d̄S ≤
1

σ2(f)
max
j=1,...,`

‖vj‖2
∞

d∑
i=1

σ2
i ,

where vj , j = 1, . . . , `, are the vertices of the dual polyhedron.

Proof. We use [58, Theorem 3] and compute the partial derivatives of f with respect to ξi, i =
1, . . . , d, which exist almost everywhere on Rd. If h(ξ)− Tx belongs to the cone Kj , then

f(ξ) =
d∑
i=1

vji (ξi − [Tx]i) +
r∑

i=d+1

vji (h̄i − [Tx]i),

where x ∈ X is fixed. We obtain for ξ ∈ Rd such that h(ξ)− Tx belongs to the interior of Kj that

∂f

∂ξi
= vji .

Hence, the partial derivative is piecewise constant and may be bounded from above by maxj=1,...,` |vji |.
Using [58, Theorem 3] this proves our estimate for the global sensitivity index S̄{i}. The second esti-
mate is a consequence of formula (25). �

Proposition 15 provides an estimate for the importance of variable i on f and sheds light on the role
of σi.

If ξ is normal with nonsingular covariance matrix Σ, the standard (lower triangular) Cholesky matrix
LC performing the factorization Σ = LCL

>
C seems to assign the same importance to every variable

and, hence, is not suitable to reduce the effective dimension (at least in the truncation sense). This
fact is confirmed in our numerical experiments (see Section 8).

Several dimension reduction techniques exploit the fact that a normal random vector ξ with mean µ
and covariance matrix Σ can be transformed by ξ = Bη + µ and any matrix B satisfying Σ =
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BB> into a standard normal random vector η with independent components. The choice of B may
change the QMC error and the effective dimension of the integrand. A given matrix B may achieve a
substantial effective dimension reduction in many applications. However, as observed in [43, 64] for
financial models, B does not necessarily reduce the effective dimension for an arbitrary problem. As
noted in [69] the possible pitfall is that a specific matrix B does not take into account the objective
function and the constraints. This motivated the authors of [69] do develop an alternative approach to
dimension reduction (see below after Proposition 16).

A universal principle for dimension reduction in the normal case is principal component analysis (PCA).
It is universal in the sense that it does not depend on the structure of the underlying integrand f . The
basic idea of PCA is to determine the best mean square approximation of the form

∑d
i=1 vizi to a

d-dimensional normal random vector ξ, where vi ∈ Rd, i = 1, . . . , d, and (z1, . . . , zd) is normal
with mean 0 and covariance matrix I . The solution is vi =

√
λiui and zi = (

√
λi)
−1u>i ξ, where

λ1 ≥ · · · ≥ λd > 0 are the eigenvalues of Σ in decreasing order and ui, i = 1, . . . , d, the
corresponding orthonormal eigenvectors (see [69]). Hence, PCA consists in using the factorization

Σ = UP U
>
P or Σ = QPdiag(λ1, . . . , λd)Q

>
P ,

where UP = (
√
λ1u1, . . . ,

√
λdud) and QP = (u1, . . . , ud). Several authors report an enormous

reduction of the effective truncation dimension in financial models if PCA is used (see, for example,
[65, 66, 67]). We observed the same effect in our numerical experiments (see Section 8). However, the
reduction effect certainly depends on the eigenvalues of Σ. If the ratio λ1

λd
is close to 1, the performance

of PCA gets worse. Nevertheless we recommend to use first PCA and to resort to other ideas only
after its failure.

One such idea is based on the following observation which is seemingly due to [43], too (see also [69,
Lemma 1]).

Proposition 16 Let Σ be a d× d nonsingular covariance matrix and A be a fixed d× d matrix such
that AA> = Σ. Then Σ = BB> if and only if B is of the form B = AQ for some orthogonal d× d
matrix Q.

To apply the proposition, one may chooseA = LC since computing the standard Cholesky matrix LC
requires only 1

6
d3 operations. Then any other decomposition matrix B with Σ = BB> is of the form

B = LC Q with some orthogonal matrixQ. The approach proposed in [21] for linear functions f(ξ) =
w>ξ + a consists in determining a good orthogonal matrix Q by minimizing the mean truncation
dimension (24). This approach is extended in [69] to functions f of the form

f(ξ) = G(w>1 ξ + a1, . . . , w
>
` ξ + a`)

for some function G and w, wi ∈ Rd, a, ai ∈ R, i = 1, . . . , `. The latter is applicable to linear two-
stage integrands if the functionG is chosen asG(t1, . . . , t`) = max{t1, . . . , t`} andwi contains the
first d components of the vertex vi of the dual feasible setD (see Proposition 15). Of course, applying
the orthogonalization techniques developed in [69] to two-stage integrands is not straightforward since
the vertices vj of D are not known in general and the computation of all of them is too expensive. So,
its application to two-stage stochastic programs requires further work.

For general (non-normal) random vectors ξ the influence (of groups) of variables and the computation
of effective dimensions are studied, e.g., in [7, 57, 58, 65].
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8 Numerical experiments

For our tests we consider a two-stage stochastic production planning problem which consists in min-
imizing costs of a company. The company aims to satisfy stochastic demands ξt in a time horizon
{1, . . . , T} with multivariate probability distribution P (on RT ), but its production capacity based on
I company owned units does eventually not suffice to cover the demand. Hence, it has to buy the
necessary amounts from other m = m1 + m2 providers or markets at fixed prices c̄1,j1,t and c̄2,j2,t,
t = 1, . . . , T, 1 ≤ j1 ≤ m1, 1 ≤ j2 ≤ m2, and aims at minimizing the expected costs.

The optimization model is of the form

min
x∈RIT

{ T∑
t=1

I∑
i=1

ci,t xi,t +

∫
RT

Φ(x, ξ)P (dξ) : x ∈ X
}
,

where the recourse costs Φ are given by

Φ(x, ξ) = min
y∈R(m1+m2)T

{ T∑
t=1

( m1∑
j1=1

c̄1,j1,t yj1,t +

m2∑
j2=1

c̄2,j2,t ym1+j2,t

)
: y ∈ Y (x, ξ)

}
,

with the polyhedral constraint sets

X :=

{
x ∈ RIT

∣∣∣∣∣ ai,t ≤ xi,t ≤ bi,t , i = 1, . . . , I, t = 1, . . . , T

|xi,t − xi,t+1| ≤ δi,t , i = 1, . . . , I, t = 1, . . . , T − 1

}
,

and

Y (x, ξ) :=



y ∈ RmT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I∑
i=1

xi,t +

m1+m2∑
j=1

yj,t ≥ ξt ,

w1,j1,t ≤ yj1,t ≤ z1,j1,t , j1 = 1, . . . ,m1

w2,j2,t ≤ ym1+j2,t , j2 = 1, . . . ,m2

(t = 1, . . . , T )

|yj1,t − yj1,t+1| ≤ ρ1,j1,t , j1 = 1, . . . ,m1,

|ym1+j2,t − ym1+j2,t+1| ≤ ρ2,j2,t , j2 = 1, . . . ,m2

(t = 1, . . . , T − 1)


with fixed positive prices ci,t, c̄1,j1,t, c̄2,j2,t and bounds ai,t, bi,t, δi,t, w1,j1,t, w2,j2,t, z1,j1,t, ρ1,j1,t,
ρ2,j2,t. We assume that the demands ξt follow the condition

ξt = mt + ηt, for 1 ≤ t ≤ T, (44)

where m = (m1, . . . ,mT ) is a vector of expected values simulating the trend or seasonality of the
demands, and η is an ARMA(p,q) process given by the recurrence equation

ηt =

p∑
i=1

αiηt−i +

q∑
j=1

βjγt−j + γt (t ∈ Z) (45)

with i.i.d. Gaussian noise γt ∼ N(0,1) and characteristic polynomials P (z) = 1 −
∑p

i=1 αiz
i and

Q(z) = 1 +
∑q

i=1 βiz
i. An ARMA(p,q) process is stationary (i.e., the covariance function R(t, s) =

E(ηtηs) is of the form R(t, s) = λ(|t − s| + 1), 1 ≤ t, s ≤ T ) iff the polynomials P and Q do not
have common zeros and P (z) 6= 0 for all z ∈ C with |z| ≤ 1 (see [2, Chapter 3]).
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The vector of demands ξ1, . . . , ξT is then normally distributed with mean vector m and covariance
matrix dependending on the constants αi, βj , 1 ≤ i ≤ p, 1 ≤ j ≤ q, p, q ∈ N. Such models
have been considered for simulating electricity load demands in energy industry, see e.g. [44] and
[9]. Note that since the model includes unbounded demands ξ, no upper bounds in the variables
ym1+j2,t, j2 = 1, . . . ,m2, t = 1, . . . , T , were imposed, allowing to cover arbitrarily large demand
values. We select in addition the prices c̄2,j2,t significantly higher than the prices c̄1,j1,t, such that
the variables ym1+j2,t, j2 = 1, . . . ,m2, t = 1, . . . , T , do not represent always the trivial choice
for costs minimization. For our tests, we choose the real dimension d = T = 100, and the model
constants p = 2, q = 6, α1 = −0.52, α2 = 0.45, β1 = −0.17, β2 = 0.12, β3 = 0.05,
β4 = −0.07, β5 = 0.06, β6 = 0.04. The resulting ARMA process η is stationary and, hence,
E(ηtηs) = λ(|t − s| + 1), 1 ≤ t, s ≤ T . The values λ(t), 1 ≤ t ≤ T , can be obtained by
solving a system of linear equations with coefficients depending on the constants αi, βj , 1 ≤ i ≤ 2,
1 ≤ j ≤ 6 (see [2] for detailed information about modeling with ARMA processes). The resulting
covariance matrix Σ is Toeplitz symmetric, with entry values Σ(i, j) = λ(|i− j|+ 1). The integration
problem is transformed by factorizing the covariance matrix Σ = AA> as usually recommended
in Gaussian high-dimensional integration (see [11, Sect. 2.3.3]). We carry out our tests using the
Cholesky factorization A = LC (CH) and the principal component analysis factorization A = UP
(PCA) (see Section 7). After the factorization of Σ assumptions (A1)–(A4) (see Section 3) are satisfied.
Hence, Theorem 9 applies if (A5) is satisfied.

A simulated demands-path ξ1, . . . , ξd can then be obtained by

(ξ1, . . . , ξd)
> = A (φ−1(z1), . . . , φ−1(zd))

> + (m1, . . . ,md),

where Z = (z1, . . . , zd) ∼ U([0, 1]d) (i.e., the probability distribution of Z is uniform on [0, 1]d), and
φ−1(·) represents the inverse cumulative normal distribution function, which can be efficiently and
accurately calculated by Moro’s algorithm (see [11, Sect. 2.3.2]). The evaluation begins then with MC
or randomized QMC points for the samples Z ∼ U([0, 1]d). For MC points in [0, 1]d we used the
Mersenne Twister [32] as pseudo random number generator. For QMC, we use randomly scrambled
Sobol’ points with direction numbers given in [22] and randomly shifted lattice rules [55, 25]. The
implemented scrambling technique is random linear scrambling described in [31]. For our tests, we
considered cubic decaying weights γj = 1

j3
for constructing the lattice rules.

We chose the following parameters for the numerical experiments:

� I = 10, m1 = 6, m2 = 2.

� For all i, j1, j2, t, we select randomly ai,t ∈ [0.001, 0.003], bi,t ∈ [0.3, 0.6], δi,t ∈ [0.3, 0.35],
w1,j1,t, w2,j2,t ∈ [0.000001, 0.00002], z1,j1,t ∈ [5, 7], and ρ1,j1,t, ρ2,j2,t ∈ [1.0, 1.1].

� For all i, j1, j2, t, we select randomly ci,t ∈ [7, 9], c̄1,j1,t ∈ [8, 10], and c̄2,j2,t ∈ [12, 14].

The given parameters were chosen to attempt avoiding trivial solutions of the linear programs.
We perform two different kinds of tests in our experiments. For the first kind of tests we fix n sampling
points ξj and replace the integral of the second stage function Φ(x, ·) by the equal weight MC and
randomized QMC quadrature rule, respectively. Then we solve the resulting large linear program

min
x∈RIT

{ T∑
t=1

I∑
i=1

ci,t xi,t +
1

n

n∑
j=1

Φ(x, ξj)P (dξ) : x ∈ X
}
. (46)
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For the second kind of tests, we select fixed feasible points x ∈ X and examine the integration errors
for the expected recourse ∫

RT
Φ(x, ξ)P (dξ) (47)

by equal weight MC or randomized QMC quadrature rules. For simplicity we choose the fixed feasible
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Figure 3: Shown are the Log10 of relative RMSE with PCA factorization of covariance matrix for
integrating Φ(x, ·) (upper figure) and for the minimum in (46) (lower figure). Results for Mersenne
Twister MC and randomly scrambled Sobol’ QMC with 128, 256, 512 and 1024 points (MC 128,... or
SO 128,...), and randomly shifted lattice rules QMC with 127, 257, 509 and 1021 lattice points (LA
127,...).

points x ∈ X to be the optimal solutions of the tests of the first kind, which were obtained by solving
the resulting linear program for different costs while keeping the constraint set unchanged. The aim of
these experiments is twofold. First we examine the convergence rate of the MC or randomized QMC
quadrature rules with some fixed feasible points x ∈ X for the expected recourse in the tests of sec-
ond kind. Secondly we examine if these convergence rates in terms of sample sizes n are translated
to the resulting large linear programs for the tests of first kind. The results for the tests of first and sec-
ond kind under PCA factorization are summarized in Figure 3. We chose n = 128, 256, 512, 1024
for the Mersenne Twister and for Sobol’ points. For randomly shifted lattices, we chose the primes
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Figure 4: Shown are the Log10 of relative RMSE with Cholesky factorization of covariance matrix for
integration of Φ(x, ξ) (upper figure) and for the minimum in (46) (lower figure). Results for Mersenne
Twister MC and randomly scrambled Sobol’ QMC with 128, 256, 512 and 1024 points (MC 128,... or
SO 128,...), and randomly shifted lattice rules QMC with 127, 257, 509 and 1021 lattice points (LA
127,...).

n = 127, 257, 509, 1021. The random shifts were generated using the Mersenne Twister. We esti-
mate the relative root mean square errors (RMSE) of the estimated integrals (for the tests of the first
kind) and of the optimal objective values (for the tests of the second kind) by taking 10 runs of every ex-
periment, and repeat the process 30 times for the box plots in the figures. The box-plots show the first
(lower bound of the box) and third quartiles (upper bound of the box), and the median (line between
lower and upper bound). Outliers are marked by plus signs and the remaining results lie between the
bounds.

The average of the estimated rates of convergence for both kind of tests under PCA ranged in
[−0.95,−0.85] for randomly shifted lattice rules, and in [−1,−0.9] for randomly scrambled Sobol’
points, for different price- and bound-parameters as listed above. This is clearly superior to the MC
convergence rate of−0.5. The effective truncation dimension of Φ(x, ·) was tested at 20 different fea-
sible vertices x (obtained from the tests of first kind with different price parameters and fixed bounds).
We used the algorithm proposed in [65] with 216 randomly scrambled Sobol’ points ensuring that all
results for the ANOVA total and partial variances were obtained with at least 3 digits accuracy. The
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effective dimension dT remained close to 2 in most cases and always ≤ 6. Further tests for the case
dT = 6 showed that the variance accumulated by the first order ANOVA terms f{i}, 1 ≤ i ≤ 6 was
approximately 95% of the total variance. The first order ANOVA terms f{i}, 7 ≤ i ≤ d accumulated
in total approximately 0, 5% of the total variance. Moreover, adding the variance of the ANOVA terms
f{1,2} and f{1,3} to the variance of the terms f{i}, 1 ≤ i ≤ 6 resulted in a variance accumulation
higher than 99%. Therefore we can conclude that the effective superposition dimension in case of
using PCA is dS(0.01) = 2. Intensive computations seem to show that we may have dS(ε) = 2 for
even smaller values of ε than 0.01. Hence, PCA serves as excellent dimension reduction technique in
this case.

Although the geometric condition (A5) seems difficult to prove in this case (and maybe in many high-
dimensional realistic examples encountered in energy industry), we may rely on Corollary 14 which
states that the condition is satisfied for almost all covariance matrices except for countably many. In-
deed, it seems that the recourse function Φ(x, ·) is well approximated by a low dimensional smooth
function as is the case in many practical examples considered in finance (see [15]), for different fea-
sible vertices x ∈ X . Further tests were carried out by combining randomly shifted lattice rules with
the tent transformation as described in [17], but no improvements in the convergence rates beyond
O(n−1) were observed for our feasible range of sample sizes. Similarly no improvement beyond the
rate O(n−1) was observed for scrambled Sobol’ sequences as might be expected for smooth inte-
grands (see Section 2)). This may be explained by the lack of the required smoothness properties of
the second order ANOVA approximation.

Using the Cholesky factorization, the results for both kind of tests were completely different than
those under PCA. The average of the estimated rates of convergence of randomized QMC ranged
in [−0.6,−0.5], which is very close to the expected MC rate of −0.5. The results for the Cholesky
factorization are presented in Figure 4. The effective truncation dimension of Φ(x, ·) was estimated
to be equal to dT = 100, which is just the real dimension d of the problem. Tests showed that the
variance accumulated by the first order ANOVA terms f{i}, i ∈ D was approximately 20% of the
total variance. It seems very likely that the effective superposition dimension for the case of using the
Cholesky factorization is really high-dimensional.

9 Conclusions

Our theoretical results in Section 5 imply that all ANOVA terms except the one of highest order of
integrands f appearing in linear two-stage stochastic programs are smoother than f . More precisely,
the ANOVA terms of first and second order belong to a mixed Sobolev space which is important for
optimal convergence rates of randomly shifted lattice rules. Error estimates as in Remark 13 then
indicate that we may expect that Quasi-Monte Carlo approximations of two-stage stochastic programs
converge with the optimal rate (8) even for high dimensions d if the effective superposition dimension
satisfies dS ≤ 2. Since we estimate the effective truncation dimension dT and it holds dS ≤ dT , it
is important that dT is equal to or at least close to 2. This requires the use of dimension reduction
techniques, for example, principal component analysis for (log)normal distributions P .

Our preliminary computational experience on applying Quasi-Monte Carlo methods to a two-stage
stochastic production planning problem confirms the theoretical results. They show that using appro-
priate Quasi-Monte Carlo methods instead of Monte Carlo may lead to a substantial improvement,
because one may work with a much smaller number n of scenarios if suitable dimension reduction
techniques allow for an essential reduction from dT = d to dT close to 2.
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Altogether, there are good reasons to conclude that recent randomized Quasi-Monte Carlo methods
(like (scrambled) Sobol’ sequences and randomly shifted lattice rules) may be efficient for two-stage
linear stochastic programs (even if the programs are large scale) if they allow for a clear dimension
reduction. However, our present theoretical results do not support the use of higher order QMC meth-
ods (see [4, 5]) since the first and second order ANOVA terms do not seem to satisfy the required
smoothness conditions.
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