OPEN SUBJECT AREAS: MATERIALS FOR OPTICS ELECTRICAL AND ELECTRONIC ENGINEERING Received 30 October 2014 Accepted 9 February 2015 Published 10 March 2015 Correspondence and requests for materials should be addressed to L.W. (lothar. wondraczek@uni-jena. # Faraday rotation and photoluminescence in heavily Tb³⁺-doped GeO₂-B₂O₃-Al₂O₃-Ga₂O₃ glasses for fiber-integrated magneto-optics Guojun Gao¹, Anja Winterstein-Beckmann¹, Oleksii Surzhenko², Carsten Dubs², Jan Dellith³, Markus A. Schmidt³ & Lothar Wondraczek¹ We report on the magneto-optical (MO) properties of heavily Tb^{3+} -doped GeO_2 - B_2O_3 - Al_2O_3 - Ga_2O_3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb^{3+} ion concentration of up to 9.7×10^{21} cm⁻³, the reported glass exhibits an absolute negative Faraday rotation of \sim 120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400–1500 nm is found for a Tb^{3+} concentration of \sim 6.5 \times 10^{21} cm⁻³. For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb^{3+} photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of \sim 43% is achieved. The lifetime of photoluminescence is \sim 2.2 ms at a stimulated emission cross-section $\sigma_{\rm em}$ of \sim 1.1 \times 10^{-21} cm² for \sim 5.0 \times 10^{21} cm⁻³ Tb^{3+} . This results in an optical gain parameter $\sigma_{\rm em}^{**} \tau$ of \sim 2.5 \times 10^{-24} cm²s, what could be of interest for implementation of a Tb^{3+} fiber laser. he Faraday effect reflects the ability of a material to - in the presence of a magnetic field being parallel to the incident light beam - rotate the polarization plane of linear polarized light by a certain angle¹⁻³. The material's magneto-optical (MO) performance is typically described by the Verdet constant V_B , which represents the degree of rotation as a function of the acting magnetic field strength and the geometrical path length within the material. High performance can hence be achieved via large rotation efficiency or a long path length. Applications of MO materials range from magnetic field sensing and security encoding to optical modulators, diodes, isolators and switches¹⁻⁶. Key for the design of an efficient, optically transparent (bulk) MO material is the incorporation of a high atom concentration of paramagnetic species while, at the same time, avoiding optical absorption to the highest possible degree. While some transition metals have also been considered for this purpose, at present, this calls for the use of rare earth species⁷. Here, due to the electronic transition of $4f^8 \rightarrow 4f^75d^{8,9}$, the Tb^{3+} ion offers one of the highest paramagnetic susceptibilities (J = 6, g = 1.46) and magnetic moments (9.5–9.72 μ_{eff}) of all rare earth ions. Consequently, the most promising bulk MO material is terbium aluminum garnet (Tb₃Al₅O₁₃, TAG, $V_B \sim 180 \text{ rad/T/m})^{10,11}$, which is not yet available commercially, though. Instead, terbium gallium garnet single crystals (Tb₃Ga₅O₁₃, TGG, $V_B \sim 134 \text{ rad/T/m})^{12}$ are presently the most widely used commercial MO materials. But also all commercially available MO glasses rely on massive Tb3+doping^{4,13-16}. As an alternative to the MO crystals, glassy materials offer a much improved flexibility of forming and processing. Especially glass compositions which are suitable for fiber fabrication could enable fiber-integrated devices. In addition, the higher interaction length which can be achieved in fiber devices could further compensate eventual losses in Faraday rotation efficiency. In this regard, besides the primary optical properties, the thermo-physical stability and the rheological properties of the considered glass and its corresponding (supercooled) melt are key parameters: in order to avoid crystallization of the melt during fiber drawing, a certain crystallization stability is required. This is often expressed as the difference, ΔT , between the glass transition temperature $T_{\rm g}$ and the onset temperature of crystallization $T_{\rm c}$, or through various other empirical stability indicators such as the Hrubý parameter which is derived from this difference, sometimes further relating ¹Otto Schott Institute of Materials Research, University of Jena, 07743 Jena, Germany, ²Innovent e.V., 07745 Jena, Germany, ³Leibniz Institute of Photonic Technology, 07745 Jena, Germany. it to the liquidus temperature of the melt or other properties 17,18 . Typically, a large value of ΔT is sought for two reasons: fiber drawing must be performed at a temperature sufficiently above $T_{\rm g}$ so that a sufficiently low viscosity is reached and the interval of processing temperature must be sufficiently wide to tolerate a certain degree of processing-induced temperature variability. On the other hand, for many of the specialty (non-silica) compositions with often high liquid fragility, fiber drawing cannot be performed above the liquidus temperature (where there would not be any risk of crystallization) because then, the viscosity would be too low. Here, we consider glass forming liquids of the type GeO_2 - B_2O_3 - Al_2O_3 - Ga_2O_3 enabling high rare earth solubility. In this system, we achieve a Tb_2O_3 doping concentration of up to 25 mol%. The glass stability parameters are controlled through tailoring the matrix composition in order to provide the possibility of fiber drawing. We then report on the MO and photoluminescence properties of this material. # **Results** Magneto-optical properties. The chemical composition and physical properties of all samples are summarized in Tables 1-2. Figure 1a shows the room-temperature wavelength dependence of $V_{\rm B}$ for the full series of GBAG-xTb (x = 14, 18, 22 and 25). As expected, all samples exhibit paramagnetic behaviour over the full range of studied wavelengths, with a strong absolute increase towards the blue. Secondly, there is a notable increase with increasing Tb³⁺ dopant concentration, i.e., from ~48 to 119 rad/T/ m at 632.8 nm (Fig. 1a and 1b). For similar Tb³⁺ ion concentration, the absolute value V_B of GBAG-xTb glasses is in the order of that of other reported record values in Tb3+-doped MO glasses, e.g, silicate2,6, phosphate², borate^{5,22} and borogermanate²³ glasses (Fig. 1b). For the maximum Tb³⁺ loading we report here, GBAG-25Tb, $V_{\rm B}$ exceeds the rotation efficiency in most of the well-known MO glasses, e.g., $30\text{Tb}_2\text{O}_3$ - $70\text{B}_2\text{O}_3$ (~103 rad/T/m)²² and $25\text{Tb}_2\text{O}_3$ - $15\text{Al}_2\text{O}_3$ - 60SiO_2 (~102 rad/T/m)⁶, and is similar with that of 33Tb₂O₃-25GeO₂- $25B_2O_3$ - $5SiO_2$ - $12Al_2O_3$ (~119 rad/T/m)²³. For comparison, data for the single crystalline benchmarks of TAG and TGG are also shown in Fig. 1b11,12. In the framework of the Van Vleck-Hebb model of single-oscillator paramagnetic rare earth ions, the relationship between V and λ^2 can be written as^{24,25} $$V_B^{-1} = \frac{g\mu_B ch}{4\pi^2 \chi C_t} (1 - \frac{\lambda^2}{\lambda_t^2})$$ (1) In Eq. (1), *g* is the Landé factor, *c* the velocity of light, *h* is the Planck constant, C_t is the effective transition probability, and λ_t is the effective transition wavelength. λ_t is a weighted average value which is taken as the origin of the paramagnetic Faraday rotation. In rare earth ions, it is close to the position of the electric transition of 4fh \leftrightarrow 4fⁿ⁻¹5d²⁶. Plotting V^{-1} over λ^2 therefore yields a linear relationship (Fig. 1c). Here, λ_t is the intersection with the λ^2 axis which results from extrapolation of the data. The value of λ_t is dependent on Tb₂O₃ concentration (inset of Fig. 1c). It increases with Tb₂O₃ concentration, i.e., from \sim 225 to 300 nm when $x \le$ 22. A decrease back to \sim 280 nm is observed for the highest Tb₂O₃ concentration. As expected, these values are close to the $4f^8 \leftrightarrow 4f^75d$ transition of the Tb³⁺ ion (\sim 250 nm)⁵, and are also similar to other reported values, e.g., Tb^{3+} -doped phosphate (~250 nm)²⁷, borosilicate (~259- $280 \text{ nm})^{28}$ aluminoborate (\sim 250 nm)²⁴, sodium $(\sim 220 \text{ nm})^8$ and fluorophosphate glasses $(\sim 217 \text{ nm})^{26}$. Fig. 1d shows the UV- NIR optical absorption spectra of GBAG-xTb (x = 14, 18, 22 and 25). The absorption spectra consist of several strongly overlapping but sharp absorption bands in the 300 to 390 nm range, and another sharp band at \sim 484 nm. These bands can readily be assigned to the $4f^8 \rightarrow 4f^8$ electronic transitions of Tb³⁺ from the ground state of 7 F₆ to the labeled excited states (inset of Fig. 1d and Fig. 2e)^{29,30}. The intensity of all bands follows well Lambert-Beer's power law. All glasses exhibit high transparency in the \sim 400 to 1500 nm range with a transmittance of \sim 58% (\sim 95%) with a thickness of 1 cm (mm). The increasing absorption intensity with increasing Tb³⁺ content in the near-UV region results in a shift of the absorption edge and an apparent coloration under sunlight, gradually varying from colorless to brown (inset of Fig. 1e). The MO figure of merit (FoM) which is an important parameter for practical applications results from the ratio of V_B/a , where a is absorption coefficient⁴. As displayed in Fig. 1e, the spectral FoM exhibits a sharp dip at 484 nm, resulting from the ${}^7F_6 \rightarrow {}^5D_4$ absorption band of Tb³⁺. In the present case, the glass of GBAG-18Tb exhibits the best trade-off between V_B and a over the whole spectrum. The highest FoM performance of $\sim -0.049^{\circ}/\mathrm{dB}$ is found at | Table 1 Nominal and analyzed compositions of the studied glasses (data given in the form ''nominal/as-analyzed'', mol%) | | | | | | | |---------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|--|--| | Glass sample | GBAG-14Tb | GBAG-18Tb | GBAG-22Tb | GBAG-25Tb | | | | GeO ₂ | 16.5/17.3 | 16.5/18.0 | 16.5/16.4 | 16.5/17.0 | | | | B_2O_3 | 21.5/25.3 | 21.5/25.0 | 21.5/21.4 | 21.5/23.0 | | | | $A\bar{l}_2O_3$ | 37.0/27.2 | 37.0/28.0 | 37.0/37.0 | 37.0/32.0 | | | | Ga ₂ O ₃ | 11.0/15.1 | 7.0/11.0 | 3.0/3.2 | 0.0/0.0 | | | | Tb ₂ O ₃ | 14.0/15.1 | 18.0/18.0 | 22/22.0 | 25.0/28.0 | | | Table 2 | Experimental data of density ρ , Tb³⁺ ion concentration, refractive index n_d , Verdet constant V_B (at 632.8 nm), FoM (at 435 nm), τ , T_g , T_c , ΔT and E_a for the studied glasses | Glass sample | GBAG-14Tb | GBAG-18Tb | GBAG-22Tb | GBAG-25Tb | |---------------------------------------------------------------------|-------------|-----------|-----------|-----------| | $\rho \pm 0.01 (g/cm^3)$ | 4.08 | 4.53 | 4.79 | 4.85 | | Tb ³⁺ concentration (10 ²¹ cm ⁻³) | 5.0 | 6.5 | 8.1 | 9.7 | | <i>n</i> _{d @587 nm} ± 0.01 | 1.69 | 1.73 | 1.74 | 1.75 | | V _B (rad/T/m) | -48 | -71 | -91 | -119 | | FoM (°/dB) | -0.029 | -0.049 | -0.023 | -0.008 | | τ (ms) | 2.23 | 1.23 | 0.26 | 0.10 | | T _q ± 1 (°C) | <i>7</i> 40 | 767 | 772 | 777 | | $T_c \pm 1 \ (^{\circ}C)$ | 848 | 880 | 905 | 928 | | $\Delta T \pm 1 \text{ (K)}$ | 108 | 113 | 133 | 151 | | E _a (kJ/mol/K) | 520 | 593 | 533 | 482 | Figure 1 | Magneto-optical properties of GBAG-xTb glasses. (a) Variation of the Verdet constant with wavelength for GBAG-xTb glasses as a function of Tb₂O₃ concentration at room-temperature. The solid lines represent a fit of the data to the power function $y = a(1-x)^b$. (b) Dependence of V_B on Tb³⁺ ion concentration and comparison to other reported data glasses at a fixed wavelength of 632.8 nm. (c) Van Vleck-plot of the inverse V_B (V_B^{-1}) over the square wavelength (λ^2). The solid lines in (c) represents a linear fit of the data. The inset of (c) shows the value of the transition wavelength λ_t versus Tb₂O₃ concentration. In (d), the UV-VIS-NIR optical absorption spectra are given, from which the spectral MO figure of merit is obtained (shown in (e)). The inset of (d) exemplarily shows a zoom at the absorption spectrum in the spectral region of 260–550 nm for GBAG-14Tb. ${\sim}435$ nm, which matches the emission characteristics of various blue laser diodes. **Photoluminescence properties.** Fig. 2a and 2b present static photoexcitation (PLE) and luminescence (PL) spectra of Tb³⁺ in Figure 2 | Photoluminescence of GBAG-xTb glasses. Static (a) PLE and (b) PL spectra, and (c) normalized dynamic decay curves of photoluminescence from GBAG-xTb as a function of Tb_2O_3 concentration at room-temperature. (d) is a zoom (by a factor of 3000) into the PLE spectra at the spectra region of 360–470 nm. (e) represents the energy level diagram of Tb^{3+} . The labels in (a–b) indicate the respective band assignment. GBAG-xTb (x = 14, 18, 22 and 25) at room temperature. Fully consistent with the optical absorption data (Fig. 1d), the PLE spectra of Tb³⁺ consist of a series of sharp overlapping PLE bands in the NUV region with maxima at 378, 368, 358, 350, 340, 325, 317 and 303 nm, and another sharp PLE line in the blue with a maximum at 484 nm. These bands are attributed to the intra-configurational parity-forbidden $4f^8 \rightarrow 4f^8$ electronic transitions from the ground state ⁷F₆ to the labeled excited states, also indicated in energy level diagram of Tb³⁺ (Fig. 2a and 2e)³⁰⁻³⁴. The strongest PLE band is the $^{7}\text{F}_{6} \rightarrow ^{5}\text{L}_{9}$ at 350 nm, used in the following as excitation wavelength to record the PL spectra. Here, the five typical PL bands of Tb³⁺ are observed, i.e., at 488, 542, 585, 622 and 655 nm, deriving again from the intra-configurational parity-forbidden $4f^8 \rightarrow 4f^8$ transitions from $^5\mathrm{D}_4$ to the $^7\mathrm{F}_{\mathrm{J}\,(\mathrm{J}=6,\,5,\,4,\,3\,\,\mathrm{and}\,2)}$ multiplet, Fig. 2b and 2e 35 . The green PL line of the magnetic dipole allowed transition ($\Delta J = 1$) Tb³⁺: ${}^5D_4 \rightarrow$ ⁷F₅ at 542 nm with a full width at half maximum (FWHM) of \sim 10 nm (\sim 337 cm⁻¹) dominates the PL spectra for all samples. As a result, the corresponding International Commission on Illumination (CIE) 1931 PL chromaticity coordinates of all samples are (\sim 0.344 \pm 0.002, \sim 0.592 \pm 0.002), which are located in the green region. The aforementioned green PL band is Stark-split into two peaks due to the distorting effect of the disordered glass network on the Tb3+ ions (Fig. 2b). For lower amounts of Tb2O3 loading ($x \le 18$), the intensity of all PL lines of Tb³⁺ decreases only slightly with Tb_2O_3 concentration while for $x \ge 18$, we observe strong concentration quenching^{36,37}. This is related to an increasing probability for the formation of Tb-O-Tb entities in the first coordination shell of Tb3+.38 The concentration quenching effect is further confirmed by the decay data of the Tb³⁺: ${}^5D_4 \rightarrow {}^7F_5$ emission (Fig. 2c). All decay curves follow a single exponential function of the form $I = I_0 \exp(-t/\tau)$ (with time t and intensity I). The effective lifetime τ decreases with increasing Tb³⁺ concentration, Figure 3 | Thermal properties of GBAG-xTb glasses. (a) Physical properties density and refractive index of GBAG-xTb as a function of Tb₂O₃ concentration. (b) DSC curves of GBAG-xTb as dependent on Tb₂O₃ concentration. From (b), the variation of the glass transition temperature T_g and the onset temperature of crystallization T_c are extracted (c). (d–e) show the glass stability parameter ΔT and the apparent activation energy of crystallization, respectively, of GBAG-xTb as a function of Tb₂O₃ concentration. Solid lines are drawn as guides for the eye. i.e., from \sim 2.2 to \sim 1.2 ms when $x \le 18$, and further to \sim 0.1 ms for x > 18 (Fig. 2b and 2c). The lifetime of Tb³⁺: ${}^5D_4 \rightarrow {}^7F_5$ PL for GBAG-14Tb glass (~2.23 ms) is larger than what is found in similar B₂O₃-GeO₂-Gd₂O₃ glasses before concentration quenching, ~1.80 ms³⁹. This further indicates that particularly weak concentration quenching occurs in the present case. The internal quantum efficiency η_{iQE} for GBAG-14Tb is ~63%. This value is close to the highest reported η_{iQE} of Tb³⁺-based PL in literature, e.g., Tb3+-doped phosphate glass (~78%)40 and silicone hybrid materials (\sim 68%)⁴¹. For higher doping concentration, it decreases to only 0.3% at x = 25. The high Tb^{3+} loading results in a large absorption cross-section of incoming light and, hence, high photoconversion gain. That is, the absorbance of GBAG-14Tb at 350 nm is \sim 69%. Thus, the external quantum efficiency η_{eQE} is \sim 43%, meaning that at the considered excitation wavelength, ~43% of the incoming photons are converted through photoluminescence. PL of Tb³⁺ from the higher excited states, *i.e.*, ${}^5D_3 \rightarrow {}^7F_{J (J=6,5,4,3,2,2,3)}$ and 1) is almost fully quenched even in GBAG-14Tb (Fig. 2d). This is a result of the strong cross-relaxation processes which occur at the high doping levels used in this study. The cross relaxation process is caused by the closeness of the 5D_3 and 5D_4 ($\sim 5629 \text{ cm}^{-1}$), and the 7F_6 and 7F_0 energy levels ($\sim 5791 \text{ cm}^{-1}$, Fig. 2e)⁴², $$Tb^{3+}(^{5}D_{3}) + Tb^{3+}(^{7}F_{6}) \rightarrow Tb^{3+}(^{5}D_{4}) + Tb^{3+}(^{7}F_{0})$$ (2) The absorption cross-section σ_{abs} of Tb^{3+} at 350 (Tb^{3+} : ${}^7F_6 \rightarrow {}^5L_9$) and 484 nm (Tb^{3+} : ${}^5F_6 \rightarrow {}^7D_4$), and the stimulated emission cross-section σ_{em} of Tb^{3+} PL at 542 nm (Tb^{3+} : ${}^5D_4 \rightarrow {}^7F_5$) can be estimated through McCumber's and Füchtbauer-Ladenburg's equation ${}^{43-45}$, $$\sigma_{abs} = \frac{2.303OD(\lambda)}{N_0 d} \tag{3}$$ $$\sigma_{em} = \frac{\lambda_0^2 \eta}{4\pi c n^2 \tau \Delta \nu_{1/2}} \times (\frac{\ln 2}{\pi})^{1/2}$$ (4) In Eqs. (3)–(4), N_0 is the ion concentration of Tb³⁺, d is the sample thickness, λ_0 is the emission wavelength, $OD(\lambda)$ is the optical density, η is the internal quantum efficiency, n is the refractive index of the host material, τ is the emission lifetime and $\Delta v_{1/2}$ is the FWHM of the transition. The σ_{abs} value of Tb³+ in GBAG-xTb glasses at 350 and 484 nm is calculated to be ~4.94 and 0.95 \times 10⁻²² cm², respectively. This value is comparable to that of phosphate glasses (~1.1 \times 10⁻²² cm²)¹40. The σ_{em} value of Tb³+ in GBAG-xTb glasses at 542 nm is ~1.1 \times 10⁻²¹ cm², notably larger than in phosphate glasses (~7.4 \times 10⁻²² cm²)¹40. The product of σ_{em} * τ , the optical gain parameter for laser applications, is proportional to the amplification gain and inverse laser oscillation threshold⁴5. A relatively high value of ~2.5 \times 10⁻²⁴ cm²s is obtained for the GBAG-14Tb glass, what suggests a large amplification gain and low oscillation threshold and, hence, potential interest for further examination as a green laser gain material. **Thermal properties.** The values of ρ , $n_{\rm d}$, $T_{\rm g}$, $T_{\rm c}$ and ΔT of GBAG-xTb are summarized in Tab. 1. Density and refractive index increase from \sim 4.08 to 4.85 g/cm³ and from 1.69 to 1.75 respectively with increasing Tb₂O₃ concentration due to the much higher molar mass of Tb₂O₃ (365.85 g/mol) as compared to Ga₂O₃ (187.44 g/mol) (Fig. 3a). Figure 3b shows DSC curves of GBAG-xTb. Here, $T_{\rm g}$ and $T_{\rm c}$ gradually increase from 740 to 777°C and from 848 to 928°C, respectively, with increasing Tb₂O₃ concentration (Fig. 3c). In order to empirically judge glass stability, $\Delta T = T_{\rm c} - T_{\rm g}$ is calculated from these data. Generally speaking, larger values of ΔT reflect an improved stability against crystallization. Here, ΔT increases from 108 to 151 K with increasing of Tb₂O₃ concentration (Fig. 3d). Overall, this suggests a comparably high crystallization stability of the glasses of this study. The apparent activation energy E_a of crystallization is calculated from the DSC data for varying heating rates by a Kissinger equation⁴⁶, $$\ln\left(\frac{\phi}{T_x^2}\right) = -\frac{E_a}{RT_x} + constant \tag{5}$$ In Eq. (5), R is the ideal gas constant, T_x is the temperature of crystallization, and ϕ is the heating rate of the DSC experiment. E_a can therefore be estimated from the slope of a linear fit of $\ln(\phi/T_x^2)$ versus $1/T_x$ plot. The obtained value depends on Tb₂O₃ concentration. It reaches a maximum of ~593 kJ/(mol \times K) at GBAG-18Tb and decreases to 482 kJ/(mol \times K) for x=25 (Fig. 3e). Hence, while, GBAG-18Tb and GBAG-14Tb exhibit the highest MO FoM and the highest PL performance, they also exhibit large ΔT and comparatively high E_a . ### Conclusions In summary, we reported on the magneto-optical (MO) properties of heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiberintegrated paramagnetic MO devices. For Tb3+ ion concentrations of up to 9.7×10^{21} cm⁻³, the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The underlying effective transition wavelength λ_t is close to the $4f^8 \leftrightarrow 4f^75d$ transition of the Tb³⁺ ion, \sim 250 nm. The optimum FoM is found for a Tb³⁺ concentration of $\sim 6.5 \times 10^{21}$ cm⁻³ (GBAG-18Tb), $\sim -0.05^{\circ}$ /dB at ~435 nm, matching the emission characteristics of blue light-emitting diodes. For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved using this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb³⁺ photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of \sim 43% is achieved. The Tb³⁺ ions are well dispersed in GBAG-xTb glasses without notable concentration quenching of photoluminescence up to a dopant concentration of \sim 14 mol% of Tb₂O₃ (GBAG-14Tb). The lifetime of photoluminescence is \sim 2.2 ms with a stimulated emission cross-section $\sigma_{\rm em}$ of ${\sim}1.1\times10^{-21}~cm^2$ for ${\sim}5.0\times10^{21}~cm^{-3}~Tb^{3+}.$ This results in an optical gain parameter $\sigma_{\rm em}^* \tau$ of $\sim 2.5 \times 10^{-24}$ cm²s, what could be of interest for implementation of a Tb³⁺ fiber laser. # **Methods** Synthesis of Glasses. Precursor glasses with nominal compositions of $16.5 {\rm GeO_2-}21.5 {\rm B_2O_3-}37 {\rm Al_2O_3-}(25-x) {\rm Ga_2O_3-}x {\rm Tb_2O_3}$ (GBAG-xTb with x=14, 18, 22 and 25 mol%) were prepared by conventional melting and quenching. Batches of $\sim\!50$ g of GeO_2 (99.99%), H_3BO_3 (99.99%), Ga_2O_3 (99.99%) and Tb_4O_7 (99.99%) were thoroughly mixed and melted in a resistive heating furnace at 1500°C for 3 h in Al_2O_3 crucibles, heating to 700°C at 5 K/min and to 1500°C at 10 K/min. Melting conditions were kept identical for all batches to ensure a homogenous dilution of Al_2O_3 in the melt. Subsequently, melts were poured onto preheated brass plates, annealed for 1 h and finally cooled down to room temperature at the intrinsic furnace rate ($\sim\!1$ K/min). The obtained glass slabs were cut and polished on both sides for optical characterization. Magneto-optical properties. Frequency-dependent MO analyses were done by using a series of laser diodes as light sources (405, 488, 635, 705 and 830 nm) and fitting the obtained data of Faraday rotation to a power function of the form $V_B=a(1-\lambda)^{\rm b}$ with wavelength λ . $V_{\rm B}$ is calculated from the Faraday rotation angle $\theta_{\rm F}$, the strength of the external magnetic field B, and the length of the light path L in the sample, $V_{\rm B} = \theta_{\rm F}/BL^{5,8,19}$ For this, the rotation of the polarization plane was measured with a polarimeter (PAX570VIST/PAX570IR-1T). In this set-up, the magnetic field was applied through a permanent magnet, achieving a constant magnetic flux of 0.23 T. In a second set of experiments, the value if $V_{\rm B}$ was derived from the $\theta_{\rm F}$ versus B dependencies in an iron-yoke magnet (-0.1 T < B < 0.1 T), using a light-emitting diode with the central wavelength of 625 $\,$ nm. For this, the magnetic flux was swept in the given range with a step-width of \sim 1 mT. Then, the obtained data on $\theta_{\rm F}$ versus H were linearly extrapolated to obtain the slope $d\theta_F/dH$, which was used to estimate V_B . Error bars on the value of V were obtained from the comparison of those two experiments. UV-VIS-NIR absorption spectra were recorded over the spectral range of 200 nm to 2500 nm in a UV-NIR spectrophotometer (Perkin Elmer, Lambda 950). **Photoluminescence properties.** Static photoexcitation (PLE) and luminescence (PL) spectra and dynamic decay curves of the Tb $^{3+}$ -related photoluminescence were recorded with a high-resolution spectrofluorometer (Horiba Jobin Yvon Fluorolog FL3-22) at room temperature. PLE spectra were corrected over the lamp intensity with a silicon photodiode. PL spectra were corrected by the spectral response of employed photomultiplier tube. Absorbance (a), internal ($\eta_{\rm IQE}$) and external quantum efficiency ($\eta_{\rm EQE}$) of Tb $^{3+}$ PL were obtained through recording all spectra on samples and on a blank reference, using a BaSO4-coated integration sphere 20,21 . **Thermal properties.** The values of $T_{\rm g}$, $T_{\rm c}$ and $T_{\rm x}$ (peak temperature of crystallization) were obtained from differential scanning calorimetry (DSC, Netzsch DSC 404 F1), using a heating rate of 10 K/min. Non-isothermal crystallization dynamic were studied by DSC (Netzsch DSC 404 F1) on polished bulk glasses (\sim 25–40 mg) at different heating rates of 5, 10, 15 and 20 K/min in order to evaluate the apparent activation energy of crystallization. Other properties. The composition of all glasses was verified by wavelength-dispersive electron probe microanalysis (WD-EPMA, microprobe JXA-8800L; Jeol). The ion concentration of Tb^{3+} was calculated according to these compositions. Nominal and as-received compositions are given in Tab. 1. The absence of crystals from the as-made glasses was verified by X-ray diffraction analyses (XRD Siemens Kristalloflex D500, Bragg-Brentano, 30 kV/30 mA, Cu K α) on bulk samples. The glass density ρ was determined in an Archimedes balance, using distilled water as the immersion liquid. The refractive index was determined at the d line (n_d , λ = 587 nm) with a Pulfrich reactometer. - 1. Liu, J. Photonic Devices. (Cambridge University Press, Cambridge, 2005). - Yamane, M. & Asahara, Y. Glasses for Photonics. (Cambridge University Press, Cambridge, 2000). - Spaldin, N. A. Magnetic Materials: Fundamentals and Applications. (Cambridge University Press, Cambridge, 2010). - Schmidt, M. A. et al. Complex Faraday Rotation in Microstructured Magnetooptical Fiber Waveguides. Adv. Mater. 23, 2681–2688 (2011). - Hayakawa, T., Nogami, M., Nishi, N. & Sawanobori, N. Faraday Rotation Effect of Highly Tb₂O₃/Dy₂O₃-Concentrated B₂O₃-Ga₂O₃-SiO₂-P₂O₅ Glasses. *Chem. Mater.* 14, 3223–3225 (2002). - Shafer, M. W. & Suits, J. C. Preparation and Faraday Rotation of Divalent Europium Glasses. J. Am. Ceram. Soc. 49, 261–264 (1966). - Winterstein, A. et al. Magnetic and magneto-optical quenching in (Mn²⁺, Sr²⁺) metaphosphate glasses. Opt. Mater. Express 3, 184–193 (2013). - Qiu, J., Tanaka, K., Sugimoto, N. & Hirao, K. Faraday effect in Tb³⁺-containing borate, fluoride and fluorophosphate glasses. *J. Non-Cryst. Solids* 213–214, 193–198 (1997). - Qiu, J., Tanaka, K. & Hirao, K. Preparation and Faraday Effect of Fluoroaluminate Glasses Containing Divalent Europium Ions. J. Am. Ceram. Soc. 80, 2696–2698 (1997). - Chen, C., Zhou, S., Lin, H. & Yi, Q. Fabrication and performance optimization of the magneto-optical (Tb_{1-x}R_x)₃Al₅O₁₂ (R = Y, Ce) transparent ceramics. *Appl. Phys. Lett.* 101, 131908 (2012). - Rubinstein, C. B., Uitert, L. G. V. & Grodkiewicz, W. H. Magneto-Optical Properties of Rare Earth (III) Aluminum Garnets. J. Appl. Phys. 35, 3069–3070 (1964) - Ganschow, S., Klimm, D., Reiche, P. & Uecker, R. On the Crystallization of Terbium Aluminium Garnet. Cryst. Res. Technol. 34, 615–619 (1999). - 13. Villaverde, A. B. & Vasconcellos, E. C. Magnetooptical dispersion of Hoya glasses: AOT-5, AOT-44B, and FR-5. *Appl. Opt.* 21, 1347–1348 (1982). - 14. Davis, J. A. & Bunch, R. M. Temperature dependence of the Faraday rotation of Hoya FR-5 glass. *Appl. Opt.* **23**, 633 (1984). - Lee, H. G., Won, Y. H. & Lee, G. S. Faraday rotation of Hoya FR5 glass at cryogenic temperature. Appl. Phys. Lett. 68, 3072–3074 (1996). - Malshakov, A. N., Pasmanik, G. A. & Potemkin, A. K. Comparative characteristics of magneto-optical materials. Appl. Opt. 36, 6403–6410 (1997). - Ferreira, E. B. et al. Critical Analysis of Glass Stability Parameters and Application to Lithium Borate Glasses. J. Am. Ceram. Soc. 94, 3833–3841 (2011). - to Lithium Borate Glasses. *J. Am. Ceram. Soc.* **94**, 3833–3841 (2011). 18. Hrubý, A. Evaluation of glass-forming tendency by means of DTA. *Czechoslov. J.* - Phys. B 22, 1187–1193 (1972). Akamatsu, H., Fujita, K., Murai, S. & Tanaka, K. Magneto-optical properties of - transparent divalent iron phosphate glasses. *Appl. Phys. Lett.* **92**, 251908 (2008). 20. Gao, G. & Wondraczek, L. Heavily Eu³⁺-doped boroaluminosilicate glasses for UV/blue-to-red photoconversion with high quantum yield. *J. Mater. Chem. C* **2**, - UV/blue-to-red photoconversion with high quantum yield. J. Mater. Chem. C 2, 691–695 (2013). - Gao, G. & Wondraczek, L. Spectral asymmetry and deep red photoluminescence in Eu³⁺-activated Na₃YSi₃O₉ glass ceramics. Opt. Mater. Express 4, 476 (2014). - Tanaka, K., Hirao, K. & Soga, N. Large Verdet Constant of 30Tb₂O₃·70B₂O₃ Glass. *Jpn. J. Appl. Phys.* 34, 4825 (1995). - Savinkov, V. I. et al. Borogermanate glasses with a high terbium oxide content. J. Non-Cryst. Solids 356, 1655–1659 (2010). - Petrovskii, G. T. et al. Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region. J. Non-Cryst. Solids 130, 35–40 (1991). - Vasyliev, V., Villora, E. G., Nakamura, M., Sugahara, Y. & Shimamura, K. UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF₄ (RE = Tb, Dy, Ho, Er and Yb), PrF₃ and CeF₃. Opt. Express 20, 14460–14470 (2012). - Letellier, V., Seignac, A., Le Floch, A. & Matecki, M. Magneto-optical properties of heavily rare-earth doped non-crystalline fluorophosphates. *J. Non-Cryst. Solids* 111, 55–62 (1989). - 27. Berger, S. B., Rubinstein, C. B., Kurkjian, C. R. & Treptow, A. W. Faraday Rotation of Rare-Earth (III) Phosphate Glasses. *Phys. Rev.* **133**, A723–A727 (1964). - 28. Yuan, S. hua. & Shu, X. Z. A new Faraday rotation glass with a large Verdet constant. *J. Appl. Phys.* **75**, 6375–6377 (1994). - 29. Blasse, G. & Grabmaier, B. C. Luminescent materials. (Springer-Verlag, Munich, - 30. Krol, D. M. et al. Luminescence and absorption of Tb3+ in mo·Al2O3·B2O3·Tb2O3 glasses. J. Lumin. 37, 293-302 (1987). - 31. Li, Y.-C., Chang, Y.-H., Chang, Y.-S., Lin, Y.-J. & Laing, C.-H. Luminescence and Energy Transfer Properties of Gd³⁺ and Tb³⁺ in LaAlGe₂O₇. J. Phys. Chem. C 111, 10682-10688 (2007). - 32. Dieke, G. H. & Crosswhite, H. Spectra and energy levels of rare earth ions in crystals. (Interscience Publishers, Olney, 1968). - 33. Cavalli, E., Boutinaud, P., Mahiou, R., Bettinelli, M. & Dorenbos, P. Luminescence Dynamics in Tb3+-Doped CaWO4 and CaMoO4 Crystals. Inorg. Chem. 49, 4916-4921 (2010). - 34. Wang, D.-Y., Chen, Y.-C., Huang, C.-H., Cheng, B.-M. & Chen, T.-M. Photoluminescence investigations on a novel green-emitting phosphor Ba₃Sc(BO₃)₃:Tb³⁺ using synchrotron vacuum ultraviolet radiation. J. Mater. Chem. 22, 9957-9962 (2012). - 35. Carnall, W. T., Fields, P. R. & Rajnak, K. Electronic Energy Levels of the Trivalent Lanthanide Aquo Ions. III. Tb3+. J. Chem. Phys. 49, 4447-4449 (1968). - 36. Gao, G., Reibstein, S., Spiecker, E., Peng, M. & Wondraczek, L. Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba-Al titanate glass ceramics. J. Mater. Chem. 22, 2582-2588 (2012). - 37. Gao, G., Meszaros, R., Peng, M. & Wondraczek, L. Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics. Opt. Express 19, A312-A318 (2011). - 38. Gao, G., Wei, J., Shen, Y., Peng, M. & Wondraczek, L. Heavily Eu₂O₃-doped yttriaaluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation. J. Mater. Chem. C 2, 8678-8682 (2014). - 39. Sun, X.-Y. et al. Luminescent properties of $\mathrm{Tb^{3+}}$ -activated $\mathrm{B_2O_3-GeO_2-Gd_2O_3}$ scintillating glasses. J. Non-Cryst. Solids 379, 127-130 (2013). - 40. Zhang, L., Peng, M., Dong, G. & Qiu, J. An investigation of the optical properties of Tb³⁺-doped phosphate glasses for green fiber laser. Opt. Mater. 34, 1202–1207 (2012). - 41. Tran, T. H., Lezhnina, M. M. & Kynast, U. Efficient green emission from transparent Tb3+-silicone hybrid materials. J. Mater. Chem. 21, 12819-12823 $(201\bar{1}).$ - 42. Lai, H. et al. UV Luminescence Property of YPO₄:RE (RE = Ce³⁺, Tb³⁺). J. Phys. Chem. C 112, 282-286 (2008). - 43. Gao, G. et al. Investigation of 2.0 μm emission in Tm³⁺ and Ho³⁺ co-doped TeO₂-ZnO-Bi₂O₃ glasses. Opt. Mater. 32, 402-405 (2009). - 44. Gao, G., Wang, G., Yu, C., Zhang, J. & Hu, L. Investigation of 2.0 μm emission in Tm^{3+} and Ho^{3+} co-doped oxyfluoride tellurite glass. J. Lumin. 129, 1042–1047 - 45. Gao, G., Peng, M. & Wondraczek, L. Temperature dependence and quantum efficiency of ultrabroad NIR photoluminescence from Ni2+ centers in nanocrystalline Ba-Al titanate glass ceramics. Opt. Lett. 37, 1166-1168 (2012). - 46. Kissinger, H. E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 29, 1702-1706 (1957). # **Author contributions** L.W. and M.S. conceived of the experiment. A.W. prepared all glass samples. G.G., A.W., O.S., J.D. and C.D. performed the experiments. G.G., A.W. and L.W. analyzed the data. G.G. and L.W. wrote the manuscript. All authors contributed to the scientific discussions and manuscript review. # Additional information Competing financial interests: The authors declare no competing financial interests. How to cite this article: Gao, G. et al. Faraday rotation and photoluminescence in heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics. Sci. Rep. 5, 8942; DOI:10.1038/srep08942 (2015). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/