

Oberwolfach
Preprints

Mathematisches Forschungsinstitut Oberwolfach gGmbH
Oberwolfach Preprints (OWP) ISSN 1864-7596

OWP 2016 - 26
BAHAREH AFSHARI AND GRAHAM E. LEIGH

Finitary Proof Systems for Kozen’s µ

Oberwolfach Preprints (OWP)

Starting in 2007, the MFO publishes a preprint series which mainly contains research results
related to a longer stay in Oberwolfach. In particular, this concerns the Research in Pairs-
Programme (RiP) and the Oberwolfach-Leibniz-Fellows (OWLF), but this can also include an
Oberwolfach Lecture, for example.

A preprint can have a size from 1 - 200 pages, and the MFO will publish it on its website as well as
by hard copy. Every RiP group or Oberwolfach-Leibniz-Fellow may receive on request 30 free hard
copies (DIN A4, black and white copy) by surface mail.

Of course, the full copy right is left to the authors. The MFO only needs the right to publish it on its
website www.mfo.de as a documentation of the research work done at the MFO, which you are
accepting by sending us your file.

In case of interest, please send a pdf file of your preprint by email to or ,
respectively. The file should be sent to the MFO within 12 months after your stay as RiP or OWLF at
the MFO.

ri

There are no requirements for the format of the preprint, except that the introduction should
contain a short appreciation and that the paper size (respectively format) should be DIN A4,
"letter" or "article".

On the front page of the hard copies, which contains the logo of the MFO, title and authors, we
shall add a running number (20XX - XX).

We cordially invite the researchers within the RiP or OWLF programme to make use of this offer
and would like to thank you in advance for your cooperation.

Imprint:

Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO)
Schwarzwaldstrasse 9-11
77709 Oberwolfach-Walke
Germany

Tel +49 7834 979 50
Fax +49 7834 979 55
Email
URL www.mfo.de

The Oberwolfach Preprints (OWP, ISSN 1864-7596) are published by the MFO.
Copyright of the content is held by the authors.

p@mfo.de lf@mfo.de ow

admin@mfo.de

Finitary proof systems for Kozen’s 𝜇

Bahareh Afshari
Vienna University of Technology

Graham E. Leigh
University of Gothenburg

We present three finitary cut-free sequent calculi for the modal 𝜇-calculus.
Two of these derive annotated sequents in the style of Stirling’s ‘tableau proof
system with names’ (2014) and feature special inferences that discharge open
assumptions. The third system is a variant of Kozen’s axiomatisation in which
cut is replaced by a strengthening of the 𝜈-induction inference rule. Soundness
and completeness for the three systems is proved by establishing a sequence
of embeddings between the calculi, starting at Stirling’s tableau-proofs and
ending at the original axiomatisation of the 𝜇-calculus due to Kozen. As a
corollary we obtain a completeness proof for Kozen’s axiomatisation which
avoids the usual detour through automata or games.

This research was supported by the Mathematisches Forschungsinstitut Oberwolfach
through the programmes “Oberwolfach Leibniz Fellows 2015” and “Research in Pairs
2016”.

1

1 Introduction

Modal 𝜇-calculus is the extension of propositional modal logic by quantifiers 𝜇 and 𝜈 that
range over fixed points of propositional functions. More formally, the formulæ 𝜇x𝐴 and
𝜈x𝐴 are interpreted over directed labelled graphs as, respectively, the least and greatest
fixed points of the (monotone) function formalising, at the semantic level, the mapping
x ↦→ 𝐴(x). The quantifiers, combined with modal language, permit the expression of a
variety of finite and infinite path quantification, giving the 𝜇-calculus a second order
flavour.

Since its inception in the early 1980s, the modal 𝜇-calculus has become established as
a central logic in computer science. On the one hand, the calculus is sufficiently rich to
encompass many of the temporal logics used in systems verification, most prominently
computational tree logic and propositional dynamic logic. On the other hand, despite
its expressive power, the standard computational problems, such as validity and model
checking, remain decidable.

The earliest deductive system for the modal 𝜇-calculus, due to Kozen [10], is a Hilbert-
style axiomatisation. A natural formulation of Kozen’s axiomatisation as a (Tait-style)
sequent calculus expands the usual sequent rules for (multi-)modal logic 𝐾 by fixed point
and induction inferences, and the logical rule of cut:

Γ, 𝐴(𝜎x𝐴(x))
𝜎Γ, 𝜎x𝐴

Γ, 𝐴(Γ)
indΓ, 𝜈x𝐴(x)

Γ, 𝐴 Γ, 𝐴
cutΓ

where 𝜎 ranges over the two quantifiers, 𝐴 denotes the negation of 𝐴 (in negation normal
form), and Γ denotes the conjunction over negations of elements of Γ.1
The above proof system, henceforth denoted Koz, is known to be both sound and

complete for the modal 𝜇-calculus. Soundness was proved by Kozen in [10]; completeness
was established later by Walukiewicz [16] utilising tableaux and infinite tree automata. It
is, however, desirable to find a complete cut-free axiomatisation. A natural candidate is,
of course, the subsystem Koz without cut, which we denote Koz−. As Walukiewicz’ proof
makes essential use of the cut rule in Koz, and the result has, to date, proved surprisingly
impervious to alternative approaches, completeness of Koz− remains a significant open
problem. Attention has thus shifted to providing alternative cut-free proof systems for
the 𝜇-calculus, such as the infinitary system 𝐾𝜔(𝜇) of [9] and, more recently, Stirling’s
‘tableau proof system with names’ [13].

In this paper we prove completeness for the strengthening of Koz−, denoted Koz−
s , in

which the induction rule is replaced by the inference

Γ, 𝜈x𝐴(Γ ∨ x)
ind𝑠Γ, 𝜈x𝐴(x)

The new inference rule can be seen as combining the induction rule in Koz with two
general fixed-point principles:

𝜈x𝜈y𝐴(x, y) ↔ 𝜈x𝐴(x, x) 𝜈x𝐴(x ∨ x) ↔ 𝜈x𝐴(x)

the first of which is referred to as the “golden lemma of 𝜇-calculus” by Arnold and
Niwinski [2].

1See Section 3 for full details.

2

The proof of completeness for Koz−
s is achieved by introducing two additional sequent

calculi which are annotated in the style of Stirling [13]. These are utilised to establish a
sequence of direct embeddings between calculi starting from a variant of Stirling’s system,
denoted Stir, and ending at Koz−

s . Completeness of Stir and soundness of Koz−
s (both of

which are relatively straightforward) will establish both properties for all systems.
As a consequence of our result we obtain a new, and constructive, completeness proof

for Kozen’s axiomatisation. The construction can be sketched as follows. Starting with a
valid formula, one builds a proof in Stirling’s calculus via a goal-orientated, deterministic
tableau construction. In this system every formula and sequent is annotated by a word
formed from ‘names’ for 𝜈-variables and non-axiom leaves may be ‘discharged’ by a
recurrence of the same sequent within the proof subject to certain conditions. Next
we impose progressively stricter regularity conditions on these proofs by a process of
systematic unfolding (identifying discharged leaves with their associated inner node). This
leads to a proof whose structure induces a natural reading of annotations as describing
applications of ind𝑠.

Outline of paper In the next section we fix the notation and definitions necessary for
later work, including the sequent calculus that forms the basis for the systems utilised in
this paper. Following this we briefly overview, in Section 3, the relevant literature on
proof systems for the 𝜇-calculus. The new proof systems we employ and the reductions
between them form the content of Sections 4–7. We begin by establishing regularity
conditions that can be imposed on Stirling proofs. These are subsequently exploited in
Section 5 to interpret proofs in Stir in a closely related proof system Circ, referred to as
circular proofs. Circ features an alternative rule for discharging open assumptions (see
Definition 5.1) which permits a simpler and more transparent notion of proof avoiding
the non-local ‘repeat and reset’ requirement present in Stir. The proof system and the
reduction were previously outlined by the authors in [1] without detailed proof. In
Section 6 a fresh inference rule, called 𝜈-closure, is introduced (in Definition 6.1) which
also discharges certain non-axiom leaves but captures the closure property for greatest
fixed points more succinctly than either of the calculi Stir and Circ. Sequents in this
system, which we denote Clo, are still annotated though in much simpler form than
the calculi of the preceding sections. We prove that Circ-proofs can be translated into
proofs in Clo. In Section 7 we provide an embedding of Clo into Koz−

s , by translating
annotated formulæ to ‘plain’ formulæ that make each discharged assumption a theorem
of Koz− and each instance of the 𝜈-closure rule an application of ind𝑠. Section 8 treats
the infinitary calculus 𝐾𝜔(𝜇) of [9]. We provide an embedding of Clo in 𝐾𝜔(𝜇) which,
in combination with Studer’s interpretation of 𝐾𝜔(𝜇)-proofs as tableaux [14], implies
the mutual embeddability of 𝐾𝜔(𝜇) and each of the annotated proof systems. With
the embedding of Clo into Koz, proofs in 𝐾𝜔(𝜇) can be systematically transformed into
Koz-proofs. We conclude with Section 9 where we discuss consequences and potential
applications of our results.

3

2 Preliminaries

2.1 Syntax

The set of 𝜇-formulæ is given by the grammar

𝐴 := 𝑝 | 𝑝 | x | 𝐴 ∧ 𝐴 | 𝐴 ∨ 𝐴 | [a]𝐴 | ⟨a⟩𝐴 | 𝜇x𝐴 | 𝜈x𝐴

where 𝑝 ranges over a set Prop of propositional constants, a over a set Act of actions and
x over a countably infinite set Var of (formal) variables. The sentential operators ⟨a⟩ and
[a] are referred to as modalities. An occurrence of a variable x in a 𝜇-formula 𝐴 is bound
if it is within the scope of a quantifier 𝜇x or 𝜈x, and is free otherwise. A 𝜇-formula is
closed if all variables are bound.

We define the following operations on 𝜇-formulæ. Set ⊥ = 𝑝 ∧ 𝑝 and ⊤ = 𝑝 ∨ 𝑝 for
some fixed 𝑝 ∈ Prop and define 𝐴 → 𝐵 = 𝐴 ∨ 𝐵 where 𝐴 denotes the dual of 𝐴, given by

𝐴 ∧ 𝐵 = 𝐴 ∨ 𝐵 [a]𝐴 = ⟨a⟩𝐴 𝜇x𝐴 = 𝜈x𝐴 x = x

𝐴 ∨ 𝐵 = 𝐴 ∧ 𝐵 ⟨a⟩𝐴 = [a]𝐴 𝜈x𝐴 = 𝜇x𝐴 𝑝 = 𝑝

It is important to note that variables are never negated, so for instance 𝜇x(y ∨ [a]x) =
𝜈x(y ∧ ⟨a⟩x). Given a 𝜇-formula 𝐴(x), possibly containing the variable x free, and a
𝜇-formula 𝐵, we let 𝐴(𝐵) denote the result of replacing all free occurrences of x in
𝐴 by 𝐵, renaming bound variables in 𝐴 as necessary to avoid variable capture. As
formulæ will always be taken up to 𝛼-equivalence, we assume that renaming of variables
is unnecessary. Thus when writing 𝐴(𝐵) we implicitly mean that 𝐴(x) is a 𝜇-formula
and no free occurrence of x in 𝐴 is within the scope of a bound variable which is free in
𝐵. If 𝐵 = 𝜎x𝐴(x) for some 𝜎 ∈ {𝜇, 𝜈}, we call 𝐴(𝐵) the unravelling of 𝜎x𝐴.

To reduce the use of parentheses we assume the binary connectives ∧ and ∨ associate
to the right, i.e. 𝐴1 ∨ 𝐴2 ∨ · · · ∨ 𝐴𝑘 abbreviates 𝐴1 ∨ (𝐴2 ∨ · · · ∨ 𝐴𝑘), and bind stronger
than quantifiers and modalities. Appending a full stop to a quantifier expresses that
it takes the largest possible scope, so 𝜇x. ⟨a⟩x ∨ x represents the formula 𝜇x((⟨a⟩x) ∨ x)
whereas 𝜇x⟨a⟩x ∨ x should be read as (𝜇x(⟨a⟩x)) ∨ x.

2.2 Semantics

Semantics for the modal 𝜇-calculus is a direct extension of Kripke semantics for (multi-
)modal logic incorporating variables and quantifiers. A frame, or labelled transition
system, is a tuple K = ⟨𝐾, 𝑅, 𝜆⟩ where 𝑅 : Act → 𝐾 × 𝐾 and 𝜆 : Prop → 2𝐾 . The set
𝐾 is called the domain of K . A valuation (over K) is a function 𝑣 : Var → 2𝐾 .
Given a frame K = ⟨𝐾, 𝑅, 𝜆⟩, 𝜇-formula 𝐴 and valuation 𝑣 over K , we define ||𝐴||K𝑣

by induction on 𝐴:

||x||K𝑣 = 𝑣(x)
||𝑝||K𝑣 = 𝜆(𝑝) ||[a]𝐴||K𝑣 = {𝑠 ∈ 𝐾 | ∀𝑡 ∈ 𝐾((𝑠, 𝑡) ∈ 𝑅(a) → 𝑡 ∈ ||𝐴||K𝑣)}
||𝑝||K𝑣 = 𝐾 ∖ 𝜆(𝑝) ||⟨a⟩𝐴||K𝑣 = {𝑠 ∈ 𝐾 | ∃𝑡 ∈ 𝐾((𝑠, 𝑡) ∈ 𝑅(a) ∧ 𝑡 ∈ ||𝐴||K𝑣)}

||𝐴 ∧ 𝐵||K𝑣 = ||𝐴||K𝑣 ∩ ||𝐵||K𝑣 ||𝜇x𝐴||K𝑣 =
⋂︁

{𝑆 ⊆ 𝐾 | ||𝐴||K𝑣[x ↦→𝑆] ⊆ 𝑆}

||𝐴 ∨ 𝐵||K𝑣 = ||𝐴||K𝑣 ∪ ||𝐵||K𝑣 ||𝜈x𝐴||K𝑣 =
⋃︁

{𝑆 ⊆ 𝐾 | 𝑆 ⊆ ||𝐴||K𝑣[x ↦→𝑆]}

4

where 𝑣[x ↦→ 𝑆] denotes the valuation 𝑣′ given by 𝑣′(y) = 𝑣(y) for every y ∈ Var ∖ {x},
and 𝑣′(x) = 𝑆. Since variable symbols appear only positively in 𝜇-formulæ, when treated
as functions of free variables, the semantics of 𝜇-formulæ are monotone: if 𝑣(x) ⊆ 𝑇 ⊆ 𝐾
then for every formula 𝐴,

||𝐴||K𝑣 ⊆ ||𝐴||K𝑣[x ↦→𝑇].

An easy exercise shows that the semantics is closed under unravelling 𝜇-formulæ, so for
every 𝜎x𝐴(x) with 𝜎 ∈ {𝜇, 𝜈}, frame K and valuation 𝑣,

||𝜎x𝐴(x)||K𝑣 = ||𝐴(x)||K𝑣[x ↦→||𝜎x𝐴||K𝑣] = ||𝐴(𝜎x𝐴)||K𝑣 . (1)

In particular, for 𝜎 = 𝜇 (resp. 𝜎 = 𝜈), the Knaster-Tarski theorem implies ||𝜎x𝐴||K𝑣 is
the unique least (resp. greatest) set 𝑆 ordered under inclusion satisfying the equation
𝑆 = ||𝐴||K𝑣[x ↦→𝑆].
If 𝑣 is a valuation over a frame K = ⟨𝐾, 𝑅, 𝜆⟩, we let 𝑣 denote the dual valuation

which maps a variable x to the set 𝐾 ∖ 𝑣(x). It is not difficult to see that for every
𝜇-formula 𝐴,

||𝐴||K𝑣 = 𝐾 ∖ ||𝐴||K𝑣 .

A formula 𝐴 is satisfiable if there exists a frame K such that ||𝐴||K𝑣 is non-empty for
some valuation 𝑣, and is valid if 𝐴 is not satisfiable, i.e. ||𝐴||K𝑣 is the domain of K for
every frame K and valuation 𝑣. Two 𝜇-formulæ 𝐴 and 𝐵 are equivalent if both 𝐴 → 𝐵
and 𝐵 → 𝐴 are valid.

Example 2.1. Fix a formula 𝐵 = 𝐵(x, y). We show that the 𝜇-formula 𝜇x𝜈y𝐵 → 𝜈y𝜇x𝐵
is valid. The proof we present is due to Arnold and Niwinski [2]. Fix an arbitrary frame
K = ⟨𝐾, 𝑅, 𝜆⟩ and valuation 𝑣 over K . To simplify the presentation, for sets 𝑋, 𝑌 ⊆ 𝐾
and formula 𝐶(x, y), write ||𝐶(𝑋, 𝑌)||K𝑣 as shorthand for ||𝐶(x, y)||K𝑣[x ↦→𝑋][y ↦→𝑌]. In the
following we drop explicit mention of K and 𝑣.
Let 𝑆 = ||𝜇x𝜈y𝐵||. By definition ||𝜈y𝜇x𝐵|| = ⋃︀

{𝑌 | 𝑌 ⊆ ||𝜇x𝐵(x, 𝑌)||} so 𝜇x𝜈y𝐵 →
𝜈y𝜇x𝐵 is valid if

𝑆 ⊆ ||𝜇x𝐵(x, 𝑆)|| (2)

which we now prove. Let 𝑇 = ||𝜇x𝐵(x, 𝑆)||. By the fixed point property (1)

𝑆 = ||𝜈y𝐵(𝑆, y)|| = ||𝐵(𝑆, 𝑆)||.

However, 𝑇 = ⋂︀
{𝑌 | ||𝐵(𝑆, 𝑌)|| ⊆ 𝑌 }, so 𝑇 ⊆ 𝑆 and by monotonicity

||𝜈y𝐵(𝑇, y)|| ⊆ ||𝜈y𝐵(𝑆, y)|| = 𝑆

||𝜈y𝐵(𝑇, y)|| = ||𝐵(𝑇, ||𝜈y𝐵(𝑇, y)||)|| ⊆ ||𝐵(𝑇, 𝑆)|| = 𝑇.

Since 𝑆 = ⋂︀
{𝑌 | ||𝜈y𝐵(𝑌, y)|| ⊆ 𝑌 } we deduce 𝑆 ⊆ 𝑇 , i.e. (2).

5

2.3 Subsumption

Fix a formula 𝐴 and let Var𝐴 denote the variable symbols (bound or free) occurring
in 𝐴. 𝐴 induces a preorder <𝐴 on Var𝐴, called the subsumption ordering for 𝐴, given
by x <𝐴 y if 𝜎y𝐵 occurs as a sub-formula of 𝐴 for some 𝜎 ∈ {𝜇, 𝜈} and 𝐵, and x is
free in 𝜎y𝐵. We call a formula 𝐴 locally well-named if <𝐴 is irreflexive. Observe that
every formula is 𝛼-equivalent to a locally well-named 𝜇-formula, and that being locally
well-named does not preclude a variable symbol being quantified in multiple places or
contexts. Nevertheless, if 𝐴 = 𝜇x𝐵(x) is locally well-named then 𝐴′ = 𝐵(𝜇x𝐵(x)) is
locally well-named and <𝐴=<𝐴′ .

It is convenient to assume that all formulæ considered are not only locally well-named
but also pair-wise so, a condition that can be formalised thus. There exists a preorder
< on Var such that every finite preorder is embeddable in <.2 Let us call a formula 𝐴
well-named if <𝐴 is a sub-structure of <, i.e. <𝐴=< ∩(Var𝐴 × Var𝐴). Every 𝜇-formula
is 𝛼-equivalent to a well-named formula. Henceforth we assume all 𝜇-formulæ are well-
named and write x ≤ y if either x < y or x = y. Observe that 𝐴 is well-named iff 𝐴
is.
The next lemma captures the main use of well-named formulæ, namely that they are

closed under unravelling fixed points expressions.

Lemma 2.1. If 𝜎x𝐴(x) is a well-named 𝜇-formulæ then 𝐴(𝜎x𝐴(x)) is well-named.

2.4 Threads

Definition 2.2 (Threads). A thread is a sequence of formulæ 𝛼 = (𝐴𝑖)𝑖<𝑁 , where
𝑁 ≤ 𝜔, such that for every 𝑛 + 1 < 𝑁 , one of the following conditions hold

1. 𝐴𝑛+1 = 𝐴𝑛,

2. 𝐴𝑛+1 is an immediate sub-formula of 𝐴𝑛,

3. 𝐴𝑛 = 𝜎x𝐴(x) for some 𝜎, x and 𝐴, and 𝐴𝑛+1 = 𝐴(𝐴𝑛).

An infinite thread is as above with 𝑁 = 𝜔. Let 𝛼 = (𝐴𝑖)𝑖<𝜔 be an infinite thread and fix
𝜎 ∈ {𝜇, 𝜈}. A variable x occurs infinitely often in 𝛼 as 𝜎 if for every 𝑖 < 𝜔 there exists
𝑖 < 𝑗 < 𝜔 such that 𝐴𝑗 = 𝜎x𝐴 for some 𝐴. We call 𝛼 a 𝜎-thread if there is a variable x

that i) occurs infinitely often in 𝛼 as 𝜎 and ii) for all y that occurs infinitely often in 𝛼
as 𝜇, x < y. Given a sequence 𝛽 = (Γ𝑖)𝑖<𝑁 of sets of 𝜇-formulæ, a thread through 𝛽 is
any thread 𝛼 = (𝐴𝑖)𝑖<𝑁 such that 𝐴𝑖 ∈ Γ𝑖 for every 𝑖 < 𝑁 .

Lemma 2.3. Let 𝛼 be an infinite thread starting from a well-named formula such that
at least one of condition 2 or 3 in Definition 2.2 is satisfied infinitely often. Then 𝛼 is
either a 𝜈-thread or a 𝜇-thread and not both.

2.5 Sequent calculi

A sequent is a finite set of closed 𝜇-formulæ. Sequents are denoted by Γ, Δ, etc., and
formulæ are identified with singleton sequents. The union of two sequents is abbreviated
by comma, writing Γ, Δ for Γ ∪ Δ and Γ, 𝐴 for Γ ∪ {𝐴}. Later we will also consider

2This is a consequence of Fraïssé’s Theorem from Model Theory, cf [8, Theorem 7.1.2].

6

sequents with further structure and so to avoid confusion refer to sequents as plain
sequents. We write ⋁︀ Γ (⋀︀ Γ) to denote the disjunction (conjunction) over elements of Γ;
the dual of Γ, denoted Γ, is the 𝜇-formula ⋁︀ Γ. A sequent Γ is valid if the 𝜇-formula ⋁︀ Γ
is valid.
In this paper, a plain sequent calculus, or simply a calculus, is a set of inference rules

of the form

[Δ]†...
Γ, 𝐴1, . . . , 𝐴𝑘 dis†Γ, 𝐵1, . . . , 𝐵𝑘 or

Γ, 𝐴𝑖 (𝑖 ∈ 𝐼)
infΓ, 𝐵 (3)

where Γ and Δ are (plain) sequents, 𝐴𝑖, 𝐵𝑖 and 𝐵 denote 𝜇-formulæ, and 𝐼 is an index
set. In each of the two forms, the sequent(s) immediately above the rule is referred to as
the premise(s), and the lower sequent the conclusion. The set Δ in the left inference is
the sequent discharged by the inference, and emphasised by the square bracket notation
and annotation (in this case ‘†’) clarifying the associated discharging inference. We refer
to Γ as the set of side formulæ, the formulæ 𝐴𝑖 occurring in the premises are the active
formulæ and 𝐵1, . . . , 𝐵𝑘, 𝐵 in the conclusions are principal. An instance of the right-hand
rule in which 𝐼 is infinite is called an infinitary rule. All other inference rules of the form
in (3) are finitary. An axiom is an inference rule with no premises.

Definition 2.4 (Derivations). Let T be a plain sequent calculus comprising inference
rules and axioms of the form in (3). A pre-derivation in T is a possibly infinite tree
labelled by plain sequents locally consistent with the inference rules and axioms of T.
A derivation is a pre-derivation in which every path is finite, i.e. the underlying tree is
well-founded. The conclusion of a (pre-)derivation is the sequent labelling the root and
an assumption is a leaf labelled by a sequent that is not an axiom of T. An assumption
is discharged if it has been discharged by an inference in sense of (3) above, and is open
otherwise. A closed (pre-)derivation is a (pre-)derivation in which every assumption is
discharged.

Given a derivation 𝜋 we identify paths in 𝜋 with the sequence of sequents they induce
and it is in this sense that we may talk about threads (through a path) in 𝜋.
For many of the calculi we present ‘closed derivation’ is synonymous with ‘proof,’ to

be understood in the usual way. This is not true of all the proof systems we consider,
however, and in general a proof in a calculus T will be a closed derivation in which
every path to a discharged assumption satisfies some additional structural requirement.
Specifically, each calculus T will be associated a particular class of (open) T-derivations
called (open) proofs. Relative to a calculi T and the notion of open proof for T we may
introduce the following abbreviations. If {Γ} ∪ A is a set of sequents we write A ⊢T Γ if
there exists an open proof in T with conclusion Γ and for which the open assumptions
form a subset of A , and write T ⊢ Γ if ∅ ⊢T Γ, i.e. there is a T-proof of Γ. T will be
called sound if for every plain sequent Γ, T ⊢ Γ implies ⋁︀ Γ is valid, and complete if
the converse holds. Finally, we often drop explicit reference to T if it is clear from the
context which calculus is meant.
We begin by outlining a basic sequent calculus which we call fixed point logic that

serves as a basis for all the calculi we present in this paper.

7

Ax1 : 𝑝, 𝑝
Γ, 𝐵, 𝐶 ∨Γ, 𝐵 ∨ 𝐶

Γ, 𝐵 Γ, 𝐶 ∧Γ, 𝐵 ∧ 𝐶

Γ, 𝐴
mod

⟨a⟩Γ, [a]𝐴
Γ, 𝐴(𝜎x𝐴(x))

𝜎Γ, 𝜎x𝐴
Γ weakΓ, 𝐴

Figure 1: Rules and axioms of fixed point logic, Fix.

Definition 2.5 (Fixed point logic). Fixed point logic, denoted Fix, is the sequent calculus
comprising the seven inference rules and axioms listed in Figure 1. A Fix-proof is a finite
closed Fix-derivation.

The class of Fix-proofs is not particularly interesting. Although sound, Fix is not
complete for the 𝜇-calculus, an easy consequence of the fact that Fix is sound with respect
to interpreting the fixed point quantifiers as picking out any set satisfying the fixed point
equation in (1). Complete proof systems can be obtained by extending Fix by further
rules (and axioms) or relaxing the well-foundedness condition on proofs.

Remark on terminology Part of the motivation behind this work was a proof of com-
pleteness for Kozen’s axiomatisation that avoids recourse to the theory of automata or
parity games. This is achieved via a sequence of translations between sequent calculi. In
order to succeed in our objective it is necessary that each embedding of one calculus into
another does not appeal to ‘indirect’ arguments involving automata, games, or similar.
A natural restriction in this direction would be that each embedding is effective or even
primitive recursive. While this is certainly true of our completeness proof, Walukiewicz’s
proof is also readily seen as computable, so an effective embedding of a sound calculus T

into Koz can, in theory, consist of replicating soundness and completeness for the two
calculi, an approach that we want to avoid. However, Walukiewicz’s completeness proof
is non-constructive in nature, in contrast to our approach. Thus in the present paper
an embedding from T to S is to be understood as a constructive, primitive recursive
translation of T-proofs to S-proofs preserving the conclusion.

3 Background on proof systems for modal 𝜇

3.1 Kozen’s axiomatisation

The first proof system for the 𝜇-calculus is due to Kozen. In [10], Kozen presents a
Hilbert-style proof system for the calculus extending the basic (multi-)modal logic 𝐾 by
two axioms and one rule of inference:

𝐴(𝜈x𝐴(x)) → 𝜈x𝐴(x) 𝜈x𝐴 ∨ 𝜇x𝐴
𝐵 → 𝐴(𝐵)

𝐵 → 𝜈x𝐴(x)

A natural presentation of Kozen’s system as a sequent calculus is the extension of Fix by
the rule ind and axiom Ax2 in Figure 2 and the rule cut in Figure 3. In the present paper
we are concerned with variants of Kozen’s system without the cut rule, and in order to
more easily accommodate these cut-free calculi we also include a generalisation of the
disjunction rule, ∨𝑑 in Figure 2, which although admissible in the presence of cut, is not

8

Γ, 𝐴(Γ)
indΓ, 𝜈x𝐴(x) Ax2 : 𝜈x𝐴, 𝜇x𝐴

Γ, 𝐴(𝐵), 𝐴(𝐶)
∨𝑑Γ, 𝐴(𝐵 ∨ 𝐶)

Figure 2: Additional rules present in Koz−.

Γ, 𝐴 Γ, 𝐴
cutΓ

Γ, 𝜈x𝐴(Γ ∨ x)
ind𝑠Γ, 𝜈x𝐴(x)

Figure 3: Inference rules cut and strengthened induction.

obviously so in the systems lacking cut. Thus we define Koz− to be the extension of Fix

by the three rules and axioms in Figure 2 and represent Kozen’s axiomatisation as the
sequent calculus Koz− + cut which we denote Koz.
Proofs in Koz (and its subsystems) are closed finite derivations. Unlike Fix, a sound

and complete proof system obtains.

Theorem 3.1. Koz is sound and complete for the 𝜇-calculus.

Soundness for the calculus was established by Kozen in [10], as was completeness for
a fragment known as the aconjunctive fragment. Completeness for the full calculus,
however, was only proved much later, by Walukiewicz [16].
Completeness was (and still is) a significant result. To establish completeness,

Walukiewicz isolated a class of 𝜇-formulæ, called disjunctive formulæ,3 that is, provably
in Koz, equi-expressive with the full language, and for which weak completeness can be
derived.4 Weak completeness turns out to be trivial for duals of disjunctive formulæ as
Koz-proofs can be directly read off from tableaux for duals of unsatisfiable disjunctive
formulæ. In contrast, the proof of equi-expressivity of the disjunctive fragment and
the full 𝜇-calculus is extremely involved, and depends heavily on automata and game
theoretic techniques, all operating on tableaux, to establish that every guarded 𝜇-formula
can be associated an equivalent disjunctive formula and that the equivalence is provable
in Koz. Moreover, the equivalent disjunctive formula is typically exponentially larger
than the starting 𝜇-formula.
The upshot is that for a valid 𝜇-formula 𝐴, the proof constructed by the above

procedure comprises two parts combined by a cut: a simple Koz-proof for the dual of
an (exponentially larger) equivalent disjunctive formulæ, 𝐴′, and a proof of the sequent
𝐴′ → 𝐴. In particular, the resulting proof bears little relation to the Koz-derivations
typically constructed by hand, wherein syntactic constraints such as disjunctiveness
rarely materialise. To demonstrate the latter point we give a proof of the valid formula
𝜇x𝜈y𝐵 → 𝜈y𝜇x𝐵 of Example 2.1. First we make the following observation.

Lemma 3.2. Let 𝐴(x0, . . . , x𝑘−1) be a formula with at most the designated variables free.

3See, for example, [16] or [3] for a definition of disjunctive formulæ (called automaton normal form in
[3]).

4Weak completeness is the statement that Koz ⊢ 𝐴 for every unsatisfiable 𝜇-formula 𝐴.

9

If 𝐵𝑖 and 𝐶𝑖 are closed formulæ for each 𝑖 < 𝑘, then

{𝐵𝑖, 𝐶𝑖}𝑖<𝑘 ⊢Koz− 𝐴(𝐵0, . . . , 𝐵𝑘−1), 𝐴(𝐶0, . . . , 𝐶𝑘−1).

Proof. The proof proceeds by induction on 𝐴. We present the case 𝐴 = 𝜈x𝑘𝐴0(x0, . . . , x𝑘−1, x𝑘).
The remaining cases are straightforward. Let 𝐵𝑘 = 𝐴(𝐵0, . . . , 𝐵𝑘−1). As the sequent
𝐵𝑘, 𝐵𝑘 is an instance of Ax2, the induction hypothesis implies

{𝐵𝑖, 𝐶𝑖}𝑖<𝑘 ⊢Koz− 𝐴0(𝐵0, . . . , 𝐵𝑘), 𝐴0(𝐶0, . . . , 𝐶𝑘−1, 𝐵𝑘),

whereby an application of 𝜇 yields

{𝐵𝑖, 𝐶𝑖}𝑖<𝑘 ⊢Koz− 𝐵𝑘, 𝐴0(𝐶0, . . . , 𝐶𝑘−1, 𝐵𝑘)

and an application of ind completes the proof.

A particular instance of Lemma 3.2 worth noting is

Lemma 3.3. Koz− ⊢ Γ, Γ for every plain sequent Γ.

Example 3.1. Recall the valid sequent {𝜈x𝜇y𝐵, 𝜈y𝜇x𝐵} from Example 2.1. Let 𝐶 =
𝜈x𝜇y𝐵 and 𝐷 = 𝜈y𝜇x𝐵. The following derivation, which we denote 𝜋𝑘𝑜𝑧, is the Koz-proof
of this sequent motivated by the semantic validity argument:

𝜈x𝐵(x, 𝐶), 𝜇x𝐵(x, 𝐶)

𝐶, 𝐶

𝐶, 𝐶
..... Lemma 3.2

𝜇y𝐵(𝐶, y), 𝜈y𝐵(𝐶, y)
𝜈

𝐶, 𝜈y𝐵(𝐶, y)
..... Lemma 3.2

𝐵(𝐶, 𝐶), 𝐵(𝐶, 𝜈y𝐵(𝐶, y))
𝜈

𝐵(𝐶, 𝐶), 𝜈y𝐵(𝐶, y)
𝜇

𝐵(𝐶, 𝐶), 𝐶
ind

𝜈x𝐵(x, 𝐶), 𝐶
..... Lemma 3.2

𝜇y𝐵(𝜈x𝐵(x, 𝐶), y), 𝜈y𝐵(𝐶, y)
𝜇

𝜇y𝐵(𝜈x𝐵(x, 𝐶), y), 𝐶
..... Lemma 3.2

𝐵(𝜈x𝐵(x, 𝐶), 𝜇y𝐵(𝜈x𝐵(x, 𝐶), y)), 𝐵(𝜇x𝐵(x, 𝐶), 𝐶)
𝜇, 𝜇

𝜇y𝐵(𝜈x𝐵(x, 𝐶), y), 𝜇x𝐵(x, 𝐶)
ind

𝐶, 𝜇x𝐵(x, 𝐶)
ind

𝐶, 𝐷

This example well demonstrates the non-triviality of generating Koz-proofs which can
be attributed to the impredicative nature of the 𝜈-induction rule. Note that the cut rule
is not utilised in Lemma 3.2, so 𝜋koz is in fact a proof in Koz−.

10

3.2 Tableaux proofs

The first deductive system for the 𝜇-calculus for which completeness was established is a
system of ill-founded Fix derivations, referred to as tableaux, and is due to Niwinski and
Walukiewicz [12]. Every formula induces a class of pre-derivations obtained by applying
the proof rules of Fix in a ‘bottom-up’ fashion, systematically decomposing the formula
into sequents of sub-formulæ. A cardinality argument shows that every infinite path
of a pre-derivation must contain an infinitely repeating sequent and it so happens that
validity can be characterised by a syntactic condition on the threads occurring along
these paths.

Definition 3.4 (Tableaux). Recall the definition of 𝜈-thread from Section 2. A tableau
for Γ from assumptions A , written A ⊢∞ Γ, is a (possibly infinite) Fix pre-derivation
𝜋 with conclusion Γ such that all open assumptions are in A and every infinite path
through 𝜋 contains an infinite 𝜈-thread. When A = ∅ we call 𝜋 a tableau.

Theorem 3.5 (Niwinski and Walukiewicz [12]). Let 𝐴 be a guarded 𝜇-formula. Then 𝐴
is valid iff there exists a tableaux for 𝐴.

Guardedness is the syntactic restriction on 𝜇-formulæ requiring that for every sub-
formula 𝜎x𝐵 every occurrence of x in 𝐵 is under the scope of a modality (in 𝐵). Every
𝜇-formula is equivalent to a guarded formula and this equivalence is provable in Koz [10].
However, the restriction to guardedness in Theorem 3.5 turns out to be unnecessary:

Theorem 3.6. A formula 𝐴 of 𝜇-calculus is valid iff there exists a tableaux for 𝐴.

Theorem 3.6 is a corollary of the main result of Studer [14, Theorem 7.2] and also
follows from Friedmann and Lange [6] on satisfiability tableaux for unguarded formulæ.
Below we outline a direct proof of the ‘left-to-right’ direction of Theorem 3.6 as it will be
important in pursuing completeness for cut-free proof systems where one cannot appeal
to equivalences between guarded and unguarded formulæ.
Guardedness is an important restriction in the treatment of [12]. Given a sequent Γ

containing guarded formulæ only, every decomposition of Γ by the inferences ∨, ∧, 𝜇 and
𝜈 produces a finite tree with leaves labelled by sets of atoms and formulæ of the form [a]𝐴
and ⟨a⟩𝐴. If Γ is valid then applications of weak can reduce each leaf to either an axiom
or a valid conclusion of mod, the premise of which will also be valid. Repeating this
process ad infinitum completes the construction of the pre-derivation whence a second
argument shows it to be a tableau.

If the starting valid sequent contains an unguarded formula then the decomposition by
∨, ∧, 𝜇 and 𝜈 need not be finite and an infinite branch need not contain a 𝜈-thread, as is
the case, for example, with the valid sequent Γ = {[a]⊥, ⟨a⟩⊤, 𝜇x(𝐵 ∧ x)}. Nevertheless, a
tableaux for Γ can be easily obtained from a tableaux for {[a]⊥, ⟨a⟩⊤} and an application
of weak. A more ‘deterministic’ approach to constructing a tableaux for Γ is to apply
reductions 𝜇, 𝜈, ∨ and ∧ until a repetition occurs and an infinite 𝜇-thread becomes
apparent, after which the offending formula is removed by weak. As an example consider
the following tableau where ⋆ marks the points at which the unguarded formula 𝐶 may
be safely eliminated to stop the creation of an infinite 𝜇-thread, and where the right-hand
path is continued by identifying the leaf labelled by 𝐴, 𝐵, 𝐶 with the root.

11

𝑝, 𝑝 ∨⊤ weak⊥, ⊤
mod[b]⊥, ⟨b⟩⊤

weak*
[b]⊥, ⟨a⟩𝐴, ⟨b⟩⊤, [a]𝐶

weak(⋆) [b]⊥, ⟨a⟩𝐴, ⟨b⟩⊤, [a]𝐶, 𝐶
𝜇, ∨[b]⊥, ⟨a⟩𝐴, ⟨b⟩⊤, 𝐶

𝜇, ∨
𝐴, ⟨b⟩⊤, 𝐶

...
𝐴, 𝐵, 𝐶

mod
⟨a⟩𝐴, ⟨a⟩𝐵, [a]𝐶

weak[b]⊥, ⟨a⟩𝐴, ⟨a⟩𝐵, [a]𝐶
weak(⋆) [b]⊥, ⟨a⟩𝐴, ⟨a⟩𝐵, [a]𝐶, 𝐶
𝜇, ∨[b]⊥, ⟨a⟩𝐴, ⟨a⟩𝐵, 𝐶

𝜇, ∨
𝐴, ⟨a⟩𝐵, 𝐶

∧
𝐴, ⟨b⟩⊤ ∧ ⟨a⟩𝐵, 𝐶

𝜈
𝜇y([b]⊥ ∨ ⟨a⟩y)⏟ ⏞

𝐴

, 𝜈y(⟨b⟩⊤ ∧ ⟨a⟩y)⏟ ⏞
𝐵

, 𝜇x([a]x ∨ x)⏟ ⏞
𝐶

These observations suffice to prove the generalisation of Theorem 3.5 to unguarded
formulæ, which we now present.

Proof of Theorem 3.6. Begin by assigning to every sequent Γ a pre-derivation 𝜋Γ obtained
as follows. Starting with conclusion Γ, apply the rules ∨, ∧, 𝜇 and 𝜈 in a bottom-up
fashion in any order except if there arises a path 𝛼 = (𝑚𝑖)𝑖≤𝑁 in 𝜋Γ with 𝑚0 the root of
𝜋Γ, and a thread (𝐴𝑖)𝑖≤𝑁 though 𝛼 such that i) 𝐴𝑘 = 𝐴𝑁 = 𝜇x𝐴 for some 𝐴 and 𝑘 < 𝑁 ,
ii) 𝐴𝑘 is principal in the sequent at 𝑚𝑘, and iii) if 𝐴𝑖 = 𝜈y𝐵 for any 𝑘 < 𝑖 < 𝑁 then
x < y. If this case arises then instead of one of ∨, ∧, 𝜇 or 𝜈, an application of weak is
added with principal formula 𝐴𝑁 . By construction the pre-derivation 𝜋Γ is such that it
contains no applications of mod, every infinite path contains an infinite 𝜈-thread, and
every leaf is a sequent containing only propositional constants or formulæ starting with a
modality. Moreover, if Γ is a valid sequent then every leaf of 𝜋Γ is labelled by a valid
sequent.
Fix a valid 𝜇-formula 𝐴. A pre-derivation 𝜋 for 𝐴 is constructed by recursion. Let

𝜋0 = 𝜋{𝐴}. Given 𝜋𝑛, 𝜋𝑛+1 is determined by inserting at every leaf of 𝜋𝑛 applications
of weak reducing the sequent to either an axiom or to an application of mod with a
valid premise Δ, and in the latter case inserting a copy of 𝜋Δ to this leaf. The limit of
the construction is a closed Fix pre-derivation 𝜋 for 𝐴. It remains to prove that 𝜋 is a
tableau, i.e. that all infinite paths contain a 𝜈-thread. Fix an infinite path 𝛼 in 𝜋. It
follows that 𝛼 is either already contained in 𝜋𝑛 for some 𝑛, or 𝛼 consists of infinitely
many mod rules. In the former case 𝛼 contains a 𝜈-thread by design, whereas in the
latter case every infinite thread through 𝛼 passes through modalities infinitely often and
since every sequent in 𝛼 is valid one concludes that 𝛼 contains a 𝜈-thread by the usual
argument.

Lemma 3.7. For every formula 𝐴(x0, . . . , x𝑘−1) with at most the distinguished variables
free, and for all sequences of closed formulæ (𝐵𝑖)𝑖<𝑘 and (𝐶𝑖)𝑖<𝑘 we have {𝐵𝑖, 𝐶𝑖}𝑖<𝑘 ⊢∞
𝐴(𝐵0, . . . , 𝐵𝑘−1), 𝐴(𝐶0, . . . , 𝐶𝑘−1).

Proof. By induction on 𝐴. In the case 𝐴 = 𝜈x𝑘𝐴0(x0, . . . , x𝑘−1, x𝑘) apply the induction
hypothesis to 𝐴0(x0, . . . , x𝑘−1, x𝑘), picking 𝐵𝑘 = 𝐴 and 𝐶𝑘 = 𝐴, and yielding a tableau
with conclusion 𝐴, 𝐴 from open assumptions {𝐵𝑖, 𝐶𝑖} for 𝑖 ≤ 𝑘. Identifying the final
assumption with the root of the derivation and unravelling the result to an infinite tree
yields the desired tableau.

12

Example 3.2. Recall the valid sequent {𝜈x𝜇y𝐵, 𝜈y𝜇x𝐵} from Example 2.1. Let 𝐶 =
𝜈x𝜇y𝐵 and 𝐷 = 𝜈y𝜇x𝐵. The following Fix pre-derivation 𝜋∞ is a tableaux for {𝐶, 𝐷}
where the missing inferences are provided by Lemma 3.7 and by identifying the two †
and ‡ nodes.

...
𝜇y𝐵(𝐶, y), 𝜇x𝐵(x, 𝐷) (†)

𝜈
𝐶, 𝜇x𝐵(x, 𝐷)

...
𝜇y𝐵(𝐶, y), 𝐷 (‡)

..... Lemma 3.7

𝐵(𝐶, 𝜇y𝐵(𝐶, y)), 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)
𝜇

𝜇y𝐵(𝐶, y), 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)
𝜇

𝜇y𝐵(𝐶, y), 𝜇x𝐵(x, 𝐷) (†)
𝜈

𝜇y𝐵(𝐶, y), 𝐷 (‡)
𝜈

𝐶, 𝐷

3.3 Semi-formal systems

An alternative to the infinitely ‘long’ tableaux proofs is to consider infinitely ‘wide’ proofs,
where one or more inference rules take infinitely many premises. Such systems, known as
semi-formal systems or infinitary calculi, have been widely studied in the context of first
and second order theories of arithmetic.

Jäger, Kretz and Studer [9], drawing on this background, define a sound and complete
cut-free proof system for 𝜇-calculus by adding an infinitary rule characterising the
greatest fixed point. For each 𝑛 < 𝜔, define a new ‘quantifier’ 𝜈𝑛 by 𝜈0x𝐴 = ⊤, and
𝜈𝑛+1x𝐴(x) = 𝐴(𝜈𝑛x𝐴). The 𝜈𝜔 inference rule is the following infinitary proof rule, the
premises to which is a derivation of Γ, 𝜈𝑛x𝐴 for each 𝑛.

Γ, 𝜈0x𝐴 Γ, 𝜈1x𝐴 · · ·
𝜈𝜔Γ, 𝜈x𝐴

Following [9] we call the extension of Fix by the above rule 𝐾𝜔(𝜇). A 𝐾𝜔(𝜇)-proof is
a closed well-founded derivation in 𝐾𝜔(𝜇). Note that 𝐾𝜔(𝜇)-proofs are infinite objects
due to the 𝜔-branching of the 𝜈𝜔 rule but well-foundedness implies a 𝐾𝜔(𝜇)-proof has no
infinite paths.
Soundness for 𝐾𝜔(𝜇) is an immediate consequence of the finite model property of the

𝜇-calculus: if the premises are all valid sequents but the conclusion is not there exists
a finite frame K such that K ̸|= 𝜈x𝐴 but K |= 𝜈𝑛x𝐴 for every 𝑛, which yields a
contradiction when 𝑛 is at least the size of the domain of K . Completeness is established
via an infinitary version of the canonical model constructions used in proving completeness
for modal logics, and techniques from infinitary proof theory.
The finite model property implies that for each instantiation of 𝜈𝜔 only finitely many

of the premises are needed to deduce the validity of the conclusion. It does not by
itself, however, provide any bound, but since the 𝜇-calculus satisfies also the small model
property, a ‘finitisation’ of the 𝜈𝜔 rule is possible. This latter property states that there
is an exponential function 𝑓 : 𝜔 → 𝜔 such that every satisfiable 𝜇-formula has a model
with domain of size at most 𝑓(𝑑(𝐴)) where 𝑑(𝐴) denotes the logical depth of the formula

13

𝐴. Jäger, Kretz and Studer therefore also consider the following rule in place of 𝜈𝜔.

Γ, 𝜈0x𝐴 · · · Γ, 𝜈𝑘x𝐴
𝜈<𝜔 where 𝑘 = 𝑓(𝑑(⋁︀ Γ ∧ 𝜈x𝐴))Γ, 𝜈x𝐴

The resulting calculus, denoted 𝐾<𝜔(𝜇), is cut-free, sound and complete, and comprises
only finitary inference rules. Nevertheless, the system is not entirely satisfactory as a
finitary calculus in the traditional sense due to inferences of arbitrarily high arity: in
general, the 𝜈<𝜔 rule deriving a sequent Γ has a number of premises exponential in the
logical complexity of Γ.

3.4 Annotated proof systems

Stirling [13] introduces a ‘tableau proof system with names’ for the 𝜇-calculus that
captures the infinite 𝜈-thread condition in tableaux within a finite tree by means of
annotating formulæ and sequents with names for fixed point variables.

For each variable symbol x, fix an infinite set 𝑁x of names for x. We assume 𝑁x ∩𝑁y = ∅
if x ̸= y and use symbols 𝑥, 𝑦, 𝑧 (also with indices) as names for the formal variables x, y

and z respectively. Let 𝑁 := ⋃︀
x∈Var 𝑁x. Given a name 𝑥 ∈ 𝑁 , let 𝑁𝑥 be the set 𝑁x such

that 𝑥 ∈ 𝑁x. The subsumption ordering < extends to apply to names in the obvious way:
for 𝑥, 𝑦 ∈ 𝑁 , 𝑥 ≤ 𝑦 (𝑥 < 𝑦) if 𝑥 ∈ 𝑁x and 𝑦 ∈ 𝑁y, and x ≤ y (resp. x < y). For a set
𝑀 ⊆ 𝑁 of names, 𝑀* is the set of finite words in 𝑀 . For 𝑎 ∈ 𝑁* and x ∈ Var we write
𝑎 < x (𝑎 ≤ x) iff 𝑎 is a word in ⋃︀

y<x 𝑁y (resp. ⋃︀
y≤x 𝑁y). Let @ denote the (reflexive)

sub-word relation on 𝑁*. Given words 𝑎, 𝑏 ∈ 𝑁*, we write 𝑏�𝑎 for the largest sub-word
of 𝑏 comprising only names occurring in 𝑎.
In Stirling’s proof system (and two further systems we introduce in later sections)

sequents will be annotated by words from variable names. An annotation is a non-
repeating word 𝑎 ∈ 𝑁* that is increasing in <: if 𝑎 = 𝑥0 · · · 𝑥𝑘−1 then for all 0 ≤ 𝑖 < 𝑗 < 𝑘,
𝑥𝑖 ≤ 𝑥𝑗 and 𝑥𝑖 ̸= 𝑥𝑗 . An annotated formula is a pair (𝑎, 𝐴), henceforth written 𝐴𝑎,
where 𝐴 is a closed 𝜇-formula and 𝑎 ∈ 𝑁* is an annotation consisting of names for
variables occurring in 𝐴. An annotated sequent is a finite set of closed annotated formulæ
{𝐴𝑎1

1 , . . . , 𝐴𝑎𝑛
𝑛 } together with a finite word 𝑎 ∈ 𝑁* without repetitions, called the control,

written as 𝑎 ⊢ 𝐴𝑎1
1 , . . . , 𝐴𝑎𝑛

𝑛 . We let Γ, Δ, Π range over finite sets of annotated formulæ
and identify a plain sequent {𝐴1, . . . , 𝐴𝑘} with the annotated sequent 𝜖 ⊢ 𝐴𝜖

1, . . . , 𝐴𝜖
𝑘 in

which the control and all annotations are the empty annotation.
The notion of an inference rule, axiom, derivation, thread, etc., for plain sequents

generalises to annotated sequents in the obvious way. The notion of a proof, however,
is not so robust as in each of the calculi we present the annotations and controls play
slightly different roles, leading to different notions of proof.

Let fixed point logic with names, FixN, be the generalisation of Fix to annotated sequents
with rules and axioms given in Figure 4. The notable restrictions on annotations are
in the quantifier rules 𝜇 and 𝜈, wherein the annotation 𝑏 is required to comprise only
names for x and variables subsuming x, and in exp, which permits expanding annotations
by fresh variable names. FixN will form the underlying calculus for the annotated proof
systems in this paper. The first complete proof system extending FixN that we present is
due to Colin Stirling [13].

Definition 3.8 (Stirling proofs). Let Stir denote the calculus extending FixN by the
rule dis, and the rules 𝜈𝑥 and reset𝑥 for each variable name 𝑥 ∈ 𝑁 , listed in Figure 5.

14

Ax1 : 𝜖 ⊢ 𝑝𝜖, 𝑝𝜖 𝑎 ⊢ Γ, 𝐵𝑏, 𝐶𝑏

∨
𝑎 ⊢ Γ, (𝐵 ∨ 𝐶)𝑏

𝑎 ⊢ Γ, 𝐵𝑏 𝑎 ⊢ Γ, 𝐶𝑏

∧
𝑎 ⊢ Γ, (𝐵 ∧ 𝐶)𝑏

𝑎 ⊢ Γ, 𝐴(𝜎x𝐴(x))𝑏

(𝑏 ≤ x) 𝜎
𝑎 ⊢ Γ, 𝜎x𝐴𝑏

𝑎 ⊢ Γ, 𝐴𝑏

mod
𝑎 ⊢ ⟨a⟩Γ, [a]𝐴𝑏

𝑎 ⊢ Γ weak
𝑎 ⊢ Γ, 𝐴𝑏

𝑎0 ⊢ 𝐴𝑎1
1 , . . . , 𝐴𝑎𝑘

𝑘(∀𝑖 ≤ 𝑘. 𝑎𝑖 @ 𝑏𝑖 & 𝑏𝑖�𝑎0 @ 𝑎𝑖) exp
𝑏0 ⊢ 𝐴𝑏1

1 , . . . , 𝐴𝑏𝑘
𝑘

Figure 4: Rules and axioms of fixed-point logic with names, FixN.

𝑎𝑥 ⊢ Γ, 𝐴(𝜈x𝐴)𝑏𝑥

(𝑥 ∈ 𝑁x & 𝑏 ≤ x) 𝜈𝑥
𝑎 ⊢ Γ, 𝜈x𝐴𝑏

[︀
𝑎 ⊢ Γ

]︀†

...
𝑎 ⊢ Γ dis†𝑎 ⊢ Γ

𝑎 ⊢ Γ, 𝐴𝑏𝑥
0 , . . . , 𝐴𝑏𝑥

𝑘(𝑥0, . . . , 𝑥𝑘 ∈ 𝑁𝑥) reset𝑥
𝑎 ⊢ Γ, 𝐴𝑏𝑥𝑥0

0 , . . . , 𝐴𝑏𝑥𝑥𝑘
𝑘

Figure 5: Additional inference rules for Stirling proofs. In the rules 𝜈𝑥 and reset𝑥, 𝑥 may
not occur in Γ.

An open Stirling proof is a finite derivation 𝜋 in Stir equipped with a function 𝑙 ↦→ 𝑙𝑐

mapping each discharged assumption to the conclusion of an associated instance of dis,
fulfilling the conditions:

1. The control of every node is a non-repeating word in variable names;

2. For every annotated sequent 𝑎 ⊢ Γ occurring in 𝜋 and every annotated formula
𝐵𝑏 ∈ Γ, 𝑏 @ 𝑎;

3. For every discharged assumption 𝑙, there is a variable name 𝑥 appearing in the
control of every node on the path from 𝑙𝑐 to 𝑙 inclusive, and an application of reset𝑥

on this path.

For each discharged assumption 𝑙 the node 𝑙𝑐 is called the companion of 𝑙 and 𝑙 a
companion leaf of 𝑙𝑐. A companion node is a companion to some discharged assumption
in 𝜋. If A is a set of annotated sequents, we write A , 𝑎 ⊢Stir Γ if there is an open Stirling
proof with conclusion 𝑎 ⊢ Γ and open assumptions in A . A Stirling proof, or Stir-proof,
is a closed open Stirling proof, i.e. one with no open assumptions.

When presenting Stirling proofs, we illustrate the companion function 𝑐 by labelling
discharged assumptions and the corresponding application of dis (by symbols † and ‡) as
in Figure 5. Note that in the presence of condition 2 above, the restriction accompanying
applications of the expansion rule exp in Figure 4 simplifies to

𝑎0 ⊢ 𝐴𝑎1
1 , . . . , 𝐴𝑎𝑘

𝑘(∀𝑖 ≤ 𝑘. 𝑏𝑖�𝑎0 = 𝑎𝑖) exp
𝑏0 ⊢ 𝐴𝑏1

1 , . . . , 𝐴𝑏𝑘
𝑘

15

The proof system Stir presented here differs slightly from [13] which was goal orientated
with essentially deterministic inference rules when read ‘bottom-up.’ For instance,
Stirling’s system contains neither of the rules weak and exp: the former appears in a
restricted form, called thinning, with premise 𝑎 ⊢ Γ, 𝐵𝑏 and conclusion 𝑎 ⊢ Γ, 𝐵𝑏, 𝐵𝑐

provided 𝑏 ≺𝑎 𝑐 for a total ordering ≺𝑎 on annotations; the latter is instead incorporated
directly into the other rules. It follows that each inference rule of Stirling’s system can be
simulated in Stir by a combination of an inference in Stir and (possibly) an application
of exp and weak without affecting the requirements on proofs in Definition 3.8. Thus
completeness for Stir is a corollary of the completeness proof in [13], using the argument
in Theorem 3.6 to accommodate unguarded formulæ.
Theorem 3.9. Let 𝐴 be a closed well-named formula. If 𝐴 is valid then Stir ⊢ 𝐴.

Stirling’s proof of Theorem 3.9 proceeds by building a partial FixN derivation, starting
from the root, via a deterministic strategy for applying the inference rules. A cardinality
argument ensures the construction terminates, yielding a Stirling proof iff the starting
formula is valid.

Stirling also proves soundness of his proof system though what follows does not depend
on it. We provide an alternative proof of soundness for Stir (and, as a consequence, for
the proof system of [13]) based on embedding Stir-proofs in Koz.

We close the section with two examples of Stirling proofs: a generalisation of Lemma 3.7
to annotated sequents and the application of the above theorem to Example 3.2.
Lemma 3.10. Let 𝑎 ∈ 𝑁* be a non-repeating word and 𝑏, 𝑐 @ 𝑎 annotations. Suppose
𝜈x0 · · · 𝜈x𝑘𝐴(x0, . . . , x𝑘) is a closed well-named formula. For each 𝑖 ≤ 𝑘, let 𝑏𝑖, 𝑐𝑖 be
the restriction of 𝑏 and 𝑐 respectively to names in ⋃︀

y≤x𝑖
𝑁y. For all sequences of closed

formulæ (𝐵𝑖)𝑖≤𝑘 and (𝐶𝑖)𝑖≤𝑘,

{𝑎 ⊢ 𝐵𝑏𝑖
𝑖 , 𝐶𝑐𝑖

𝑖 }𝑖≤𝑘, 𝑎 ⊢Stir 𝐴(𝐵0, . . . , 𝐵𝑘)𝑏, 𝐴(𝐶0, . . . , 𝐶𝑘)𝑐.

Proof. As in Lemma 3.7, the proof proceeds by induction on the formula 𝐴. As before, the
only non-trivial case is when 𝐴 is quantified. Suppose 𝐴(x0, . . . , x𝑘) = 𝜈y𝐴0(x0, . . . , x𝑘, y).
Without loss of generality we may assume x𝑖 < y for each 𝑖 ≤ 𝑘 and 𝑎, 𝑏, 𝑐 ≤ y. Let

𝐸 = 𝐴(𝐵0, . . . , 𝐵𝑘) 𝐸0(y) = 𝐴0(𝐵0, . . . , 𝐵𝑘, y)
𝐹 = 𝐴(𝐶0, . . . , 𝐶𝑘) 𝐹0(y) = 𝐴0(𝐶0, . . . , 𝐶𝑘, y).

Also, let 𝑦, 𝑦′ ∈ 𝑁y be names for y not occurring in 𝑎. Using the induction hypothesis,
the derivation

𝑎 ⊢ 𝐵𝑏0
0 , 𝐶𝑐0

0 exp
𝑎𝑦 ⊢ 𝐵𝑏0

0 , 𝐶𝑐0
0 · · ·

𝑎 ⊢ 𝐵𝑏𝑘
𝑘 , 𝐶𝑐𝑘

𝑘 exp
𝑎𝑦 ⊢ 𝐵𝑏𝑘

𝑘 , 𝐶𝑐𝑘
𝑘

[︀
𝑎𝑦 ⊢ 𝐸𝑏, 𝐹0(𝐹)𝑐𝑦

]︀†

reset𝑦
𝑎𝑦𝑦′ ⊢ 𝐸𝑏, 𝐹0(𝐹)𝑐𝑦𝑦′

𝜈𝑦′
𝑎𝑦 ⊢ 𝐸𝑏, 𝐹 𝑐𝑦

.... I.H.
𝑎𝑦 ⊢ 𝐸0(𝐸)𝑏, 𝐹0(𝐹)𝑐𝑦

𝜇
𝑎𝑦 ⊢ 𝐸𝑏, 𝐹0(𝐹)𝑐𝑦

dis†
𝑎𝑦 ⊢ 𝐸𝑏, 𝐹0(𝐹)𝑐𝑦

𝜈𝑦
𝑎 ⊢ 𝐸𝑏, 𝐹 𝑐

(4)

suffices for the lemma.

16

Example 3.3. The tableaux 𝜋∞ in Example 3.2 can be transformed into a Stirling
proof 𝜋stir of the annotated sequent 𝜖 ⊢ 𝜈x𝜇y𝐵𝜖, 𝜈y𝜇x𝐵𝜖:[︀

𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦
]︀†

reset𝑥
𝑥𝑦𝑥′ ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥′

, 𝜇x𝐵(x, 𝐷)𝑦

𝜈𝑥′
𝑥𝑦 ⊢ 𝐶𝑥, 𝜇x𝐵(x, 𝐷)𝑦

[︀
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦

]︀†

reset𝑦
𝑥𝑦𝑦′ ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦𝑦′

𝜈𝑦′
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝐷𝑦

..... (Lemma 3.10)

𝑥𝑦 ⊢ 𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦

𝜇
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦

𝜇
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦

dis†
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦

𝜈𝑦
𝑥 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜈y𝜇x𝐵𝜖

𝜈𝑥𝜖 ⊢ 𝐶𝜖, 𝐷𝜖

where 𝐶 = 𝜈x𝜇y𝐵, 𝐷 = 𝜈y𝜇x𝐵, the missing inferences are provided by the previous
lemma and the two leaves are discharged by the rule dis†.

4 Unfolding Stirling proofs

In this section we establish two important closure properties of Stir-proofs, which we call
monotonicity and invariance, that will prove critical for embedding Stir into other calculi.
We begin with some preliminary observations.

Definition 4.1 (Leaf invariants). Let 𝜋 be a derivation in Stir and 𝑙 a discharged
assumptions in 𝜋. The invariant for 𝑙, denoted 𝑖𝑛𝑣𝜋(𝑙), is the shortest initial segment
of the control of 𝑙 with the form 𝑎𝑥 such that 𝑥 appears in the control of every node
between 𝑙𝑐 and 𝑙 inclusive and there exists an application of reset𝑥 at some node between
𝑙𝑐 and 𝑙. If no such word exists, we set 𝑖𝑛𝑣𝜋(𝑙) = 𝜖. If 𝑖𝑛𝑣𝜋(𝑙) = 𝑎𝑥, the conclusion to
the first occurrence of reset𝑥 on the path from 𝑙𝑐 to 𝑙 will be referred to as the reset node
for 𝑙. If 𝜋 is clear from the context we write 𝑖𝑛𝑣(𝑙) in place of 𝑖𝑛𝑣𝜋(𝑙).

We may rephrase the definition of Stir-proofs in terms of leaf invariants:

Lemma 4.2. A closed derivation in Stir is a Stir-proof iff it satisfies conditions 1 and 2
in Definition 3.8 and every discharged leaf has non-trivial invariant.

Proof. Consequence of the definition.

Lemma 4.3. Let 𝜋 be an Stir-proof with plain conclusion.

1. If 𝐴𝑎𝑥𝑐 and 𝐵𝑏𝑥𝑑 are annotated formulæ occurring in the same sequent in 𝜋 then
𝑎 = 𝑏.

2. If 𝑙 is a discharged assumption in 𝜋 then the control of every node between 𝑙𝑐 and 𝑙
is prefixed by the invariant of 𝑙.

3. If 𝑙0 and 𝑙1 are two leaves of 𝜋 with the same invariant and associated the same
companion node then their respective reset nodes are either the same or incomparable.

17

Proof. 1 and 2 are proved by induction on 𝜋. The only non-trivial case to consider for
1 is an application of exp in 𝜋, which we may suppose has the form given in Figure 4.
By assumption, the annotations 𝑏1, . . . , 𝑏𝑘 labelling formulæ in the conclusion have the
property stated in 1. Suppose 𝑎𝑖 = 𝑐𝑖𝑥𝑑𝑖 and 𝑎𝑗 = 𝑐𝑗𝑥𝑑𝑗 for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑘. Since
then 𝑥 appears in the annotations 𝑏𝑖 and 𝑏𝑗 there is a single annotation 𝑒 such that 𝑒𝑥 is
a prefix of both 𝑏𝑖 and 𝑏𝑗 . By the condition on the application of exp, 𝑐𝑖 = 𝑒�𝑎0 = 𝑐𝑗 .

3 is a consequence of the definition of leaf invariants and Lemma 4.2.

As a discharged leaf and its associated companion are always labelled by the same
annotated sequent, a Stirling proof can be unfolded by recursively replacing discharged
assumptions by a fresh copy of their companion’s sub-proof. Depending on how one
associates companions to newly created leaves, different unfoldings of a single proof can
be constructed. The following definition makes precise the operation of unfolding a leaf
and selecting companions for new leaves, and the subsequent lemma establishes that
Stirling proofs are closed under all forms of unfolding.

Definition 4.4 (Unfolding Stir-proofs). Let 𝜋 be a Stirling proof and 𝑀 a non-empty
set of discharged assumptions in 𝜋 whose companion nodes form a set of pairwise
incomparable nodes. Let 𝑂 be a set of discharged leaves in 𝜋 with the property that for
every 𝑜 ∈ 𝑂 there exists 𝑚 ∈ 𝑀 such that 𝑚𝑐 ≤ 𝑜𝑐 < 𝑚. We define the 𝑂-unfolding of 𝜋
at 𝑀 to be the closed derivation 𝜋′ given by replacing each leaf 𝑙 ∈ 𝑀 by a copy of the
sub-proof of 𝜋 at 𝑙𝑐 in which assumptions in 𝑂 are left open in the sub-proof whenever
possible. This condition is made precise by the definition of the companion function 𝑐′ of
𝜋′. Let ·̂ : 𝜋′ → 𝜋 be the function projecting 𝜋′ back to 𝜋 given by: if 𝑛 > 𝑚 for some
𝑚 ∈ 𝑀 then 𝑛̂ is the node of 𝜋 from which 𝑛 was copied in the formation of 𝜋′; if 𝑛 ∈ 𝑀
then 𝑛̂ = 𝑛𝑐; otherwise, 𝑛̂ = 𝑛. Fix an arbitrary discharged assumption 𝑙 in 𝜋′. If 𝑙 is
a leaf in 𝜋 then 𝑙 has the same companion as 𝑙̂ in 𝜋, i.e. 𝑙𝑐

′ = 𝑙̂𝑐. Otherwise, 𝑙 > 𝑚 for
some 𝑚 ∈ 𝑀 and 𝑙𝑐

′ is defined according to the choice of 𝑂 and position of 𝑙̂𝑐:

• if 𝑙̂𝑐 < 𝑚𝑐 then 𝑙𝑐
′ = 𝑙̂𝑐,

• if 𝑚𝑐 ≤ 𝑙̂𝑐 < 𝑚 and 𝑙̂ ∈ 𝑂 then also 𝑙𝑐
′ = 𝑙̂𝑐,

• otherwise, 𝑚𝑐 ≤ 𝑙̂𝑐 and 𝑙𝑐
′ is chosen to be the unique node 𝑚 ≤ 𝑜 < 𝑙 such that

𝑜 = 𝑙̂𝑐.

An unfolding of 𝜋 is the 𝑂-unfolding of 𝜋 at 𝑀 for some choice 𝑂 and 𝑀 .

If 𝜋′ is an unfolding of 𝜋 then every node that is a leaf in both 𝜋 and 𝜋′ is assigned
the same companion in both derivations. We may therefore always assume the function
assigning companions to leaves in 𝜋′ extends the companion function for 𝜋 and thus
uniformly denote by 𝑙𝑐 the companion of a node 𝑙 in either proof. Moreover, since 𝜋 is a
sub-structure of 𝜋′ we may assume a single accessibility relation, <, on nodes in both
trees.

Example 4.1. Consider the Stir-proof 𝜋stir of Example 3.3. Let 𝑙0, 𝑙1 name respectively
the left and right leaf of 𝜋stir and 𝑚 mark the conclusion to the single dis rule in 𝜋stir .
There are twelve unfoldings of 𝜋stir , given by picking 𝑂, 𝑀 ⊆ {𝑙0, 𝑙1} (with 𝑀 non-empty).
The result with 𝑂 = {𝑙0} and 𝑀 = {𝑙1}, for instance, is given in Figure 6 and obtained
by replacing the leaf 𝑙1 by a copy of the sub-proof of 𝜋stir rooted at the conclusion to

18

[︀
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦

]︀†

reset𝑥

𝑥𝑦𝑥′ ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥′
, 𝜇x𝐵(x, 𝐷)𝑦

𝜈𝑥′
𝑥𝑦 ⊢ 𝐶𝑥, 𝜇x𝐵(x, 𝐷)𝑦

[︀
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦

]︀†

reset𝑥

𝑥𝑦𝑥′ ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥′
, 𝜇x𝐵(x, 𝐷)𝑦

𝜈𝑥′
𝑥𝑦 ⊢ 𝐶𝑥, 𝜇x𝐵(x, 𝐷)𝑦

[︀
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦

]︀‡

reset𝑦

𝑥𝑦𝑦′ ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦𝑦′

𝜈𝑦′
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝐷𝑦

...
𝑥𝑦 ⊢ 𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦

𝜇
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦

𝜇
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦

dis‡
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦

reset𝑦

𝑥𝑦𝑦′ ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦𝑦′

𝜈𝑦′
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝐷𝑦

...
𝑥𝑦 ⊢ 𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦

𝜇
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦

𝜇
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦

dis†
𝑥𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦

𝜈𝑦
𝑥 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜈y𝜇x𝐵𝜖

𝜈𝑥
𝜖 ⊢ 𝐶𝜖, 𝐷𝜖

Figure 6: The {𝑙0}-unfolding of 𝜋stir at {𝑙1}, 𝜋1
stir .

dis†. The fresh copy of 𝑙0 introduced above 𝑙1 is assigned the original instance of dis as
its companion. With the same 𝑀 but 𝑂 = {𝑙0, 𝑙1}, the result is the same proof but in
which all leaves are discharged by the instance of dis†. With 𝑀 = {𝑙0} and 𝑂 = {𝑙1} the
unfolding is defined in a symmetric manner, with 𝑙0 unravelled and the fresh copy of 𝑙1
inserted linked to the discharge rule near the root.

There are two extremes of unfolding 𝜋 at a set of leaves 𝑀 , the ∅-unfolding and the
𝐿-unfolding where 𝐿 is the set of all discharged assumptions 𝑜 for which there exists
𝑚 ∈ 𝑀 such that 𝑚𝑐 ≤ 𝑜𝑐 < 𝑚. The former duplicates also the companion function,
assigning fresh companions to new leaves if possible. The latter uses the most conservative
choice of companion function possible, setting 𝑙𝑐 = 𝑙̂𝑐 for every discharged assumption 𝑙
satisfying 𝑙̂𝑐 < 𝑙.

Lemma 4.5. Every unfolding of a Stir-proof is a Stir-proof.

Proof. Let 𝜋 be a Stirling proof and 𝜋′ be the 𝑂-unfolding of 𝜋 at 𝑀 for some choice
of 𝑂 and 𝑀 . It suffices to show that every discharged assumption in 𝜋′ has non-trivial
invariant. Without loss of generality assume 𝑀 ⊆ 𝑐(𝑚) for some companion node 𝑚 in
𝜋. Fix a node 𝑚′ ∈ 𝑀 and an arbitrary non-axiom leaf 𝑙 > 𝑚′ in 𝜋′. Let 𝑙𝑐 denote the
companion of 𝑙 in 𝜋′ and 𝑙̂ the projection of 𝑙 into 𝜋. If 𝑚′ ≤ 𝑙𝑐 < 𝑙 then 𝑖𝑛𝑣𝜋′(𝑙) = 𝑖𝑛𝑣𝜋(𝑙̂)
by definition. Otherwise, 𝑙𝑐 < 𝑚′ < 𝑙 and it follows that 𝑙𝑐 and 𝑚 are comparable nodes,
and 𝑙𝑐 is the companion (in 𝜋) of the leaf 𝑙̂. So 𝑚 ≤ 𝑙𝑐 < 𝑚′ or 𝑙𝑐 < 𝑚 < 𝑙̂, whence
Lemma 4.3(2) implies 𝑖𝑛𝑣𝜋(𝑚′) and 𝑖𝑛𝑣𝜋(𝑙̂) are both prefixes of the control of one of
𝑙𝑐 or 𝑚. Thus 𝑖𝑛𝑣𝜋(𝑚′) and 𝑖𝑛𝑣𝜋(𝑙̂) are comparable and the shorter of the two is the
invariant for 𝑙 in 𝜋′.

The next definition pins down two important regularity conditions on Stirling proofs.

19

The definition of an invariant Stir-proof is taken directly from [1]. There, also a version
of monotonicity was formulated which, to simplify a technicality arising in Theorem 4.9
below, we strengthen slightly in the following definition.

Definition 4.6 (Invariant and monotone Stirling proofs). A Stirling proof 𝜋 is invariant
if any two assumptions 𝑚, 𝑛 with the same companion have the same invariant, and is
monotone if for all pairs of assumptions 𝑚, 𝑛 in 𝜋 satisfying 𝑚𝑐 < 𝑛𝑐 < 𝑚 the invariant
of 𝑚 is a prefix of the invariant of 𝑛 and 𝑖𝑛𝑣𝜋(𝑚) = 𝑖𝑛𝑣𝜋(𝑛) implies the reset node for
𝑚 is strictly below 𝑛𝑐. If 𝜋 is an invariant Stir-proof, the function 𝑖𝑛𝑣𝜋 can be extended
to companion nodes by setting 𝑖𝑛𝑣𝜋(𝑙𝑐) = 𝑖𝑛𝑣𝜋(𝑙) for every assumption 𝑙.

Example 4.2. The Stirling proofs constructed by Lemma 3.10 are monotone and
invariant. The Stir-proof 𝜋stir in Example 3.3 is also monotone but not invariant as the
two assumption leaves associated to dis† have distinct invariants, namely 𝑥 for 𝑙0 and 𝑥𝑦
for 𝑙1. For each 𝑖 ∈ {0, 1}, let 𝜋𝑖

stir be the {𝑙1−𝑖}-unfolding of 𝜋stir at {𝑙1}. 𝜋0
stir is neither

monotone nor invariant, but 𝜋1
stir is both monotone and invariant.

In an invariant monotone proof the partial ordering of companion nodes by their
invariants closely matches their ordering in the proof: for companion nodes 𝑚 < 𝑛 in a
monotone Stir-proof 𝜋, 𝑖𝑛𝑣𝜋(𝑚) is a prefix of 𝑖𝑛𝑣𝜋(𝑛) if 𝑛 < 𝑙 for some 𝑙 ∈ 𝑐𝜋(𝑚). There
are many unfoldings that preserve invariance. An important class is given by the next
lemma, which refines Lemma 4.5 above. In particular it shows that every ∅-unfolding of
a monotone invariant proof is monotone invariant.

Lemma 4.7. Let 𝜋 be a Stirling proof, 𝑀0 a non-empty set of pairwise incomparable
companion nodes in 𝜋, 𝑀 ⊆

⋃︀
{𝑐𝜋(𝑚) | 𝑚 ∈ 𝑀0} and 𝑂 a set of assumptions in 𝜋. Let

𝜋′ be the 𝑂-unfolding at 𝑀 of 𝜋. For every 𝑚 ∈ 𝑀 and assumption 𝑙 > 𝑚 in 𝜋′,

1. if 𝑙𝑐 ≥ 𝑚 then 𝑖𝑛𝑣𝜋′(𝑙) = 𝑖𝑛𝑣𝜋(𝑙̂),

2. if 𝑙𝑐 < 𝑚 then 𝑖𝑛𝑣𝜋′(𝑙) is the longest common prefix of 𝑖𝑛𝑣𝜋(𝑙̂) and 𝑖𝑛𝑣𝜋(𝑚),

3. if 𝜋 is invariant and for every 𝑚 ∈ 𝑀 and 𝑜 ∈ 𝑂, 𝑖𝑛𝑣𝜋(𝑜) is a prefix of 𝑖𝑛𝑣𝜋(𝑚),
then 𝑖𝑛𝑣𝜋′(𝑙) = 𝑖𝑛𝑣𝜋(𝑙̂) for every assumption 𝑙 in 𝜋′, and hence 𝜋′ is invariant.

Proof. 1 and 2 are established in the proof of Lemma 4.5; 3 is a special case of 1 and
2.

The next two results constitute the main contribution of the present section, that
the restriction to invariant monotone Stir-proofs is also complete for 𝜇-calculus. It is
established by repeatedly unfolding a given Stir-proof until first invariance, and then
monotonicity, is obtained.

Lemma 4.8. For every Stirling proof there exists an invariant Stirling proof with the
same conclusion.

Proof. Let 𝜋 be a Stirling proof. Let 𝑚 be a maximal node in 𝜋 that fails the invariance
property, i.e. there exist leaves 𝑛1, 𝑛2 ∈ 𝑐𝜋(𝑚) such that 𝑖𝑛𝑣𝜋(𝑛1) ̸= 𝑖𝑛𝑣𝜋(𝑛2). Define
an equivalence relation on 𝑐𝜋(𝑚) by 𝑛 ∼𝜋 𝑛′ if 𝑖𝑛𝑣𝜋(𝑛) = 𝑖𝑛𝑣𝜋(𝑛′), and let 𝐿0, . . . , 𝐿𝑘

enumerate the equivalence classes such that 𝑖𝑛𝑣(𝑛) is a proper prefix of 𝑖𝑛𝑣(𝑛′) if 𝑛 ∈ 𝐿𝑖,
𝑛′ ∈ 𝐿𝑗 and 𝑖 < 𝑗. Such an enumeration is possible as the invariant of every leaf with

20

companion 𝑚 is a prefix of the control at 𝑚. By assumption, 𝑘 > 0. We prove there
exists an unfolding 𝜋′ of 𝜋 such that no node in 𝜋′ strictly above 𝑚 fails the invariance
property, and if 𝑚 fails the invariance property then the equivalence relation ∼𝜋′ on
𝑐𝜋′(𝑚) has fewer equivalence classes.

Set 𝑂 = ⋃︀
𝑖<𝑘 𝐿𝑖 and let 𝜋′ be the 𝑂-unfolding of 𝜋 at 𝐿𝑘. Notice that the invariant of

every assumption in 𝑂 is a proper prefix of the invariant of nodes in 𝐿𝑘. By Lemma 4.7(1)
it follows that every companion node in 𝜋′ that is strictly above a node in 𝐿𝑘 fulfils
the invariance property. Let 𝐿′

0, . . . , 𝐿′
𝑘′ enumerate the ∼𝜋′-equivalence classes of 𝑐𝜋′(𝑚).

Applying Lemma 4.7(3) we conclude that 𝑘′ < 𝑘 and for every 𝑖 < 𝑘 there exists 𝑗 ≤ 𝑘′

such that 𝐿𝑖 ⊆ 𝐿′
𝑗 .

Theorem 4.9. Let Γ be a plain sequent. Stir ⊢ Γ iff there exists an invariant monotone
Stirling proof of Γ.

Proof. By the previous lemma it suffice to prove that every invariant Stir-proof can be
transformed into an invariant monotone Stir-proof. For each invariant proof 𝜋 define a
relation ▷𝜋 between nodes in 𝜋 that witnesses any failure of monotonicity: 𝑚 ▷𝜋 𝑛 iff 𝑚
and 𝑛 are both companion nodes and there exists 𝑚′ ∈ 𝑐𝜋(𝑚) such that i) 𝑚 < 𝑛 < 𝑚′,
ii) 𝑖𝑛𝑣𝜋(𝑛) is a prefix of 𝑖𝑛𝑣𝜋(𝑚), and iii) if 𝑖𝑛𝑣𝜋(𝑛) = 𝑖𝑛𝑣𝜋(𝑚) then the reset associated
to 𝑚′ is above 𝑛. Observe that ▷𝜋 is irreflexive and asymmetric, and that transitivity
holds in some cases:

𝑚 ▷𝜋 𝑜 ▷𝜋 𝑛 and 𝑛 < 𝑚′ for some 𝑚′ ∈ 𝑐(𝑚) implies 𝑚 ▷𝜋 𝑛.

Furthermore, for companion nodes 𝑚, 𝑛 and 𝑜, the following closure property holds for
▷𝜋:

if 𝑚 < 𝑜 < 𝑛 and 𝑖𝑛𝑣𝜋(𝑜) is a prefix of 𝑖𝑛𝑣𝜋(𝑛) then 𝑚 ▷𝜋 𝑛 implies 𝑚 ▷𝜋 𝑜. (5)

Let the rank of a companion node 𝑚, written rk𝜋(𝑚), be the length of the longest ▷𝜋-chain
starting from 𝑚, i.e. the largest 𝑟 ≥ 0 for which there exist 𝑚 = 𝑚0 < 𝑚1 < · · · < 𝑚𝑟

such that 𝑚𝑖 ▷𝜋 𝑚𝑖+1 for every 𝑖 < 𝑟. If every node in a proof 𝜋 has zero rank then 𝜋 is
monotone. For a set 𝑀 of companion nodes in 𝜋 define 𝑐𝜋(𝑀) = ⋃︀

𝑚∈𝑀 𝑐𝜋(𝑚), and for
≺ being < or ▷𝜋, write 𝑛 ≺ 𝑀 (𝑀 ≺ 𝑛) if there exists 𝑚 ∈ 𝑀 such that 𝑛 ≺ 𝑚 (resp.
𝑚 ≺ 𝑛).

The proof of the theorem now proceeds by induction on the maximal rank of nodes and
a subsidiary induction on the number of nodes of maximal rank. Assume 𝜋 is a closed
invariant Stir-proof of Γ and let 𝑟 + 1 be the maximal rank among companion nodes in
𝜋. Fix a maximal companion node 𝑚0 in 𝜋 with rank 𝑟 + 1. We construct a sequence
𝜋 = 𝜋0, 𝜋1, . . . , 𝜋𝑘 of invariant proofs such that for each 𝑖 < 𝑘, 𝜋𝑖+1 is an unfolding of 𝜋𝑖

at a set of nodes whose companions are at or above 𝑚0.
The particular sequence of proofs we consider is defined as follows. We write ▷𝑖, 𝑖𝑛𝑣𝑖,

𝑐𝑖 and rk𝑖 for ▷𝜋𝑖 , 𝑖𝑛𝑣𝜋𝑖 , 𝑐𝜋𝑖 and rk𝜋𝑖 respectively. Let 𝑀0 = {𝑚0}. Suppose 𝜋𝑖 has
been defined and 𝑀𝑖 is a set of companion nodes in 𝜋𝑖 with non-zero rank. Define
𝑂𝑖+1 = ⋃︀

{𝑐𝑖(𝑜) | 𝑀𝑖 ▷𝑖 𝑜} and 𝑀𝑖+1 = {𝑚 ∈ 𝑐𝑖(𝑀𝑖) | ∃𝑛(𝑀𝑖 ▷𝑖 𝑛 < 𝑚)} which denote,
respectively, the companion leaves to nodes ▷𝑖-above 𝑀𝑖, and the set of companion leaves
to a node in 𝑀𝑖 witnessing non-zero rank of elements of 𝑀𝑖. If 𝑀𝑖+1 is non-empty, set
𝜋𝑖+1 to be the 𝑂𝑖+1-unfolding of 𝜋𝑖 at 𝑀𝑖+1; otherwise we let 𝑘 = 𝑖, which ends the
sequence.

We claim that for each 𝑖 < 𝑘 if ·̂ : 𝑛 ↦→ 𝑛̂ denotes the projection function from 𝜋𝑖+1 → 𝜋𝑖,

21

i) 𝑐𝑖+1(𝑀𝑖) = 𝑐𝑖(𝑀𝑖) ∖ 𝑀𝑖+1 and for every 𝑗 ≤ 𝑖, 𝜋𝑖+1 differs from 𝜋𝑗 only at nodes
above 𝑀𝑗+1;

ii) for every assumption 𝑙 in 𝜋𝑖+1, 𝑙̂ is an assumption in 𝜋𝑖 and 𝑖𝑛𝑣𝑖+1(𝑙) = 𝑖𝑛𝑣𝑖(𝑙̂) and
hence 𝜋𝑖+1 is invariant;

iii) 𝑖𝑛𝑣𝑖+1(𝑚) = 𝑖𝑛𝑣𝑖+1(𝑚′) for all 𝑚, 𝑚′ ∈ 𝑐𝑖+1(𝑀𝑖+1);

iv) 𝑛 ▷𝑖+1 𝑜 and 𝑛̂ < 𝑜 < 𝑐𝑖(𝑛̂) implies 𝑛̂ ▷𝑖 𝑜;

v) 𝑛 ▷𝑖+1 𝑜 implies 𝑛̂ ▷𝑖 𝑜;

vi) for every node 𝑛 in 𝜋𝑖+1, rk𝑖+1(𝑛) ≤ rk𝑖(𝑛̂);

vii) for every node 𝑛 in 𝜋𝑖+1, if rk𝑖+1(𝑛) = 𝑟 + 1 and 𝑛 ≥ 𝑚0 then 𝑛 ∈ 𝑀𝑖+1;

viii) for every 𝑚 ∈ 𝑀𝑖, |𝑀𝑖+1 ∩ 𝑐𝑖(𝑚)| ≤ |𝑐0(𝑚0)| − 𝑖.

We prove (i)–(vii) by simultaneous induction on 𝑖 < 𝑘. Note that criterion (viii) implies
the sequence of unfoldings terminates, with 𝑘 ≤ |𝑐0(𝑚0)|. Since 𝑀𝑖+1 is empty iff
rk𝑖(𝑚) = 0 for every 𝑚 ∈ 𝑀𝑖, (vi) and (vii) imply that 𝜋𝑘 has fewer nodes of rank 𝑟 + 1
than 𝜋.

Criterion (i) is a direct consequence of the definition of 𝜋𝑖+1, noting that 𝑀𝑖+1 ⊆ 𝑐𝑖(𝑀𝑖)
and since ▷𝑖 is irreflexive, 𝑐𝑖(𝑀𝑖) ∩ 𝑂𝑖+1 = ∅. To see (ii), observe that by the definition of
▷𝑖, for any 𝑜 ∈ 𝑂𝑖+1 there exists 𝑚 ∈ 𝑀𝑖+1 such that the invariant of 𝑜 in 𝜋𝑖 is a prefix
of the invariant of 𝑚 in 𝜋𝑖, and apply Lemma 4.7(3) to the induction hypothesis for (iii)
and the fact that 𝜋𝑖 is invariant. (iii) then follows from (ii) and the induction hypothesis
for (iii).
Concerning (iv), assume 𝑛 ▷𝑖+1 𝑜 and 𝑛̂ < 𝑜 < 𝑐𝑖(𝑛̂). There exists an assumption

𝑙 ∈ 𝑐𝑖+1(𝑛) such that 𝑜 < 𝑙 and 𝑜 < 𝑙̂. Let 𝑙𝑟 be the reset node for 𝑙. By (ii) 𝑖𝑛𝑣𝑖+1(𝑙) =
𝑖𝑛𝑣𝑖(𝑙̂) = 𝑖𝑛𝑣𝑖+1(𝑙̂), and 𝑖𝑛𝑣𝑖+1(𝑛) = 𝑖𝑛𝑣𝑖(𝑛̂) is a prefix of 𝑖𝑛𝑣𝑖+1(𝑜) = 𝑖𝑛𝑣𝑖(𝑜). If
𝑖𝑛𝑣𝑖+1(𝑛) is a proper prefix of 𝑖𝑛𝑣𝑖+1(𝑜) then 𝑛̂ ▷𝑖 𝑜. Otherwise the two invariants are
identical and 𝑛 ▷𝑖+1 𝑜 implies 𝑜 < 𝑙𝑟. If 𝑙 is an assumption in 𝜋𝑖 then 𝑙̂ = 𝑙 and 𝑛̂ ▷𝑖 𝑜 is
immediate. Otherwise, let 𝑚 ∈ 𝑀𝑖+1 be such that 𝑚 < 𝑙. We perform a case distinction
on the relative positions of 𝑚 and 𝑜 in 𝜋𝑖+1. By assumption, 𝑛̂ < 𝑜 < 𝑐𝑖(𝑛̂). If 𝑚 < 𝑜
then 𝑜 < 𝑙̂𝑟 < 𝑙̂ ∈ 𝑐𝑖(𝑛̂) and 𝑙̂𝑟 is the reset node for 𝑙̂ in 𝜋𝑖 as 𝑖𝑛𝑣𝑖(𝑙̂) = 𝑖𝑛𝑣𝑖+1(𝑙), so 𝑛̂ ▷𝑖 𝑜.
If, instead, 𝑜 ≤ 𝑚 then 𝑛̂ = 𝑛 < 𝑜 = 𝑜 < 𝑐𝑖(𝑛), so Lemma 4.3(3) and the fact that 𝑜 < 𝑙𝑟
implies 𝑛̂ ▷𝑖 𝑜.
We now turn to (v). First observe that for every 𝑚 ∈ 𝑀𝑖, rk𝑖+1(𝑚) = 0, for if

𝑚 ▷𝑖+1 𝑜 < 𝑚′ ∈ 𝑐𝑖+1(𝑚) then since 𝑐𝑖+1(𝑚) ⊆ 𝑐𝑖(𝑚), we have 𝑚 ▷𝑖 𝑜 < 𝑚′, meaning
𝑚′ ∈ 𝑀𝑖+1 and contradicting (i). Thus suppose 𝑛 ▷𝑖+1 𝑜 and 𝑛 ̸∈ 𝑀𝑖. By (iv) it suffice to
assume either 𝑛̂ ≮ 𝑜 or 𝑛̂ < 𝑜 ≮ 𝑐𝑖(𝑛̂), from which it follows that there exists 𝑚 ∈ 𝑀𝑖+1
such that 𝑚̂ < 𝑛 < 𝑚 ≤ 𝑜. In particular, 𝑛̂ = 𝑛 and 𝑐𝑖(𝑛) ⊆ 𝑂𝑖+1, i.e. 𝑚̂ ▷𝑖 𝑛. Let 𝑝 > 𝑚
be such that 𝑝 = 𝑛. We consider three cases: 𝑚 = 𝑜, 𝑚 < 𝑜 < 𝑝 or 𝑝 < 𝑜. In the first
case 𝑚̂ ▷𝑖 𝑛 ▷𝑖+1 𝑚, and a contradiction is reached by considering the position of the
reset node for 𝑚 in 𝜋𝑖. If 𝑚 < 𝑜 < 𝑝 then 𝑚̂ < 𝑜 < 𝑛 < 𝑜 and, since 𝑖𝑛𝑣𝑖(𝑜) is a prefix
of 𝑖𝑛𝑣𝑖(𝑛), equation (5) implies 𝑚̂ ▷𝑖 𝑜. But then 𝑐𝑖(𝑜) ⊆ 𝑂𝑖+1, which contradicts the
fact that 𝑜 is a companion node. This leaves the case 𝑝 < 𝑜 from which we immediately
deduce 𝑛̂ ▷𝑖 𝑜 by (iv).

22

(vi) is a simple proof by induction through 𝜋𝑖+1 (starting from assumptions) appealing
to (v); (vi) together with the fact that rk𝑖+1(𝑚) = 0 for every 𝑚 ∈ 𝑀𝑖 combine to
prove (vii). Finally, to see (viii) fix 𝑚 ∈ 𝑀𝑖. The result is trivial if 𝑖 = 0, so assume
𝑖 = 𝑗 + 1 > 0. Let 𝑚′ ∈ 𝑀𝑗 be such that 𝑚 ∈ 𝑐𝑗(𝑚′). The induction hypothesis implies
|𝑀𝑖 ∩ 𝑐𝑗(𝑚′)| ≤ |𝑐0(𝑚0)| − 𝑗. By (v), the projection function ·̂ injectively maps the set
𝑀𝑖+1 ∩ 𝑐𝑖(𝑚) into 𝑀𝑖 ∩ 𝑐𝑗(𝑚′). Assume 𝑙 ∈ 𝑀𝑖+1 ∩ 𝑐𝑖(𝑚) is such that 𝑙̂ = 𝑚. By the
choice of 𝑀𝑖+1 there exists a companion node 𝑛 such that 𝑚 ▷𝑖+1 𝑛 < 𝑙, and (v) implies
𝑚′ ▷𝑖 𝑛̂ < 𝑚, so 𝑛 ∈ 𝑂𝑖 which contradicts that 𝑛 is a companion node in 𝜋𝑖+1. Thus
|𝑀𝑖+1 ∩ 𝑐𝑖(𝑚)| < |𝑀𝑖 ∩ 𝑐𝑗(𝑚′)| and we are done.

Turning a Stir-proof into an invariant monotone proof via the above construction
involves a substantial blow-up in size. Given a proof of height ℎ the construction yields
an invariant proof of height bounded by 2ℎ

ℎ. Starting with an invariant proof of height ℎ
and maximal rank 𝑟+1, we obtain an invariant proof with rank 𝑟 and height also bounded
by 2ℎ

ℎ. Since the transformation to invariant proof does not increase the rank of the
starting derivation, the two bounds may be combined to deduce that the construction of
invariant monotone proofs involves no worse than hyper-hyper-exponential increase in the
height of Stirling proofs. However, a more efficient procedure for this transformation may
be possible by interleaving the steps necessary for achieving monotonicity and invariance.
Before we conclude the present section, we observe the following fact about ‘unused’

reset rules in Stirling proofs.

Lemma 4.10. For every monotone invariant Stir-proof there is a monotone invariant
Stir-proof with the same conclusion such that for every node 𝑚, if 𝑚 is the conclusion of
an instance of reset then 𝑚 is the rest node for some assumption 𝑙 > 𝑚.

Proof. The idea of the proof is to replace each ‘unused’ instance of reset by an application
of exp. Fix a Stir-proof 𝜋 and suppose

𝑎 ⊢ Γ, 𝐴𝑏𝑥
0 , . . . , 𝐴𝑏𝑥

𝑘 reset𝑥
𝑎 ⊢ Γ, 𝐴𝑏𝑥𝑥0

0 , . . . , 𝐴𝑏𝑥𝑥𝑘
𝑘

is a reset occurring in 𝜋 which is not the reset node associated to an assumption. By
definition, 𝑥𝑖 ∈ 𝑁𝑥 for each 𝑖 ≤ 𝑘 and 𝑥 does not occur in Γ. We prove that this instance
of reset can be removed at the cost of inserting instances of exp throughout 𝜋. Let 𝑚
mark the conclusion of the rule in 𝜋. By condition 2 in the definition of Stir-proofs,
for each 𝑖 ≤ 𝑘, 𝑥𝑖 occurs in 𝑎, and it is for this reason that the rule cannot be directly
replaced by an instance of exp. By Lemma 4.3(1), 𝑥𝑖 occurs neither in Γ nor in the
annotation 𝑏. Let 𝑎′ @ 𝑎 be the result of removing from 𝑎 the name 𝑥𝑖 for each 𝑖 ≤ 𝑘.
We replace the instance of reset𝑥 by the corresponding instance of exp:

𝑎′ ⊢ Γ, 𝐴𝑏𝑥
0 , . . . , 𝐴𝑏𝑥

𝑘 exp
𝑎 ⊢ Γ, 𝐴𝑏𝑥𝑥0

0 , . . . , 𝐴𝑏𝑥𝑥𝑘
𝑘

and recursively remove names 𝑥0, . . . , 𝑥𝑘 from the control of nodes working upwards
through 𝜋. For the result to not be a Stirling proof at least one of two scenarios must now
occur: i) there is an assumption 𝑙 > 𝑙𝑐 > 𝑚 such that the control at 𝑙 contains some name
from 𝑥0, . . . , 𝑥𝑘 which the control at 𝑙𝑐 does not; ii) there is an assumption 𝑙 > 𝑚 > 𝑙𝑐

such that the control at 𝑙𝑐 contains some name from 𝑥0, . . . , 𝑥𝑘 which the control at
𝑙 does not. For 𝑙 of type (i), simply insert a further instance of exp at 𝑙 removing the

23

offending names; for assumptions of type (ii), insert, immediately below 𝑙𝑐, an instance
of exp. The latter case may injure other assumptions/companions above 𝑙𝑐 in a similar
manner, which are fixed by the addition of further applications of exp. Note the operation
preserves monotonicity and invariance.

5 Circular proofs

Stirling proofs, although cut-free, are not well-suited as a sequent calculus for the
𝜇-calculus. Aside from requiring sequents to be annotated, the conditions on what
constitutes a proof are non-local: an application of the discharge rule depends not on the
form of the sequent being discharged but on properties of the whole path to an associated
assumption. In the present section we provide a modification of Stir which permits a
more natural definition of proof.

Partition each set 𝑁x of variable names into two infinite sets: a set 𝑁𝒜
x of assumption

names (denoted 𝑥̂, 𝑦, etc.) and a set 𝑁𝒱
x , still called variable names. Let 𝑁𝒜 = ⋃︀

x∈Var 𝑁𝒜
x ;

similarly for 𝑁𝒱 .

Definition 5.1 (Circular proofs). Circ is the extension of FixN by the inference rules
dis𝑥̂ for 𝑥̂ ∈ 𝑁𝒜 and 𝜈𝑥 for 𝑥 ∈ 𝑁𝒱 given by[︀

𝑏𝑥̂ ⊢ Γ, 𝐴𝑎0𝑥̂𝑥0
0 , . . . , 𝐴𝑎𝑘𝑥̂𝑥𝑘

𝑘

]︀𝑥̂

...
𝑏𝑥̂ ⊢ Γ, 𝐴𝑎0𝑥̂

0 , . . . , 𝐴𝑎𝑘𝑥̂
𝑘(𝑥0, . . . , 𝑥𝑘 ∈ 𝑁𝒱

𝑥̂) dis𝑥̂
𝑏 ⊢ Γ, 𝐴𝑎0

0 , . . . , 𝐴𝑎𝑘
𝑘

𝑏 ⊢ Γ, 𝐴(𝜈x𝐴)𝑎𝑥

(𝑎 ≤ 𝑥 ∈ 𝑁𝒱
x) 𝜈𝑥𝑏 ⊢ Γ, 𝜈x𝐴𝑎

with the restriction that in the 𝜈𝑥 inference, 𝑥 may not appear in the side formulæ Γ. A
Circ-proof is a finite closed derivation 𝜋 satisfying:

1. the control of every node in 𝜋 is a non-repeating word of assumption names,

2. there is at most one instance of dis𝑥̂ rule in 𝜋 for each 𝑥̂ ∈ 𝑁𝒜.

Given a finite set of annotated formulæ Γ we write Circ ⊢ Γ if there exists a Circ-proof
with conclusion 𝜖 ⊢ Γ.

The idea behind this new form of discharge rule in Circ is to separate what is essentially
two distinct roles of variable names in Stirling proofs. On the one hand, names control
the invariants associated to assumptions via the 𝑥 ∈ 𝑁 for which a reset𝑥 rule is applied.
On the other, names record (via annotations) the unravelling of 𝜈-quantifiers that are
necessary for an application of reset. In Stir-proofs a given name may be utilised in both
forms simultaneously: there may be assumptions 𝑙1, 𝑙2 with, say, 𝑙𝑐1 < 𝑙𝑐2 < 𝑙1 and a name
𝑥 which occurs in the invariant for 𝑙1 but is eliminated on the path from 𝑙𝑐2 to 𝑙2 by
a reset rule. Although the restriction to monotone invariant Stir-proofs mitigates this
particular problem, it will prove helpful to rephrase Stirling proofs within a framework
that explicitly separates the two roles. In Circ, variable names are used solely to record
𝜈-regenerations along threads and are excluded from the control; assumption names have
the single purpose of providing invariants.

Lemma 5.2. For every closed formula 𝐴 and words 𝑎 ∈ 𝑁* ∩ 𝑁𝒜 and 𝑏, 𝑐 ≤ Var𝐴 such
that 𝑎 ⊢ 𝐴𝑏, 𝐴𝑐 is an annotated sequent, there is a Circ-proof with conclusion 𝑎 ⊢ 𝐴𝑏, 𝐴𝑐.

24

Proof. The proofs constructed in Lemma 3.10 can be readily converted into Circ-proofs
for this lemma. For example, the proof in (4) on page 16 with 𝐴 = 𝜈y𝐴0(y), becomes[︀

𝑎𝑦 ⊢ 𝐴𝑏, 𝐴0(𝐴)𝑐𝑦𝑦
]︀𝑦

𝜈𝑦
𝑎𝑦 ⊢ 𝐴𝑏, 𝐴𝑐𝑦

.... I.H.
𝑎𝑦 ⊢ 𝐴0(𝐴)𝑏, 𝐴0(𝐴)𝑐𝑦

𝜇
𝑎𝑦 ⊢ 𝐴𝑏, 𝐴0(𝐴)𝑐𝑦

dis𝑦
𝑎 ⊢ 𝐴𝑏, 𝐴0(𝐴)𝑐

𝜈
𝑎 ⊢ 𝐴𝑏, 𝐴𝑐

Fix a set 𝑋 ⊆ 𝑁𝒱 of variable names and let Γ = {𝐴𝑎1
1 , . . . , 𝐴𝑎𝑘

𝑘 } and Δ = {𝐴𝑏1
1 , . . . , 𝐴𝑏𝑘

𝑘 }
be two sets of annotated formulæ with the same underlying plain formulæ. We call Γ an
𝑋-expansion of Δ if for every 1 ≤ 𝑖 ≤ 𝑘 either 𝑏𝑖 = 𝑎𝑖 or 𝑏𝑖 = 𝑏𝑥̂𝑏′ for some 𝑥̂ ∈ 𝑁𝒜 and
there exists 𝑥 ∈ 𝑋 ∩ 𝑁𝑥̂ such that 𝑎𝑖 = 𝑏𝑥̂𝑥𝑏′.
The next lemma constitutes an important step in embedding Stir into Circ.

Lemma 5.3 (Expansion Lemma). Let 𝜋 be a circular proof of 𝑎 ⊢ Γ, possibly with open
assumptions, and x a formal variable symbol. For every set 𝑋 ⊆ 𝑁𝒱

x of variable names
not occurring in 𝜋 and every 𝑋-expansion Γ′ of Γ there exists a circular proof 𝜋′ of 𝑎 ⊢ Γ′

such that every open assumption of 𝜋′ is an 𝑋-expansion of an open assumption in 𝜋.
Moreover, 𝜋′ is such that if

𝑐0 ⊢ Π′, 𝐴𝑐

exp
𝑏0 ⊢ Π, 𝐴𝑏

is an instance of exp in 𝜋′ and 𝑏 contains a name 𝑥 ∈ 𝑋 not occurring in 𝑐, then 𝑏 has
the form 𝑑𝑥̂𝑥𝑑′ with 𝑥̂ ∈ 𝑁𝒜

x and 𝑐 @ 𝑑𝑑′.

Proof. The proof proceeds by induction on 𝜋 via a case distinction on the last applied
inference. For most inferences the desired circular proof 𝜋′ follows directly from the
induction hypothesis. The interesting case is if the last inference in 𝜋 is an instance
of dis𝑦 for an assumption name 𝑦 ∈ 𝑁𝒜. Suppose therefore that 𝜋 is an open proof
witnessing A , 𝑎 ⊢ Γ for some finite set A = {𝑐𝑖 ⊢ Λ𝑖 | 𝑖 ∈ 𝐼} of annotated sequents and
𝑋 ⊆ 𝑁𝒱

x is a finite set of variable names not occurring in 𝜋. We may assume Γ has the
form 𝐴𝑎0

0 , . . . , 𝐴𝑎𝑘
𝑘 , Δ and 𝜋 ends with an application of dis𝑦 with 𝐴0, . . . , 𝐴𝑘 principal:

𝜋

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑐𝑖 ⊢ Λ𝑖 (𝑖 ∈ 𝐼)...

[︀
𝑎𝑦 ⊢ 𝐴𝑎0𝑦𝑦0

0 , . . . , 𝐴𝑎𝑘𝑦𝑦𝑘
𝑘 , Δ

]︀𝑦

...
.... 𝜋̂

𝑎𝑦 ⊢ 𝐴𝑎0𝑦
0 , . . . , 𝐴𝑎𝑘𝑦

𝑘 , Δ
dis𝑦

𝑎 ⊢ 𝐴𝑎0
0 , . . . , 𝐴𝑎𝑘

𝑘 , Δ
Let 𝜋̂ be the immediate sub-proof of 𝜋 whose open assumptions are each either sequents
in A or of the form 𝑎𝑦 ⊢ 𝐴𝑎0𝑦𝑦0

0 , . . . , 𝐴𝑎𝑘𝑦𝑦𝑘
𝑘 , Δ.

25

Let Δ = {𝐴
𝑎𝑘+1
𝑘+1 , . . . , 𝐴

𝑎𝑘+𝑙

𝑘+𝑙 }, 𝛼 = (𝑎𝑖)𝑖≤𝑘+𝑙 and let 𝑦⃗ = (𝑦, . . . , 𝑦) be of length 𝑘 + 1.
Given sequences of annotations 𝛾 = (𝑐0, . . . , 𝑐𝑟), 𝛽 = (𝑏0, . . . , 𝑏𝑟+𝑠) and 𝛿 = (𝑑𝑖)𝑖≤𝑘+𝑙

define

𝛽 ∘ 𝛾 = (𝑏0𝑐0, . . . , 𝑏𝑟𝑐𝑟, 𝑏𝑟+1, . . . , 𝑏𝑟+𝑠), Γ𝛿 = {𝐴𝑑𝑖
𝑖 | 𝑖 ≤ 𝑙 + 𝑘}

so in particular Γ = Γ𝛼 and the conclusion of 𝜋̂ is 𝑎𝑦 ⊢ Γ𝛼∘𝑦⃗. If 𝛽 and 𝛾 each have length
𝑘 + 𝑙 + 1 and Γ𝛽 is an 𝑋-expansion of Γ𝛾 we call 𝛽 an 𝑋-expansion of 𝛾. The induction
hypothesis yields, for every 𝑋-expansion 𝛽 of 𝛼, a proof 𝜋̂𝛽 with conclusion 𝑎𝑦 ⊢ Γ𝛽∘𝑦⃗

such that open assumptions in 𝜋̂𝛽 are 𝑋-expansions of open assumptions in 𝜋̂. Let X
be the finite set of 𝑋-expansions of 𝛼.
Fix an 𝑋-expansion 𝛽 of 𝛼. To obtain desired proof 𝜋′ in the case Γ′ = Γ𝛽 we first

define, for every 𝛿 ∈ X and Y ⊆ X , a circular proof 𝜋̂𝛿,Y with conclusion 𝑎𝑦 ⊢ Γ𝛿∘𝑦⃗

such that every open assumption in 𝜋̂𝛿,Y is either the 𝑋-expansion of an open assumption
in 𝜋 or has the form 𝑎𝑦 ⊢ Γ𝜂∘(𝑦𝑦0,...,𝑦𝑦𝑘) for some 𝜂 ∈ Y and some 𝑦0, . . . , 𝑦𝑘 ∈ 𝑁𝒱

𝑦 . Then
𝜋′ will be defined as 𝜋̂𝛽,∅ in which the assumption name 𝑦 is removed from all sequents
at which it appears. Set 𝜋̂𝛿,X = 𝜋̂𝛿. The definition of 𝜋̂𝛿,Y for Y (X has two cases
depending on whether 𝛿 ∈ Y . Suppose 𝛿 ̸∈ Y and let 𝑥̂ ∈ 𝑁𝑦 ∩𝑁𝒜 be a fresh assumption
variable not occurring in 𝜋̂𝛿,Y ∪{𝛿} that names the same variable as 𝑦 and let 𝑥⃗ = (𝑥̂, . . . , 𝑥̂)
be of length 𝑘 + 1. Define 𝜋̂𝛿,Y to be the proof obtained from 𝜋̂𝛿,Y ∪{𝛿} by: i) replacing all
occurrences of 𝑦 by 𝑦𝑥̂; ii) inserting an application of dis𝑥̂ at the root discharging every
open assumptions of the form 𝑎𝑦𝑥̂ ⊢ Γ𝛿∘(𝑦𝑥̂𝑥0,...,𝑦𝑥̂𝑥𝑘) for 𝑥0, . . . , 𝑥𝑘 ∈ 𝑁𝑥̂; iii) appending
to each remaining open assumption an application of exp removing all occurrences of 𝑥̂:

𝜋̂𝛿,Y

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎𝑦 ⊢ Γ𝜂∘𝑦⃗∘(𝑦0,...,𝑦𝑘)
(𝜂 ̸= 𝛿) exp

𝑎𝑦𝑥̂ ⊢ Γ𝜂∘𝑦⃗∘𝑥⃗∘(𝑦0,...,𝑦𝑘)
...

𝑐′ ⊢ Δ′
(Δ ̸= Γ) exp

𝑐 ⊢ Δ...

[︀
𝑎𝑦𝑥̂ ⊢ Γ𝛿∘𝑦⃗∘𝑥⃗∘(𝑥′

0,...,𝑥′
𝑘)]︀𝑥̂

...
......

𝜋̂𝛿,Y ∪{𝛿}

𝑎𝑦𝑥̂ ⊢ Γ𝛿∘𝑦⃗∘𝑥⃗

dis𝑥̂
𝑎𝑦 ⊢ Γ𝛾∘𝑦⃗

where in the above 𝑐′ ⊢ Δ′ denotes the result of removing 𝑥̂ from the control and
annotations of the sequent 𝑐 ⊢ Δ. For 𝛿 ∈ Y , the proof 𝜋̂𝛿,Y is defined in terms of
{𝜋̂𝛾,Y | 𝛾 ∈ X ∖ Y } as the proof derived from 𝜋̂𝛿 by attaching, at any leaf 𝑎𝑦 ⊢ Γ𝛾∘𝑦⃗ for
𝛾 ̸∈ Y , a copy of 𝜋̂𝛾,Y :

𝑎𝑦 ⊢ Γ𝛾∘𝑦⃗∘(𝑦0,...,𝑦𝑙) (𝛾 ∈ Y)...

..... 𝜋̂𝛾,Y

𝑎𝑦 ⊢ Γ𝛾∘𝑦⃗

(𝛾 ̸∈ Y) exp
𝑎𝑦 ⊢ Γ𝛾∘𝑦⃗∘(𝑦′

0,...,𝑦′
𝑙)

...
..... 𝜋̂𝛿

𝑎𝑦 ⊢ Γ𝛿∘𝑦⃗

As mentioned above, set 𝜋′ to be the proof 𝜋̂𝛽,∅ in which the assumption name 𝑦 is
removed from all sequents at which it appears.

26

Theorem 5.4. If Stir ⊢ Π and Π is a plain sequent then Circ ⊢ Π.

Proof. Fix a closed Stir-proof 𝜋 with plain conclusion and let 𝜌 denote the root of 𝜋. By
Theorem 4.9 we may assume 𝜋 is invariant and monotone. Moreover, we may assume
that every conclusion to an instance of dis is the companion to some assumption, and by
Lemma 4.10, every instance of reset in 𝜋 is the reset node for some assumption.

We construct, for all pairs of nodes 𝑛 ≤ 𝑚 in 𝜋 where 𝑛 is a companion node, a circular
proof 𝜋𝑛

𝑚 by recursion on 𝑚. The interpretation of 𝜋 will then be the circular proof 𝜋𝜌
𝜌

where 𝜌 is the root of 𝜋. The role of the parameter 𝑛 is to distinguish between the two
ways of proceeding when 𝑚 marks a reset node in 𝜋, which are needed to ensure that
an open assumption has the appropriate form when the recursion reaches its companion
node. Specifically, if 𝑚 marks a companion node in 𝜋 with premise 𝑚′ then 𝜋𝑛

𝑚 is defined
in terms of both 𝜋𝑛

𝑚′ and 𝜋𝑚
𝑚′ .

The properties we require of 𝜋𝑛
𝑚 are:

1. the conclusion of 𝜋𝑛
𝑚 is the sequent labelling 𝑚 in 𝜋, where every name in the

control is considered an assumption name;

2. there exists a function 𝑓 from open assumptions in 𝜋𝑛
𝑚 to non-axiom leaves in 𝜋

such that every open assumption 𝑙 in 𝜋𝑛
𝑚 can be written in the form

𝑏𝑥 ⊢ Γ, 𝐴𝑎𝑥𝑥1
1 , . . . , 𝐴𝑎𝑥𝑥𝑟

𝑟 , 𝐴𝑎𝑥
𝑟+1, . . . , 𝐴𝑎𝑥

𝑠 (6)

where 𝑥 is an assumption name not occurring in Γ, 𝑥1, . . . , 𝑥𝑟 ∈ 𝑁𝑥 ∩ 𝑁𝒱 are
variable names naming the same 𝜈-variable as 𝑥, and
a) the sequent at 𝑓(𝑙) has the form 𝑏𝑥𝑏′ ⊢ Γ, 𝐴𝑎𝑥𝑎1

1 , . . . , 𝐴𝑎𝑥𝑎𝑠
𝑠 for words 𝑏′,

𝑎1, . . . , 𝑎𝑠,
b) the invariant of 𝑓(𝑙) is 𝑏𝑥,
c) if the reset node for 𝑓(𝑙) in 𝜋 is ≥ 𝑚 then

• 𝑓(𝑙) ∈ 𝑐𝜋(𝑛) implies 𝑟 = 𝑠;
• 𝑓(𝑙) ̸∈ 𝑐𝜋(𝑛) implies that for every 1 ≤ 𝑖 ≤ 𝑟 there exists either a node

𝑜 < 𝑙 in 𝜋𝑛
𝑚 or a node 𝑓(𝑙)𝑐 < 𝑜 < 𝑚 in 𝜋 such that 𝑥𝑖 does not occur in

the sequent at 𝑜.

Criterion 2 stipulates the necessary information regarding the ‘repeat and reset’ condition
in Stirling proofs so that the discharge rule from Stir can be interpreted as a discharge
rule in Circ. The definition of 𝜋𝑛

𝑚 proceeds via a case distinction on the inference rule
applied to derive 𝑚 in 𝜋:

• axiom case. 𝜋𝑛
𝑚 is taken to be the same sequent.

• assumption. In this case 𝑛 < 𝑚 and 𝑚 has the form

𝑏𝑥𝑏′ ⊢ Γ, 𝐴𝑎𝑥𝑥1𝑎1
1 , . . . , 𝐴𝑎𝑥𝑥𝑟𝑎𝑟

𝑟 , 𝐴
𝑎𝑥𝑎𝑟+1
𝑟+1 , . . . , 𝐴𝑎𝑥𝑎𝑠

𝑠

where 𝑏𝑥 = 𝑖𝑛𝑣(𝑚), 𝑥1, . . . , 𝑥𝑟 all name the same variable as 𝑥, 𝑥 does not appear
in Γ and 𝑥 < 𝑎𝑖 for each 𝑟 < 𝑖 ≤ 𝑠. The proof 𝜋𝑛

𝑚 is the open derivation
𝑏𝑥 ⊢ Γ, 𝐴𝑎𝑥𝑥1

1 , . . . , 𝐴𝑎𝑥𝑥𝑟
𝑟 , 𝐴𝑎𝑥

𝑟+1, . . . , 𝐴𝑎𝑥
𝑠

exp
𝑏𝑥𝑏′ ⊢ Γ, 𝐴𝑎𝑥𝑥1𝑎1

1 , . . . , 𝐴𝑎𝑥𝑥𝑟𝑎𝑟
𝑟 , 𝐴

𝑎𝑥𝑎𝑟+1
𝑟+1 , . . . , 𝐴𝑎𝑥𝑎𝑠

𝑠

27

which trivially satisfies the necessary requirements.

• exp, ∨, ∧, 𝜇, 𝜈, mod or weak. Immediate via induction hypothesis.

• 𝜈𝑦 for 𝑦 ∈ 𝑁y. Suppose 𝑚 and its unique successor 𝑚′ are the sequents 𝑏 ⊢
Δ, (𝜈y𝐴(y))𝑎 and 𝑏𝑦 ⊢ Δ, 𝐴(𝜈y𝐴)𝑎𝑦 respectively for some formula 𝐴(y) and annota-
tion 𝑎 @ 𝑏. We define 𝜋𝑛

𝑚 to be the result of removing the name 𝑦 from the control
(but not annotations) of all sequents in 𝜋𝑛

𝑚′ and inserting an application of 𝜈𝑦 at
the root.

• reset𝑦 for 𝑦 ∈ 𝑁 . Let 𝑚′ be the unique successor to 𝑚 in 𝜋. The sequents at 𝑚 and
𝑚′ have the form 𝑎𝑦𝑎′ ⊢ Δ, 𝐵𝑏𝑦𝑦0

0 , . . . , 𝐵𝑏𝑦𝑦𝑘
𝑘 and 𝑎𝑦𝑎′ ⊢ Δ, 𝐵𝑏𝑦

0 , . . . , 𝐵𝑏𝑦
𝑘 respectively

where 𝑦 does not appear in Δ and 𝑦𝑖 ∈ 𝑁𝑦 for each 𝑖 ≤ 𝑘. By assumption 𝑚 is
the reset node for some open assumption 𝑙 in the sub-proof of 𝜋 rooted at 𝑚: let
𝑛0 = 𝑙𝑐.
Let 𝜋𝑛

𝑚′ and its associate function 𝑓 ′ be given satisfying 1 and 2. By the Expansion
Lemma there exists, for each 𝑌 ⊆ {0, . . . , 𝑘}, a circular proof 𝜋𝑛

𝑚′,𝑌 with conclusion
𝑎𝑦𝑎′ ⊢ Δ, 𝐵𝑏𝑦𝑐0

0 , . . . , 𝐵𝑏𝑦𝑐𝑘
𝑘 where 𝑐𝑖 = 𝑦𝑖 if 𝑖 ∈ 𝑌 and 𝑐𝑖 = 𝜖 otherwise. All open

assumptions in 𝜋𝑛
𝑚′,𝑌 are {𝑦𝑖 | 𝑖 ∈ 𝑌 }-expansions of open assumptions of 𝜋𝑛

𝑚′ , so 𝑓 ′

naturally induces a function 𝑓𝑌 from assumptions in 𝜋𝑛
𝑚′,𝑌 to assumptions in 𝜋 that

fulfils all the requirements needed of 𝜋𝑛
𝑚 except, possibly, the case of 2c for an open

assumption 𝑙 such that 𝑓𝑌 (𝑙) ∈ 𝑐𝜋(𝑛0). Satisfying this final requirement depends on
the appropriate choice of 𝑌 . If 𝑛 = 𝑛0 set 𝑌 = {0, . . . , 𝑘}. Otherwise, let 𝑌 be the
subset recording the variable names that do not appear in the control of some sequent
between 𝑛0 and 𝑚 in 𝜋. Without loss of generality assume 𝑌 = {𝑘′, 𝑘′ + 1, . . . , 𝑘},
and define 𝜋𝑛

𝑚 to be 𝜋𝑛
𝑚′,𝑌 with an application of exp attached at the root that

inserts the name 𝑦𝑖 for each 𝑖 < 𝑘′:

𝜋𝑛
𝑚

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜋𝑛

𝑚′,𝑌...
𝑎𝑦𝑎′ ⊢ Δ, 𝐵𝑏𝑦

0 , . . . , 𝐵𝑏𝑦
𝑘′−1, 𝐵

𝑏𝑦𝑦𝑘′
𝑘′ , . . . , 𝐵𝑏𝑦𝑦𝑘

𝑘
exp

𝑎𝑦𝑎′ ⊢ Δ, 𝐵𝑏𝑦𝑦0
0 , . . . , 𝐵

𝑏𝑦𝑦𝑘′−1
𝑘′−1 , 𝐵

𝑏𝑦𝑦𝑘′
𝑘′ , . . . , 𝐵𝑏𝑦𝑦𝑘

𝑘

In either case define 𝑓 = 𝑓𝑌 . To see that condition 2c is now fulfilled, suppose
𝑓(𝑙) ∈ 𝑐𝜋(𝑛0). Then 𝑚 is the reset node associated to 𝑓(𝑙) in 𝜋 and the invariant
of 𝑓(𝑙) is 𝑎𝑦. Let 𝑟 ≤ 𝑠 be such that the sequent at 𝑓(𝑙) has the form

𝑎𝑦 ⊢ Γ, 𝐴
𝑎𝑦𝑦′

1
1 , . . . , 𝐴𝑎𝑦𝑦′

𝑟
𝑟 , 𝐴𝑎𝑦

𝑟+1, . . . , 𝐴𝑎𝑦
𝑠

where 𝑦′
𝑖 ∈ 𝑁𝑦 ∩ 𝑁𝒱 for each 1 ≤ 𝑖 ≤ 𝑟 and 𝑦 does not occur in Γ. If 𝑛 = 𝑛0 then

the choice of 𝑌 = {0, . . . , 𝑘} in the formation of 𝜋𝑛
𝑚 implies 𝑟 = 𝑠 by the second

part of the Expansion Lemma. Assume therefore 𝑛 ̸= 𝑛0 and fix 𝑖 ∈ {1, . . . , 𝑟}. If
there exists a sequent on the path from 𝑛0 to 𝑚 in 𝜋 at which 𝑦′

𝑖 does not occur,
pick 𝑜 to be this node. Otherwise, 𝑦′

𝑖 must occur in the sequent at 𝑚, so 𝑦′
𝑖 appears

in the root of 𝜋𝑛
𝑚 and 𝑦′

𝑖 = 𝑦𝑗 for some 𝑗 < 𝑘′, whence we let 𝑜 be the conclusion of
𝜋𝑛

𝑚′,𝑌 .

• dis. Suppose the sequent at 𝑚 is

𝑏𝑥𝑏′ ⊢ Γ, 𝐴𝑎𝑥𝑥1𝑎1
1 , . . . , 𝐴𝑎𝑥𝑥𝑟𝑎𝑟

𝑟 , 𝐴
𝑎𝑥𝑎𝑟+1
𝑟+1 , . . . , 𝐴𝑎𝑥𝑎𝑠

𝑠 (7)

28

and 𝑖𝑛𝑣(𝑚) = 𝑏𝑥, 𝑥 does not appear in Γ, 𝑥𝑖 ∈ 𝑁𝑥 for each 1 ≤ 𝑖 ≤ 𝑟, and for each
𝑟 < 𝑖 ≤ 𝑠, 𝑎𝑖 does not start with a name in 𝑁𝑥. Let 𝑚′ be the unique successor
to 𝑚 in 𝜋 and let 𝑓 ′ be the function fulfilling requirement 2 for 𝜋𝑛

𝑚′ given by the
induction hypothesis. It suffices to construct a circular proof of 𝑏𝑥 ⊢ Γ, 𝐴𝑎𝑥

1 , . . . , 𝐴𝑎𝑥
𝑠

satisfying requirement 2 since then a Circ-derivation with conclusion (7) can be
obtain by inserting an application of exp at the root. Set 𝐿 = {𝑙 | 𝑓 ′(𝑙) ∈ 𝑐𝜋(𝑚)}.
Fix a fresh assumption variable 𝑥̂ and let 𝜋̂𝑛

𝑚 denote the open circular proof of
𝑏𝑥𝑥̂ ⊢ Γ, 𝐴𝑎𝑥𝑥̂

1 , . . . , 𝐴𝑎𝑥𝑥̂
𝑠 obtained from 𝜋𝑛

𝑚′ by i) recursively removing 𝑏′, 𝑥1, . . . , 𝑥𝑟

and 𝑎1, . . . , 𝑎𝑠 from the root upwards, ii) replacing 𝑥 throughout by 𝑥𝑥̂, and
iii) inserting applications of exp eliminating 𝑥̂ at every open assumption 𝑙 ̸∈ 𝐿.
Monotonicity of 𝜋 ensures 𝜋̂𝑛

𝑚 has the same underlying structure and inference
rules as 𝜋𝑛

𝑚′ and condition 2c of the induction hypothesis implies that the operation
leaves all open assumptions unchanged except for assumptions in 𝐿, for which the
control and annotations are affected by the substitution 𝑥 ↦→ 𝑥𝑥̂. By the above
observation 𝜋̂𝑛

𝑚 clearly fulfils condition 2 for any open assumption 𝑙 ̸∈ 𝐿. Let 𝑙 ∈ 𝐿
be an open assumption in 𝜋̂𝑛

𝑚 and suppose 𝑙 has the form given in (6). If 𝑟 = 𝑠
then this assumption can be discharged by appending an instance of dis𝑥̂ to the
root of 𝜋̂𝑛

𝑚. Indeed, if all assumptions from 𝐿 have this form then we define 𝜋𝑛
𝑚 as

the result of inserting an application of dis𝑥̂ at the root of 𝜋̂𝑛
𝑚:[︀

𝑏𝑥𝑥̂ ⊢ Γ, 𝐴𝑎𝑥𝑥̂𝑥1
1 , . . . , 𝐴𝑎𝑥𝑥̂𝑥𝑠

𝑠

]︀𝑥̂

..... 𝜋̂𝑛
𝑚

𝑏𝑥𝑥̂ ⊢ Γ, 𝐴𝑎𝑥𝑥̂
1 , . . . , 𝐴𝑎𝑥𝑥̂

𝑠 dis𝑥̂𝑏𝑥 ⊢ Γ, 𝐴𝑎𝑥
1 , . . . , 𝐴𝑎𝑥

𝑠 exp
𝑏𝑥𝑏′ ⊢ Γ, 𝐴𝑎𝑥𝑎1

1 , . . . , 𝐴𝑎𝑥𝑎𝑠
𝑠

Otherwise there are assumptions in 𝐿 that do not have the correct form to be
discharged by dis𝑥̂, which are instead replaced by a copy of the proof 𝜋̂𝑚

𝑚:

[︀
𝑏𝑥𝑥̂ ⊢ Γ, 𝐴𝑎𝑥𝑥̂𝑥1

1 , . . . , 𝐴𝑎𝑥𝑥̂𝑥𝑠
𝑠

]︀𝑥̂

...

[︀
𝑏𝑥𝑥̂ ⊢ Γ, 𝐴𝑎𝑥𝑥̂𝑥1

1 , . . . , 𝐴𝑎𝑥𝑥̂𝑥𝑠
𝑠

]︀𝑥̂

..... 𝜋̂𝑚
𝑚

𝑏𝑥𝑥̂ ⊢ Γ, 𝐴𝑎𝑥𝑥̂
1 , . . . , 𝐴𝑎𝑥𝑥̂

𝑠(𝑟 < 𝑠) exp
𝑏𝑥𝑥̂ ⊢ Γ, 𝐴𝑎𝑥𝑥̂𝑥1

1 , . . . , 𝐴𝑎𝑥𝑥̂𝑥𝑟
𝑟 , 𝐴𝑎𝑥𝑥̂

𝑟+1, . . . , 𝐴𝑎𝑥𝑥̂
𝑠...

..... 𝜋̂𝑛
𝑚

𝑏𝑥𝑥̂ ⊢ Γ, 𝐴𝑎𝑥𝑥̂
1 , . . . , 𝐴𝑎𝑥𝑥̂

𝑠 dis𝑥̂
𝑏𝑥 ⊢ Γ, 𝐴𝑎𝑥

1 , . . . , 𝐴𝑎𝑥
𝑠 exp

𝑏𝑥𝑏′ ⊢ Γ, 𝐴𝑎𝑥𝑎1
1 , . . . , 𝐴𝑎𝑥𝑎𝑠

𝑠

Condition 2 for 𝜋𝑚
𝑚 ensures that 𝜋𝑛

𝑚 satisfies all the necessary requirements.

Example 5.1. Recall the monotone invariant Stirling proof 𝜋1
stir in Figure 6. Let

𝐶 = 𝜈x𝜇y𝐵 and 𝐷 = 𝜈y𝜇x𝐵. The circular proof obtained by following the construction
of Theorem 5.4 is the proof 𝜋circ in Figure 7. The omitted inferences in 𝜋circ are the
result of applying the transformation of the previous theorem to derivations provided
by Lemma 3.10, which are in essence the proofs given by Lemma 5.2. The proof has
the same underlying structure as 𝜋1

stir with instances of the reset rule removed and the

29

[︀
𝑥̂ ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥̂𝑥′

, 𝜇x𝐵(x, 𝐷)𝑦
]︀𝑥̂

𝜈𝑥′

𝑥̂ ⊢ 𝐶𝑥𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦

[︀
𝑥̂ ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥̂𝑥′

, 𝜇x𝐵(x, 𝐷)𝑦
]︀𝑥̂

exp
𝑥̂𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥̂𝑥′

, 𝜇x𝐵(x, 𝐷)𝑦𝑦′𝑦

𝜈𝑥′

𝑥̂𝑦 ⊢ 𝐶𝑥𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦𝑦′𝑦

[︀
𝑥̂𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦𝑦′𝑦𝑦′′]︀𝑦

𝜈𝑦′′

𝑥̂𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥̂, 𝐷𝑦𝑦′𝑦

...
𝑥̂𝑦 ⊢ 𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥𝑥̂, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦𝑦′𝑦

𝜇, 𝜇
𝑥̂𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦𝑦′𝑦

dis𝑦
𝑥̂ ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦𝑦′

𝜈𝑦′

𝑥̂ ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥̂, 𝐷𝑦

...
𝑥̂ ⊢ 𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥𝑥̂, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦

𝜇, 𝜇
𝑥̂ ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦

dis𝑥̂
𝜖 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦

𝜈𝑦
𝜖 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜈y𝜇x𝐵

𝜈𝑥
𝜖 ⊢ 𝜈x𝜇y𝐵, 𝜈y𝜇x𝐵

Figure 7: The circular proof 𝜋circ obtained by applying Theorem 5.4 to 𝜋1
stir .[︀

𝑦𝑥̂ ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥̂𝑥′
, 𝜇x𝐵(x, 𝐷)𝑦𝑦

]︀𝑥̂

𝜈𝑥′

𝑦𝑥̂ ⊢ 𝐶𝑥𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦𝑦

[︀
𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝐷𝑦𝑦

]︀𝑦

exp
𝑦𝑥̂ ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥̂, 𝐷𝑦𝑦

...
𝑦𝑥̂ ⊢ 𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥𝑥̂, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦𝑦

𝜇, 𝜇
𝑦𝑥̂ ⊢ 𝜇y𝐵(𝐶, y)𝑥𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦𝑦

dis𝑥̂
𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦𝑦

𝜈𝑦
𝑦 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜈y𝜇x𝐵𝑦

dis𝑦
𝜖 ⊢ 𝜇y𝐵(𝐶, y)𝑥, 𝜈y𝜇x𝐵

𝜈𝑥
𝜖 ⊢ 𝜈x𝜇y𝐵, 𝜈y𝜇x𝐵

Figure 8: A simplification of 𝜋circ.

relevant annotations propagating upwards. In particular, for this example no further
unravellings of the form described in the proof of the Expansion Lemma are required.
Note that 𝜋circ is not optimal. Shorter Circ-proofs of the sequent can be obtained by

moving the application of the dis𝑦 inference either immediately below the 𝜈𝑦′ inference, or
below the 𝜈𝑦 rule at the root. In the latter case, the proof in Figure 8 obtains. However,
this proof could not result from a Stirling proof due to the form of the reset rules.

The proof of Lemma 5.3 and Theorem 5.4 make heavy use of the fact that, like
Stirling proofs, circular proofs can be unfolded by identifying closed assumptions and
their associated discharge rules. This operation becomes highly relevant in the next
section where we prove that the discharge and annotated 𝜈 inferences can be combined
into a single inference rule capturing regenerating 𝜈-threads. We conclude this section
with an analysis of the unravelling of circular proofs.

Let a pre-proof be a closed pre-derivation satisfying the two requirements of Circ-proofs

30

[︀
𝑏𝑥̂ ⊢ Δ, 𝐴𝑎0𝑥̂𝑥0

0 , . . . , 𝐴𝑎𝑘𝑥̂𝑥𝑘
𝑘

]︀𝑥̂

.... 𝜋𝑥̂

𝑏𝑥̂ ⊢ Δ, 𝐴𝑎0𝑥̂
0 , . . . , 𝐴𝑎𝑘𝑥̂

𝑘 dis𝑥̂
𝑏 ⊢ Δ, 𝐴𝑎0

0 , . . . , 𝐴𝑎𝑘
𝑘...

𝑎 ⊢ Γ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
𝜋 ↦→

.... 𝜋𝑥̂

𝑏𝑥̂ ⊢ Δ, 𝐴𝑎0𝑥̂
0 , . . . , 𝐴𝑎𝑘𝑥̂

𝑘 exp
𝑏𝑥̂ ⊢ Δ, 𝐴𝑎0𝑥̂𝑥0

0 , . . . , 𝐴𝑎𝑘𝑥̂𝑥𝑘
𝑘.... 𝜋𝑥̂

𝑏𝑥̂ ⊢ Δ, 𝐴𝑎0𝑥̂
0 , . . . , 𝐴𝑎𝑘𝑥̂

𝑘 exp
𝑏𝑥̂ ⊢ Δ, 𝐴𝑎0𝑥̂𝑥0

0 , . . . , 𝐴𝑎𝑘𝑥̂𝑥𝑘
𝑘.... 𝜋𝑥̂

𝑏𝑥̂ ⊢ Δ, 𝐴𝑎0𝑥̂
0 , . . . , 𝐴𝑎𝑘𝑥̂

𝑘 dis𝑥̂
𝑏 ⊢ Δ, 𝐴𝑎0

0 , . . . , 𝐴𝑎𝑘
𝑘...

𝑎 ⊢ Γ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

𝜋*

Figure 9: Unravelling a circular proof 𝜋 to a pre-proof 𝜋*. 𝜋𝑥̂ denotes the sub-proof of 𝜋
rooted at the premise of dis𝑥̂.

in Definition 5.1, i.e. a closed Circ-proof with the finiteness condition relaxed.

Definition 5.5 (Unravelling circular proofs). Fix a circular proof 𝜋 with conclusion
𝑎 ⊢ Γ. For each assumption name 𝑥̂ in 𝜋 not in 𝑎, let 𝜋𝑥̂ denote the sub-proof of 𝜋
rooted at the premise of the instance of dis𝑥̂. The unravelling of 𝜋, denoted 𝜋*, is
the pre-proof given by recursively replacing every discharged assumption of the form
𝑏𝑥̂ ⊢ Δ, 𝐴𝑎0𝑥̂𝑥1

0 , . . . , 𝐴𝑎𝑘𝑥̂𝑥𝑘
𝑘 by a fresh copy of 𝜋𝑥̂ (i.e. renaming any discharged assumption

names) with its conclusion expanded to the same sequent by an application of exp, as
illustrated in Figure 9.

The unravelling of a Circ-proof 𝜋 is essentially the ∅-unfolding from Stirling proofs
iterated to the limit. The paths in 𝜋* are in bijection with the finite sequences of nodes
in 𝜋 that trace the unravelling process. We refer to the latter sequences as paths through
𝜋.

Definition 5.6 (Paths through Circ-proofs). Let 𝜋 be a Circ-proof. A path through 𝜋
is a sequence 𝛼 = (𝛼𝑖)𝑖<𝑁 (𝑁 ≤ 𝜔) of nodes in 𝜋 such that 𝛼0 is the root of 𝜋 and for
every 𝑖 < 𝑁 exactly one of the following conditions hold.

1. 𝛼𝑖 is an axiom or open assumption and 𝑁 = 𝑖 + 1;

2. 𝛼𝑖 is a discharged assumption and 𝛼𝑖+1 is the premise of the companion instance
of dis;

3. 𝛼𝑖 is not a leaf and 𝛼𝑖+1 is an immediate successor of 𝛼𝑖.

A path 𝛼 = (𝛼𝑖)𝑖<𝑁 is infinite if 𝑁 = 𝜔 and finite otherwise, and the set of infinite paths
through 𝜋 is denoted P𝜋.

Given an infinite path 𝛼 = (𝛼𝑖)𝑖<𝜔 through 𝜋, denote by 𝛼* = (𝛼*
𝑖)𝑖<𝜔 the corres-

ponding path through the unravelling of 𝜋. Notice that nodes in the unravelling of 𝜋

31

are uniquely named. In particular, if 𝛼 = (𝛼𝑖)𝑖<𝜔 and 𝛽 = (𝛽𝑖)𝑖<𝜔 are paths through
the same circular proof 𝜋, and 𝛼*

𝑠 = 𝛽*
𝑡 for some 𝑠, 𝑡 < 𝜔 then 𝑠 = 𝑡 and 𝛼𝑖 = 𝛽𝑖 for all

𝑖 ≤ 𝑠. Without loss of generality we may therefore identify nodes in 𝜋* with finite paths
through 𝜋.

The next lemma confirms that pre-proofs obtained by unravelling a circular proof are
indeed tableaux.

Lemma 5.7. Let 𝜋 be a circular proof. For every infinite path 𝛼 = (𝛼𝑖)𝑖<𝜔 through 𝜋
there exists 𝑠 < 𝜔, formal variable x and name 𝑥̂ ∈ 𝑁𝒜

x such that

1. 𝛼𝑠 is the premise of an application of dis𝑥̂,

2. 𝛼𝑠 = 𝛼𝑗 for infinitely many 𝑗,

3. for all 𝑗 ≥ 𝑠, 𝛼𝑗 is a node in the sub-proof of 𝜋 rooted at 𝛼𝑠 and the control of 𝛼𝑠

is a prefix of the control of 𝛼𝑗.

Moreover, x and 𝑥̂ are uniquely determined by 𝛼, and there exists a 𝜈-thread (𝐵𝑏𝑖
𝑖)𝑖<𝜔

such that for every 𝑖 ≥ 𝑠, 𝐵𝑏𝑖
𝑖 occurs in the sequent at 𝛼𝑖 and 𝑏𝑠𝑥̂ is a prefix of 𝑏𝑖.

Proof. Fix a circular proof 𝜋 and let 𝛼 = (𝛼𝑖)𝑖<𝜔 be a path through 𝜋. The first part
of the lemma is straightforward, as is the fact that x and 𝑥̂ are uniquely determined.
We prove that 𝛼 contains a 𝜈-thread. Let 𝑠 < 𝜔, x and 𝑥̂ be as above, and suppose the
instance of dis𝑥̂ with premise 𝛼𝑠 has the form

...
𝑏𝑥̂ ⊢ Γ, 𝐴𝑎𝑥̂

0 , . . . , 𝐴𝑎𝑥̂
𝑘 dis𝑥̂𝑏 ⊢ Γ, 𝐴𝑎

0, . . . , 𝐴𝑎
𝑘

Let 𝑠 < 𝑠0 < 𝑠1 < . . . enumerate the occurrences of the node 𝛼𝑠 in 𝛼 and let T𝑖 denote
the collection of finite threads (𝐵𝑏𝑗

𝑗)𝑗≤𝑠𝑖 through 𝛼 such that 𝐵
𝑏𝑠𝑖
𝑠𝑖 ∈ {𝐴𝑎𝑥̂

0 , . . . , 𝐴𝑎𝑥̂
𝑘 }.⋃︀

𝑖<𝜔 T𝑖 forms an infinite, finitely branching tree under the prefix ordering so, by König’s
Lemma, contains an infinite branch which is a 𝜈-thread through 𝛼.

The above lemma concisely captures the motivation for Circ and its advantage over
Stirling proofs. Dropping requirement 3, the lemma also holds for unravellings of Stirling
proofs and is not difficult to prove. For monotone invariant Stir-proofs a weakened form
of 3 is provable replacing ‘control of 𝛼𝑠’ by ‘invariant of 𝛼𝑠’ (the latter being well-defined
by invariance). However, in the next section we make essential use of Lemma 5.7 and,
particularly, requirement 3.

6 Circular proofs with 𝜈-closure

We now turn to the task of finding an alternative form for discharge rules that more
succinctly describes the closure properties for the 𝜈-quantifier. This will be in the form
of a fresh rule of inference, called 𝜈-closure, that generalises the annotated 𝜈 inference
by permitting the discharging of assumptions. The 𝜈-closure rule will replace both the
annotated 𝜈-rules and discharge rules of the preceding sections, and although sequents
in the new calculus, denoted Clo, are still annotated, they will be in much simpler form
than either Stir or Circ.

32

Definition 6.1 (Proofs with 𝜈-closure). Let Clo be the proof system expanding FixN by
the 𝜈-clo inference [︀

⊢ Γ, 𝜈x𝐴𝑎𝑥
]︀𝑥

...
⊢ Γ, 𝐴(𝜈x𝐴)𝑎𝑥

(𝑎 ≤ 𝑥 ∈ 𝑁x) 𝜈-clo𝑥⊢ Γ, 𝜈x𝐴𝑎

with the restriction that 𝑥 does not appear in Γ. A Clo-proof is a closed derivation using
the rules of FixN and 𝜈-clo in which all sequents are annotated sequents with empty
control and there is at most one use of 𝜈-clo𝑥 for each 𝑥 ∈ 𝑁 .

Recall that FixN, and hence also Clo, does not contain the rules 𝜈𝑥 present in either
Stir or Circ. The rule is admissible in Clo however as it corresponds to an application of
𝜈-clo𝑥 that does not discharge any assumptions.
Since controls in Clo-proofs are empty, the restriction on applications of exp in Clo

reduces to checking the sub-word relation only, i.e. for the instance of exp given in
Figure 4, the condition becomes 𝑎𝑖 @ 𝑏𝑖 for every 𝑖 ≤ 𝑘. To simplify presentation, from
now on we identify a finite set Γ of closed annotated 𝜇-formulæ with the annotated
sequent 𝜖 ⊢ Γ.

Lemma 6.2. For every formula 𝐴(x0, . . . , x𝑘−1) with free variables among x0, . . . , x𝑘−1,
all closed formulæ 𝐵𝑖, 𝐶𝑖 for 𝑖 < 𝑘 and all annotations 𝑏, 𝑐 such that 𝑏, 𝑐 ≤ x for each
𝜈-variable x in 𝐴,

{𝐵𝑏
𝑖 , 𝐶𝑐

𝑖 }𝑖<𝑘 ⊢Clo 𝐴(𝐵0, . . . , 𝐵𝑘−1)𝑏, 𝐴(𝐶0, . . . , 𝐶𝑘−1)𝑐.

Proof. We deal with the quantifier case and assume 𝑘 = 1, the other cases and the
generalisation to 𝑘 > 0 are straightforward and follow the same principles. Let 𝐴(y) =
𝜈x𝐴0(x, y) and fix two closed formulæ 𝐵 and 𝐶 and annotations 𝑏, 𝑐 satisfying the
hypothesis of the lemma. Arguing by induction, assume

{𝐴(𝐵)𝑏, 𝐴(𝐶)𝑐𝑥}, {𝐵𝑏, 𝐶𝑐𝑥} ⊢Clo 𝐴0(𝐴(𝐵), 𝐵)𝑏, 𝐴0(𝐴(𝐶), 𝐶)𝑐𝑥.

where 𝑥 is a fresh name for x. An application of 𝜇 yields

{𝐴(𝐵)𝑏, 𝐴(𝐶)𝑐𝑥}, {𝐵𝑏, 𝐶𝑐𝑥} ⊢Clo 𝐴(𝐵)𝑏, 𝐴0(𝐴(𝐶), 𝐶)𝑐𝑥

and an application of 𝜈-clo at the root and exp at the remaining open assumptions implies
{𝐵𝑏, 𝐶𝑐} ⊢Clo 𝐴(𝐵)𝑏, 𝐴(𝐶)𝑐.

Theorem 6.3. Let Γ be a plain sequent. If Circ ⊢ Γ then Clo ⊢ Γ.

Proof. Fix a circular proof 𝜋 with conclusion Γ and let 𝜋* be the unravelling of 𝜋
as described in Definition 5.5. We prove that a finite sub-tree of 𝜋* encodes a Clo-
proof. Let P𝜋 be the set of paths through the circular proof 𝜋. Recall that each path
𝛼 = (𝛼𝑖)𝑖<𝜔 ∈ P𝜋 induces a path 𝛼* in 𝜋* which we identify with the infinite sequence
(𝛼*

𝑖)𝑖<𝜔 where 𝛼*
𝑖 = (𝛼𝑗)𝑗≤𝑖.

We begin by defining functions 𝑓, 𝑔 : P𝜋 → 𝜔 that select appropriate positions for
instances of 𝜈-clo and associated assumptions. Fix 𝛼 = (𝑚𝑖)𝑖<𝜔 ∈ P𝜋 and let 𝑠 < 𝜔, x,
𝑥̂ ∈ 𝑁x and 𝛽 = (𝐵𝑏𝑖

𝑖)𝑖<𝜔 be as given by Lemma 5.7. Since 𝛽 is a thread through 𝛼 there
exists 𝑠 ≤ 𝑡 < 𝑡′ < 𝜔, 𝑎 ≤ x, 𝑥 ∈ 𝑁x and a formula 𝐴 such that

33

1. 𝛼𝑡 is the conclusion of an application of 𝜈𝑥 in which 𝐵𝑏𝑡
𝑡 = 𝜈x𝐴𝑎𝑥̂ is the principal

formula,

2. (𝛼𝑡, 𝐵𝑡, 𝑏𝑡) = (𝛼𝑡′ , 𝐵𝑡′ , 𝑏𝑡′).

Fix (𝑡′, 𝑡) minimally with respect to lexicographical ordering (i.e. (𝑖, 𝑗) < (𝑖′, 𝑗′) if 𝑖 < 𝑖′,
or 𝑖 = 𝑖′ and 𝑗 < 𝑗′) satisfying 1 and 2 above and define 𝑓(𝛼) = 𝑡 and 𝑔(𝛼) = 𝑡′. In
particular, the two functions are continuous in their input: if 𝛼 = (𝛼𝑖)𝑖<𝜔 and 𝛾 = (𝛾𝑖)𝑖<𝜔

are both paths through 𝜋 such that 𝛼𝑖 = 𝛾𝑖 for every 𝑖 < 𝑔(𝛼) then 𝑓(𝛼) = 𝑓(𝛾) and
𝑔(𝛼) = 𝑔(𝛾). Let 𝐺 = {𝛼*

𝑔(𝛼) | 𝛼 ∈ P𝜋} be the set of 𝜋* nodes distinguished by 𝑔, and
similarly 𝐹 = {𝛼*

𝑓(𝛼) | 𝛼 ∈ P𝜋}. By the choice of 𝑔, 𝐺 is a set of pairwise incomparable
nodes in 𝜋* and every node in 𝐹 is below some node in 𝐺. Let 𝜋𝐺 denote the sub-tree of
𝜋* truncated at the frontier 𝐺, and define a companion relation on 𝜋𝐺 such that a leaf
𝑙 = 𝛼*

𝑔(𝛼) ∈ 𝐺 is associated companion node 𝑙𝑐 = 𝛼*
𝑓(𝛼).

By the choice of 𝑓 , for every leaf 𝑙 ∈ 𝜋𝐺, 𝑙𝑐 is the conclusion to an application of 𝜈𝑥𝑙
for

some 𝑥𝑙 ∈ 𝑁𝒱 and there is a thread through the path from 𝑙𝑐 to 𝑙 mapping the principal
formula at 𝑙𝑐 to an identical formula in 𝑙. Along each such thread allow the variable name
𝑥𝑙 to persist to 𝑙 by adjusting each application of the exp rule affecting the thread and
inserting fresh instances of exp on diverging paths to revert the annotation and eliminate
𝑥𝑙. By removing any remaining dis inferences, along with all assumption names in 𝜋𝐺,
and replacing each 𝜈𝑦 inference by 𝜈-clo𝑦 (discharging the assigned companion leaves in
𝐺), a Clo-proof with conclusion Γ results.

Example 6.1. Define the width of a discharge rule dis𝑥 to be the number of formulæ in
the premise that have 𝑥 in their annotation. For example, the instance of dis𝑥 given in
Definition 5.1 has width 𝑘 + 1 and the two discharge rules in the proof 𝜋circ in Figure 7
each have width 1. In order to obtain Theorem 6.3 it suffices for each discharge rule in
a circular proof to be unravelled a number of times equal to its width. In the case of
𝜋circ this means that unravelling each of the discharge rules once yields a Circ-proof 𝜋′

circ
containing a Clo-proof.

We now describe the construction of a Clo-proof from 𝜋circ. Before proceeding observe
that the inference 𝜈𝑥 in 𝜋circ sits below the dis𝑥̂ rule which affects the same thread. As a
result, during the embedding into Clo the 𝜈𝑥 rule will be replaced by an instance of 𝜈-clo

without associated assumptions, and as such the variable name 𝑥 occurring throughout
𝜋circ plays no further role and 𝜈𝑥 may be dropped in favour of an (unannotated) 𝜈 rule.
Likewise, the instances of 𝜈𝑦 and 𝜈𝑦′ are below the corresponding dis𝑦 inference and their
annotations may also be eliminated. Note that these changes are purely cosmetic as the
variables 𝑥, 𝑦 and 𝑦′ will play no part in the transformation of 𝜋circ into a Clo-proof. To
further ease presentation, we also drop displaying the control from the sequents in the
Circ-derivation. The version of 𝜋circ we will work with is therefore

34

[︀
𝜇y𝐵(𝐶, y)𝑥̂𝑥, 𝜇x𝐵(x, 𝐷)

]︀𝑥̂

𝜈𝑥
𝐶 𝑥̂, 𝜇x𝐵(x, 𝐷)

[︀
𝜇y𝐵(𝐶, y)𝑥̂𝑥, 𝜇x𝐵(x, 𝐷)

]︀𝑥̂

exp
𝜇y𝐵(𝐶, y)𝑥̂𝑥, 𝜇x𝐵(x, 𝐷)𝑦

𝜈𝑥
𝐶 𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦

[︀
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦𝑦

]︀𝑦

𝜈𝑦
𝜇y𝐵(𝐶, y)𝑥̂, 𝜈y𝜇x𝐵𝑦

...
𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥̂, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦

𝜇, 𝜇
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦

dis𝑦
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)

𝜈
𝜇y𝐵(𝐶, y)𝑥̂, 𝜈y𝜇x𝐵

...
𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥̂, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)

𝜇, 𝜇
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)

dis𝑥̂
𝜇y𝐵(𝐶, y), 𝜇x𝐵(x, 𝐷)

𝜈, 𝜈
𝜈x𝜇y𝐵, 𝜈y𝜇x𝐵

Unravelling the dis𝑥̂ and dis𝑦 rules yields the proof 𝜋′
circ

..... 𝜋′

𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)
exp

𝜇y𝐵(𝐶, y)𝑥̂𝑥, 𝜇x𝐵(x, 𝐷)
𝜈𝑥

𝐶 𝑥̂, 𝜇x𝐵(x, 𝐷)

..... 𝜋′

𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)
exp

𝜇y𝐵(𝐶, y)𝑥̂𝑥, 𝜇x𝐵(x, 𝐷)𝑦

𝜈𝑥
𝐶 𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦

..... 𝜋′

𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)
exp

𝜇y𝐵(𝐶, y)𝑥̂𝑥, 𝜇x𝐵(x, 𝐷)𝑦

𝜈𝑥
𝐶 𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦

[︀
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦𝑦′]︀𝑦

𝜈𝑦′
𝜇y𝐵(𝐶, y)𝑥̂, 𝜈y𝜇x𝐵𝑦

...
𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥̂, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦

𝜇, 𝜇
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦

exp
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦𝑦

𝜈𝑦
𝜇y𝐵(𝐶, y)𝑥̂, 𝜈y𝜇x𝐵𝑦

...
𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥̂, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦

𝜇, 𝜇
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦

dis𝑦
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)

𝜈
𝜇y𝐵(𝐶, y)𝑥̂, 𝜈y𝜇x𝐵

...
𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥̂, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)

𝜇, 𝜇
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)

dis𝑥̂
𝜇y𝐵(𝐶, y), 𝜇x𝐵(x, 𝐷)

𝜈, 𝜈
𝜈x𝜇y𝐵, 𝜈y𝜇x𝐵

where 𝜋′ denotes the sub-proof of 𝜋circ rooted at the premise to the dis𝑥̂ rule in which
the instance of dis𝑦 has been unravelled (and 𝑦 renamed 𝑦′) and the conclusion suitably
expanded, namely,

35

[︀
𝜇y𝐵(𝐶, y)𝑥̂𝑥′

, 𝜇x𝐵(x, 𝐷)
]︀𝑥̂

𝜈𝑥′
𝐶 𝑥̂, 𝜇x𝐵(x, 𝐷)

[︀
𝜇y𝐵(𝐶, y)𝑥̂𝑥′

, 𝜇x𝐵(x, 𝐷)
]︀𝑥̂

exp
𝜇y𝐵(𝐶, y)𝑥̂𝑥′

, 𝜇x𝐵(x, 𝐷)𝑦′

𝜈𝑥′

𝐶 𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦′

[︀
𝜇y𝐵(𝐶, y)𝑥̂𝑥′

, 𝜇x𝐵(x, 𝐷)
]︀𝑥̂

exp
𝜇y𝐵(𝐶, y)𝑥̂𝑥′

, 𝜇x𝐵(x, 𝐷)𝑦′

𝜈𝑥′

𝐶 𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦′

[︀
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦′𝑦′′′]︀𝑦′

𝜈𝑦′′′

𝜇y𝐵(𝐶, y)𝑥̂, 𝐷𝑦′

...
𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥̂, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦′

𝜇, 𝜇
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦′

exp
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦′𝑦′′

𝜈𝑦′′

𝜇y𝐵(𝐶, y)𝑥̂, 𝐷𝑦′

...
𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥̂, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦′

𝜇, 𝜇
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)𝑦′

dis𝑦′
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)

𝜈
𝜇y𝐵(𝐶, y)𝑥̂, 𝐷

...
𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥̂, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)

𝜇, 𝜇
𝜇y𝐵(𝐶, y)𝑥̂, 𝜇x𝐵(x, 𝐷)

The next step in the translation is to isolate the 𝜈-threads satisfying properties 1 and 2 in
the proof of Theorem 6.3. The set labelled 𝐺 marking the discharged assumptions in the
final Clo-proof will comprise the conclusions to the three 𝜈𝑦′′′ and nine 𝜈𝑥′ inferences in
𝜋′

circ as well as the conclusion to the 𝜈𝑦′ inference. The corresponding companion nodes
are the three instances of 𝜈𝑥′ and 𝜈𝑦′′ and the single instance of 𝜈𝑦. Finally, we expand
the annotations along the threads, replace all remaining annotated 𝜈 inferences by 𝜈-clo

inferences and remove the remaining discharge rules. The resulting Clo-proof, which we
name 𝜋clo, is:

..... 𝜋′
clo

𝐶, 𝜇x𝐵(x, 𝐷)

..... 𝜋′
clo

𝐶, 𝜇x𝐵(x, 𝐷)

..... 𝜋′
clo

𝐶, 𝜇x𝐵(x, 𝐷)
exp

𝐶, 𝜇x𝐵(x, 𝐷)𝑦
[︀
𝜇y𝐵(𝐶, y), 𝐷𝑦

]︀𝑦

...
𝐵(𝐶, 𝜇y𝐵(𝐶, y)), 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦

𝜇, 𝜇
𝜇y𝐵(𝐶, y), 𝜇x𝐵(x, 𝐷)𝑦

𝜈-clo𝑦
𝜇y𝐵(𝐶, y), 𝐷

...
𝐵(𝐶, 𝜇y𝐵(𝐶, y)), 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)

𝜇, 𝜇
𝜇y𝐵(𝐶, y), 𝜇x𝐵(x, 𝐷)

𝜈
𝜇y𝐵(𝐶, y), 𝐷

...
𝐵(𝐶, 𝜇y𝐵(𝐶, y)), 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)

𝜇, 𝜇
𝜇y𝐵(𝐶, y), 𝜇x𝐵(x, 𝐷)

𝜈, 𝜈
𝜈x𝜇y𝐵, 𝜈y𝜇x𝐵

where 𝜋′
clo is

36

[︀
𝐶𝑥, 𝜇x𝐵(x, 𝐷)

]︀𝑥

[︀
𝐶𝑥, 𝜇x𝐵(x, 𝐷)

]︀𝑥

[︀
𝐶𝑥, 𝜇x𝐵(x, 𝐷)

]︀𝑥

exp
𝐶𝑥, 𝜇x𝐵(x, 𝐷)𝑦′ [︀

𝜇y𝐵(𝐶, y)𝑥, 𝐷𝑦′]︀𝑦′

...
𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)𝑦′

𝜇, 𝜇
𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)𝑦′

𝜈-clo𝑦′
𝜇y𝐵(𝐶, y)𝑥, 𝐷

...
𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)

𝜇, 𝜇
𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)

𝜈
𝜇y𝐵(𝐶, y)𝑥, 𝐷

...
𝐵(𝐶, 𝜇y𝐵(𝐶, y))𝑥, 𝐵(𝜇x𝐵(x, 𝐷), 𝐷)

𝜇, 𝜇
𝜇y𝐵(𝐶, y)𝑥, 𝜇x𝐵(x, 𝐷)

𝜈-clo𝑥
𝐶, 𝜇x𝐵(x, 𝐷)

As in Example 5.1 the above proof is not optimal. We leave it as an exercise to the reader
to find a more concise version of 𝜋clo.

7 Strengthened induction and the embedding into Koz
The final step is to embed the annotated proof system Clo into the plain sequent calculus
Koz−

s , the variant of Koz− with the strengthened induction rule ind𝑠 of Figure 3 in place
of ind, and to embed the latter calculus within Koz. Note that Koz−

s may be viewed as
an extension of Koz− since the induction rule ind is admissible in Koz−

s via the following
combination of inferences.

Γ, 𝐴(Γ)
weak

Γ, 𝐴(Γ), 𝐴(𝜈x𝐴(Γ ∨ x))
∨𝑑Γ, 𝐴(Γ ∨ 𝜈x𝐴(Γ ∨ x))

𝜈
Γ, 𝜈x𝐴(Γ ∨ x)

ind𝑠Γ, 𝜈x𝐴(x)
Theorem 7.1. Let 𝐴 be a closed well-named formula. If Clo ⊢ 𝐴 then Koz−

s ⊢ 𝐴.
Given a closed circular proof we will define a translation * : 𝐴𝑎 ↦→ 𝐴𝑎* of annotated

formulæ into plain formulæ such that the *-translation of each assumption in 𝜋 is a valid
sequent derivable in Koz−, each inference rule of FixN is admissible in Fix + ∨𝑑, and each
instance of 𝜈-closure is admissible in Koz−

s . As we will see, the definition of * depends
only on the contexts in which variable names are utilised in the circular proof.

Proof of Theorem 7.1. Fix an assignment Φ = {𝐴𝑥 | 𝑥 ∈ 𝑁} of closed 𝜇-formulæ to
variable names. We define the associated translation * induced by Φ by structural
induction. Variables and other atoms will be unchanged by *. As a result, given an
annotated formula 𝐵(x)𝑏 and a plain formula 𝐶, we may write 𝐵𝑏*(𝐶) for the result of
replacing all occurrences of x by 𝐶 in 𝐵𝑏*. For atoms, modal and logical connectives
define

(𝐵 ∨ 𝐶)𝑎* = 𝐵𝑎* ∨ 𝐶𝑎* ([a]𝐵)𝑎* = [a]𝐵𝑎*

(𝐵 ∧ 𝐶)𝑎* = 𝐵𝑎* ∧ 𝐶𝑎* (⟨a⟩𝐵)𝑎* = ⟨a⟩𝐵𝑎*

37

For quantified formulæ, suppose x ∈ Var and 𝑎 = 𝑏𝑥1 · · · 𝑥𝑘𝑐 is an annotation where
𝑥1, . . . , 𝑥𝑘 ∈ 𝑁x and 𝑏 < x < 𝑐. Then for 𝐵 = 𝐵(x) we set

(𝜇x𝐵)𝑎* = 𝜇x 𝐵𝑏* (𝜈x𝐵)𝑎* = 𝐴𝑥1 ∨ · · · ∨ 𝐴𝑥𝑘
∨ 𝜈x. 𝐵𝑏*(𝐴𝑥1 ∨ · · · ∨ 𝐴𝑥𝑘

∨ x)

Given a set Γ of annotated formulæ we set Γ* = {𝐴𝑎* | 𝐴𝑎 ∈ Γ}.
Observe that regardless of the choice of Φ (provided variable names are associated

closed 𝜇-formulæ), the interpretation described above translates the inferences of FixN to
Koz−-derivations. The only non-trivial case is the translations of 𝜈 and exp inferences:
the former simply becomes an application of the 𝜈 fixed point rule in Fix and the latter
rule becomes a series of ∨𝑑 inferences. Since * is also the identity on plain formulæ (i.e.
𝐴𝜖* = 𝐴 for every 𝜇-formula 𝐴), it remains to show how an appropriate choice of Φ
allows the interpretation of discharged assumptions as derivable sequents and instances
of 𝜈-clo as admissible rules in Koz−

s .
Fix a closed Clo-proof 𝜋 with plain conclusion Γ, say. Without loss of generality we

may assume each variable name occurring in 𝜋 is uniquely associated exactly one instance
of the 𝜈-clo rule that uses this name. Let 𝑁𝜋 denote the set of variable names used in 𝜋.
By recursion through the 𝜈-clo rules in 𝜋 we define the assignment Φ𝜋 = {𝐴𝑥 | 𝑥 ∈ 𝑁𝜋}:
for 𝑥 ∈ 𝑁𝜋, set 𝐴𝑥 = Δ* where Δ is the set of side formulæ of the instance of 𝜈-clo𝑥 in
𝜋. This is well-defined since a) the conclusion to an instance of 𝜈-clo𝑥 in 𝜋 may only
contain a name 𝑦 if 𝜈-clo𝑦 is closer to the root than 𝜈-clo𝑥; and b) the definition of 𝐵𝑏*

depends only on the choice of 𝐴𝑥 for 𝑥 appearing in 𝑏.
We prove by induction through 𝜋 that for each annotated sequent Δ in 𝜋, Koz−

s ⊢ Δ*.
As mentioned above, we need only concern ourselves with discharged assumptions and
instances of 𝜈-clo. For each 𝑥 ∈ 𝑁𝜋 let Γ𝑥 denote the set of side formulæ to the instance of
𝜈-clo𝑥 in 𝜋, so 𝐴𝑥 = Γ*

𝑥. If Δ is a discharged assumption in 𝜋 then Δ = Γ𝑥 ∪ {𝜈x𝐴𝑎𝑥} for
some 𝑥 ∈ 𝑁x and 𝑎 ≤ x, and (𝜈x𝐴)𝑎𝑥* = Γ*

𝑥 ∨𝐵 for some closed 𝜇-formula 𝐵. Lemma 3.3
implies Koz− ⊢ Γ*

𝑥, Γ*
𝑥, whence an application of weak and ∨ yields Koz− ⊢ Δ*. For

interpreting 𝜈-clo, suppose Δ = Γ𝑥 ∪ {𝜈x𝐴(x)𝑎} and, by the induction hypothesis, the
sequent Γ*

𝑥, 𝐴(𝜈x𝐴(x))𝑎𝑥* is derivable in Koz−
s , where 𝑥 ∈ 𝑁x and 𝑎 ≤ x. Let 𝑏 < x and

𝑥1, . . . , 𝑥𝑘 ∈ 𝑁x be such that 𝑎 = 𝑏𝑥1 · · · 𝑥𝑘 and set

𝐵(x) = Γ*
𝑥𝑘

∨ · · · ∨ Γ*
𝑥1 ∨ x 𝐴′(x) = 𝐴𝑏*(𝐵(x)).

Then

(𝜈x𝐴)𝑎* = 𝐵(𝜈x𝐴′) 𝐴(𝜈x𝐴)𝑎𝑥* = 𝐴𝑏*((𝜈x𝐴)𝑎𝑥*)
(𝜈x𝐴)𝑎𝑥* = 𝐵(Γ*

𝑥 ∨ 𝜈x. 𝐴′(Γ*
𝑥 ∨ x)) = 𝐴′(Γ*

𝑥 ∨ 𝜈x. 𝐴′(Γ*
𝑥 ∨ x))

and the following derivation interprets 𝜈-clo𝑥:

Γ*
𝑥, 𝐴′(Γ*

𝑥 ∨ 𝜈x. 𝐴′(Γ*
𝑥 ∨ x))

𝜈
Γ*

𝑥, 𝜈x𝐴′(Γ*
𝑥 ∨ x)

ind𝑠Γ*
𝑥, 𝜈x𝐴′

weak + ∨*
Γ*

𝑥, 𝐵(𝜈x𝐴′)

(8)

Thus Koz−
s ⊢ Δ* is derivable for each sequent ⊢ Δ occurring in 𝜋 and since Γ* = Γ,

Koz−
s ⊢ Γ.

38

Example 7.1. Applying Theorem 7.1 to the proof 𝜋clo of Example 6.1 yields a cut-
free proof of the sequent 𝜈x𝜇y𝐵, 𝜈y𝜇x𝐵 in Koz−

s . Recall the formulæ 𝐶 = 𝜈x𝜇y𝐵 and
𝐷 = 𝜈y𝜇x𝐵. The interpretation of annotated formulæ is given by

Γ𝑥 = {𝜇x𝐵(x, 𝐷)𝜖} Γ𝑦 = {𝜇y𝐵(𝐶, y)𝜖} Γ𝑦′ = {𝜇y𝐵(𝐶, y)𝑥}
Γ*

𝑥 = 𝜈x𝐵(x, 𝐷) Γ*
𝑦 = 𝜈y𝐵(𝐶, y) Γ*

𝑦′ = 𝜈y𝐵(𝐶𝑥*, y)

𝐶𝑥* = 𝜈x𝐵(x, 𝐷) ∨ 𝜈x𝜇y. 𝐵(𝜈x𝐵(x, 𝐷) ∨ x, y)
𝐷𝑦* = 𝜈y𝐵(𝐶, y) ∨ 𝜈y𝜇x𝐵(x, 𝜈y𝐵(𝐶, y) ∨ y)
𝐷𝑦′* = 𝜈y𝐵(𝐶𝑥*, y) ∨ 𝜈y𝜇x𝐵(x, 𝜈y𝐵(𝐶𝑥*, y) ∨ y)

Because 𝑥, 𝑦 and 𝑦′ are the only annotations occurring in 𝜋clo, the above cases provide
the interpretation of all other formulæ: if 𝐹 𝑐 is any other annotated formula in the proof
then 𝐹 𝑐* is the result of replacing in 𝐹 , 𝐶𝑥* for 𝐶, 𝐷𝑦* for 𝐷 or 𝐷𝑦′* for 𝐷𝑦′ , depending
whether 𝑐 is 𝑥, 𝑦 or 𝑦′.

Under the interpretation, discharged assumptions become derivable sequents and
instances of 𝜈-clo are replaced by the sequent of inferences in (8). For example, each of
the three instances of 𝜈-clo𝑦′ becomes

𝜇y𝐵(𝐶𝑥*, y),

𝜇x𝐵(x,𝐷)𝑦′*⏞ ⏟
𝜇x𝐵(x, 𝜈y𝐵(𝐶𝑥*, y) ∨ 𝜈y𝜇x𝐵(x, 𝜈y𝐵(𝐶𝑥*, y) ∨ y))

𝜈
𝜇y𝐵(𝐶𝑥*, y), 𝜈y𝜇x𝐵(x, 𝜈y𝐵(𝐶𝑥*, y) ∨ y)

ind𝑠
𝜇y𝐵(𝐶𝑥*, y), 𝜈y𝜇x𝐵

The result is a Koz−
s proof of 𝜈x𝜇y𝐵, 𝜈y𝜇x𝐵.

Example 7.2. In Example 5.1 (Figure 8) a simplification of 𝜋circ was described, obtained
by applying a discharge rule closer to the root of the proof. Following this proof through
the embeddings from Circ to Clo to Koz−

s yields another proof of the same sequent, namely

𝜇x𝐵(x, 𝐷𝑦), 𝜇x𝐵(x, 𝐷𝑦)
weak, ∨

𝐶𝑥𝑥′ , 𝜇x𝐵(x, 𝐷𝑦)

𝜇y𝐵(𝐶𝑥, y), 𝜈y𝐵(𝐶𝑥, y)
weak, ∨

𝜇y𝐵(𝐶𝑥, y), 𝐷𝑦
weak, ∨𝑑

𝜇y𝐵(𝐶𝑥𝑥′ , y), 𝐷𝑦

...
𝐵(𝐶𝑥𝑥′ , 𝜇y𝐵(𝐶𝑥𝑥′ , y)), 𝐵(𝜇x𝐵(x, 𝐷𝑦), 𝐷𝑦)

𝜇, 𝜇
𝜇y𝐵(𝐶𝑥𝑥′ , y), 𝜇x𝐵(x, 𝐷𝑦)

𝜈
𝜈x𝜇y𝐵(𝜇x𝐵(x, 𝐷𝑦) ∨ x, y), 𝜇x𝐵(x, 𝐷𝑦)

ind𝑠
𝜈x𝜇y𝐵, 𝜇x𝐵(x, 𝐷𝑦)

weak, ∨*
𝐶𝑥, 𝜇x𝐵(x, 𝐷𝑦)

𝜇y𝐵(𝐶𝑥, y), 𝜈y𝐵(𝐶𝑥, y)
weak, ∨

𝜇y𝐵(𝐶𝑥, y), 𝐷𝑦

...
𝐵(𝐶, 𝜇y𝐵(𝐶𝑥, y)), 𝐵(𝜇x𝐵(x, 𝐷𝑦), 𝐷𝑦)

𝜇, 𝜇
𝜇y𝐵(𝐶𝑥, y), 𝜇x𝐵(x, 𝐷𝑦)

𝜈, ind𝑠
𝜇y𝐵(𝐶𝑥, y), 𝜈y𝜇x𝐵

𝜈, ind𝑠
𝜈x𝜇y𝐵, 𝜈y𝜇x𝐵

39

where

𝐶𝑥 = 𝜈y𝜇x𝐵 ∨ 𝜈x𝜇y. 𝐵(𝜈y𝜇x𝐵 ∨ x, y)
𝐶𝑥𝑥′ = 𝜇x𝐵(x, 𝐷𝑦) ∨ 𝜈x𝜇y. 𝐵(𝜇x𝐵(x, 𝐷𝑦) ∨ x, y)

𝐷𝑦 = 𝜈y𝐵(𝐶𝑥, y) ∨ 𝜈y𝜇x. 𝐵(x, 𝜈y𝐵(𝐶𝑥, y) ∨ y).

We complete the section with an embedding of Koz−
s into Koz. As the latter system is

sound, this yields a soundness proof for Koz−
s and as such also for Clo and Circ.

Theorem 7.2. If Koz−
s ⊢ Γ then Koz ⊢ Γ.

Proof. We first prove Koz− ⊢ 𝜈y𝜈x 𝐵(y ∨ x), 𝜈x 𝐵(x) for every formula 𝐵(x) with at most
x free. Fix a formula 𝐵(x) and let 𝐶 = 𝜈y𝜈x 𝐵(y ∨ x). The Koz−-proof

Ax2 : 𝐶, 𝐶

Ax2 : 𝜈x𝐵(𝐶 ∨ x), 𝜈x𝐵(𝐶 ∨ x)
𝜈

𝜈x𝐵(𝐶 ∨ x), 𝐶
∧

𝐶 ∨ 𝜈x𝐵(𝐶 ∨ x), 𝐶..... Lemma 3.2

𝐵(𝐶 ∨ 𝜈x𝐵(𝐶 ∨ x)), 𝐵(𝐶)
𝜇

𝜈x𝐵(𝐶 ∨ x), 𝐵(𝐶)
𝜇

𝜈y𝜈x𝐵(y ∨ x), 𝐵(𝐶)
ind

𝜈y𝜈x𝐵(y ∨ x), 𝜈x𝐵

derives the desired sequent. The following derivation then establishes the admissibility of
ind𝑠 in Koz:

Γ, 𝜈x𝐵(Γ ∨ x)
indΓ, 𝜈y𝜈x𝐵(y ∨ x) 𝜈y𝜈x𝐵(y ∨ x), 𝜈x𝐵(x)

cutΓ, 𝜈x𝐵(x)

Example 7.3. The previous two examples each describe a proof of 𝜇x𝜈y𝐵 → 𝜈y𝜇x𝐵
in Koz−

s which can be readily transformed into Koz-proofs by replacing each instance of
ind𝑠 by ind and cut. The resulting Koz-proofs have essentially the same structure as the
Koz−

s -proofs from which they are obtained.

8 Semi-formal systems

As discussed in Section 3.3, the system 𝐾𝜔(𝜇) of [9], which extends Fix by the infinitary
𝜈-rule

Γ, 𝜈0x𝐴 Γ, 𝜈1x𝐴 · · ·
𝜈𝜔Γ, 𝜈𝜔x𝐴

is sound and complete. In the present section we provide an alternative proof of
completeness for 𝐾𝜔(𝜇) via an embedding of Clo into 𝐾𝜔(𝜇), a result that will establish
the connection between 𝐾𝜔(𝜇) and the proof systems introduced in this paper, including
Koz.
Recall the quantifiers 𝜈𝑘, defined by 𝜈0x𝐴 = ⊤ and 𝜈𝑘+1x𝐴(x) = 𝐴(𝜈𝑘x𝐴); set

𝜈𝜔x𝐴 = 𝜈x𝐴. Let 𝐾 ′
𝜔(𝜇) be the extension of 𝐾𝜔(𝜇) by the rule

40

Γ, 𝐴(𝜈𝑚x𝐵)
(𝑛 ≤ 𝑚 ≤ 𝜔) approxΓ, 𝐴(𝜈𝑛x𝐵)

This rule is sound, and is admissible in 𝐾𝜔(𝜇) by a straightforward induction. Nevertheless,
it is convenient to have the rule present during the embedding.

Definition 8.1. An approximation is a function 𝑓 : 𝑁* → 𝜔 ∪ {𝜔} anti-monotone in the
sub-word relation, i.e. for all 𝑎, 𝑏 ∈ 𝑁*, if 𝑎 @ 𝑏 then 𝑓(𝑏) ≤ 𝑓(𝑎).

Approximations provide a natural interpretation of annotated formulæ as plain formulæ
in which greatest fixed points are replaced by the approximant induced by the annotation.
For each annotated formula 𝐴𝑎 and approximation 𝑓 , define 𝐴𝑓,𝑎 recursively by

(𝐴 ∧ 𝐵)𝑓,𝑎 = 𝐴𝑓,𝑎 ∧ 𝐵𝑓,𝑎 ([a]𝐴)𝑓,𝑎 = [a]𝐴𝑓,𝑎 𝑝𝑓,𝑎 = 𝑝

(𝐴 ∨ 𝐵)𝑓,𝑎 = 𝐴𝑓,𝑎 ∨ 𝐵𝑓,𝑎 (⟨a⟩𝐴)𝑓,𝑎 = ⟨a⟩𝐴𝑓,𝑎 x𝑓,𝑎 = x;

and for quantified formulæ, if 𝑎 = 𝑏𝑐𝑑 where 𝑏 < x < 𝑑 and 𝑐 ∈ 𝑁*
x , then

(𝜇x𝐴)𝑓,𝑎 = 𝜇x(𝐴𝑓,𝑏) (𝜈x𝐴)𝑓,𝑎 = 𝜈𝑓(𝑏𝑐)x(𝐴𝑓,𝑏)

The restriction to anti-monotone functions ensures that for any approximation 𝑓 and
annotations 𝑎 @ 𝑏 the formula 𝐴𝑓,𝑎 → 𝐴𝑓,𝑏 is valid.
Given a set Γ of annotated formulæ, define Γ𝑓 = {𝐴𝑓,𝑎 | 𝐴𝑎 ∈ Γ}. For a set A of

annotated sequents, define A 𝑓 = {Δ𝑓 | Δ ∈ A }.

Lemma 8.2. Suppose A ∪ {Γ} is a set of annotated sequents with empty control such
that for every Δ ∈ A the annotations occurring in Δ are sub-words of annotations in Γ.
If A ⊢Clo Γ then for every approximation 𝑓 , A 𝑓 ⊢𝐾′

𝜔(𝜇) Γ𝑓 .

Proof. Fix an approximation 𝑓 . The proof proceeds by induction on the length of the
(finite) derivation A ⊢Clo Γ. In case Γ is an axiom or Γ ∈ A , the result is trivial.
The propositional and modal rules, and 𝜇, translate to the corresponding plain rules.
Moreover, instances of the 𝜈 rule become applications of approx and anti-monotonicity
ensures that applications of exp become a series of applications of approx. The remaining
rule to consider is 𝜈-clo. Suppose the final rule applied is 𝜈-clo of the form[︀

Γ, 𝜈x𝐴𝑎𝑥
]︀𝑥

...

{︀
Δ | Δ ∈ A

}︀
...

...
Γ, 𝐴(𝜈x𝐴𝑎𝑥)

𝜈-clo𝑥Γ, 𝜈x𝐴𝑎

where 𝑥 ∈ 𝑁x. Given a word 𝑏, let 𝑏− be the sub-word of 𝑏 in which 𝑥 has been removed
if it occurs. For each 𝑛 ≤ 𝜔, define 𝑓𝑛 to be the approximation

𝑓𝑛(𝑏) =
{︃

min{𝑛, 𝑓(𝑏−)}, if 𝑥 occurs in 𝑏,
𝑓(𝑏), otherwise.

Since 𝑥 does not appear in Γ nor in any Δ ∈ A , it follows that 𝑓𝑛 and 𝑓 agree on all
sub-words of annotations occurring in these sequents, i.e. Δ𝑓𝑛 = Δ𝑓 for all Δ ∈ A ∪ {Γ}.

41

Moreover, 𝑓𝑛+1(𝑏) ≤ 𝑓𝑛(𝑏) + 1 for every 𝑏 and 𝑛. Let 𝑎 = 𝑎0𝑎1 where 𝑎0 < x ≤ 𝑎1. By
the induction hypothesis, for every 𝑛 ≤ 𝜔,

Γ𝑓 ∪ {𝜈𝑓𝑛(𝑎𝑥)x. 𝐴𝑓,𝑎0}, A 𝑓 ⊢𝐾′
𝜔(𝜇) Γ𝑓 , 𝜈𝑓𝑛+1(𝑎𝑥)x. 𝐴𝑓,𝑎0 .

Inducting on 𝑛 < 𝜔 we deduce

A 𝑓 ⊢𝐾′
𝜔(𝜇) Γ𝑓 , 𝜈𝑓𝑛(𝑎𝑥)x. 𝐴𝑓,𝑎0 (9)

for every 𝑛 < 𝜔. If 𝑓(𝑎) < 𝜔 then pick 𝑛 = 𝑓(𝑎) in (9). Otherwise, an application of 𝜈𝜔

with sub-derivation (9) for each 𝑛 < 𝜔 yields the desired derivation.

Theorem 8.3. For every plain sequent Γ, Clo ⊢ Γ implies 𝐾𝜔(𝜇) ⊢ Γ.

Proof. Suppose Clo ⊢ Γ and let 𝑓 be an approximation such that 𝑓(𝜖) = 𝜔. Recall that
Γ represents the annotated sequent {𝐴𝜖 | 𝐴 ∈ Γ}. Then Γ𝑓 = Γ and Lemma 8.2 implies
𝐾 ′

𝜔(𝜇) ⊢ Γ. As approx is admissible in 𝐾𝜔(𝜇) we obtain 𝐾𝜔(𝜇) ⊢ Γ.

The converse is also possible. Studer, in [14], describes a transformation of 𝐾𝜔(𝜇)-
proofs into tableaux. Combining Studer’s argument with the completeness proof for Stir

yields an embedding of 𝐾𝜔(𝜇) in Stir.

Theorem 8.4. For every plain sequent Γ, if 𝐾𝜔(𝜇) ⊢ Γ then Stir ⊢ Γ.

9 Conclusion

Combining the results of previous sections we obtain

Theorem 9.1. Let 𝐴 be a closed well-named formula. The following are equivalent.

1. 𝐴 is valid. 2. Stir ⊢ 𝐴. 3. Circ ⊢ 𝐴. 4. Clo ⊢ 𝐴.

5. Koz−
s ⊢ 𝐴. 6. Koz ⊢ 𝐴. 7. 𝐾𝜔(𝜇) ⊢ 𝐴.

Moreover, there exists a constructive, primitive recursive transformation between the proof
systems in the direction 2 to 6 and from Clo to 𝐾𝜔(𝜇), and a recursive transformation of
recursive 𝐾𝜔(𝜇)-proofs to Stir.

Proof. Theorems 5.4, 6.3, 7.1 and 7.2 provide the embeddings 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 6 for
arbitrary well-named 𝐴. For guarded formulæ, 1 ⇒ 2 is proved in [13], and Theorem 3.9
generalises this to unguarded formulæ. The embedding 4 ⇒ 7 is provided by Theorem 8.3,
7 ⇒ 2 by Theorem 8.4, and 6 ⇒ 1 by the soundness of Kozen’s axiomatisation [10].

Theorem 9.1 settles a number of questions regarding proof systems for 𝜇-calculus which
we summarise below.

The system Koz−
s is a natural variant of Kozen’s original axiomatisation wherein cut is

dropped in favour of the strengthened induction rule

Γ, 𝜈x𝐴(Γ ∨ x)
ind𝑠Γ, 𝜈x𝐴(x)

42

Specifically, the calculus derives only plain sequents and all inference rules have a fixed
arity. As such, Koz−

s marks (as far as the authors are aware) the first finitary sound and
complete cut-free proof system for the modal 𝜇-calculus. Furthermore, the completeness
of Koz−

s reduces the long standing open problem of whether Kozen’s axiomatisation
without cut is complete to whether the strengthened induction rule ind𝑠 is admissible.
As the proof of Theorem 7.2 demonstrates, this is in turn equivalent to the admissibility
of the rule

Γ, 𝜈y𝜈x𝐵(y ∨ x)
Γ, 𝜈x𝐵(x)

which permits contracting like quantifiers in simple contexts.
The embeddings 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 6 of Theorem 9.1 close the gap between

Stirling tableau proofs and Kozen’s axiomatisation, thereby answering the question
posed by Stirling in [13] and providing a new proof of completeness for Kozen’s original
axiomatisation. The argument is purely proof-theoretic and constructive, and provides
a computational approach to obtaining proofs in Koz. The approach involves a hyper-
hyper-exponential blow-up in the size of the proof, which is due to the transformation of
Stirling proofs to invariant monotone Stirling proofs (Theorem 4.9). Nevertheless, this
is not always witnessed: in our running example of the valid formula 𝜇x𝜈y𝐵 → 𝜈y𝜇x𝐵
(Examples 3.2, 3.3, 5.1, 6.1, 7.1 and 7.3) the transformation between proof systems
remains feasible and the resulting Koz-proof can be written down by hand.

The finitary sequent calculus Clo is also of independent interest as it is inter-translatable
with the infinitary system 𝐾𝜔(𝜇) of [9]. In particular, via this finitary system, an
embedding from 𝐾𝜔(𝜇) into Koz is obtained. It would be interesting to see whether
Studer’s interpretation of 𝐾𝜔(𝜇)-proofs as tableaux can be adapted to a direct embedding
of 𝐾𝜔(𝜇) in Clo. Such an embedding would serve to further clarify the relation of 𝐾𝜔(𝜇)
to the systems Koz−

s and Koz.
The cut-free finitary proof systems introduced and the constructive completeness

proof of Kozen’s axiomatisation obtained in this article open the door to a number
of avenues of research. One such application is to the problem of interpolation. It is
known that uniform interpolation holds for the 𝜇-calculus [5]. The proof of this result is
indirect and uses 𝜇-automata to show the 𝜇-calculus interprets bisimulation quantifiers.
Typically however, constructive proofs of interpolation can be obtained from cut-free
calculi. Another application of interest is to the problem of cut elimination. While there
are proof systems that are known to be cut-free complete, effective cut-elimination has
only been established for small fragments of 𝜇-calculus such as propositional dynamic
logic [7], common knowledge [4] and the one variable fragment [11]. It may prove more
viable to study effective cut elimination in the context of one of the annotated proofs
systems, such as Clo, due to their more predicative nature. Finally, it would be interesting
to see whether the techniques of this paper can be generalised to yield cut-free calculi for
Venema’s coalgebraic fixed point logic [15].

References

[1] B. Afshari and G. E. Leigh. ‘Circular proofs for the modal mu-calculus’. In: Pro-
ceedings of Applied Mathematics and Mechanics. Vol. 16. 1. Wiley-VCH Verlag,
2016, pp. 893–894.

43

[2] A. Arnold and D. Niwinski. Rudiments of µ-calculus. Vol. 146. Studies in Logic.
North Holland, 2001.

[3] J. Bradfield and C. Stirling. ‘Modal mu-calculi’. In: Handbook of Modal Logic.
Ed. by P. Blackburn, J. van Benthem and F. Wolter. Elsevier, 2007, pp. 721–756.

[4] K. Brünnler and T. Studer. ‘Syntactic cut-elimination for common knowledge’. In:
Annals of Pure and Applied Logic 160.1 (2009), pp. 82–95.

[5] G. D’Agostino and M. Hollenberg. ‘Logical questions concerning the 𝜇-calculus’.
In: The Journal of Symbolic Logic 65.1 (2000), pp. 310–332.

[6] O. Friedmann and M. Lange. ‘Deciding the unguarded modal 𝜇-calculus’. In: Journal
of Applied Non-Classical Logics 23.4 (2013), pp. 353–371.

[7] B. Hill and F. Poggiolesi. ‘A contraction-free and cut-free sequent calculus for
propositional dynamic logic.’ In: Studia Logica 94.1 (2010), pp. 47–72.

[8] W. Hodges. Model Theory. Cambridge: Cambridge University Press, 1993.
[9] G. Jäger, M. Kretz and T. Studer. ‘Canonical completeness of infinitary 𝜇’. In:

Journal of Logic and Algebraic Programming 76 (2008), pp. 270–292.
[10] D. Kozen. ‘Results on the propositional 𝜇-calculus’. In: Theoretical Computer

Science 27 (1983), pp. 333–354.
[11] G. Mints and T. Studer. ‘Cut-elimination for the mu-calculus with one variable’.

In: Fixed Points in Computer Science 2012. Vol. 77. EPTCS. Open Publishing
Association, 2012, pp. 47–54.

[12] D. Niwinski and I. Walukiewicz. ‘Games for the mu-calculus’. In: Theoretical
Computer Science 163.1&2 (1996), pp. 99–116.

[13] C. Stirling. ‘A tableau proof system with names for modal mu-calculus’. In:
HOWARD-60. Ed. by Voronkov and Korovina. 2014, pp. 306–318.

[14] T. Studer. ‘On the proof theory of the modal mu-calculus’. In: Studia Logica 89
(2008), pp. 343–363.

[15] Y. Venema. ‘Automata and fixed point logic: A coalgebraic perspective’. In: In-
formation and Computation 204.4 (2006), pp. 637–678.

[16] I. Walukiewicz. ‘Completeness of Kozen’s axiomatisation of the propositional 𝜇-
calculus’. In: Information and Computation 157 (2000), pp. 142–182.

44

	OWP2016_26_Deckblatt
	OWP 2016 - 26
	Bahareh Afshari and Graham E. Leigh
	Finitary Proof Systems for Kozen’s µ

	OWP00_Deckblatt-verso
	OWP2016_26_Afshari
	Introduction
	Preliminaries
	Syntax
	Semantics
	Subsumption
	Threads
	Sequent calculi

	Background on proof systems for modal μ
	Kozen's axiomatisation
	Tableaux proofs
	Semi-formal systems
	Annotated proof systems

	Unfolding Stirling proofs
	Circular proofs
	Circular proofs with ν-closure
	Strengthened induction and the embedding into Koz
	Semi-formal systems
	Conclusion

