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Abstract: Magnetocaloric materials based on field-induced first order transformations such as
Ni-Mn-Ga-Co are promising for more environmentally friendly cooling. Due to the underlying
martensitic transformation, a large hysteresis can occur, which in turn reduces the efficiency of a
cooling cycle. Here, we analyse the influence of the film microstructure on the thermal hysteresis and
focus especially on large angle grain boundaries. We control the microstructure and grain boundary
density by depositing films with local epitaxy on different substrates: Single crystalline MgO(0 0 1),
MgO(1 1 0) and Al2O3(0 0 0 1). By combining local electron backscatter diffraction (EBSD) and global
texture measurements with thermomagnetic measurements, we correlate a smaller hysteresis with
the presence of grain boundaries. In films with grain boundaries, the hysteresis is decreased by about
30% compared to single crystalline films. Nevertheless, a large grain boundary density leads to a
broadened transition. To explain this behaviour, we discuss the influence of grain boundaries on the
martensitic transformation. While grain boundaries act as nucleation sites, they also lead to different
strains in the material, which gives rise to various transition temperatures inside one film. We can
show that a thoughtful design of the grain boundary microstructure is an important step to optimize
the hysteresis.

Keywords: Ni-Mn-Ga-Co; magnetocaloric effect; hysteresis; epitaxial film; grain boundaries; Heusler
alloys; martensitic transition

1. Introduction

Solid state cooling with magnetocaloric materials is a promising way for more efficient and
environmentally friendly cooling techniques [1]. The Heusler alloy Ni-Mn-Ga-Co as a possible
candidate exhibits a martensitic transition between a high temperature ferromagnetic phase (austenite)
and a low temperature phase with lower magnetization (martensite) [2]. However, a major drawback
of this first order phase transition is the hysteresis, which can reduce the efficiency of a cooling
system drastically. To understand these transition processes in general and the origin of the occurring
hysteresis in particular, epitaxial Ni-Mn-based thin films with a defined crystallographic relationship
between film and substrate can help [3]. The high surface to volume ratio in thin films allows to
examine the martensitic microstructure formation, which proceeds by nucleation and phase growth [4].
Especially the high energy barrier for the martensite nucleation makes a large undercooling necessary
and contributes significantly to the transformation hysteresis [3]. Consequently, the hysteresis can be
reduced by lowering the energy barriers for the formation of nuclei and their growth. As nucleation
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barriers are generally lower for heterogeneous nucleation close to defects, this can be achieved through
defects induced by ion irradiation [5] or precipitates [6]. Some defects such as nanoindents additionally
cause mechanical stress through elastic stray fields, which also helps to reduce the nucleation barrier [7].
Similarly, grain boundaries could act as nucleation sites for the martensitic transition, which was
observed in NiTi alloys [8] and calculated for Fe-Pd [9].

Here, we use locally epitaxial films to understand how nucleation and phase growth depend on
the film microstructure. For this, we compare the microstructure of Ni-Mn-Ga-Co films grown by
DC magnetron sputter deposition on three types of substrates. The term “local epitaxy” describes
that the film is not necessarily single crystalline, but may exhibit several, well defined orientation
relations to the substrate. This results in large angle grain boundaries. We examine the impact of these
grain boundaries on the martensitic transformation, specifically on the transition and hysteresis width.
The hysteresis width ∆Thyst is typically measured as the difference between the inflection points of the
cooling and heating curves, while the transition width ∆Ttransition is determined as the temperature
span needed to fully transform the material from austenite to martensite and back. Both temperature
intervals are decisive properties for magnetocaloric materials.

2. Materials and Methods

Ni-Mn-Ga-Co films with a thickness of 800 nm were prepared by DC magnetron sputter deposition
in a UHV chamber (base pressure: 2 × 10−9 mbar). The films were sputtered in an Ar-2%H atmosphere
of 8 × 10−3 mbar at a deposition temperature of 673 K from an alloyed Ni44Mn32Ga24 and an elemental
Co-target. To ensure the same composition of the films, samples were prepared simultaneously on three
different, polished substrates from CrysTec: Single crystalline MgO(0 0 1), MgO(1 1 0) and Al2O3(0 0 0 1).
Furthermore, the substrate holder was rotated during deposition to achieve a uniform distribution of
composition. With energy dispersive X-ray spectroscopy, the film composition was determined to be
Ni45Mn27Ga21Co7 with an accuracy below 1 at.%. The film thickness was measured along the film cross
section, which was prepared from a reference sample with focused ion beam milling. For pole figure
measurements, a four-circle Philips X’pert diffractometer (Philips, Amsterdam, The Netherlands) with
CuKα-radiation (λ = 0.15406 nm) was used. Electron backscatter diffraction (EBSD) measurements
were carried out using a Zeiss LEO 1520 Gemini scanning microscope (Carl Zeiss, Oberkochen,
Germany) equipped with a HKL technology Nordlys detector with 20 kV accelerating voltage. A
physical properties measurement system (PPMS) with a vibrating sample magnetometry (VSM)
option (Quantum Design, Darmstadt, Germany) was used for the thermomagnetic measurements.
Additionally, the resistivity of the samples as a function of the temperature was measured in a PPMS
in four-point probe geometry. In both cases, the samples were first heated up to 350 K to ensure
that they are in an austenitic state and were then cooled down to 50 K and heated up again with a
cooling/heating rate of 3 K/min. The constant magnetic field was applied in the film plane for the
thermomagnetic measurements and out of plane for the resistivity measurements. Due to a different
set-up, the transition temperatures for the thermomagnetic and resistivity measurements differ slightly.
We estimate the temperature accuracy to have an experimental error of about 3 K and a systematic error
of about 5 K. The transition temperatures (MS, MF, AS and AF) were determined by the intersections
of tangents to the curves of the films [3]. The hysteresis width (∆Thyst) is calculated from the difference
between the inflection points of the heating and cooling curves.

3. Results

To probe the influence of different substrate orientations on the film orientation, microstructure
and the transition behaviour, we examined samples on three different substrates: MgO(0 0 1)
(sample A), MgO(1 1 0) (sample B), and Al2O3(0 0 0 1) (sample C). To exclude that the films differ
apart from film orientation and microstructure, we deposited them simultaneously in one run.
Consequently, the films were prepared under identical conditions such as sputtering rates and substrate
temperatures, and all have the composition of Ni45Mn27Ga21Co7 as measured by EDX. To further
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prove that the films only differ in the microstructure, we measured the Curie-temperature TC with
thermomagnetic measurements (see Supplementary Figure S1 and Table 1). Being an intrinsic property,
TC does not depend on the microstructure and should therefore be identical for the three films. Indeed,
the values of TC only vary within the measurement accuracy of the device.

Figure 1 summarizes the orientations determined by texture measurements and locally by electron
backscatter diffraction (EBSD) measurements for all three films. The main orientations are sketched
in Figure 1(a1–c1), and the colours are used for all other figures. All samples are austenitic at room
temperature, which makes it possible to study the grain orientation without considering the complex
martensitic microstructure. Corresponding X-ray diffraction measurements were compared with
peak positions from bulk materials [2,10] and can be found in Supplementary Figure S2. All three
films grow epitaxially with well defined orientation relations between film and substrate, however,
the orientations and microstructures differ as follows. Sample A (Figure 1a, first column) is single
crystalline with the (0 0 1) plane parallel to the substrate. With respect to the unit cell of MgO, the unit
cell of the austenite is rotated by 45◦ in plane. This relation was reported for Ni-Mn-Ga-Co films on
this substrate before [3]. The roughness of the films was measured with atomic force microscopy
(AFM) (see Supplementary Figure S3). With a roughness of Rq(A) = 3.1 nm, sample A is smoother
than the samples B and C (Rq(B) = 20.3 nm and Rq(C) = 18.7 nm). As the higher roughness of
the samples B and C makes indexing with EBSD more difficult, a higher fraction of points could
not be indexed in the EBSD measurements. Still, conclusions can be drawn from the images in
combination with the texture measurements. For sample B (Figure 1b, second column) on MgO(1 1 0),
the EBSD micrograph shows two kinds of (1 1 2)-oriented grains (red and green). Both orientations
grow epitaxially. Their intensity in the pole figure is similar, which means that they occur with equal
ratio. The grains are irregularly shaped and their sizes range from 1µm to about 10µm. Shape and size
distributions of both orientations in the EBSD micrographs are comparable. Additionally, the grains’
shape is anisotropic: Grain dimensions tend to be larger in MgO[1̄ 1 0]-direction compared to the
MgO[0 0 1]-direction. Consisting of differently oriented areas, sample B therefore contains large angle
grain boundaries wherever the areas grow together. Sample C on Al2O3(0 0 0 1) (Figure 1c, third
column) consists of (1 1 1)- and (1 1 0)-oriented grains with well defined orientations in respect to the
substrate. In the EBSD micrograph, however, only (1 1 1)-oriented grains are visible in the studied
section of the film. The majority of the examined area belongs to one of the two (1 1 1)-orientation
types (blue). Only few grains, smaller than 0.5µm, can be assigned to the other orientation type (pink).
The six different kinds of (1 1 0)-oriented grains are not visible at all in the film section measured with
EBSD and appear only in the texture measurements. Indeed, their intensity in the pole figure is two
orders of magnitude lower than the intensity of the blue (1 1 1)-orientation type. Therefore, both EBSD
and texture measurements confirm that a specific, (1 1 1)-oriented epitaxy relation is favoured under
the given deposition conditions. Thus, sample C can be described as mainly single crystalline with a
small fraction of differently oriented grains and few grain boundaries. Altogether, the choice of the
substrate orientation and material makes it possible to influence both the orientation and the grain
boundary density, within the films.
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Figure 1. Main orientations and epitaxy relations of the investigated films: First column (a1–a4):
Sample A on MgO(0 0 1), second column (b1–b4): Sample B on MgO(1 1 0) and third column (c1–c4):
Sample C on Al2O3(0 0 0 1). First row (a1–c1): Respective sketches of the cubic unit cell in the observed
orientation. Second row (a2–c2): EBSD micrographs displaying the local orientation of representative
areas of the films. The colour code refers to the orientations illustrated in (a1–c1). Black areas refer
to points which could not be indexed during measurement. The substrate orientations marked at
the edges of these figures are used for all figures in each column. Third row (a3–c3): {220}-texture
measurements in logarithmic scale provide global information of the orientation and are compared
with forth row (a4–c4): Calculated peak positions for the different orientations. The colours of the used
symbols correspond to the orientations sketched in (a1–c1). Peak positions marked with a grey “×”
come from the substrates. In (c4), only one of the six (1 1 0)-orientations is highlighted in orange for
better visibility, the others are sketched in grey and can be obtained by rotating this orientation around
[110] in steps of 30◦.
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To examine the influence of the different microstructures on the martensitic transition, we compare
magnetization measurements in dependence of the temperature for the three films (see Figure 2).
For each sample, we measured the magnetization in a low external magnetic field (0.1 T) and a
high magnetic field (2 T), which is sufficient to reach saturation magnetization. All curves show a
similar trend with distinct differences discussed later. At room temperature and above, the films
are austenitic with high magnetization values. When cooling down, the magnetization decreases at
the martensitic start temperature (MS) as soon as ferromagnetic austenite transforms into martensite
with lower magnetization values [2]. The martensitic finish temperature (MF) marks the temperature
where this decrease is finished. Heating up again, the transition to austenite begins at the austenite
start temperature (AS) and is completed at the austenite finish temperature (AF). Compared to
the cooling branch, the magnetization curve for heating is shifted towards higher temperature
values. Apart from this hysteresis, the cooling and heating branch are similar. In the higher external
magnetic field, the transformation temperatures decrease because the austenite, the phase with higher
magnetization, is stabilised. With an external magnetic field of 2 T, the films’ saturation magnetization
is reached, whereas magnetic anisotropy is still decisive in 0.1 T. There, the microstructure influences
the magnetization change additionally because the magnetic easy axis has a different orientation
distribution depending on the general orientation of the film [11]. Not only in low magnetic fields but
also in an external magnetic field of 2 T, the magnetization curves for the three films differ with respect
to the transition temperatures and the transition intervals.
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Figure 2. Magnetization measurements as function of temperature at a constant external magnetic field
of µ0Hext = 0.1 T and 2 T: (a) Sample A on MgO(0 0 1), (b) sample B on MgO(1 1 0) and (c) sample C
on Al2O3(0 0 0 1). Arrows reflect the measurement directions. The sketches in the top left corner of
each graph symbolize the microstructure of the films. The colours resemble those of the orientations
in Figure 1.

The different transition behaviours of the films are well visible when plotting the volume fraction
of martensite as a function of temperature. Since the magnetization measurements are not only
influenced by the martensitic transition, but also by the magnetization change in vicinity to the
Curie temperature of the austenite, it is difficult to analyse the fraction of transformed material
from the magnetization curves. Therefore, we chose to analyse additional resistivity measurements
(see Supplementary Figure S4) to estimate the volume fraction of martensite fmartensite at a certain
temperature without considering possible residual austenite at low temperatures. As the resistivity of
martensite (Rmartensite) is significantly higher than the resistivity of austenite (Raustenite), we calculate
fmartensite as follows:

fmartensite(T) =
R(T)− Raustenite

Rmartensite − Raustenite
(1)

fmartensite was calculated for the heating and cooling curves separately, and Rmartensite and Raustenite

were defined as the largest and smallest resistivity value of the respective curve. The resulting
comparison for all three samples is summarized in Figure 3.
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Figure 3. Fraction of martensitic volume fmartensite for sample A on MgO(0 0 1), sample B on MgO(1 1 0)
and sample C on Al2O3(0 0 0 1) as a function of temperature for the cooling and heating branch.
fmartensite was calculated with Equation (1) from resistivity measurements at a constant external
magnetic field of µ0Hext = 2 T. Arrows indicate the measurement directions. The transition width
∆Ttransition is sketched for sample B.

For a discussion of the different transition behaviours of the films, we consider the following
characteristic temperature spans: The transition temperature intervals ∆Tmart and ∆Taust are
determined from the magnetization measurements by the differences between MS and MF, and
AS and AF, respectively. The hysteresis width ∆Thyst was also extracted from the magnetization curves,
and it is characterized by the difference between the inflection points of the heating and cooling curves.
Moreover, we determined the transition width ∆Ttransition from the resistivity measurements, which is
calculated by the temperature difference between 100% volume fraction of martensite on the cooling
branch and 0% volume fraction of martensite on the heating branch (see Figure 3). This value describes
the temperature interval necessary to transform the whole film from austenite to martensite and back.
All characteristic temperatures and temperature spans of the transition are summarized in Table 1.

Table 1. Transition temperatures (MS, MF, AS and AF), transition temperature intervals
(∆Tmart = MS − MF and ∆Taust = AF − AS) and hysteresis width ∆Thyst obtained by M(T)
measurements at µ0Hext = 2 T (see Figure 2) and Curie temperature TC from measurements at
µ0Hext = 0.1 T (see Supplementary Figure S1). All temperatures and temperature spans are given in K.
The transition temperatures were determined by the intersections of the curve tangents. The transition
width ∆Ttransition represents the temperature span between 100% volume fraction of martensite on the
cooling branch and 0% volume fraction of martensite on the heating branch; it was determined from
resistivity measurements.

Transition Temperatures (K)

Sample MS MF AS AF ∆Tmart ∆Taust ∆Thyst Ttransition TC

A on MgO(0 0 1) 276 252 303 324 24 21 49 155 443
B on MgO(1 1 0) 224 186 200 257 38 57 37 232 440

C on Al2O3(0 0 0 1) 256 242 262 294 14 32 33 191 441

From the magnetization and resistivity measurements in Figures 2 and 3, we can extract the
following differences in the films’ transition behaviour: Firstly, the transition temperatures of the
films differ, even though the films were deposited simultaneously and their composition is the same.
This can be explained by considering that the films are under different strains. These strains arise due
to the misfit strain between substrate and film as well as different thermal expansion coefficients
of the substrates. Mechanical strain can lead to changes in the transition temperatures [12,13].
Accordingly, we attribute the differences in transition temperatures in these films to a different
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stress state. In sample B, the grain boundaries may add local mechanical strain, which could explain
the lower transition temperatures for this film [14]. Though our experiments clearly reveal a strong
influence of the substrate on the transition temperatures, a detailed analysis of stress is beyond the
scope of this paper.

Secondly, the hysteresis width ∆Thyst is smaller for the films with grain boundaries than for the
film without grain boundaries. Compared to the hysteresis of sample A, the hysteresis is decreased
by about 25% for sample B and more than 30% for sample C. This indicates that grain boundaries
serve as nucleation sites for the martensite, therefore reduce the nucleation energy barrier and shift
the martensitic transition temperatures of the cooling branch closer to the those of the heating branch.
This leads, in turn, to a decrease of the hysteresis width. Nevertheless, a reduced hysteresis is not
the only effect grain boundaries have on the transition behaviour: Compared to the films without
or with only a few grain boundaries (Figure 2a,c), the magnetization changes differently for the film
with many grain boundaries (Figure 2b). In particular, the transition temperature intervals ∆Tmart

and ∆Taust are considerably larger for sample B than for the other films (compare Table 1). While the
magnetization of the samples A and C drops in a small temperature range as soon as MS is reached,
the martensitic transition for sample B is more continuous. In addition, the magnetization curve of
sample B changes its slope at around 175 K, but the magnetization still decreases when cooling down
to 20 K. This two-step transition indicates that the transition is not completed even at low temperatures.
The trends from the M(T) measurements can be confirmed with the martensite fraction plotted in
Figure 3: The martensite fraction rises gradually in sample B (green curve in Figure 3) and the slope of
the curve decreases further towards 100% of martensitic material. The largest transition width of 232 K
was also measured for sample B. In contrast, sample A (red curve) transforms at a more constant rate
and in a much smaller ∆Ttransition of 155 K. For sample C (blue curve), the martensite fraction reveals a
pronounced two-step transition: Around 85% of the material transforms within a small temperature
interval of 35 K while the transition of the remaining 15% requires a temperature interval of 121 K.

4. Discussion

In the following, we describe how grain boundaries influence the martensitic transition in general
and analyse why the different transition behaviours of sample B and C originate from the presence of
large angle grain boundaries. The grain microstructure of the films is formed at high temperatures
during deposition when the material is austenitic. This means that the martensitic microstructure has
to adapt to the already existing grain boundaries. These large angle grain boundaries are generally
incompatible with twin boundaries, a characteristic feature of the martensitic transition, which connect
differently oriented martensitic variants. Therefore grain boundaries act as barriers to the formation of
a compatible martensitic microstructure. To illustrate the impact of grain boundaries on the martensitic
microstructure in films, the transition with grain boundaries (a) and without grain boundaries (b) is
sketched in Figure 4. The sketch is based on recent in situ studies, which reveal that the transition
proceeds by nucleation and growth of diamonds and parallelograms [4]. An exemplary scanning
electron microscopy (SEM) micrograph of an additional polycrystalline Ni-Mn-Ga-Co film exhibiting
a martensitic microstructure within grains can be found in Supplementary Figure S5. As sketched
in Figure 4a, martensitic variants can grow into long parallelograms in single crystalline films until
an interface like the substrate or another martensitic variant is reached. In contrast, the growth of
martensitic variants is stopped at the grain boundary in polycrystals (Figure 4b). Close to this grain
boundary, untransformed areas of residual austenite remain up to lower temperatures because the
martensite can only grow in certain orientations and well defined shapes [4]. In these areas, additional
smaller martensitic nuclei are needed to transform the material further. Since small volumes of
martensite exhibit a large interface area and thus more twin boundaries per transformed volume, they
require a higher total interface energy. As a result, more undercooling is needed to transform smaller
austenite volumes. Moreover, the martensite forming in the initial transition causes elastic stress and
can make further undercooling necessary [15]. For the transition of a polycrystalline sample, this
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means that austenite in the middle of the grain transforms to martensite first. In contrast, the austenite
close to the grain boundaries remains present at lower temperatures and only transforms during
further cooling. Accordingly, upon heating, the martensite close to the grain boundaries already
transforms back to austenite at lower temperatures while areas inside of the grain are still stable as
martensite. This behaviour is visible as the two-step transition in the magnetization curves (Figure 2b).
The same mechanism is also relevant when reducing the grain size, which lowers the transition
temperature [16,17]. In smaller grains, the size of individual martensitic variants is limited [18],
and the density of interfaces is higher [19]. These effects stabilize the austenite phase and shift the
martensitic transition in small grains to lower temperatures. When a variety of grain sizes is present
within a film, a wide range of transition temperatures is expected. This will again lead to a broad
transition interval.

(a) single crystal (b) polycrystal

grain boundary

Figure 4. Sketches of the martensitic microstructure in films without grain boundaries (a) and with
grain boundaries (b) illustrate the differences in twinning behaviour. For single crystalline films (a),
martensitic nuclei can grow into long parallelograms well beyond the depicted area. In contrast,
the growth of nuclei in polycrystalline films (b) is confined to the inside of the grain. For simplicity,
the grain boundary is assumed to be oval and only the microstructure within one grain is shown.
(a) reprinted from [3] with the permission of AIP Publishing.

With this knowledge, we can explain the different transition behaviours of the three Ni-Mn-Ga-Co
films: Sample A on MgO(0 0 1) is single crystalline, therefore the transition takes place in a small
temperature interval with a uniform temperature dependence and without a two-step transition.
In contrast, sample B on MgO(1 1 0) exhibits a large grain boundary density and a large variety of
grain sizes ranging from 1 to 10µm. Both factors lead to the large transition interval and a distinct
two-step behaviour. Sample C on Al2O3(0 0 0 1) is mainly single crystalline, therefore the majority of
the film transforms in a small temperature interval. The material inside of small grains and in areas
close to these grain boundaries transforms only at lower temperatures, thereby creating the observed
two-step transition.

For an application in magnetocalorics, not only the hysteresis width but also the transition width
for a complete transformation cycle should be as small as possible [20]. Therefore, a microstructure
similar to the one in sample C on Al2O3(0 0 0 1) is the most suited, as it leads to a smaller hysteresis
and a small transition temperature interval for 85% of transformed material. Possibly, also films
with a very uniform grain size and therefore regular spacing of the grain boundaries possess a small
hysteresis and transition width. The films presented here can serve as model systems and as a
basis to further improve the magnetocaloric properties of Heusler films with a clever microstructural
design. An additional post-annealing at different temperatures and annealing times would add further
possibilities to influence the grain boundary microstructure.

A broad martensitic transition in Ni-Mn-based films with grain boundaries can be seen in previous
publications [21–23] and was attributed to substrate constraints or local concentration gradients [24].
Since this effect is not observed for single crystalline films [3,25,26], we propose that it originates from
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the high density of large angle grain boundaries instead. In bulk polycrystalline materials, grains are
usually several hundred micrometer in size and thus larger than the one to ten micrometer large grains
in the films discussed here. Consequently, the grain boundary to volume ratio in bulk materials is
lower than in thin films and the constraining effect of the grain boundaries is much weaker, which
explains why no broad martensitic transition occurs in bulk Heusler alloys.

5. Conclusions

To summarize, we presented results of the martensitic transition for epitaxial Ni-Mn-Ga-Co films
grown on MgO(0 0 1), MgO(1 1 0) and Al2O3(0 0 0 1) substrates. The choice of substrate allows to tailor
the orientation as well as the microstructure of the films, which then influences both the transition
temperatures and transition intervals. On the MgO(1 1 0) substrate, the film grew locally epitaxial with
large angle grain boundaries and a heterogeneous grain size distribution. In contrast, the sample A
on MgO(0 0 1) grew single crystalline without grain boundaries and the sample C on Al2O3(0 0 0 1)
mainly single crystalline with very few grain boundaries. By analysing the films with different
microstructures, we could show that the hysteresis width ∆Thyst is decreased by over 30% for films
with large angle grain boundaries compared to single crystalline ones. This indicates that the grain
boundaries serve as nucleation sites and facilitate the nucleation of martensite by reducing the energy
barrier. However, if the grain boundaries density becomes too large, the transition temperature
intervals ∆Tmart and ∆Taust as well as the transition width of the whole transformation cycle ∆Ttransition

broaden as well. This makes the films unsuitable for magnetocaloric applications. To explain the
enlarged transition width, we discussed the martensitic transition in polycrystalline materials and
emphasized that the martensitic microstructure has to adapt to the incompatible grain boundaries.
In areas close to the grain boundaries and within small grains, a higher total interface energy is needed
for the formation of the martensitic microstructure. This makes a large undercooling necessary. As a
polycrystalline film does not transform uniformly, the transition occurs in larger temperature intervals.
Our findings indicate that further microstructural design is needed to obtain both a small hysteresis
and a narrow transition width to transform the whole film, and we propose to focus on optimizing the
grain size.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/17/3674/
s1, Figure S1: Measurement of Curie temperature with thermomagnetic measurements of Ni-Mn-Ga-Co samples,
Figure S2: XRD measurements of Ni-Mn-Ga-Co samples, Figure S3: AFM micrographs of Ni-Mn-Ga-Co samples,
Figure S4: R(T) measurements of Ni-Mn-Ga-Co samples, Figure S5: SEM micrograph of additional, polycrystalline
Ni-Mn-Ga-Co film showing the martensitic microstructure.

Author Contributions: K.L. and S.F. conceived the experiments. K.L. conducted and analysed all experiments.
K.L., A.D. and S.F. interpreted the results. K.L. wrote the first version of the manuscript. K.N. supervised the work
of K.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by DFG via Priority Program SPP 1599 (FA 453/11).

Acknowledgments: The authors thank S. Schwabe for helpful discussion.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Fähler, S.; Rößler, U.K.; Kastner, O.; Eckert, J.; Eggeler, G.; Emmerich, H.; Entel, P.; Müller, S.; Quandt, E.;
Albe, K. Caloric Effects in Ferroic Materials: New Concepts for Cooling. Adv. Eng. Mater. 2012, 14, 10–19.
[CrossRef]

2. Fabbrici, S.; Albertini, F.; Paoluzi, A.; Bolzoni, F.; Cabassi, R.; Solzi, M.; Righi, L.; Calestani, G. Reverse
magnetostructural transformation in Co-doped NiMnGa multifunctional alloys. Appl. Phys. Lett. 2009,
95, 022508. [CrossRef]

http://www.mdpi.com/1996-1944/13/17/3674/s1
http://www.mdpi.com/1996-1944/13/17/3674/s1
http://dx.doi.org/10.1002/adem.201100178
http://dx.doi.org/10.1063/1.3179551


Materials 2020, 13, 3674 10 of 11

3. Diestel, A.; Niemann, R.; Schleicher, B.; Schwabe, S.; Schultz, L.; Fähler, S. Field-temperature phase diagrams
of freestanding and substrate-constrained epitaxial Ni-Mn-Ga-Co films for magnetocaloric applications.
J. Appl. Phys. 2015, 118, 023908. [CrossRef]

4. Niemann, R.; Backen, A.; Kauffmann-Weiss, S.; Behler, C.; Rößler, U.; Seiner, H.; Heczko, O.; Nielsch, K.;
Schultz, L.; Fähler, S. Nucleation and growth of hierarchical martensite in epitaxial shape memory films.
Acta Mater. 2017, 132, 327. [CrossRef]

5. Trassinelli, M.; Marangolo, M.; Eddrief, M.; Etgens, V.; Gafton, V.; Hidki, S.; Lacaze, E.; Lamour, E.; Prigent, C.;
Rozet, J.P.; et al. Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged
ion bombardment. Appl. Phys. Lett. 2014, 104, 081906. [CrossRef]

6. Zhou, N.; Shen, C.; Wagner, M.X.; Eggeler, G.; Mills, M.; Wang, Y. Effect of Ni4Ti3 precipitation on martensitic
transformation in Ti-Ni. Acta Mater. 2010, 58, 6685–6694. [CrossRef]

7. Niemann, R.; Hahn, S.; Diestel, A.; Backen, A.; Schultz, L.; Nielsch, K.; Wagner, M.X.; Fähler, S. Reducing
the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation. APL Mater. 2016, 4, 064101.
[CrossRef]

8. Dlouhý, A.; Bojda, O.; Somsen, C.; Eggeler, G. Conventional and in-situ transmission electron microscopy
investigations into multistage martensitic transformations in Ni-rich NiTi shape memory alloys. Mater. Sci.
Eng. A 2008, 481–482, 409–413. [CrossRef]

9. Xu, G.; Wang, C.; Beltrán, J.I.; LLorca, J.; Cui, Y. Landau modeling of dynamical nucleation of martensite at grain
boundaries under local stress. Comput. Mater. Sci. 2016, 118, 103–111. [CrossRef]

10. Pons, J.; Chernenko, V.; Santamarta, R.; Cesari, E. Crystal structure of martensitic phases in Ni-Mn-Ga shape
memory alloys. Acta Mater. 2000, 48, 3027. [CrossRef]

11. Thomas, M.; Heczko, O.; Buschbeck, J.; Rößler, U.K.; McCord, J.; Scheerbaum, N.; Schultz, L.; Fähler, S.
Magnetically induced reorientation of martensite variants in constrained epitaxial Ni–Mn–Ga films grown
on MgO(001). New J. Phys. 2008, 10, 023040. [CrossRef]

12. Chernenko, V.A.; Kohl, M.; Ohtsuka, M.; Takagi, T.; L’vov, V.A.; Kniazkyi, V.M. Thickness dependence of
transformation characteristics of Ni-Mn-Ga thin films deposited on alumina: Experiment and modeling.
Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2006, 438, 944. [CrossRef]

13. Thomas, M.; Heczko, O.; Buschbeck, J.; Schultz, L.; Fähler, S. Stress induced martensite in epitaxial Ni-Mn-Ga
films deposited on MgO (001). Appl. Phys. Lett. 2008, 92, 192515. [CrossRef]

14. Akkera, H.; Singh, I.; Kaur, D. Martensitic phase transformation of magnetron sputtered nanostructured Ni-Mn-In
ferromagnetic shape memory alloy thin films. J. Alloys Compd. 2015, 642, 53. [CrossRef]

15. Malik, A.; Amberg, G.; Borgenstam, A.; Ågren, J. Phase-field modelling of martensitic transformation:
The effects of grain and twin boundaries. Model. Simul. Mater. Sci. Eng. 2013, 21, 085003. [CrossRef]

16. Waitz, T.; Kazykhanov, V.; Karnthaler, H. Martensitic phase transformations in nanocrystalline NiTi studied
by TEM. Acta Mater. 2004, 52, 137. [CrossRef]

17. Quintana-Nedelcos, A.; Llamazares Sánchez, J.L.; Ríos-Jara, D.; Lara-Rodríguez, A.G.; García-Fernández, T.
Effect of quenching rate on the average grain size and martensitic transformation temperature in rapidly
solidified polycrystalline Ni50Mn37Sn13 alloy ribbons. Phys. Status Solidi (A) 2013, 210, 2159–2165. [CrossRef]

18. Meng, Q.; Rong, Y.; Hsu, T.Y. Nucleation barrier for phase transformations in nanosized crystals. Phys. Rev. B
2002, 65, 174118. [CrossRef]

19. Bruno, N.M.; Huang, Y.J.; Dennis, C.L.; Li, J.G.; Shull, R.D.; Ross, J.H.; Chumlyakov, Y.I.; Karaman, I. Effect of
grain constraint on the field requirements for magnetocaloric effect in Ni45Co5Mn40Sn10 melt-spun ribbons.
J. Appl. Phys. 2016, 120, 075101. [CrossRef] [PubMed]

20. Cugini, F.; Porcari, G.; Fabbrici, S.; Albertini, F.; Solzi, M. Influence of the transition width on the
magnetocaloric effect across the magnetostructural transition of Heusler alloys. Philos. Trans. R. Soc.
A Math. Phys. Eng. Sci. 2016, 374. [CrossRef] [PubMed]

21. Chernenko, V.; Kohl, M.; Doyle, S.; Müllner, P.; Ohtsuka, M. Texture and transformation characteristics of
Ni-Mn-Ga films deposited on alumina. Scr. Mater. 2006, 54, 1287. [CrossRef]

22. Sharma, A.; Mohan, S.; Suwas, S. New insights into microstructural evolution of epitaxial Ni-Mn-Ga
films on MgO (1 0 0) substrate by high-resolution X-ray diffraction and orientation imaging investigations.
Philos. Mag. 2018, 98, 819–847. [CrossRef]

http://dx.doi.org/10.1063/1.4922358
http://dx.doi.org/10.1016/j.actamat.2017.04.032
http://dx.doi.org/10.1063/1.4866663
http://dx.doi.org/10.1016/j.actamat.2010.08.033
http://dx.doi.org/10.1063/1.4943289
http://dx.doi.org/10.1016/j.msea.2007.04.123
http://dx.doi.org/10.1016/j.commatsci.2016.02.042
http://dx.doi.org/10.1016/S1359-6454(00)00130-0
http://dx.doi.org/10.1088/1367-2630/10/2/023040
http://dx.doi.org/10.1016/j.msea.2006.02.055
http://dx.doi.org/10.1063/1.2931082
http://dx.doi.org/10.1016/j.jallcom.2015.03.261
http://dx.doi.org/10.1088/0965-0393/21/8/085003
http://dx.doi.org/10.1016/j.actamat.2003.08.036
http://dx.doi.org/10.1002/pssa.201329146
http://dx.doi.org/10.1103/PhysRevB.65.174118
http://dx.doi.org/10.1063/1.4960353
http://www.ncbi.nlm.nih.gov/pubmed/28781380
http://dx.doi.org/10.1098/rsta.2015.0306
http://www.ncbi.nlm.nih.gov/pubmed/27402934
http://dx.doi.org/10.1016/j.scriptamat.2005.12.020
http://dx.doi.org/10.1080/14786435.2017.1418094


Materials 2020, 13, 3674 11 of 11

23. Shevyrtalov, S.; Miki, H.; Ohtsuka, M.; Grunin, A.; Lyatun, I.; Mashirov, A.; Seredina, M.; Khovaylo, V.;
Rodionova, V. Martensitic transformation in polycrystalline substrate-constrained and freestanding
Ni-Mn-Ga films with Ni and Ga excess. J. Alloys Compd. 2018, 741, 1098–1104. [CrossRef]

24. Aseguinolaza, I.; Orue, I.; Svalov, A.; Wilson, K.; Müllner, P.; Barandiarán, J.; Chernenko, V. Martensitic
transformation in Ni-Mn-Ga/Si(100) thin films. Thin Solid Films 2014, 558, 449–454. [CrossRef]

25. Teichert, N.; Kucza, D.; Yildirim, O.; Yuzuak, E.; Dincer, I.; Behler, A.; Weise, B.; Helmich, L.; Boehnke,
A.; Klimova, S.; et al. Structure and giant inverse magnetocaloric effect of epitaxial Ni-Co-Mn-Al films.
Phys. Rev. B 2015, 91, 184405. [CrossRef]

26. Aseguinolaza, I.R.; Orue, I.; Svalov, A.V.; Chernenko, V.A.; Besseghini, S.; Barandiarán, J.M. Fabrication
conditions and transformation behavior of epitaxial Ni-Mn-Ga thin films. J. Mater. Sci. 2012, 47, 3658–3662.
[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jallcom.2018.01.255
http://dx.doi.org/10.1016/j.tsf.2014.02.056
http://dx.doi.org/10.1103/PhysRevB.91.184405
http://dx.doi.org/10.1007/s10853-011-6212-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References

