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Abstract

When solving linear stochastic differential equations numerically, usually a high or-
der spatial discretisation is used. Balanced truncation (BT) and singular perturbation
approximation (SPA) are well-known projection techniques in the deterministic frame-
work which reduce the order of a control system and hence reduce computational
complexity. This work considers both methods when the control is replaced by a noise
term. We provide theoretical tools such as stochastic concepts for reachability and
observability, which are necessary for balancing related model order reduction of lin-
ear stochastic differential equations with additive Lévy noise. Moreover, we derive error
bounds for both BT and SPA and provide numerical results for a specific example which
support the theory.

1 Introduction

Many mathematical models of real-life processes pose challenges during numerical compu-
tations, due to their large size and complexity. Model order reduction (MOR) techniques are
methods that reduce the computational complexity of numerical simulations, an overview of
MOR methods is provided in [1, 28]. MOR techniques such as balanced truncation (BT) and
singular perturbation approximation (SPA) are methods which have been introduced in [21]
and [19], respectively, for linear deterministic systems

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t).

Here A ∈ Rn×n is asymptotically stable, B ∈ Rn×m, C ∈ Rp×n and x(t) ∈ Rn, y(t) ∈
Rp, u(t) ∈ Rm are state, output and input of the system, respectively. From the Gramians
P and Q which solve dual Lyapunov equations

AP + PAT = −BBT , ATQ+QA = −CTC,

a balancing transformation is found, which is used to project the state space of size n to a
much smaller dimensional state space (see, e.g. [1]).

Recently, the theory for BT and SPA has been extended to stochastic linear systems of the
form

dx(t) = Ax(t)dt+Bu(t)dt+

q∑
k=1

Nkx(t−)dMk(t), y(t) = Cx(t), (1)
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where A, B and C as above, and Nk ∈ Rn×n and Mk (k = 1, . . . , q) are uncorrelated
scalar square integrable Lévy processes with mean zero (often q = 1 and the special case
of Wiener processes are considered, see, for example, [5, 8, 11]). In this case BT and SPA
require the solution of more general Lyapunov equations of the form

AP + PAT +

q∑
k=1

NkPN
T
k ck = −BBT , ATQ+QA+

q∑
k=1

NT
k QNkck = −CTC,

where ck = E[Mk(1)2] for general Lévy processes. Note that ck = 1, k = 1, . . . , q for
the case of a Wiener process [5]. We refer to [6, 8, 24, 26] for a detailed theoretical and
numerical treatment of balancing related MOR for (1).

In this paper we are going to study balancing related MOR for systems of the form

dx(t) = Ax(t)dt+BdM(t), y(t) = Cx(t), (2)

where BdM(t) =
∑m

i=1 bidMi(t) and bi is the ith column of B ∈ Rn×m. The pro-
cesses Mi are the components of a square integrable mean zero Lévy process M =
(M1, . . . ,Mm)T that takes values in Rm. Consequently, these components are not nec-
essarily uncorrelated. For a general theoretical treatment of SDEs with Lévy noise we refer
to [2].

The setting in (2) is of particular interest in many applications. If one is interested in a large
number of different realisations of the output y(t) (e.g. to compute moments of the form
E [f(y(t))]), then one needs to solve the SDE in (2) a large number of times. For a state
space of high dimension this is computationally expensive. Reduction of the state space
dimension decreases the computational complexity when sampling the solution to (2), as
the SDE can then be solved in much smaller dimensions. Hence the computational costs
are reduced dramatically.

The linear system (2) is a problem where the control is noise. In this case the standard theory
for balancing related MOR applied to a deterministic system no longer applies.

Balanced truncation has been applied to linear systems with white noise before. The discrete
time setting was discussed in [3]. For the continuous time setting, dissipative Hamiltonian
systems with Wiener noise were treated in [10, 12], but no error bounds were provided. In
this paper we consider both BT and SPA model order reduction. As far as we are aware, no
theory and in particular error bounds for balancing related MOR have been developed for
continuous time SDEs with Lévy noise.

Using theory for linear stochastic differential equations with additive Lévy noise we provide
a stochastic concept of reachability. This concept motivates a new formulation of the reach-
ability Gramian. We prove bounds for the error between the full and reduced system which
provide criteria for truncating, e.g. criteria for a suitable size of the reduced system. We anal-
yse both BT and SPA and apply the theory directly to an application arising from a second
order damped wave equation.

We now consider a particular example which explains why the above setting is of practical
interest.
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Motivational example In [25] the lateral time-dependent displacement Z of an electricity
cable impacted by wind was modeled by the following one-dimensional symbolic second
order SPDE with Lévy noise:

∂2

∂t2
Z(t, ζ) + α

∂

∂t
Z(t, ζ) =

∂2

∂ζ2
Z(t, ζ) + e−(ζ−π

2
)2 u(t) + 2 e−(ζ−π

2
)2 Z(t−, ζ)

∂

∂t
M1(t)

(3)

for t ∈ [0, T ], ζ ∈ [0, π] and α > 0, with boundary and initial conditions

Z(0, t) = 0 = Z(π, t) and Z(0, ζ),
∂

∂t
Z(t, ζ)

∣∣∣∣
t=0

≡ 0. (4)

For small ε > 0, the output equation

Y(t) =
1

2ε

∫ π
2

+ε

π
2
−ε

Z(t, ζ)dζ (5)

is approximately the position of the middle of the cable. In [25], it is shown that transforming
this SPDE in into a first order SPDE and then discretising it in space, leads to a system of
the form (1) where q = m = p = 1.

One drawback of the approach above is, that, when the electricity cable is in steady state,
the wind has no impact. A more realistic scenario, which models the wind as some form of
stochastic input, is the following symbolic equation

∂2

∂t2
Z(t, ζ) + α

∂

∂t
Z(t, ζ) =

∂2

∂ζ2
Z(t, ζ) +

m∑
k=1

fk(ζ)
∂

∂t
Mk(t) (6)

for t ∈ [0, T ], ζ ∈ [0, π] and α > 0, boundary and initial conditions as in (4), and Mk

the components of a square integrable mean zero Lévy process M = (M1, . . . ,Mm)T

that takes values in Rm. In this paper, we consider a framework which covers this model.
Moreover we modify the output in (5) and let

Y(t) =
1

2ε

(∫ π
2

+ε
π
2
−ε Z(t, ζ)dζ

∫ π
2

+ε
π
2
−ε

∂
∂t
Z(t, ζ)dζ

)T
, (7)

so that both the position and velocity of the middle of the string are observed. Transformation
and discretisation of this SPDE leads to a system of the form (2) whereA is an asymptotically
stable matrix, i.e. σ(A) ⊂ C−.

This paper is set up as follows. Section 2 provides the theoretical tools for balancing linear
SDEs with additive Lévy noise. We explain the theoretical concepts of reachability and ob-
servability in this setting and show how this motivates MOR using BT and SPA. Moreover we
provide theoretical error bounds for both methods. In Section 3 we show how a wave equa-
tion driven by Lévy noise can be transformed into a first order equation and then reduced
to a system of the form (2) by using a spectral Galerkin method. Numerical results which
support our theory are provided in Section 4.
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2 Balancing for linear stochastic differential equations with
additive Lévy noise

In [1, 19, 21] balancing related MOR was considered for deterministic systems of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = 0, (8)

y(t) = Cx(t), t ≥ 0,

where A ∈ Rn×n was assumed to be asymptotically stable, i.e. σ(A) ⊂ C−, B ∈ Rn×m,
C ∈ Rp×n and u ∈ L2([0, T ]) for all T > 0 was a deterministic control.

We now turn our attention to a stochastic system

dx(t) = Ax(t)dt+BdM(t), x(0) = x0 (9)

y(t) = Cx(t), t ≥ 0,

which, in Section 3.2, represents a spatially discretised version of an SPDE. The matrices
A, B and C are as above and the Rm-valued process M is a square integrable Lévy
processes with mean zero. One might interpret system (9) as system (8) with u(t) = Ṁ(t)
but the noise Ṁ(t) is no control in the classical sense. First of all, stochastic controls were
not admissible in the deterministic setting and secondly the classical derivative does not
exist. So, if we want to study balancing related MOR for the “particular control” Ṁ(t), we
need to make sense of this setting which we do by the Ito-type SDE in (9).

In the deterministic case reachability and observability concepts are introduced to charac-
terise the importance of states. Difficult to reach states (states which require large energy
to reach them) and difficult to observe states (states which only produce little observation
energy) are seen to be unimportant in the systems dynamics. In balancing related MOR the
idea is to create a system, where the dominant reachable and observable states are the
same. Those are then truncated to obtain a reduced order model (ROM).

Applying balancing related MOR to (9) requires a few modifications compared to the classical
deterministic framework. We introduce a stochastic reachability concept in Section 2.1 which
also leads to a different reachability Gramian compared to the deterministic case. For the
observation concept we follow the deterministic approach. We then describe the procedure
of balancing for systems with additive noise in Section 2.2 which is similar to the deterministic
case. Afterwards, we will discuss two particular techniques which are BT and SPA. Since it is
not a priori clear whether these approaches for system (9) perform as well as for deterministic
systems, we contribute an error bound for both BT and SPA in Section 2.3. These error
bounds enable us to point out the cases, where BT and SPA work well, and they can be
used to find a suitable ROM dimension.
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2.1 Reachability and Observability

With suitable reachability and observability concepts we want to analyze which states in
system (9) are unimportant and hence can be neglected.

Reachability We begin with a stochastic reachability concept, where the particular choice
of M is taken into account. Starting from zero (x0 = 0) in

dx(t) = Ax(t)dt+BdM(t), x(0) = x0, t ≥ 0, (10)

we investigate how much the noise can control the state away from zero. We define what is
meant be reachability in the stochastic case, where x(t, x0,M), t ≥ 0, denotes the solution
to (10) with initial condition x0 ∈ Rn and noise process M .

Definition 2.1. A state x ∈ Rn is not reachable from zero on the time interval [0, T ], T > 0,
if it is contained in an open set O with

P {x(t, 0,M) ∈ O, for every t ∈ [0, T ]} = 0,

else x is reachable. The system is called completely reachable if

P {x(t, 0,M) ∈ O, for some t ∈ [0, T ]} > 0 (11)

for every open set O ⊆ Rn.

We refer to [29], where weak controllability was analyzed for equations with Wiener noise.
Weak controllability turns out to be similar to condition (11).

To characterise the degree of reachability of a state, we introduce finite time reachabil-
ity Gramians P (t) := E

[
x(t, 0,M)xT (t, 0,M)

]
which are the covariance matrices of

x(t, 0,M) at fixed times t ≥ 0. Before we study the meaning of these Gramians, we show
that P (t) is the solution of a matrix differential equation.

Proposition 2.2. The matrix-valued function P (t), t ≥ 0, is the solution to

Ẋ(t) = AX(t) +X(t)AT +BQMB
T , (12)

where QM = E[M(1)MT (1)] is the covariance matrix of M at time 1.

Proof. We replace x(t, 0,M) by x(t) to shorten the notation in the proof. Using Ito’s formula
in Corollary A.1, we obtain the following for x(t)xT (t), t ≥ 0:

x(t)xT (t) =

∫ t

0

x(s−)dxT (s) +

∫ t

0

dx(s)xT (s−) +
(
[eTi x, e

T
j x]t

)
i,j=1,...,n

,
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where ei is the i-th unit vector and we used x0 = 0. Inserting the stochastic differential of
x(t) yields∫ t

0

x(s−)dxT (s) =

∫ t

0

x(s−)xT (s)ATds+

∫ t

0

x(s−)dMT (s)BT and∫ t

0

dx(s)xT (s−) =

∫ t

0

Ax(s)xT (s−)ds+

∫ t

0

BdM(s)xT (s−).

Since the Ito integrals have mean zero, we have

E
[
x(t)xT (t)

]
=

∫ t

0

E
[
x(s)xT (s)

]
ATds+

∫ t

0

AE
[
x(s)xT (s)

]
ds+

(
E[eTi x, e

T
j x]t

)
i,j=1,...,n

,

where we replaced x(s−) by x(s). This does not impact the integrals since a càdlàg process
has at most countably many jumps on a finite time interval (see [2, Theorem 2.7.1]). Applying
Corollary A.1 again, the stochastic differential of BM(t)MT (t)BT is given by:

BM(t)(BM(t))T =

∫ t

0

BM(s−)dMT (s)BT +B

∫ t

0

dM(s)(BM(s−))T

+
(
[eTi BM, eTj BM ]t

)
i,j=1,...,n

,

Taking the expectation, we have BE[M(t)MT (t)]BT = E
(
[eTi BM, eTj BM ]t

)
i,j=1,...,n

.
In [22, Theorem 4.44] it was shown that the covariance function is linear in t, that means
E[M(t)MT (t)] = QM t. Since the ith component

eTi x(t) = eTi

∫ t

0

Ax(s)ds+ eTi BM(t), t ≥ 0,

has the same jumps and the same martingale part as eTi BM , we know by (57) that we have
[eTi BM, eTj BM ]t = [eTi x, e

T
j x]t for i, j = 1, . . . , n. Summarizing the results, we have

E
[
x(t)xT (t)

]
=

∫ t

0

E
[
x(s)xT (s)

]
ATds+

∫ t

0

AE
[
x(s)xT (s)

]
ds+BQMB

T t,

which concludes the proof.

To find a representation for P (t) we need the following straightforward result.

Proposition 2.3. Let Ai ∈ Rdi×di and Ki ∈ Rdi×m, then

eA1tK1K
T
2 eA

T
2 t = K1K

T
2 + A1

∫ t

0

eA1sK1K
T
2 eA

T
2 s ds+

∫ t

0

eA1sK1K
T
2 eA

T
2 s dsAT2 .

Proof. The product rule yields

d
(

eA1tK1K
T
2 eA

T
2 t
)

= A1 eA1tK1K
T
2 eA

T
2 t dt+ eA1tK1K

T
2 eA

T
2 tAT2 dt,

and integrating gives the result.
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Setting A1 = A2 = A and K1 = K2 = BQ
1
2
M in Proposition 2.3, we see that the matrix

function
∫ t

0
eAsBQMB

T eA
T s ds solves the differential equation (12). Since the solution to

(12) is unique, we have

P (t) =

∫ t

0

eAsBQMB
T eA

T s ds, t ≥ 0. (13)

Consequently, xTP (t)x is an increasing function. If QM = I , then we obtain the reachability
Gramian of the deterministic setting (8), see [1]. This is also the case if M is a standard
Wiener process.

The finite reachability Gramian P (t) provides information about the reachability of a state
which we see from the following identity:

max
t∈[0,T ]

E 〈x(t, 0,M), x〉2Rn = xTP (T )x for x ∈ Rn. (14)

Consequently, we know that 〈x(t, 0,M), x〉Rn = 0, t ∈ [0, T ], P a.s. if and only if x ∈
kerP (T ) meaning that x(t, 0,M) is orthogonal to kerP (T ). Since P (T ) is symmetric
positive semidefinite, we have (kerP (T ))⊥ = imP (T ) and hence

P {x(t, 0,M) ∈ imP (T ), t ∈ [0, T ]} = 1, (15)

We observe from (15) that all the states that are not in imP (T ) are not reachable and
thus they do not contribute to the system dynamics. As a first step to reduce the system
dimension it is necessary to remove all the states that are not in imP (T ). We will see in the
next Proposition, that the finite reachability Gramians can be replaced by the infinite Gramian

P =

∫ ∞
0

eAsBQMB
T eA

T s ds (16)

since their images coincide. This (infinite) Gramian exists due to the asymptotic stability of
A. It is easier to work with P since it can be computed as the unique solution to

AP + PAT = −BQMB
T . (17)

P satisfies (17) since P (t) satisfies (12) and Ṗ (t) = eAtBQMB
T eA

T t → 0 if t → ∞
due the asymptotic stability of A. For the case QM = I this Gramian was discussed in [1,
Section 4.3] in the context of balancing for deterministic systems (8).

Proposition 2.4. The images of the finite reachability Gramians P (t), t > 0, and the infinite
reachability Gramian P are the same, that is,

imP (t) = imP for all t > 0.

Proof. Since P and P (t) are symmetric positive semidefinite, it is enough to show that their
kernels are equal. Let v ∈ kerP . This implies 0 ≤ vTP (t)v ≤ vTPv = 0, since t 7→
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vTP (t)v is increasing. Hence v ∈ kerP (t). On the other hand, if v ∈ kerP (t), we have
0 = vTP (t)v =

∫ t
0
vT eAsBQMB

T eA
T s vds. Consequently, vT eAsBQMB

T eA
T s v =

0 for all s ∈ [0, t]. Since the entries of eAsBQMB
T eA

T s are analytic functions, the scalar
function f(t) := vT eAsBQMB

T eA
T s v is analytic, such that f ≡ 0 on [0,∞). Thus,

0 =
∫∞

0
vT eAsBQMB

T eA
T s vds = vTPv, and the result follows.

Let us now assume that we already removed all the unreachable states from (10). So, (11)
holds which implies that imP = Rn. We choose an orthonormal basis of Rn, consisting of
eigenvectors {pk}nk=1 of P , and the following representation holds:

x(t, 0,M) =
n∑
k=1

〈x(t, 0,M), pk〉Rn pk. (18)

We investigate how much the noise influences x(t, 0,M) in the direction of pk. If a state
remains close to zero, it barely contributes to the system dynamics. Those states can be
identified with the help of the positive eigenvalues {λk}nk=1 of P . Using (14) and the fact
that P (T ) is increasing, we obtain

max
t∈[0,T ]

E 〈x(t, 0,M), pk〉2Rn = pTkP (T )pk ≤ pTkPpk = λk. (19)

Hence, if λk is small, then the the corresponding coefficient 〈x(t, 0,M), pk〉Rn in (18) is
small (in the L2(Ω,F,P) sense). This means that the noise hardly steers the state in the
direction of pk. Consequently, the states that are difficult to reach are contained in the space
spanned by the eigenvectors corresponding to the small eigenvalues of P .

We continue by reasoning why using the modified reachability Gramian P is better than
using the reachability Gramian PD =

∫∞
0

eAsBBT eA
T s ds (QM = I) of the deterministic

system (8).

Proposition 2.5. The following properties hold for the (modified) reachability Gramians P
and PD:

(a) In general, we have imP ⊆ imPD.

(b) If QM > 0 (positive definite), then imP = imPD.

(c) If BT kerP 6= {0}, then imP ⊂ imPD.

Proof. Let v ∈ kerPD, then

0 = vTPDv =

∫ ∞
0

vT eAsBBT eA
T s vds =

∫ ∞
0

∥∥∥BT eA
T s v
∥∥∥2

Rn
ds,
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which is equivalent to BT eA
T s v ≡ 0 on R+ and implies Q

1
2
MB

T eA
T s v ≡ 0 on R+.

Equivalently, we have

0 =

∫ ∞
0

∥∥∥Q 1
2
MB

T eA
T s v
∥∥∥2

Rn
ds = vTPv,

and since v ∈ kerP if and only if 0 = vTPv, we have kerPD ⊆ kerP . Consequently, we
obtain imP ⊆ imPD due to (kerP )⊥ = imP and (kerPD)⊥ = imPD.

If QM > 0, then Q
1
2
MB

T eA
T s v ≡ 0 on R+ implies BT eA

T s v ≡ 0 on R+. In this case,
all the above statements are equivalent. Therefore kerPD = kerP and hence imP =
imPD.

To prove (c), assume v ∈ kerP . Pre- and postmultiplying (17) with vT and v, respectively,
yields

0 = vTBQMB
Tv =

∥∥∥Q 1
2
MB

Tv
∥∥∥2

Rn
.

This implies Q
1
2
MB

Tv = 0 but if BT kerP 6= {0}, then there is a v ∈ kerP such that
BTv 6= 0. We set f(t) := BT eA

T t v, t ≥ 0, and observe that f is an analytic function
that is not constantly zero since f(0) = BTv 6= 0. Consequently, f has only countably

many zeros such that
∥∥∥BT eA

T s v
∥∥∥2

Rn
is a purely positive function up to Lebesgue zero

sets. Hence,

0 <

∫ ∞
0

∥∥∥BT eA
T s v
∥∥∥2

Rn
ds = vTPDv,

such that v 6∈ kerPD. Having kerPD ⊂ kerP implies (c).

By (15) and Proposition 2.5 (a), we obtain

P {x(t, 0,M) ∈ imPD, t ∈ [0, T ]} = 1. (20)

One could now think of using PD instead of P but from (20) not all unreachable states can
be identified especially if case (c) in Proposition 2.5 holds. Hence, if we were to use PD,
we would underestimate the set of unreachable states. Even if we assume that the system
is already completely reachable (e.g. (11) holds), inequality (19) cannot be obtained with
PD. This means that we cannot identify the difficult to reach states with the help of the
eigenvalues of PD. In Section 2.3 we will see that P , rather than PD, enters the error bound
for the ROM.

Finally we note that the reachability Gramian PD of system (8) does not depend on the input
u. If a “noisy control” is used, this does not apply, since P depends on QM and hence on
the Lévy process M .
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Observability We conclude this section by introducing a deterministic observability con-
cept for the output equation

y(t, x0, 0) = Cx(t, x0, 0), t ≥ 0.

corresponding to (10) with M ≡ 0. We recall known facts from [1, Subsection 4.2.2] to
characterise the importance of certain initial states in the system dynamics since we are in a
situation without noise. We assume to have an unknown initial state x0 ∈ Rn in the following
observation problem and aim to reconstruct x0 from the observation y on the entire time
interval [0,∞).

Definition 2.6. An initial state x0 is not observable if y(·, x0, 0) ≡ 0 on [0,∞), i.e. it cannot
be reconstructed by the observation. Otherwise, x0 is called observable. A system a called
completely observable if every initial state is observable.

In order to determine the observability of a state, we consider the energy that is caused by
the observations of x0:∫ ∞

0

‖y(t, x0, 0)‖2
Rp dt = xT0

∫ ∞
0

eA
T tCTC eAt dt x0 = xT0Qx0, (21)

where we used that x(t, x0, 0) = eAt x0 and set Q =
∫∞

0
eA

T tCTC eAt dt. The observ-
ability Gramian Q exists due to the asymptotic stability of A and is the unique solution to

ATQ+QA = −CTC. (22)

The above relation is obtained by replacing A and BQMB
T in (16) and (17) by AT and

CTC , respectively.

From (21) we see that x0 is unobservable if and only if x0 ∈ kerQ. Hence, the system
is completely observable if and only if kerQ = {0}. Besides the unobservable states we
aim to remove the difficult to observe states from the system in order to obtain an accurate
ROM. The difficult to observe states are those producing only little observation energy, i.e.
the corresponding observations y are close to zero in the L2 sense. Using (21) again, the
difficult to observe states are contained in the eigenspaces spanned by the eigenvectors of
Q corresponding to the small eigenvalues.

2.2 Balancing related MOR

Before considering balanced truncation (BT) and singular perturbation approximation (SPA)
we summarise the general theory for balancing and how to find a balancing transformation.

States that are difficult to reach have large components in the span of the eigenvectors cor-
responding to small eigenvalues of the reachability Gramian P , cf. (19). Similarly, states that
are difficult to observe are the ones that have large components in the span of eigenvec-
tors corresponding to small eigenvalues of the observability Gramian Q, see (21). Hence in

10



order to produce accurate ROMs one eliminates states that are both difficult to reach and
difficult to observe. To this end we need to find a basis in which the dominant reachable
and observable states are the same, which is done by a simultaneous transformation of the
Gramians.

Let T ∈ Rn×n be a nonsingular matrix. Transforming the states using

x̂(t) = Tx(t),

the system (2) becomes

dx̂(t) = Âx̂(t)dt+ B̂dM(t), (23)

y(t) = Ĉx̂(t),

where Â = TAT−1, B̂ = TB, Ĉ = CT−1. The input-output map remains the same, only
the state, input and output matrices are transformed.

P and Q, the reachability and observability Gramians of the original systems which satisfy
(17) and (22) can be transformed into reachability and observability Gramians of the trans-
formed system P̂ = TPT T and Q̂ = T−TQT−1 (by multiplying (17) with T from the left
and T T from the right and (22) with T−T from the left and T−1 from the right). The Han-
kel singular values (HSVs) of σ1 ≥ . . . ≥ σn, where σi =

√
λi(PQ), i = 1, . . . , n for

the original and transformed system are the same. The above transformation is a balancing
transformation if the transformed Gramians are equal to each other and diagonal. Such a
transformation always exists if P,Q > 0 and can be obtained by choosing

T = Σ−
1
2UTLT and T−1 = KV Σ−

1
2 ,

where Σ = diag(σ1, . . . , σn) are the HSVs. Y , Z , L and K are computed as follows.
Let P = KKT , Q = LLT be square root factorisations of P and Q, then an SVD of
KTL = V ΣUT gives the required matrices. With this transformation P̂ = Q̂ = Σ.

Below, let T be the balancing transformation as stated above, then we partition the coeffi-
cients of the balanced realisation as follows:

TAT−1 =

[
A11 A12

A21 A22

]
, TB =

[
B1

B2

]
, CT−1 =

[
C1 C2

]
, (24)

where A11 ∈ Rr×r etc. Furthermore, setting x̂ =

[
x1

x2

]
, where x1(t) ∈ Rr, we obtain

the transformed partitioned system[
dx1(t)
dx2(t)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
dt+

[
B1

B2

]
dM(t), (25)

y(t) =
[
C1 C2

] [ x1(t)
x2(t)

]
. (26)

11



In this system, the difficult to reach and observe states are represented by x2, which corre-
spond to the smallest HSVs σr+1, . . . , σn, but of course r has to be chosen such that the
neglected HSVs are small (σr+1 � σr).

We discuss two methods (BT and SPA) to neglect x2 leading to a reduced system of the
form

dxr(t) = Arxr(t)dt+BrdM(t), (27)

yr(t) = Crxr(t),

where Ar ∈ Rr×r, Br ∈ Rr×m and Cr ∈ Rp×r (r � n).

Balanced truncation For BT the second row in (25) is truncated and the remaining x2

components in the first row and in (26) are set to zero. This leads to reduced coefficients

(Ar, Br, Cr) = (A11, B1, C1),

which is similar to the deterministic case. The next lemma states that BT preserves asymp-
totic stability, which is known from the deterministic case, see [1, Theorem 7.9].

Lemma 2.7. Let the Gramians P andQ be positive definite and σr 6= σr+1, then σ (Aii) ⊂
C− for i = 1, 2, i.e. A11 and A22 are asymptotically stable.

The above lemma is vital for the error bound analysis in Section 2.3.

Singular perturbation approximation Instead of setting x2 ≡ 0, one assumes ẋ2 ≡ 0.
This idea originates from the deterministic case, where it can be observed that x2 are the
fast variables meaning that they are in a steady state after a short time. In our framework,
the classical derivative of x2 does not exist but we proceed with setting dx2 ≡ 0 in (25).
This yields an algebraic constraint

0 =

∫ t

0

[
A21 A22

] [ x1(s)
x2(s)

]
ds+B2M(t) =: R(t), (28)

where we assumed zero initial conditions. Applying Ito’s product formula (56) to every sum-
mand of RTR = R2

1 + . . .+R2
n−r (Ri is the ith component of R) yields

RT (t)R(t) =

∫ t

0

dRT (s)R(s) +

∫ t

0

RT (s)dR(s) +
n−r∑
i=1

[Ri, Ri]t.

Inserting the differential of R and exploiting that the expectation of the Ito integrals is zero,
gives

E
[
RT (t)R(t)

]
= E

[∫ t

0

aT (s)R(s)ds

]
+ E

[∫ t

0

RT (s)a(s)ds

]
+ E

n−r∑
i=1

[Ri, Ri]t,

12



where we set a(s) = A21x1(s) + A22x2(s). Setting R ≡ 0 gives 0 = E
∑n−r

i=1 [Ri, Ri]t.
Since Ri and eTi B2M have the same martingale parts and the same jumps, their compen-
sator processes coincide by (57) and hence

0 = E
n−r∑
i=1

[Ri, Ri]t = E
n−r∑
i=1

[eTi B2M, eTi B2M ]t.

Applying Ito’s product formula to (B2M)TB2M and taking the expectation, we have

0 = E
n−r∑
i=1

[eTi B2M, eTi B2M ]t = E(B2M)TB2M

which implies B2M = 0 P-a.s. Using this simplification in (28) yields

x2(t) = −A−1
22 A21x1(t), (29)

which is well-defined by Lemma 2.7 and which we use in the first row of (25) and in (26).
This leads to reduced order coefficients

(Ar, Br, Cr) = (A11 − A12A
−1
22 A21, B1, C1 − C2A

−1
22 A21). (30)

This reduced model is different to the deterministic case, that requiresBr = B1−A12A
−1
22 B2

with an additional term in the output equation which does not depend on the state, see [19,
Section 2]. In the deterministic case, the ROM is balanced [19], which is not true here due
to the modification. Like in the deterministic case, the observability Gramian is given by
Qr = Σ1 = diag(σ1, . . . , σr). This property is obtained by multiplying (34) with Â−T (Â
is the matrix of the balanced system) from the left and with Â−1 from the right and then
evaluating the left upper block of the resulting equation, see also (43). The following exam-
ple shows that the reduced order reachability is Pr is not equal to Σ1 in general which is
different from the deterministic case.

Example 2.8. Let M be a standard Wiener process, then QM = I and set

A =

(
−2 − 4

3
− 4

5

− 4
3
−1 − 2

3

− 4
5
− 2

3
− 1

2

)
and CT = B =

(
4
2
1

)
.

A is asymptotically stable and the system is balanced since P = Q = diag(4, 2, 1). We fix
the reduced order dimension to r = 2 and compute the reduced order coefficients by SPA in
(30). We know that Qr = diag(4, 2) but the reachability Gramian is up to the digits shown
Pr = ( 10.1604 2.5668

2.5668 11.8396 ) which we computed numerically. This implies that the HSVs are not
a subset of the original ones anymore. Here, they are 6.5822 and 4.5822.

We conclude this Section by a stability result from [19].

Lemma 2.9. Let the Gramians P and Q be positive definite and σr 6= σr+1, then we have
σ
(
Aii − AijA−1

jj Aji
)
⊂ C− for i, j = 1, 2 with i 6= j.

The inverses in Lemma 2.9 exist because of the asymptotic stability of the matrices A11 and
A22, see Lemma 2.7.
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2.3 Error bounds for BT and SPA

Before we specify the error bounds for BT and SPA, we provide a general error bound com-
paring the outputs of (9) and (27) with asymptotically stable matrices A, Ar and initial con-
ditions x0 = 0, xr,0 = 0. These outputs are then given by Ornstein-Uhlenbeck processes

y(t) = Cx(t) = C

∫ t

0

eA(t−s) BdM(s),

yr(t) = Crxr(t) = Cr

∫ t

0

eAr(t−s) BrdM(s)

as mentioned in [2], see also [4, 27]. Using these representations and Cauchy’s inequality
as well as Ito’s isometry (see [22]), we obtain

E ‖y(t)− yr(t)‖Rp ≤
(
E ‖y(t)− yr(t)‖2

Rp
) 1

2

=

(
E
∥∥∥∥∫ t

0

(
C eA(t−s) B − Cr eAr(t−s)Br

)
dM(s)

∥∥∥∥2

Rp

) 1
2

=

(∫ t

0

∥∥∥(C eA(t−s) B − Cr eAr(t−s) Br

)
Q

1
2
M

∥∥∥2

F
ds

) 1
2

,

where QM is the covariance matrix of M . Substitution and taking limits yields

E ‖y(t)− yr(t)‖Rp ≤
(∫ ∞

0

∥∥∥(C eAsB − Cr eArsBr

)
Q

1
2
M

∥∥∥2

F
ds

) 1
2

.

Using the definition of the Frobenius norm and the linearity of the trace, we have

sup
t∈[0,T ]

E ‖y(t)− yr(t)‖Rp ≤
(
tr
(
CPCT

)
+ tr

(
CrPrC

T
r

)
− 2 tr

(
CPgC

T
r

)) 1
2 , (31)

where P =
∫∞

0
eAsBQMB

T eA
T s ds is the reachability Gramian of the original system

satisfying (17), Pr =
∫∞

0
eArsBrQMB

T
r eA

T
r s ds the one of the reduced system satisfying

ArPr + PrA
T
r = −BrQMB

T
r

and Pg =
∫∞

0
eAsBQMB

T
r eA

T
r s ds is the solution to

APg + PgA
T
r = −BQMB

T
r . (32)

Equation (32) is a consequence of Proposition 2.3 with A1 = A and A2 = Ar and the
fact that eAsBQMB

T
r eA

T
r s → 0 if s → ∞ due to the asymptotic stability of A and Ar.

The matrices P, Pr and Pg in the bound in (31) are all well-defined because A and Ar
are asymptotically stable. The error bound in (31) holds for both BT and SPA since both
approaches preserve asymptotic stability, see Lemmas 2.7 and 2.9.
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For both BT and SPA the representation in (31) can be used for practical computations of
the error bound. The Gramian P is already available since it is required in the balancing
procedure. The reduced model Gramian Pr is computationally cheap because it is low di-
mensional assuming that we fix a small ROM dimension. The same is true for Pg since it
has only a few columns which makes the solution to (32) easily accessible. Since the error
bound (31) is computationally cheap, it can be computed for several ROM dimensions and
hence be used to find a suitable r.

In the next two Theorems we specify the general error bound in (31) for both BT and SPA and
represent it in terms of the truncated HSVs σr+1, . . . , σn of the system. Using the balanced
realisation (24) of the original system with P̂ = Q̂ = Σ and its corresponding partition, we
have[

A11 A12

A21 A22

][
Σ1

Σ2

]
+

[
Σ1

Σ2

][
AT11 AT21

AT12 AT22

]
=−

[
B̃1B̃

T
1 B̃1B̃

T
2

B̃2B̃
T
1 B̃2B̃

T
2

]
(33)[

AT11 AT21

AT12 AT22

][
Σ1

Σ2

]
+

[
Σ1

Σ2

][
A11 A12

A21 A22

]
=−

[
CT

1 C1 CT
1 C2

CT
2 C1 CT

2 C2

]
(34)

where

[
B̃1

B̃2

]
=

[
B1Q

1
2
M

B2Q
1
2
M

]
, Σ1 = diag(σ1, . . . , σr) and Σ2 = diag(σr+1, . . . , σn).

Theorem 2.10. Let yBT be the output of the reduced order system obtained by BT, then
under the assumptions of Lemma 2.7, we have

sup
t∈[0,T ]

E ‖y(t)− yBT (t)‖Rp ≤
(
tr(Σ2(B2QMB

T
2 + 2Pg,2A

T
21))
) 1

2 ,

where Pg,2 are the last n− r rows of TPg with T being the balancing transformation.

Proof. Evaluating the left and right upper block of (34) yields

AT11Σ1 + Σ1A11 = −CT
1 C1 (35)

AT21Σ2 + Σ1A12 = −CT
1 C2. (36)

From (31) the error bound has the form

ε =
√

tr(CPCT ) + tr(C1PrCT
1 )− 2 tr(CPgCT

1 ), (37)

since Cr = C1. Using the balancing transformation T and the partition of CT−1 in (24),
we obtain that tr(CPCT ) = tr(CT−1TPT T (CT−1)T ) = tr(CT−1Σ(CT−1)T ) =
tr(C1Σ1C

T
1 ) + tr(C2Σ2C

T
2 ). Now, the left upper block of (33) is

A11Σ1 + Σ1A
T
11 = −B1QMB

T
1 (38)
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such that Pr = Σ1. Using the partitions of CT−1 and TPg =

[
Pg,1
Pg,2

]
, we obtain

tr(CPgC
T
1 ) = tr(CT−1TPgC

T
1 ) = tr(C1Pg,1C

T
1 ) + tr(C2Pg,2C

T
1 ). Inserting these re-

sults into (37) gives

ε2 = 2 tr(C1Σ1C
T
1 ) + tr(C2Σ2C

T
2 )− 2 tr(C1Pg,1C

T
1 )− 2 tr(C2Pg,2C

T
1 ). (39)

Using tr(C2Pg,2C
T
1 ) = tr(Pg,2C

T
1 C2) and substituting (36) yields

tr(C2Pg,2C
T
1 ) = − tr(Pg,2(AT21Σ2 + Σ1A12)) = − tr(Σ2Pg,2A

T
21)− tr(Σ1A12Pg,2).

Multiplying (32) with the balancing transformation from the left and using the partitions of
TAT−1 and TB from (24) yields[

A11 A12

A21 A22

] [
Pg,1
Pg,2

]
+

[
Pg,1
Pg,2

]
AT11 = −

[
B1

B2

]
QMB

T
1 .

With the first row of this equation, A11Pg,1 + Pg,1A
T
11 +B1QMB

T
1 = −A12Pg,2, we have

− tr(C2Pg,2C
T
1 ) = − tr(Σ1(B1QMB

T
1 + A11Pg,1 + Pg,1A

T
11)) + tr(Σ2Pg,2A

T
21),

and substituting (35), we obtain

tr(Σ1(A11Pg,1 + Pg,1A
T
11)) = tr(Pg,1(Σ1A11 + AT11Σ1)) = − tr(Pg,1C

T
1 C1),

so that− tr(C2Pg,2C
T
1 ) = tr(Σ2Pg,2A

T
21)− tr(Σ1B1QMB

T
1 ) + tr(C1Pg,1C

T
1 ). Inserting

this result into (39) gives

ε2 = tr(Σ2(CT
2 C2 + 2Pg,2A

T
21)) + 2 tr(Σ1C

T
1 C1)− 2 tr(Σ1B1QMB

T
1 ).

With (35) and (38), and the properties of the trace function we obtain

− tr(Σ1B1QMB
T
1 ) = tr(Σ1(A11Σ1 + Σ1A

T
11)) = − tr(Σ1C

T
1 C1).

Similarly tr(Σ2C
T
2 C2)) = tr(Σ2B2QMB

T
2 )) can be shown using the right lower blocks of

(33) and (34). Hence,

ε2 = tr(Σ2(B2QMB
T
2 + 2Pg,2A

T
21)),

which gives the result.

Theorem 2.11. Let ySPA be the output of the reduced order system obtained by SPA, then
under the assumptions of Lemma 2.9, we have

sup
t∈[0,T ]

E ‖y(t)− ySPA(t)‖Rp ≤
(
tr(Σ2(B2QMB

T
2 −2(A22Pg,2 + A21Pg,1)(A−1

22 A21)T ))
) 1

2,

where Pg,1 are the first r and Pg,2 the last n − r rows of TPg with T being the balancing
transformation.
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Proof. Let TAT−1 = Â =

[
A11 A12

A21 A22

]
, then, since A11, A22 are invertible by Lemma

2.7, its inverse is given in block form

Â−1

[
Ā−1 −A−1

11 A12(A22 − A21A
−1
11 A12)−1

−A−1
22 A21Ā

−1 (A22 − A21A
−1
11 A12)−1

]
, (40)

where Ā = A11 − A12A
−1
22 A21. If we multiply (34) with Â−T from the left hand side and

select the left and right upper block of this equation, we obtain

Σ1 + Ā−T (Σ1A11 − AT21A
−T
22 Σ2A21) = −Ā−T C̄TC1,

Ā−T (Σ1A12 − AT21A
−T
22 Σ2A22) = −Ā−T C̄TC2,

where C̄ = C1 − C2A
−1
22 A21 and thus

ĀTΣ1 + Σ1A11 − AT21A
−T
22 Σ2A21 = −C̄TC1, (41)

Σ1A12 − AT21A
−T
22 Σ2A22 = −C̄TC2. (42)

Furthermore, multiplying (34) with Â−T from the left and with Â−1 from the right, the resulting
left upper block of the equation is

Ā−TΣ1 + Σ1Ā
−1 = −Ā−T C̄T C̄Ā−1

and thus

ĀTΣ1 + Σ1Ā = −C̄T C̄. (43)

We define ε :=
(
tr
(
CPCT

)
+ tr

(
C̄PrC̄

T
)
− 2 tr

(
CPgC̄

T
)) 1

2 which is the error bound
for SPA. From the proof of Theorem 2.10 we know that the following holds

tr
(
CPCT

)
= tr

(
C1Σ1C

T
1

)
+ tr

(
C2Σ2C

T
2

)
= tr

(
Σ1B1QMB

T
1

)
+ tr

(
Σ2B2QMB

T
2

)
.

By (43) and the definition of the reachability equation of the ROM, we have

tr
(
C̄PrC̄

T
)

= tr
(
PrC̄

T C̄
)

= − tr
(
Pr(Ā

TΣ1 + Σ1Ā)
)

= − tr
(
Σ1(PrĀ

T + ĀPr)
)

= tr
(
Σ1B1QMB

T
1

)
.

This leads to

ε2 = 2 tr
(
Σ1B1QMB

T
1

)
+ tr

(
Σ2B2QMB

T
2

)
− 2 tr

(
CPgC̄

T
)
.

We multiply (32) with the balancing transformation T from the left (here Ar = Ā) and use

the partitions of TAT−1, TB from (24) and the partition of TPg =

[
Pg,1
Pg,2

]
. Thus,

[
A11 A12

A21 A22

] [
Pg,1
Pg,2

]
+

[
Pg,1
Pg,2

]
ĀT = −

[
B1

B2

]
QMB

T
1 . (44)
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We obtain tr
(
CPgC̄

T
)

= tr
(
CT−1TPgC̄

T
)

= tr
(
C1Pg,1C̄

T
)

+ tr
(
C2Pg,2C̄

T
)

using
the partition of CT−1 in (24). With (42) we obtain

tr(C2Pg,2C̄
T ) = − tr(Pg,2(Σ1A12 − AT21A

−T
22 Σ2A22))

= − tr(Σ1A12Pg,2) + tr(Σ2A22Pg,2A
T
21A

−T
22 )).

Inserting the upper block of (44) leads to

tr(C2Pg,2C̄
T ) = tr(Σ2A22Pg,2A

T
21A

−T
22 ) + tr(Σ1(B1QMB

T
1 + Pg,1Ā

T + A11Pg,1)).

Using (41) and the properties of the trace function we have

tr(Σ1(Pg,1Ā
T + A11Pg,1)) = − tr(Pg,1C̄

TC1 − Pg,1(A−1
22 A21)TΣ2A21).

Consequently,

tr
(
CPgC̄

T
)

= tr(Σ2A22Pg,2A
T
21A

−T
22 ) + tr(Σ1B1QMB

T
1 )− tr(Σ2A21Pg,1(A−1

22 A21)T )

holds and hence

ε2 = tr
(
Σ2B2QMB

T
2

)
− 2 (tr(Σ2A22Pg,2(A−1

22 A21)T )− tr(Σ2A21Pg,1(A−1
22 A21)T )),

which provides the required result.

The error bound representations in Theorems 2.10 and 2.11 depend on the n − r smallest
HSVs σr+1, . . . , σn. If the corresponding truncated components are unimportant, i.e. they
are difficult to reach and observe, then the values σr+1, . . . , σn are small and consequently
the error bound is small. Hence, the ROM is of good quality.

The error bounds in Theorems 2.10 and 2.11 can be used to find a suitable reduced order
dimension r. Small HSVs σr+1, . . . , σn for fixed r would guarantee a small error.

Note that, if QM = I , as for example in the standard Wiener case, then the error bound
in Theorem 2.10 coincides with the H2-error bound in the deterministic case when using a
normalised control, see [1, Lemma 7.13].

The next section provides a particular SDE to which we will apply the theory developed in
this section.

3 Wave equations controlled by Lévy noise

In this section, we deal with a setting that covers the SPDE with its output in (6)-(7), a damped
wave equation with additive noise which can formally be interpreted as

Z̈(t) + αŻ(t) + ÃZ(t) + B̃u(t) + D̃1Z(t−) ˙̃M1(t) + D̃2Ż(t−) ˙̃M2(t) = 0, (45)
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with D̃i = 0 (i = 1, 2), α > 0 and the kth component of the control uk ≡ Ṁk, k ∈
{1, . . . ,m}. Here, M1, . . . ,Mm are the components of an Rm-valued Lévy processes M
that is square integrable and has mean zero.

This is in contrast to the setting in [25] where (45) with multiplicative Lévy noise was consid-
ered, e.g. Di 6= 0 linear bounded operators and u anm-dimensional stochastic control, M̃1

and M̃2 uncorrelated scalar Lévy processes. For the stability analysis of the uncontrolled
equation (45) with Wiener noise (u ≡ 0) we refer to [7].

Since Lévy noise is no feasible control in the framework in [25], this setting requires further
analysis. We transform damped wave equation with additive noise into a first order SPDE
and define the corresponding solution in Section 3.1, following the approach in [7, 25]. In
Section 3.2, we explain how the resulting first order SPDE can be approximated by a spectral
Galerkin scheme. We refer to [9, 13, 17, 25], where similar techniques were applied.

3.1 Setting and transformation into a first order SPDE

Let M = (M1, . . . ,Mm)T be square integrable Lévy processes with zero mean that takes
values in Rm. Moreover, M is defined on a complete probability space (Ω,F, (Ft)t≥0,P),1

it is adapted to the filtration (Ft)t≥0 and its increments M(t+ h)−M(t) are independent
of Ft for t, h ≥ 0.

Let Ã : D(Ã) → H̃ be a self adjoint and positive definite operator on a separable Hilbert
space H̃ and let {h̃k}k∈N be an orthonormal basis of eigenvectors of Ã for H̃ ,

Ãh̃k = λ̃kh̃k, (46)

where 0 < λ̃1 ≤ λ̃2 ≤ . . . are the corresponding eigenvalues. We denote the well-
defined square root of Ã by Ã

1
2 . D(Ã

1
2 ) equipped with the inner product 〈x, y〉

D(Ã
1
2 )

=〈
Ã

1
2x, Ã

1
2y
〉
H̃

represents a separable Hilbert space as well.

The (symbolic) second order SPDE we consider is given by

Z̈(t) + αŻ(t) + ÃZ(t) +
m∑
k=1

B̃kṀk(t) = 0 (47)

with initial conditions Z(0) = z0, Ż(0) = z1, α > 0 and output

Y(t) = C
(

Z(t)

Ż(t)

)
, t ≥ 0. (48)

We assume B̃k ∈ H̃ and C ∈ L(D(Ã
1
2 ) × H̃,Rp). Using the separable Hilbert space

H = D(Ã
1
2 )× H̃ with the inner product〈(

Z̃1

Z̃2

)
,
(
Z̄1

Z̄2

)〉
H

=
〈
Ã

1
2 Z̃1, Ã

1
2 Z̄1

〉
H̃

+
〈
Z̃2, Z̄2

〉
H̃
,

1We assume that (Ft)t≥0 is right-continuous and that F0 contains all P null sets.
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we transform this second order system into a first order system following the approach in
[7, 25]. The system (47)-(48) can be expressed as:

dX(t) = AX(t)dt+
m∑
k=1

BkdMk(t), X(0) = X0 =

(
z0

z1

)
, (49)

Y(t) = CX(t), t ≥ 0, (50)

where

X(t) =

(
Z(t)

Ż(t)

)
∈ H, A =

[
0 I

−Ã −αI

]
and Bk =

[
0

−B̃k

]
∈ H.

So far, we only worked with symbolic equation, since the classical derivative of a Lévy pro-
cess does not exist in general. The next lemma from [23] provides a stability result and is
vital to define a càdlàg mild solution of (49).

Lemma 3.1. For every α > 0 the linear operator A with domainD(Ã)×D(Ã
1
2 ) generates

an exponential stable contraction semigroup (S(t))t≥0 with

‖S(t)‖L(H) ≤ e−ct, where c ≥ 2αλ̃1

4λ̃1 + α(α +
√
α2 + 4λ̃1)

.

We use this result to define the solution to (49).

Definition 3.2. An (Ft)t≥0-adapted càdlàg process (X(t))t≥0 is called mild solution to (49)
if for all t ≥ 0

X(t) = S(t)X0 +
m∑
k=1

∫ t

0

S(t− s)BkdMk(s). (51)

We refer to [22] for the definition of the Ito integral in (51). For the finite dimensional case,
the definition of an Ito integral with respect to Lévy processes can be found in [2] and Ito
integrals with respect to martingales are defined in [18].

If we set H̃ = L2([0, π]), D(Ã
1
2 ) = H1

0 ([0, π]), Ã = − ∂2

∂ζ2
, B̃k = −fk ∈ L2([0, π]) and

the output operator C =

[
Ĉ 0

0 Ĉ

]
with Ĉx = 1

2ε

∫ π
2

+ε
π
2
−ε x(ζ)dζ (x ∈ L2([0, π]) in system

(47)-(48) then we obtain the system in (6)-(7), which is therefore well-defined in the mild
sense (51).

3.2 Numerical approximation

We study a spectral Galerkin scheme to approximate the mild solution of (49) with output
(50), similar to the approach in [9, 13, 17, 25] (mainly for SPDEs with Wiener noise). This
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approximation is based on a particular choice of an orthonormal basis {hk}k∈N of H , given
by

h2i−1 = λ̃
− 1

2
i

[
h̃i
0

]
and h2i =

[
0

h̃i

]
for i ∈ N, (52)

where {h̃k}k∈N and {λ̃k}k∈N are defined in (46), see [25]. In (6)-(7), we have Ã = − ∂2

∂ζ2

on [0, π]. In this case h̃k =
√

2
π

sin(k·) and λ̃k = k2 for k ∈ N.

To approximate the H-valued process X in (49), we construct a sequence (Xn)n∈N of finite
dimensional adapted càdlàg processes with values inHn = span {h1, . . . , hn}, defined by

dXn(t) = AnXn(t)dt+
m∑
k=1

Bk,ndMk(t), Xn(0) = X0,n, (53)

yn(t) = CXn(t) t ≥ 0,

where we set

� Anx =
∑n

k=1 〈Ax, hk〉H hk ∈ Hn for all x ∈ D(A),

� Bk,n =
∑n

k=1 〈Bk, hk〉H hk ∈ Hn for k ∈ {1, . . . ,m},

� X0,n =
∑n

k=1 〈X0, hk〉H hk ∈ Hn.

For the mild solution to (53), let (Sn(t))t≥0 be a C0-semigroup on Hn given by

Sn(t)x =
n∑
k=1

〈S(t)x, hk〉H hk

for all x ∈ H . It is generated by An such that the mild solution of equation (53) is

Xn(t) = Sn(t)X0,n +

∫ t

0

Sn(t− s)Bk,ndMk(s).

Since An is bounded, the C0-semigroup on Hn is represented by Sn(t) = eAnt, t ≥ 0. We
formulate the main result of this section, which uses ideas from [9, 13, 17, 25] and is proved
in Appendix B.

Theorem 3.3. The mild solution Xn of equation (53) approximates the mild solution X of
equation (49), i.e.

E ‖Xn(t)− X(t)‖2
H → 0

for n → ∞ and t ≥ 0. This implies the convergence of the corresponding sequence of
outputs E ‖yn(t)− Y(t)‖2

Rp → 0.
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In the following, we make use of the property that the mild and the strong solution of (53)
coincide, since we are in finite dimensions.

We write the output yn of the Galerkin system as an expression depending on the Fourier
coefficients of the Galerkin solution Xn. The coefficients of yn are

y`n(t) = 〈yn(t), e`〉Rp = 〈CXn(t), e`〉Rp =
n∑
k=1

〈Chk, e`〉Rp 〈Xn(t), hk〉H

for ` = 1, . . . , p, where e` is the `-th unit vector in Rp. We set

x(t) = (〈Xn(t), h1〉H , . . . , 〈Xn(t), hn〉H)T and C = (〈Chk, e`〉Rp) `=1,...,p
k=1,...,n

and obtain yn(t) = Cx(t). The components xi(t) := 〈Xn(t), hi〉H of x(t) satisfy

dxi(t) = 〈AnXn(t), hi〉H dt+
m∑
k=1

〈Bk,n, hi〉H dMk(t).

Using the Fourier series representation of Xn, we obtain

dxi(t) =
n∑
j=1

〈Anhj, hi〉H xj(t)dt+
m∑
k=1

〈Bk,n, hi〉H dMk(t)

=
n∑
j=1

〈Ahj, hi〉H xj(t)dt+
m∑
k=1

〈Bk, hi〉H dMk(t).

Hence, the vector of Fourier coefficients x is given by

dx(t) = Ax(t)dt+
m∑
k=1

bkdMk(t), (54)

where A =
(
〈Ahj, hi〉H

)
i,j=1,...,n

= diag(E1, . . . , En
2
) with E` =

(
0
√
λ̃`

−
√
λ̃` −α

)
(` =

1, . . . , n
2

), and λ̃` the eigenvalues of Ã, and bk = (〈Bk, hi〉H)i=1,...,n for k = 1, . . . ,m.
We will often make use of the compact form of the SDE in (54) which is

dx(t) = Ax(t)dt+BdM(t), (55)

where M = (M1, . . . ,Mm)T and B = [b1, . . . , bm].

Applying the spectral Galerkin method to the system (6)-(7) the matrices of the semi-discretised
system (54) are given by A = diag

(
E1, . . . , En

2

)
with E` =

(
0 `
−` −α

)
and B by its

columns bi = (〈Bi, hk〉H)k=1,...,n with

〈Bi, h2`−1〉H = 0, 〈Bi, h2`〉H =

√
2

π
〈fi, sin(`·)〉L2([0,π]) ,
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and C = [Ch1, . . . ,Chn] with

Ch2`−1 =
(

1√
2π`2ε

[
cos
(
`
(
π
2
− ε
))
− cos

(
`
(
π
2

+ ε
))]

0
)T

,

Ch2` =
(

0 1√
2π`ε

[
cos
(
`
(
π
2
− ε
))
− cos

(
`
(
π
2

+ ε
))])T

,

where we assume n to be even and ` = 1, . . . , n
2

.
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Figure 1: Galerkin solution to the stochastic damped wave equation in (6).

In Figure 1 we plot the numerical solution to the stochastic damped wave equation for
ζ ∈ [0, π] and in the time interval [0, π] where we set α = 2, n = 1000 and m = 2
(e.g. 2 stochastic inputs). The weighting functions for the two inputs are f1 = 2 exp(−(x−
π/2)2) and f2 = sin(x) exp(−(x − π/2)2). The noise processes are M1(t) = W (t)√

2

and M2(t) =
∑N(t)

i=1 Ki is a compound Poisson process, where (N(t))t≥0 is a Poisson
process with parameter equal to 1, Ki ∼ U(−

√
6,
√

6) are independent uniformly dis-
tributed jumps and W is a standard Wiener process. M1 and M2 are independent. The
plot in Figure 1 shows a particular realisation of the solution to (6) at 6 specific times
t ∈ {0.9, 1.2, 1.7, 2.1, 2.46, 2.93}. We see that the string moves up and down as expected
due to the nonzero (stochastic) input. We observe that the third snapshot is taken after a
jump occured in stochastic process. The corresponding output, namely both the position
and the velocity in the middle of the string, is shown in Figure 2. In the plot for the velocity
the noise generated by the Lévy process can be seen. The trajectory of the velocity is im-
pacted by Lévy noise with jumps, where the velocity (e.g. the impact by wind) is randomly
increased or reduced. The trajectory for the position of the cable in Figure 2 is smoother as
it is the integral of the velocity. Finally, Figure 3 shows the velocity versus the position of the
string, for the same sample path, in a phase portrait. The four jumps are clearly visible.
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Figure 2: Components of the output (7) (position and velocity in the middle of the string) of
stochastic damped wave equation in (6).
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Figure 3: Output of stochastic damped wave equation in (6)-(7) in the phase plane.

4 Numerical examples for MOR

We consider the spectral Galerkin discretisation of the second order damped wave equation
which we discussed in detail in Section 3, and in particular, the example in (6)-(7) with two
stochastic inputs and two outputs, namely position and velocity of the middle of the string.
We set α = 2 and choose the weighting functions fi and the noise processesMi (i = 1, 2)
as in Figure 1. We fix the state dimension to n = 1000 and reduce the Galerkin solution by
BT and SPA. For computing the trajectories of the SDE we use the Euler-Maruyama method
(see, e.g. [14, 15]). Figures 4 and 5 show the logarithmic errors for the position y1 and the
velocity y2 of the middle of the string, if MOR by BT is applied to the wave equation with
stochastic inputs when reduced models of dimension 6 and 24, respectively, are computed.
The first two plots in each of the figures show the logarithmic mean error for both the position
and the velocity. One observation is that the position is generally more accurate than the
velocity (about one order of magnitude here), since the trajectories are smoother. Moreover,
comparing the expected values of the errors of the reduced model of dimension r = 6
(first two plots in Figure 4) with the one of dimension r = 24 (first two plots in Figure 5) it
can be seen that the latter ones are more accurate (an improvement of about one order of
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Figure 4: Logarithmic errors of BT for position y1 and velocity y2 with r = 6.
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Figure 5: Logarithmic errors of BT for position y1 and velocity y2 with r = 24.

magnitude) as one would expect. The last two plots in Figures 4 and 5 show the logarithmic
errors for position and velocity for one particular trajectory, which is the same as the one
for the sample we considered in Section 3. Figures 6 and 7 show the logarithmic errors for
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Figure 6: Logarithmic errors of SPA for position y1 and velocity y2 with r = 6.

the position y1 and the velocity y2 of the middle of the string, if MOR by SPA is applied
to the wave equation with stochastic inputs when reduced models of dimension 6 and 24,
respectively, are computed. Again, the first two plots show the mean errors while the last
two plots show the errors in particular trajectories. We observe that the error in the position
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Figure 7: Logarithmic errors of SPA for position y1 and velocity y2 with r = 24.

is smaller than the error in the velocity, and, the error is smaller if a larger dimension of the
reduced order model is used.

Finally, we compare the error bounds for BT (see Theorem 2.10) and SPA (see Theorem
2.11) with the worst case mean errors, that is

sup
t∈[0,π]

E ‖y(t)− yr(t)‖Rp

for both methods in Table 1, where y =
(
y1 y2

)T
is the full output of the original model and

yr the ROM output. First, as expected both mean errors and error bounds are getting smaller

Dim. ROM Error BT Error bound BT Error SPA Error bound SPA

2 7.6387e-02 9.3245e-02 1.0852e-01 1.2293e-01
4 8.5160e-03 1.2180e-02 8.6050e-03 1.2185e-02
8 5.1560e-03 9.6638e-03 5.6720e-03 9.7072e-03
16 1.8570e-03 6.6764e-03 2.4970e-03 6.7382e-03
32 6.7050e-04 4.3849e-03 1.4410e-03 4.9106e-03
64 9.9130e-05 2.3491e-03 3.1440e-04 2.6354e-03

Table 1: Error and error bounds for both BT and SPA and several dimensions of the reduced
order model (ROM).

the larger the size of the ROM. Moreover, both error bounds are rather tight and close to the
actual error of the ROM, e.g. the bounds, which are worst case bounds also provide a good
prediction of the true time domain error. We also note that BT performs better than SPA, both
in actually computed mean errors as well as in terms of the error bounds.
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5 Conclusions

We have presented theory for balancing related model order reduction (MOR) applied to
linear stochastic differential equations (SDEs) with additive Lévy noise. In particular we ex-
tended the concepts of reachability and observability to stochastic systems and formulated a
new reachability Gramian. We then showed how balancing related MOR which is well known
for deterministic systems can be extended to SDEs with additive Lévy noise, e.g. leads to
the solution of a Lyapunov equation (with a slightly different right hand side). We proved
a general error bound for reduced (asymptotically stable) systems in this setting and then
gave specific bounds for balanced truncation (BT) and singular perturbation approximation
(SPA) which depended on the neglected (small) Hankel singular values of the linear system.
We finally applied our theory to a second order damped wave equation, discretised using a
spectral Galerkin method, and controlled by Lévy noise. The numerical results showed that
MOR can be applied successfully and that errors for both BT and SPA are small, and the
error bounds tight.

A Ito calculus

Let all stochastic processes appearing in this section be defined on a filtered probability
space (Ω,F, (Ft)t≥0,P)2. We denote the set of all càdlàg square integrable R-valued mar-
tingales with respect to (Ft)t≥0 by M2(R).

Let Z1, Z2 be scalar semimartingales. We set ∆Zi(s) := Zi(s)−Zi(s−) with Zi(s−) :=
limt↑s Zi(t) for i = 1, 2. Then the Ito product formula

Z1(t)Z2(t) = Z1(0)Z2(0) +

∫ t

0

Z1(s−)dZ2(s) +

∫ t

0

Z2(s−)dZ1(s) + [Z1, Z2]t

(56)

for t ≥ 0 holds, see [20] or [2] for the special case of Lévy-type integrals. By [16, Theorem
4.52], the compensator process [Z1, Z2] is given by

[Z1, Z2]t = 〈M c
1 ,M

c
2〉t +

∑
0≤s≤t

∆Z1(s)∆Z2(s) (57)

for t ≥ 0, where M c
1 , M c

2 ∈ M2(R) are the continuous martingale parts of Z1 and Z2 (cf.
[16, Theorem 4.18]). The process 〈M c

1 ,M
c
2〉 is a uniquely defined angle bracket process

that ensures that M c
1M

c
2 −〈M c

1 ,M
c
2〉 is an (Ft)t≥0- martingale, see [20, Proposition 17.2].

As a simple consequence of (56), we have:

2(Ft)t≥0 shall be right continuous and complete.
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Corollary A.1. Let Y be an Rd-valued and Z be an Rn-valued semimartingale, then we
have

Y (t)ZT (t) = Y (0)ZT (0) +

∫ t

0

dY (s)ZT (s−) +

∫ t

0

Y (s−)dZT (s) + ([Yi, Zj]t) i=1,...,d
j=1,...,n

for all t ≥ 0.

Proof. Considering the stochastic differential of the ij-th component of the matrix-valued
process Y (t)ZT (t), t ≥ 0, and using (56) gives the result, see also [6].

B Proof of Theorem 3.3

Using ‖∑q
k=1 ak‖

2

H ≤ q
∑q

k=1 ‖ak‖
2
H for ak ∈ H , we obtain

E ‖X(t)−Xn(t)‖2
H ≤ 2E ‖S(t)X0 − Sn(t)X0,n‖2

H

+ 2m
m∑
k=1

E
∥∥∥∥∫ t

0

(S(t− s)Bk − Sn(t− s)Bk,n)dMk(s)

∥∥∥∥2

H

.

Ito’s isometry (see e.g. [22]) yields that the right hand side can be bounded by the term
2E ‖S(t)X0 − Sn(t)X0,n‖2

H + 2m
∑m

k=1

∫ t
0
‖(S(t− s)Bk − Sn(t− s)Bk,n)‖2

H ds ck,
where ck = E [M2

k (1)]. Since (S(t))t≥0 is a contraction semigroup, we have

E ‖S(t)X0 − Sn(t)X0,n‖2
H ≤ 2E ‖S(t)X0 − Sn(t)X0‖2

H + 2E ‖Sn(t)X0 − Sn(t)X0,n‖2
H

≤ 2E ‖S(t)X0 − Sn(t)X0‖2
H + 2E ‖X0 −X0,n‖2

H . (58)

By the representation Sn(t)x =
∑n

i=1 〈S(t)x, hi〉H hi (x ∈ H) and Lebesgue’s theorem,
the bound in (58) tends to zero for n→∞. For k ∈ {1, . . . ,m} we get

‖S(t− s)Bk − Sn(t− s)Bk,n‖2
H

≤ 2 ‖S(t− s)Bk − Sn(t− s)Bk‖2
H + 2 ‖Sn(t− s)Bk − Sn(t− s)Bk,n‖2

H

≤ 2 ‖S(t− s)Bk − Sn(t− s)Bk‖2
H + 2 ‖Bk −Bk,n‖2

H

which tends to zero for n→∞ and hence

m∑
k=1

∫ t

0

‖(S(t− s)Bk − Sn(t− s)Bk,n)‖2
H ds E

[
M2

k (1)
]
→ 0

for n→∞ by Lebesgue’s theorem.
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