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Beer’s Law-Why Integrated Absorbance Depends Linearly
on Concentration
Thomas G. Mayerhöfer,*[a, d] Andrei V. Pipa,[b] and Jürgen Popp[c, d]

As derived by Max Planck in 1903 from dispersion theory, Beer’s
law has a fundamental limitation. The concentration depend-
ence of absorbance can deviate from linearity, even in the
absence of any interactions or instrumental nonlinearities.
Integrated absorbance, not peak absorbance, depends linearly
on concentration. The numerical integration of the absorbance
leads to maximum deviations from linearity of less than 0.1%.
This deviation is a consequence of a sum rule that was derived
from the Kramers-Kronig relations at a time when the
fundamental limitation of Beer’s law was no longer mentioned
in the literature. This sum rule also links concentration to
(classical) oscillator strengths and thereby enables the use of
dispersion analysis to determine the concentration directly from
transmittance and reflectance measurements. Thus, concentra-
tion analysis of complex samples, such as layered and/or
anisotropic materials, in which Beer’s law cannot be applied,
can be achieved using dispersion analysis.

In his seminal 1852 paper, Beer showed that the transmittance
of light through a cuvette is constant within experimental error
when the product of the thickness of the cuvette times the
concentration of the absorber is constant.[1] This empiric law
was examined by Max Planck in 1903 based on his dispersion
theory.[2] Planck showed that Beer’s findings were valid only for
spectrally narrow and weak absorption bands and that the
absorption maximum shifts with an increasing number density,

or concentration, of oscillators. Planck’s dispersion theory
considered local field effects, which he did not investigate
separately from the influence of the quadratic dependence of
the complex index of refraction from the dielectric function
following from Maxwell’s wave equation. This quadratic
dependence, and more fundamentally, the concept of a
dielectric function were still under investigation in 1930.[3]

Planck’s results were included, e.g., in Kayser’s Handbook of
Spectroscopy (vol. 4), which was a reference for spectroscopy at
that time.[4] Planck’s finding is also implicitly contained in Max
Born’s book “Optik”.[5] In fact, Born presented the Clausius-
Mosotti and the Lorentz-Lorenz equations in his book. If local
field effects had been disregarded and the index of refraction
as well as the dielectric constant considered complex functions
of the frequency, then a connection to Beer’s law and the
concentration dependence of absorbance could have been
established. Born’s book, however, neither mentioned nor
discussed Beer’s law or Planck’s paper. Unfortunately, when
Born’s book was translated into English, the contents of the last
two chapters about molecular optics and emission, absorption
and dispersion were mostly omitted.[6]

In the early 1960s, the connection between dispersion
theory and Beer’s law was known.[7] However, due to the use of
the simplification introduced by Lorentz in 1906[8] known as the
Lorentz-profile,[9] instead of a damped harmonic oscillator
(“Lorentz-oscillator”), a linear dependence of absorbance from
concentration was found, which indicated that Planck’s original
findings had been lost.

Absorbance was not commonly used before approximately
1910, which is probably why Planck did not directly derive the
concentration dependence of absorbance and the formulation
known today as Beer’s law. Accordingly, absorbance is not
mentioned in vol. 3 (published 1903) of Kayser’s handbook in
its discussion of the numerous forms of absorption laws
common at that time.[10] The origin of this quantity has been
attributed to a suggestion that was made in 1900[11] and used
afterwards.[12] Thus, the absorbance A is given by Equation (1):

ð1Þ

where e*ð~vÞ is the molar attenuation coefficient, c is the
concentration and d is the sample thickness. A well-known
limitation of Beer’s law is that monochromatic light must be
used, since, as eqn. (1) implies, it holds for every spectral point,
but molar attenuation coefficients are often given only for the
peak frequency or wavenumber of a band and not in a
frequency-dependent form.
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Additional well-known limitations are that chemical inter-
actions between two molecules can alter the molar attenuation
coefficients and that instrumental factors such as finite spectral
resolution and deviations of the detector from linearity can
invalidate the results from eqn. (1). Contemporary textbooks do
not address the possibility that the linear concentration
dependence could be fundamentally incorrect.[13,14] Reviews of
deviations from Beer’s law and tutorials on Beer’s law as well as
spectra processing and analysis do not even mention this
fundamental limitation.[15–18] The current literature on the
correction of “artifacts” and deviations from Beer’s law relies on
the additivity and general linearity of absorbance.[19–23]

In the following, we will briefly introduce why absorbance is
not linearly dependent on the concentration, even in the
absence of any interactions. More important, we will show how
determining either the integrated absorbance of a band or the
classical oscillator strength, instead of the absorbance at a
certain spectral point or the peak absorbance, can overcome
the corresponding limitation.

We recently derived the concentration dependence of
absorbance from dispersion theory.[24] We also derived this
dependence from simple electromagnetic theory,[25] without
referring to a particular oscillator model or the corresponding
shape functions.

Assuming that there are no interactions between dipoles,
i. e., no chemical interactions and no local field effects,[26] the
following expression for the relative dielectric function ɛr is
obtained [Eq. (2)]:[25]

ð2Þ

where c is the molar concentration, NA is Avogadro’s constant, α
is the (complex) polarizability and e0 is the permittivity of free
space.

In addition to chemical interactions and local field effects,
nearfield interactions and electromagnetic coupling, which
were recently shown to influence the complex index/indices of
refraction and cause nonadditivity of the absorption cross
sections,[27] are explicitly excluded. Thus, the medium, i. e., the
sample, is assumed to be isotropic (scalar dielectric function),
not only isotropic in relation to the wavelength but completely
homogenous. Under these very restrictive conditions, Maxwell’s
wave equation leads to the simple result that the relative
dielectric constant (n=n+ ik) equals the index of refraction
squared, er ¼ n2. Employing this relation, we find that [Eq. (3)]:

ð3Þ

In eqn. (3), nð~vÞ and kð~vÞ are the index of refraction and the
index of absorption. Likewise, a0ð~vÞ and a00ð~vÞ are the real and
the imaginary parts of the polarizability.

Further investigation of the relation for the imaginary part
of the dielectric function,e00r (eqn. (2)), reveals that the change of
this imaginary part is clearly linearly dependent on the
concentration for both a single spectral point and the

integration over a spectral region. The reason for this relation-
ship is that the concentration is not dependent on the
wavenumber or frequency and can simply be extracted from
the integral [Eq. (4)]:

ð4Þ

Because the absorbance is connected with the index of
absorption via Equation (5):

ð5Þ

we need to examine the concentration dependence of the
index of absorption more closely to understand how absorb-
ance depends on the concentration under the constraints
above.

Based on eqn. (3), the absorbance does not depend linearly
on the concentration. However, we can apply the same
approximation that led to the derivation of the Lorentz-profile
from the Lorentz-oscillator, namely, that for x!1,
ffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

� 1þ x=2:[9]

ð6Þ

Under this constraint, which implies that the peak value of
a00ð~vÞ, and thus the absorption, is small, we immediately see
that, as in eqn. (4), evaluation of the concentration dependence
at a certain spectral point and integration of the absorbance
over a band yield the same result.

If we use the exact relation between k and the real and
imaginary parts of the dielectric function [Eq (7)]:

ð7Þ

and replace the dielectric function based on Equation (2), the
result is no longer linearly dependent on the concentration
[Eq. (8)]:

ð8Þ

This can be further illustrated by using the damped
harmonic oscillator model and employing one oscillator to
describe the polarizability in a certain spectral range. The
corresponding relative dielectric function is given by
Equation (9):[24,25]

ð9Þ

where S*2 is the molar oscillator strength, ~v0 is the oscillator
position and γ is the damping constant.
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We use eqs. (7)–(9) to calculate k and eqn. (5) to calculate
the absorbance A. From these equations, it is not obvious that
the resulting band shapes change with concentration, in
contrast to those of Lorentz profiles. Planck showed this
relationship by calculating different limiting values using a
slightly different oscillator model that included a local field
correction.[2] Here, we use a more illustrative method and
consider that the imaginary part of the relative dielectric
function is given by e00r ¼ 2nk.

When nð~vÞ is close to unity, the band shape for the
absorption index is symmetric, like that of the imaginary part of
the relative dielectric function. When nð~vÞ begins to significantly
differ from unity with increasing concentration in the vicinity of
the absorption band, e00r ð~vÞ remains symmetric, while asymmetry
begins to appear in the absorption index, as illustrated in
Figure 1. The reason for this asymmetry is that the absorption

index function is related to the dielectric function and the index
of refraction function by k ¼ e00=2n. Therefore, k is given by
Equation (10) (cf. Eq (6)):

ð10Þ

and is a function of the index of refraction. According to Beer’s
law, eqn. (1), absorbance depends on the product c·d. The
changes in the shape of the absorbance band with increasing
concentration at constant c·d based on eqn. (9) are shown in
Figure 2.

As the band shape changes, e*ð~vÞ clearly changes for
constant c·d. Correspondingly, the values for the absorbance at
certain wavenumbers vary nonlinearly with concentration. We
reported these findings recently.[24,25] We did not investigate
how the area under the curves changes as the band shape
changes.

It is well known that if we consider the absorption of a
photon as a quantum transition of a harmonic oscillator

between two energy levels, then the ratio between the
integrated absorbance and the concentration reflects the
transition probability.[28–31] A linear relation between the inte-
grated absorbance and the concentration indicates that the
transition probability does not depend on concentration.
Indeed, numerical integration demonstrates such a linear
relation, which means that Beer’s law holds for the integrated
absorbance. Ostensibly, this connection has never been made,
probably because Planck’s findings were never firmly estab-
lished in the spectroscopy-related literature. Even if the
connection had been established, it is important to realize the
importance of this connection and provide the proper emphasis
in the modern literature. The linear dependence of the
integrated absorbance is demonstrated in Figure 3. For the neat
substance (c=50 mol/l), the deviation between the absorbance
according to Beer’s law and the normalized integrated
absorbance is smaller than 0.09% (range of integration
between 100–3000 cm� 1), where the normalized integrated
absorbance is given by Equation (11):

Figure 1.Wavenumber dependence of the imaginary part of the relative
dielectric function (upper panel), the index of refraction (center panel) and
the index of absorption (lower panel) for different concentrations of 0.5, 5,
10, 25 and 50 mol/l (S*2=4900 l/(mol cm2), ~v0 ¼1700 cm� 1 and γ=20 cm� 1).

Figure 2.Wavenumber dependence of the absorbance calculated for a
model oscillator (S*2=4900 l/(mol cm2), ~v0 ¼1700 cm� 1 and γ=20 cm� 1),
with constant value of c·d and concentrations of 0.5, 5, 10, 25 and 50 mol/l.

Figure 3. Concentration dependence of the absorbance at the oscillator
position (1700 cm� 1, black curve) compared to the normalized integrated
absorbance (green line) and the Lorentz approximation due to eqn. (6) that
leads to Beer’s law (red line).
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ð11Þ

where k is calculated from Equation (7) in combination with
Equation (9).

Given the form of eqs. (7) and (8), this result is surprising,
since it is not clear how integrating the absorption index or the
absorbance results in a linear relation between the integrated
absorbance and concentration. In fact, it seems that Born faced
the same problem when he tried to calculate the “total
absorption” of a band for infinitely thin layers by integrating
the product of the frequency and the absorption coefficient.[5]

Since he could not find a general solution, he assumed weak
absorption. In this case, the integral is as trivial as that of eqn.
(4), because the assumption of weak absorption is equivalent to
the assumption that eqn. (1) holds strictly. Unfortunately, when
Born authored his book,[5] the Kramers-Kronig sum rules had
not yet been derived.[32–34] One of these sum rules allows us to
directly express the result of the integration, apart from a
multiplicative constant, as (for the derivation, cf. supporting
information):

ð12Þ

To the best of our knowledge, eqn. (12) has never been
used in the context of the (integral) absorbance and its
concentration dependence. In the theoretical framework of
spectroscopy, integral absorption coefficients are often deter-
mined and used, but the fact that linear concentration depend-
ence is only regained by integration of the absorbance is
seemingly unknown.[28–31] Instead, integral absorbance has been
employed to remove the instrumental influence of dispersive
spectrometers due to slit functions, and the pointwise validity
of Beer’s law has enabled the use of integral absorbance.[35–37]

Correspondingly, the term “molar oscillator strength” was not
generally introduced before refs.[24,25] defined this quantity.

Note that eqn. (12) has been explicitly derived under the
same constraints that apply to Beer’s law. In particular, any
alteration of the electric field intensity inside the medium must
be due to absorption. If the electric field intensity changes
locally, e.g., by interference effects (“electric field standing wave
effect”),[38–40] scattering, plasmonic enhancement or electro-
magnetic coupling[27,41, 42] the simple connection between the
dielectric function and absorption index is invalidated, and the
linear relationship between concentration and (integral) absorb-
ance is therefore revoked. The details of the derivation of the
sum rules are discussed in the supporting information and
ref.[32]

The employed sum rule (eqn. (12)) can be derived without
any reference to a particular oscillator model or band shape
function, indicating that it is universal and valid for an arbitrary
number of oscillators and bands and in the case of spectral
overlap. In the following, we will show that in practice it is not

necessary to carry out the integration from zero wavenumber
to infinity. For Figure 3, the integration was performed from
100 cm� 1 to 3000 cm� 1, but when the integration range was

decreased to 1600–1800 cm� 1, the result was almost un-
changed, as shown in Figure 4. At very high concentrations,
there is a small deviation from linearity of 0.7% at c=50 mol/l,
which is due to the strong asymmetry of the band. This
deviation can be drastically decreased to 0.1% by a small
extension of the range of integration to 1840 cm� 1 (note that
this means that for approximately cS*2=~v2 < 0:072, eqn. (21)
holds and the simplification introduced to derive the sum rule
is valid). Thus, the use of the integrated absorbance is error-
tolerant and can therefore be the basis for a robust method. In
particular, in spectrophotometry of gases and liquids, baselines
are usually not a problem in relation to integration, because the
absorbance is employed not as defined, i. e., as the negative
decadic logarithm of the incoming and outgoing irradiance, but
as the negative decadic logarithm of the transmittance of the
solution ratioed to the transmittance of the pure solvent.[43] This
approach removes baselines very effectively. If the cuvettes are
thick enough to avoid interference effects,[38] which is usually
the case in the UV/Vis-spectral range, then the integrated
absorbance can be routinely determined.

Since the oscillator strength is a conserved quantity and the
absorption is therefore very small in certain spectral regions
(which do practically not contribute to the integral), we can
split the integral in eqn. (12) and integrate over a limited
spectral region, provided the chosen limits of the integral ~va
and ~vb are spectral points with negligible absorbance [Eq. (13)]:

ð13Þ

The result is then linearly dependent on the concentration,
according to S2j ¼ c � S*2j , where S*j is the molar oscillator

Figure 4. Concentration dependence of the absorbance at the oscillator
position (1700 cm� 1, black curve) compared to the normalized absorbance
(green line) integrated from 100–3000 cm� 1, to the normalized integrated
absorbance calculated between 1600–1800 cm� 1 (red line) and to the
normalized integrated absorbance calculated between 1600–1840 cm� 1

(blue line).
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strength of a single oscillator or of a number of overlapping
oscillators that are well-separated from the oscillators in the
other spectral regions. Eqn. (13) can be seen as a “partial sum
rule”.[34]

Note that the sum rules also elucidate another approach to
determining the concentration, which is in our opinion an
interesting alternative to the approximate calculation of the
absorbance via the negative decadic logarithm of the absorb-
ance or reflectance, the (often questionable for solids) correc-
tion of the baseline and the determination of the band areas.
Instead, the oscillator strength and thus the concentration can,
in principle, be determined by dispersion analysis,[9] which is
much more sophisticated than band fitting but is distantly
related to it and, to the best of our knowledge, has not been
addressed in this context in the literature. Dispersion analysis
also takes into account the optical model of the sample (e.g.,
for liquids in cuvettes: vacuum/cuvette material/liquid layer/
cuvette material/vacuum) and automatically corrects the wave-
optics-related effects, such as interference (“electric field stand-
ing wave effects”).[38,39] In some areas of infrared spectroscopy,
dispersion analysis is routinely carried out,[44–47] and free and
commercial software is available.[48–50] In this sense, the quantity
absorbance may eventually become obsolete, and a reformu-
lated Beer’s law in integrated form using oscillator strength may
supersede it. In addition, dispersion analysis does not require
the (corrected) absorbance spectra but can be employed
directly for experimental transmittance and reflectance spectra.
This approach is possible even for more complex solid samples,
such as layered and/or anisotropic materials, for which Beer’s
law, in general, holds neither in its pointwise nor integral forms,
as discussed above.

To summarize, based on a sum rule derived from the
Kramers-Kronig relations, we have reestablished the validity of a
modified Beer’s law for the special case of isotropic and
perfectly homogenous media based on the use of the
integrated absorbance. The latter remains linearly dependent
on concentration, while the absorbance values at certain
spectral points do not necessarily show this linear dependence.
Thus, for routine UV-Vis spectroscopy, the integrated absorb-
ance can be used instead of the peak absorbance to establish
calibration curves. For nonroutine use, dispersion analysis can
be used as an alternative, which then allows not only the
determination of the dispersion parameters but also the
concentration of an analyte directly from the transmittance and
reflectance spectra.
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