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AbstratWe present an overview of reent results onerning wave trains, solitonsand their modulation in FPU hains. We take a thermodynami perspe-tive and use hyperboli saling of partile index and time in order to passto a marosopi ontinuum limit. While strong onvergene yields the well-known p-system of mass and momentum onservation, we generally obtain aweak form of it in terms of Young measures. The modulation approah a-ounts for mirosopi osillations, whih we interpret as temperature, ausingonvergene only in a weak, average sense. We present the arising Whithammodulation equations in a thermodynami form, as well as analyti and nu-merial tools for the resolution of the modulated wave trains. As a prototypefor the ourrene of temperature from osillation-free initial data, we disussvarious Riemann problems, and the arising dispersive shok fans, whih re-plae Lax-shoks. We predit saling and jump onditions assuming a generisoliton at the shok front.1 IntrodutionWe onsider hains of N idential partiles as plotted in Figure 1.1, nearest neighboroupled in a nonlinear potential Φ : R → R by Newton's equations
ẍα = Φ′(xα+1 − xα) − Φ′(xα − xα−1), (1.1)where ˙ = d

dt
is the time derivative, xα(t) the atomi position, and α = 1, . . . , N thepartile index. Sine the work of Fermi, Pasta and Ulam [FPU55℄ one usually refersto (1.1) as FPU hains.

xα−1 xα
xα+1 xα+2

rαFigure 1.1: The atomi hain with nearest neighbour interation.We mainly onsider general, onvex potentials Φ. While our fous lies on nonlinear
Φ′, the harmoni potential with linear fores is an instrutive, ompletely integrableexample. A nonlinear example, but still ompletely integrable, is the famous Todahain, see [Tod70, DKKZ74, Hén74℄ with potential

Φ(r) = exp (1 − r) − (1 − r). (1.2)For our purposes it is onvenient to use the atomi distanes rα = xα+1 − xα andveloities vα = ẋα as the basi variables, hanging (1.1) to the system
ṙα = vα+1 − vα , v̇α = Φ′(rα) − Φ′(rα−1). (1.3)1



Rather than investigating solutions of (1.3) for �nite N , we fous on the thermody-nami limit ε = 1/N → 0 in the hyperboli saling of the mirosopi oordinates tand α, whih is de�ned by the marosopi time t = εt and partile index α = εα.It is natural to sale the atomi positions in the same way, i.e. x = εx, whih leavesatomi distanes and veloities sale invariant. For a survey on other reasonablesaling we refer to �2 and [GHM06a℄.Our main goal is to derive a miro-maro transition for the atomi hain, i.e. weaim to replae the high dimensional ODE (1.1) by a few marosopi PDEs. Thederivation of suh a ontinuum limit is simple as long as the atomi data vary onthe marosopi sale only, see (1.9) below. If, however, the atomi data osillateon the mirosopi sale, the problem is tremendously ompliated, beause thendistanes and veloities do not onverge to marosopi funtions. Instead, at eahpoint in the marosopi spae-time, the loal (r, v)-distribution onverges to anontrivial Young-measures, see �5. We interpret the mirosopi osillations as aform of temperature in the hain, see �2, and refer to osillation-free limits as old.The main problem in the ase of temperature is to �nd an appropriate desriptionfor the struture and evolution of the osillations. Even if we are interested in themarosopi behavior of averaged quantities only, the mirosopi osillations de-termine the evolution of the internal energy, that is, the amount of energy whihis stored in purely mirosopi motion. In other words, any reasonable marosopilimit for osillatory solutions needs to desribe thermodynami e�ets, suh as re-ation of temperature and transport of heat. Unfortunately, no rigorous theory isknown that applies without further assumptions.Numerial simulations as disussed in �5 and �6, as well as rigorous results for theToda hain, f. [HFM81, Kam91, VDO91, DKKZ96, DM98℄, suggest that for ertainsolutions of (1.1), the arising mirosopi osillations an be desribed by modulatedtraveling waves. Traveling waves are highly osillatory exat solutions of (1.1). Themost relevant kind for our purposes are wave trains whih are periodi funtionsof a single phase variable, depending on four harateristi parameters. Modulatedwave trains arise when these parameters vary on the marosopi sale.A harateristi property of wave trains is that the arising Young measures are sup-ported on losed urves. As a onsequene, they orrespond to a very speial kindof temperature whih is not related to our usual notion of thermalization. How-ever, they give rise to a thermodynamially onsistent marosopi theory involvingtemperature, entropy, and so on. Moreover, if old initial data form marosopishoks, then Newton's equations self-organize into mirosopi osillations in formof modulated wave trains, and in this sense our notion of temperature turns out tobe generi.Some aspets of the problems addressed in this artile have muh in ommon withertain zero dispersion limits, whih we will brie�y disuss next to illustrate our2



point of view. This is not to be onfused with so alled zero di�usive-dispersivelimits, where di�usive e�ets prevail, f. e.g. [Sh82, KL02℄. The most prominentexample is Burger's equation
∂ tu+ u ∂αu = 0, (1.4)whih, on a formal level, is the zero dispersion limit of the KdV equation

∂ tu+ u ∂αu+ ε ∂ 3
α u = 0. (1.5)The main question is under whih onditions the solutions of (1.5) onverge as ε→ 0to (weak) solutions of (1.4). The rigorous theory for this problem was developedby Lax and Levermore in [LL83, Ven85℄ by relying on the omplete integrability of(1.5).It is well known that generi initial data uini yield a ritial time tcrit suh that (1.4)has a unique smooth solution for 0 < t < tcrit, but for t > tcrit solutions exist ina weak sense only, having at least one disontinuity at some αcrit, and satisfying

∂ tu+ 1
2
∂α (u2) = 0 in the sense of distributions.Imposing the same initial datum uini for KdV, the typial behavior for ε → 0 is asfollows, see for instane the surveys in [Lax86, Lax91, LLV93℄. For 0 < t < tcritthe solutions uε of (1.5) onverge strongly to the unique smooth solution of (1.4).However, for t > tcrit the KdV-solutions beome highly osillatory in a neighborhoodof αcrit with wavelength 1/

√
ε, and onverge to a weak limit 〈u〉 only. The mainpoint is that 〈u〉 does not satisfy Burgers equation, i.e. ∂ t 〈u〉+ 1

2
∂α 〈u〉2 6= 0, beause

〈u〉2 6= 〈u2〉.A disrete zero dispersion limit was studied in [GL88℄, replaing (1.4) by
u̇α + 1

2
uα (uα+1 − uα−1) = 0. (1.6)This sheme is equivalent to a dispersive spatial disretization of (1.4), beausethe identi�ation uα(t) = u(εt, εα) transforms (1.6) into ∂ tu + u∇±εu = 0 with

∇±εu
(
t, α

)
=

(
u
(
t, α + ε

)
− u

(
t, α− ε

))
/2ε, The numerial study in [GL88℄ pro-vides evidenes for the same qualitative limiting behavior as for KdV. Further ex-amples for numerial shemes with interesting zero dispersion limit an be found in[HL91℄ and [LL96℄.Towards modulation theory, [GL88℄ found a simple desription for modulated binaryosillations, whih provides an approximate solution of (1.6) satisfying uα ≈ vα +

(−1)αwα, where vα and wα vary on the marosopi sale only. The modulationequations for binary osillations read
∂ t a+ a ∂α b = 0, ∂ t b+ b ∂α a = 0. (1.7)where a = v + w and b = v − w. This system is stritly hyperboli if and only if aand b have the same sign, and onservation laws for ln a and ln b imply that stritlypositive initial data stay positive for all times.3



Let a = a
(
t, α

) and b = b
(
t, α

) be a smooth solution of (1.7) de�ned until tcrit, anddenote the orresponding modulated binary osillations by
umod

α (t) = v(εt, εα) + (−1)αw(εt, εα). (1.8)It is proven in [GL88℄ that (1.8) indeed yields approximate solutions of the miro-sopi system for t < ε−1tcrit in the sense that umod
α (t) − uα(t) onverges to zero as

ε → 0 for t < tcrit if uα(0) = umod
α (0). For larger times we expet that modulatedbinary osillations are not longer lose to an exat solution.Returning to the atomi hain (1.1), we next derive the marosopi evolution of olddata, i.e. we assume marosopi �elds r(t, α) and v(t, α) suh that rα(t) = r(εt, εα),

vα(t) = v(εt, εα). Substitution into (1.3) yields
∂ t r −∇+εv = 0, ∂ t v −∇−εΦ′(r) = 0, (1.9)In the limit ε → 0 we formally obtain the so alled p-system onsisting of themarosopi onservation laws for mass and momentum given by
∂ t r − ∂α v = 0, ∂ t v − ∂α Φ′(r) = 0. (1.10)It is well known that, for onvex Φ, the p-system is hyperboli and that for smoothsolutions the energy is onserved aording to
∂ t

(
1
2
v2 + Φ(r)

)
− ∂α (vΦ′(r)) = 0. (1.11)In analogy to the previous disussion, the p-system desribes the thermodynamilimit for old atomi data as long as these data are smooth on the marosopi sale.However, we will show next that, if the nonlinearity forms a shok, then the p-systemis no longer a thermodynamially onsistent model for the marosopi evolution.For simpliity, we assume that the �ux funtion Φ′ is onvex so that all eigenvaluesof (1.10) are genuinely nonlinear. Aording to the Lax theory of hyperboli system,f. [Smo94, Daf00, LeF02℄, a shok wave propagates with a onstant shok speed

c so that r and v satisfy the Rankine-Hugoniot jump onditions aross the shokgiven by
−c|[r]| − |[v]| = 0, −c|[v]| − |[Φ′(r)]| = 0, (1.12)where |[·]| denotes the jump. However, (1.12) implies that the jump ondition for theenergy must be violated, i.e. for shoks with (1.12) we have

−c|[1
2
v2 + Φ(r)]| − |[vΦ′(r)]| 6= 0.Consequently, the p-system predits some prodution for the marosopi energy(the Lax riterion selets only shoks with negative prodution).In ontrast, Newton's equations always onserve mass, momentum and energy.Therefore, the p-system annot desribe the thermodynami limit beyond the shok4



at whih the atomi data start to osillate. Indeed, some amount of energy is dissi-pated into internal energy leading to a dispersive shok fan. It is one of the meritsof modulation theory that it an desribe the mirosopi osillations emerging fromold shoks as disussed in �6.The artile is organized as follows. In �2: we brie�y sketh the thermodynamialframework. We survey some existene and approximation results of wave trains andsolitons in �3, inluding multi-phase wave trains, thermodynami properties andnew a priori estimates. �4 gives a brief overview on Whitham's modulation theoryapplied to FPU hains, leading to a system of four onservation laws for wave trainparameters. In �5 we brie�y summarize some aspets of numerial justi�ation byevaluating the aforementioned Young measures and testing assumptions of modula-tion theory. The shok problem for old Riemann data is disussed in �6, and weharaterize the behavior of all marosopi �elds at the shok front by assumingthat is onsists of a generi soliton.2 Thermodynami frameworkThermodynamis desribes the evolution of deformation and heat on the maro-sopi sale in a body, whih may be isolated from the surroundings or is subjetedto external supply of mehanial fores and heat. In the following we will illustratethe strategy of thermodynamis for a marosopi body in one spae dimension,that is mirosopially onstituted by an atomi hain. To this end thermodynam-is onsiders, at any Lagrangian spae-time point (t̄, ᾱ) a ertain number of spei�densities uj(t̄, ᾱ), j = 1...M , and determines these �elds by means of a system ofPDEs for given initial and boundary data. The most important densities in 1D arethe spei� volume (mean distane) r, the marosopi veloity v, and the spei�total energy E = 1
2
v2 + U , uniquely deomposed into kineti energy and spei�internal energy U .The PDE system relies on M equations of balane that read in regular points
∂ tuj + ∂αFj = Pj , j ∈ {1, 2, . . . , M}, (2.1)where fj and Pj are alled �uxes and produtions, respetively. The fundamentalbalane equations are the onservation laws for mass, momentum and energy givenby

∂ t r − ∂α v = 0 , ∂ t v + ∂α p = 0 , ∂ tE + ∂α f = 0, (2.2)where p denotes the pressure and f is the energy �ux, satisfying f = pv+q with heat�ux q. Further onservation laws are possible, but those are material and proessdependent. 5



In order that (2.1) beomes a losed system for the variables, thermodynamis has tomodel onstitutive equations that relate, in a material dependent manner, the �uxesand produtions to the densities themselves and/or their time and spae derivatives.The generality of the onstitutive funtions is restrited by universal priniples likeGalileian invariane and the entropy priniple, and by material dependent symmetrypriniples. The entropy priniple onsists of several parts, see [MR98℄ for moredetails.1. There exists an entropy pair (S, g), given by (material dependent) onstitutivefuntions in terms of the densities uj, so that the entropy density S is a onavefuntion.2. The onstitutive laws losing (2.1) yield a further balane equation
∂ tS + ∂α g = Σ ≥ 0 with Σ = 0 ⇐⇒ Pj = 0, (2.3)where Σ denotes the non-negative entropy prodution.3. The de�nition of (absolute) temperature Tmacro is given by

Tmacro =
∂U

∂S
. (2.4)Note that this phenomenologial de�nition is a priori unrelated to any miro-sopi model.4. The law of Clausius-Duhem holds, i.e. Tmacrog = q.This abstrat framework is the basi paradigm of Rational Thermodynamis andassumed to hold in all ases. However, the onstitutive laws depend on the hosenmarosopi saling and are generally unknown. Nevertheless, the saling preditsthe way in whih the �uxes (and produtions) an and annot depend on the den-sities. For instane, in the hyperboli saling, the marosopi equations must beinvariant (to leading order) under (t̄, ᾱ) 7→ (λt̄, λᾱ), whereas the paraboli saling

(t̄, ᾱ) = (ε2t, εα) implies marosopi invariane under (t̄, ᾱ) 7→ (λ2t̄, λᾱ).Therefore, in the hyperboli saling all onstitutive relations for the �uxes must beloal, i.e. Fj depends pointwise on the densities uj, so that (2.2) is a �rst ordersystem. We mention that hyperboliity of (2.1) is guaranteed if the entropy S is aonave funtion, see [MR98℄. Generally, for the hyperboli saling, all onstitutiverelations an be enoded in a Gibbs equation with a single thermodynami potential.On the other hand, for paraboli saling, we expet that the �uxes depend (mainly)on the spatial derivatives of the densities. In the simplest ase the energy �ux f isgiven by Fourier's law, i.e. f = ∂ᾱU , so that the energy balane leads to the heatequation.In onlusion, we sketh the marosopi thermodynamis for the atomi hain (1.1)as it results from modulated wave trains. It turns out that the marosopi system6



(2.1) onsists of the three fundamental and a fourth equation, the onservation ofwave number ∂ t k − ∂αω = 0, with wave number k and frequeny ω. In addition,there is a �fth onservation law for the entropy S, i.e. Σ = 0 in (2.3), and all�uxes are given by the thermodynami potential U = U(r, k, S) through the Gibbsequation
dE = ω dS − p dr − g dk + v dv. (2.5)Note that the equation of state depends on the hain, i.e. on the potential Φ, whereas(2.5) is universal. From (2.4) and (2.5), we infer that the marosopi temperature

Tmacro equals the wave train frequeny ω. Interestingly, here there is a di�erenebetween Tmacro and the kineti temperature de�ned as the mean kineti energy ofthe atoms, see �3. However, it turns out that the Clausius-Duhem law is satis�ed,i.e. we �nd q = ωg.3 Traveling wavesTraveling waves are exat solutions of the in�nite hain (1.1) for N = ∞ of theform xα(t) = x(α− ct) depending on a single phase variable φ and traveling with aonstant speed c. In the ontext of the marosopi limits that we onsider, relevanttraveling waves are solitons, whih vanish as φ → ±∞, and wave trains, whih areperiodi in φ. Due to Galilean invariane, we an allow additional drift in spae-timeof the form
xα(t) = rα+ vt+ yα(t),where the pro�le yα(t) solves the modi�ed lattie equations

ÿα = Φ′(r + yα+1 − yα) − Φ′(r + yα − yα−1) (3.1)and traveling waves yα(t) = Y(α − ct) solve the seond order advane-delay di�er-ential equation
c2∂φφY(φ) = Φ′(r + Y(φ+ 1) − Y(φ)) − Φ′(r + Y(φ) − Y(φ− 1)). (3.2)3.1 Wave trainsNormalizing the period of wave trains to 1 and using c = ω/k with wave number kand frequeny ω, we obtain the form

xα(t) = rα + vt+ X(kα + ωt), (3.3)where X(ϕ) is the 1-periodi wave pro�le funtion. There are unique hoies forthe average distane r and the average veloity v suh that ∫ 1

0
X(ϕ)dϕ = 0. Uponsubstitution into Newton's equations, we obtain the analogue of (3.2)

ω2∂ϕϕX = Φ′(r + X(ϕ+ k) − X(ϕ)) − Φ′(r + X(ϕ) − X(ϕ− k)), (3.4)7



with the three parameters r, k, ω. Another useful formulation is the �xed pointequation, or nonlinear eigenvalue problem, for V = ∂ϕX

ω2
V = F(V) := Âk∂Φ

(
r + ÂkV

)
, (3.5)where the operator Âk and the Nemykii operator ∂Φ are de�ned by

(ÂkV)(ϕ) := AkV(ϕ) − k

∫ 1

0

V(s)ds , AkV(ϕ) :=

∫ ϕ+k/2

ϕ−k/2

V(τ)dτ

∂Φ(V)(ϕ) := Φ′(V(ϕ)).Distanes and veloities of the mirosopi wave trains are then
rα(t) = r + AkV(kα + ωt+ k/2) , vα(t) = v + ωV(kα+ ωt). (3.6)Existene and approximation of wave trainsWe give an overview of the variational approah to wave train existene and approx-imation by numerial shemes that are based on maximizing

W(V) =

∫ 1

0

Φ
(
r + ÂkV

)
dϕ, V ∈ Hγ :=

{
V ∈ L2([0, 1]) :

1

2
‖V‖2

L2 ≤ γ

}
.Problem 3.1. For given parameters r, k and γ > 0 we seek maximizers of W in

Hγ, i.e. we solve W (r, k, γ) = max
V∈Hγ

W(V).Theorem 3.2. Problem 3.1 always has a solution. In partiular, there exists amaximizer V with ‖ V ‖L2=
√

2γ together with a positive Lagrangian multiplier
ω2

1 > 0 suh that V and ω2 solve (3.5).Sheme 3.3. Let any parameter set for problem 3.1 be given, and let V0 ∈ Hγ bean arbitrary initial datum with ÂkV0 6= 0. Then we de�ne indutively two sequenes
(Vn)n∈N

⊂ Hγ and (ωn)n∈N
by the following iteration step

Vn+1 =
1

fn

Wn , Wn = FVn , fn =
‖Wn ‖L2√

2γ
, ωn+1 =

√
fn.In [Her04℄ it is proved that this sheme is ompat, and numerial simulations indi-ate that 3.3 onverges.Remark 3.4. In fat, Theorem 3.3.2 in [Her04℄ proves that every losed one offuntions that is invariant under F ontains at least one traveling wave. For theone of even monotone funtions used below, this was also shown in [FV99℄, Theorem2.14. 8



By means of Sheme 3.3 we an ompute wave trains with presribed parameter
γ = 1

2
‖V‖2

L2. There are variants of 3.3 whih allow to presribe either the entropy
S or the temperature T of a wave train (for the de�nition of S and T see �3.1below). Hene, wave trains are parametrized (at least) by (k, r, γ), as well as triviallyby v; the latter is relevant for the modulation equations disussed in �4. On mayview the parameter ω of the wave train equation (3.4) depending on (r, k, γ) viaa 'dispersion relation', here expressed as the Lagrange multiplier. We emphasize,that it is not known whether the set of wave trains is a smooth three-dimensionalmanifold of orbits; note that phase shifts V(· + s) trivially give rise to an (at least)one-dimensional kernel of the linearization ω2 − DF(V) of (3.5) spanned by ∂ϕV.Moreover, for given parameters there is a disrete multipliity of solutions, beausesolutions for mk, m ∈ N, are solutions for k as well, though these do not haveminimal period 1. We onjeture that wave trains are unique in ones de�ned bymonotoniity properties of V as disussed below.Existene and approximation of multi-phase wave trainsWe present new results onerning the existene of multi-phase waves, whih willbe published with full details elsewhere. As before, our variational approah isessentially restrited to onvex interation potentials Φ, but allows for arbitrarylarge amplitudes.For simpliity we onsider only two-phase wave trains having two wave numbers k1and k2. However, all results an easily be generalized to other multi-phase wavetrains. Moreover, to avoid tehnialities we always suppose that Φ is de�ned on thewhole real axis with bounded and ontinuous seond derivative Φ ′′.A two-phase wave train is an exat solution of Newton's equations satisfying

xα(t) = rα + vt+ X(k1α + ω1t, k2α + ω2t). (3.7)Here r, v, k1, k2, ω1 and ω2 are given parameters, and the pro�le funtion X isassumed to have zero average and be 1-periodi with respet to eah phase variable
ϕi = kiα+ωit. The ansatz (3.7) gives rise to the advane-delay di�erential equation

(
ω2

1 ∂
2
ϕ1

+ ω2
2 ∂

2
ϕ2

)
X = ∇−∂Φ

(
r + ∇+

X
) (3.8)where ∇± are di�erene operators de�ned by

(
∇±

X
)
(ϕ1, ϕ2) := ±X(ϕ1 ± k1, ϕ2 ± k2) ∓ X(ϕ1, ϕ2)Our aim is to identify an optimization problem with a single salar onstraint suhthat (3.8) is equivalent to the orresponding Euler-Lagrange equation with multiplier

ω2
1. Consequently, we regard the ratio β = ω2/ω1 as parameter of this problem.Let T2

∼= [0, 1] × [0, 1] be the two dimensional torus with its anoni Lebesguemeasure, and let all funtion spaes whih follow be de�ned on T2. We onsider the9



Sobolev spae
H1

0 =

{
X ∈ H1 :

∫

T2

X = 0

}
, ‖X ‖2

H1
0
:=

∫

T2

(∂ϕ1
X)2 + β2 (∂ϕ2

X)2. (3.9)This norm is equivalent to the standard norm on H1
0 as long as β 6= 0. Let E bethe anoni embedding E : H1

0 → L2, and E∗ its adjoint operator E∗ : L2 → H−1 =
(H1

0 )
∗. Note that E is ompat, and that here we have identi�ed L2 with its dual

L2∗. By △ we denote the Laplae operator orresponding to (3.9), i.e.
△ := ∂2

ϕ1
+ β2 ∂2

ϕ2
.Reall that −△ : H1

0 → H−1 is an isometri isomorphism between Hilbert spaes,and that the di�erene operators ∇± : L2 → L2 are ontinuous with (∇+)
∗

= −∇−.Moreover, our assumptions on Φ imply that the onvex funtional X 7→
∫
T2

Φ(X) iswell de�ned and ontinuous on L2.The spaes and operators from above allow to regard the wave train equation as anequation in H−1. In partiular, (3.8) is equivalent to
−ω2

1△X = E∗
(
∇+

)∗
∂Φ

(
r + ∇+E X

)
, (3.10)where the Nemykii operator ∂Φ : L2 → L2 with X 7→ Φ′(X) is the Gateaux dif-ferential of the funtional (3.11). For �xed γ > 0 we de�ne the losed onvex set

Hγ ∈ L2 and the onvex Gateaux di�erentiable funtional W as follows
Hγ =

{
X ∈ H1

0 : 1
2
‖X ‖2

H1
0
≤ γ

}
, W(X) :=

∫

T2

Φ
(
∇+E X

)
. (3.11)Now (3.10) yields the following onstrained optimization problem.Problem 3.5. For given parameters r, k1, k2, γ > 0 and β 6= 0 we seek maximizersof W in Hγ, i.e. we solve

W (r, k1, k2, β, γ) = max
X∈Hγ

W(X).Theorem 3.6. Problem 3.5 always has a solution. In partiular, there exists amaximizer X with ‖ X ‖H1
0
=

√
2γ together with a positive Lagrangian multiplier

ω2
1 > 0 suh that X and ω2

1 solve (3.10).Remark 3.7. By onstrution, (3.10) is an identity in H−1. However, X ∈ H1 impliesthat the right hand side of (3.10) is again an element ofH1, and the theory of elliptiregularity provides X ∈ H3. Moreover, we an prove further regularity by exploitingSobolev's embedding theorems.In analogy to the single-phase wave trains, we an solve the optimization problem3.5 iteratively using an adapted abstrat approximation sheme.10



Geometry and phase veloity of wave trainsSine the modulation equations for the marosopi limit of the hain depend onwave trains, it is essential to understand properties of wave trains and their pa-rameter variation. Motivated by numerial simulations, we investigate geometriproperties of wave trains in the phase spae of distanes and veloities. With theshok problem in mind, see �6, we are also interested in the transition to solitons asthe wave number tends to zero.From (3.5) we infer that if (V, ω, k, r) is a solution to (3.5), then (−V, ω, 1 − k, r)is also a solution, and vie versa: V(ϕ; k) = −V(ϕ + 1/2; 1 − k). In ase of abinary osillation, k = 1/2, the symmetry implies that (3.4) redues to the planarHamiltonian ODE
ω2∂ϕϕX = Φ′(r − 2X) − Φ′(r + 2X). (3.12)More generally, for rational k = n/m equation (3.4) an be written as an m-dimensional seond order Hamiltonian ODE with omponents Xj = X(· + jn/m),

j = 0, . . .m− 1. This system is equivariant under the Zm ation Xj → Xj+1, whereindies are taken modulo m, and Zm lies in the isotropy subgroup of wave trains.The mirosopi phase spae of distanes and veloities is in fat the phase spae ofthe ODE (3.12) for k = 1/2. Therefore, the orbits
Q := {(r + AkV(ϕ+ k/2), v + ωV(ϕ)) | 0 ≤ ϕ < 1} (3.13)are onvex, non self-interseting urves and nested for di�erent ω with �xed (r, k).We an prove some of these properties for general wave number k, see also Figure 5.4,and de�ne the positive ones

M± := {V(1 + ϕ) = V(ϕ),

∫ 1

0

V(s)ds = 0, V(ϕ) = V(−ϕ),

sgn(V(ϕ1) − V(ϕ2)) = ±1, 0 < ϕ1 < ϕ2 < 1/2},so that W ∈ M± has unique global extrema at ϕ = 0 and ϕ = 1/2, and W(ϕ1) =
W(ϕ2) is equivalent to ϕ1 ∈ {ϕ2,−ϕ2, 1 − ϕ2}. By symmetry W ∈ M±, implies
W(· + 1/2) ∈ M∓. The basis of the following results is the observation F : M± →
M±, whih was noted in [FV99℄. Throughout this artile, we are only interested inwave trains in M+ ∪M−, and onjeture that wave trains are unique within theseones.Let QΦ = {Φ′′(r + AkV(ϕ)) | 0 < ϕ ≤ 1}. We will estimate the phase veloity
cph := ω/k of wave trains and the size of Q in terms of

M := maxQΦ(V) , m := minQΦ(V).Remark 3.8. Note that √m, √M are the harateristi veloities of the p-system.Applying Theorem 3.10 below for monotone Φ′′, these values are attained at ϕ =
0, 1/2, respetively. 11



Next, we report our main, new results onerning the general geometry and phaseveloity of wave trains; full proofs will appear elsewhere.Theorem 3.9. Assume Φ′′ > 0. Then (3.5) has solutions (ω,V) ∈ R0 × M+ forany (γ, r, k) ∈ R
2 × (0, 1/2) suh that k → 0 ⇔ ω → 0.More preisely, the phase veloity of these wave trains satis�es

b(k)
√
m ≤ |ω|

k
≤

√
M, (3.14)where b(k) ∈ (0, 1/2), b(k) = 1/2 for k ≤ 2ϕ∗ with V(ϕ∗) = 0 the unique root of V.For 2ϕ∗ < k < 1/2, we an take

b(k) =
1

4
−

∫ k/4

−k/4
|V(ϕ)|2 + |V(ϕ+ 1/2)|2dϕ

4||V||22
.Theorem 3.9 states that the lower phase veloity bound of wave trains is estimatedby a orretion of the p-system harateristi. Indeed, small amplitude wave trainshave m ∼ Φ′′(r), so that the harmoni phase veloities √m sin(πk)/πk apply, whih,being smaller than √

m, neessitate a orretion suh as b(k).Theorem 3.10. Assume Φ′′ > 0 and onsider solutions V ∈ M+ to (3.5) for given
(r, k, γ). Then the urve Q is smooth, losed, onvex and non self-interseting.Its unique extrema in r-diretion lie at ϕ = −k/2, (1 − k)/2 and in v-diretion at
ϕ = 0, 1/2, and it is bounded by |ω| ≤ k

√
M and

1

2
k|V(ϕ)| ≤ |AkV(ϕ)| ≤

√
k||V||2. (3.15)If Φ′′ is monotone, and ω independent of (r, k), then ω is a stritly monotone fun-tion of γ and the urves Q are nested near the extrema in r- and v-diretions for�xed (r, k). The sign of monotoniity is that of ω.While the unique points on Q with vertial and horizontal slope lie at ϕ = (1 −

k)/2, 1/2 and ϕ = 0,−k/2, the limiting pro�le for k → 0 is not neessarily parametrizedby ϕ. Indeed, for a limiting soliton, we expet that only one of these pairs onvergesto the point (r, v) of the soliton's bakground state as k → 0.The harmoni dispersion relation (3.18) renders ω a funtion of k, so that the lastpart of Theorem 3.10 does not apply. Indeed, in this ase V is independent of k and
ω, see (3.17).Remark 3.11. The estimates on the size of Q imply that a nontrivial solitary limitas k → 0 requires unbounded norm parameter γ, growing at least like 1/k. SineTheorem 3.9 also implies ω → 0 as k → 0, we expet that the monotoniity of γ in
ω holds in general for small ω.Nestedness of Q near the extrema in r and v diretions for �xed (r, k) is a biprodutof our approah. However, it seems di�ult to prove the numerial observation thatthe entire phase plots are nested. 12



Thermodynamis of wave trainsWave trains represent exat solutions of Newton's equations whih are highly os-illating on the mirosopi sale. However, on the marosopi sale we annotresolve the mirosopi osillations but must pass to a thermodynami desriptioninvolving energy, pressure, temperature and the like. It turns out that for eah wavetrain all these thermodynami quantities are onstant on the marosopi sale. Asa onsequene, we an interpret eah exat wave train solution of Newton's equa-tion as a �thermodynami state� of the hain. This idea turns out to be fruitful inmodulation theory disussed in �4, where we allow for marosopi modulations ofthe thermodynami states.Most thermodynami quantities are de�ned as mean values of the osillating atomidata in a wave train solution:
W =

∫ 1

0

Φ(r + AkV(ϕ)) dϕ spei� internal potential energy density,
p = −

∫ 1

0

Φ′(r + AkV(ϕ)) dϕ pressure = negative spei� fore density,
K =

ω2

2

∫ 1

0

V(ϕ)2 dϕ spei� internal kineti energy density,and further
T = 2K kineti temperature,
F = K −W spei� internal ation density,
U = K +W spei� internal energy density,
E =

1

2
v2 + U spei� total energy density.Note that K = ω2γ, where γ is norm parameter used above. All these quantities areonstants for exat wave trains. However, in modulation theory they beome �eldsin t and α whose marosopi evolution is desribed by the modulation equations.In partiular, although all quantities are de�ned by integrals over the phase variable

ϕ, in modulation theory they represent spei� densities.There are other important thermodynami quantities whih are not diretly relatedto mean values of the atomi data. It turns out that
S := ω

∫ 1

0

V(ϕ)2 dϕ , g := −
∫ 1

0

V(ϕ) Φ′(r + AkV(ϕ)) dϕ (3.16)an be interpreted as the marosopi entropy density and entropy �ux, respetively.It is proven in [Her04, DHM06℄ that any smooth family of wave trains provides an
13



equation of state together with a orresponding Gibbs equation.independentvariables thermodynamipotential Gibbs equation
(r, k, γ) W = W (r, k, γ) dW = ω2 dγ − p dr − g dk
(r, k, ω) F = F (r, k, ω) dF = S dω + p dr + g dk
(r, k, S) U = U(r, k, S) dU = ω dS − p dr − g dkThe di�erent variants of equations of state and Gibbs equations are all equivalentas long as the respetive hanges of oordinates are well de�ned.The Gibbs equation beomes very important in modulation theory, where it providesthe losure for the modulation equations. In partiular, if the equation of state isknown, then all other onstitutive relations are determined by the Gibbs equation.Examples for wave trainsFor a few spei� potential, expliit expressions are known for both the pro�lefuntions and the equation of state. The following examples are taken from [Her04,DHM06℄.The harmoni hain with interation potential Φ(r) = c0 + c1 r + c2

2
r2. Here thelinearity of Φ ′ implies that (3.5) may be solved by means of Fourier transform. Somesimple alulations yield the following family of traveling waves, parameterized by

(r, k, γ),
V(ϕ) = 2

√
γ sin (2πϕ), AkV(ϕ+ k/2) = (sin (π k)/π) V(ϕ). (3.17)Here V is independent of (r, k) and AkV independent of r. Degeneray of theharmoni hain is also re�eted by the harmoni dispersion relation

ω(k) =
√
c2 sin (πk)/π, (3.18)whih provides the frequeny ω as funtion of k, and does not depend on r or

γ. Consequently, for the harmoni hain we annot hoose r, k and ω as set ofindependent variables. From (3.17) we infer that the equation of state reads
W (r, k, γ) = c0 + c1 r +

1

2
c2 r

2 + ω(k)2γ,whih implies g(r, k, γ) = −c2 sin (2πk)γ and S(r, k, γ) = 2ω(k)γ. Moreover, wean replae γ by S, and obtain
U(r, k, S) = c0 + c1r +

1

2
c2r

2 + ω(k)S. (3.19)The hard sphere model with interation radius r0. Here all atomi interation aremodeled as elasti ollision between hard spheres with radius r0. This gives rise toan interation potential Φ with
Φ(r) = +∞ for r < r0, Φ(r) = 0 for r ≥ r0.14



Although this potential is not smooth the notion of traveling waves may be general-ized to this ase, and again we are able to derive expliit expressions for wave trains.Some basi arguments lead to the following family of traveling waves, parameterizedby (r, k, ω),
V(r, k, ϕ) =

{
−(r − r0)/k if 0 ≤ ϕ < k,
+(r − r0)/(1 − k) if k ≤ ϕ < 1.Note that here the frequeny ω > 0 is a free parameter and may be hosen indepen-dently of r and k. The orresponding equation of state reads

U(r, k, S) = 1
2
(r − r0)

−2 S2 k (1 − k). (3.20)We mention that the hard sphere model desribes the high energy limit for ertainpotentials, see [Tod81℄ for the Toda potential, and [FM02℄, as well as �3.2, forLennard-Jones potentials.The third example is the small amplitude limit, where the amplitude δ of V is de-�ned as the �rst fourier oe�ient, i.e. for odd V we �nd δ =
∫ 1

0
V(ϕ) cos (2πϕ) dϕ.To identify the leading order terms we expand the nonlinear interation poten-tial Φ around the mean distane r up to fourth order. To leading order the fre-queny ω must satisfy the harmoni dispersion relation whih now reads Ω0(r, k) =√

Φ′′(r) sin (k π)/π. Aording to [DHM06℄, the amplitude δ and the ation F anbe expressed in powers of ω − Ω0(r, k) as follows
δ2 =

ω2 − Ω0(r, k)
2

2 Ω0(r, k)
2 G(r, k),

F (r, k, ω) = −Φ(r) +G(r, k)(ω − Ω0(r, k))
2 + O

(
(ω − Ω0(r, k))

3
)
, (3.21)where G(r, k) is given by

G(r, k) =
Φ′′(r)2

2 π2 Φ′′(r)Φ(4)(r)
(
1 − cos (2πk)

)
+

(
Φ′′′(r)

)2(
1 + cos (2πk)

) .3.2 Solitary wavesHomolini orbits in ODEs are typially aompanied by large wave length periodiorbits in the sense that there exists a parameter urve of periodi orbits onvergingto the homolini orbit as the period tends to in�nity [VF92℄. For the latties weonsider, the situation is similar: wave trains exist for arbitrarily larger wave numberand limit to solitons as the wave number tends to zero. This was proven for ertainmonotone waves and potentials under growth assumptions in [PP00℄ by a mountainpass approah.We thank Karsten Matthies (University of Bath) for providing notes on whih theremaining part of this setion is based. We report some of his joint work with Gero15



Frieseke, mainly onerning solitons in (1.1) in the form (3.1) for a large lass ofpossibly non-onvex potentials Φ.A prototype of physially realisti interation is given by the standard Lennard-Jonespotentials
Φ(r) = a

(
r−m − r−m

∗

)2 for r > 0, a > 0, m ∈ N.where Φ is minimized when neighbouring partiles are plaed at some spei� equi-librium distane r = r∗ > 0, and tends to in�nity as the neighbour distane tendsto zero.Sine the partile positions xα orresponding to displaements yα are xα = r∗α+yα,this means that Φ(r) must have a minimum at r = r∗ and that Φ(r) → ∞ as r → 0.More preisely we assume:(H1) (Minimum at r∗) Φ ∈ C3(0,∞), Φ(r∗) = Φ′(r∗) = 0, Φ′′(r∗) > 0(H2) (Growth) Φ(r) ≥ c0r
−1 for some c0 > 0 and all r lose to 0and Φ(r) = ∞ for r ≤ 0 .(H3) (Hardening) Φ′′′(r) < 0 in (0, r∗], Φ(r∗ + r) < Φ(r∗ − r) in (0, r∗).Here we seek solitons whose pro�le Y(φ) solves (3.2) with r = r∗. The onstrutionin [FW94℄ for the existene of solitons is based on the variational problemMinimize γ∗(Y) :=
1

2

∫

R

∂φY(φ)2dφ among Y ∈W 1,2
loc (R) satisfying

∂ϕY ∈ L2(R), W∗(Y) :=

∫

R

Φ(r + Y(φ+ 1) − Y(φ))dφ. (3.22)Remark 3.12. It is instrutive to ompare this ansatz with the one used for wavetrains in �3.1, where the real line is replaed by the unit interval and W maximizedfor �xed norm parameter γ. This lead to a relatively simple onvex maximizationproblem for onvex potentials. In ontrast, (3.22) is a kind of dual problem, where
W∗ is �xed and the norm parameter γ∗ minimized; a more hallenging formulationthat allows for non-onvex potentials.The goal is to determine the Γ-limit of the variational problem and the limitingpro�le in the high-energy regime. Sine this regime is highly disrete and involvesstrong fores, neither lassial ontinuum approximations nor weak oupling approx-imations are possible.The limiting pro�le for W∗(Y) → ∞ was derived in [FM02℄. Here we reover thisas a orollary of the following Γ-onvergene result. We let

H∗ := {Y ∈W 1,2
loc (R)|Y(0) = 0, ∂φY ∈ L2(R)},and for every displaement pro�le Y we denote the relative displaement pro�le by

r(φ) = Y(φ+ 1) − Y(φ). As in (3.22) we onsider the funtional γ∗ on
H∗

K = {Y ∈ H∗ |W∗(Y) = K}
H∗

∞ = {Y ∈ H∗ | r(φ) ≥ −r∗; ∀φ ∈ R

∃ ompat nonempty set SY ⊂ R with r|SY
= −r∗}.16
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Figure 3.1: Left: Hard-sphere soliton. Right: ell of springs in 2D lattie.Theorem 3.13. (Γ-onvergene) Assume that the interation potential satis�es(H1), (H2). Then the problem 'Minimize γ∗(Y) for Y ∈ H∗
K ' Γ-onverges to theproblem 'Minimize γ∗(Y) for Y ∈ H∗

∞' in the sense that1. (lim-inf-inequality) If Y
(K) ⇀ Y in H∗ with Y

(K) ∈ H∗
K, Y

(K) translationnormalized (i.e. r(K)(0) = minφ∈R r
(K)(φ)), then Y ∈ H∗

∞ and γ∗(Y) ≤
lim infK→∞ γ∗(Y

(K)),2. (Existene of reovery sequene) For all Y ∈ H∗
∞ there exists a sequene

Y
(K) ∈ H∗

K with Y
(K) ⇀ Y in H∗ and γ∗(Y(K)) → γ∗(Y).A onsequene is the following pieewise linear asymptoti displaement pro�le,orresponding to pieewise onstant veloity pro�le.Corollary 3.14. (Asymptoti shape of minimizers) Every translation normalizedsequene Y

(K) of minimizers of γ∗ on H∗
K onverges in H weakly to the up to trans-lation unique minimizer Y∞ of the limit problem, where

Y∞(φ) =





0, φ ≤ 0
−r∗φ, φ ∈ [0, 1]
−r∗, φ ≥ 1.In a mehanial interpretation, this is a ompression wave loalized on a single atomispaing. The limiting dynamis are hard-sphere dynamis like in a Boltzmann gas,see Figure 3.1. In partiular the work shows that dispersionless transport of energyis not restrited to the long-wave regime.We mention that Frieseke and Matthies analyse a two dimensional ounterpartof (3.1) in [FM03℄, see Figure 3.1. The existene of longitudinal solitary wavesalong one of the lattie diretions was shown for typial potentials under some mildnondegeneray assumptions. These traveling waves are unique, i.e. there are no otherloalized traveling wave in the same diretion, e.g. there do not exist transversaltraveling waves. It is surprising that purely harmoni springs are inluded here,beause solitary waves do not our in harmoni hains.17



4 Modulation Theory4.1 Marosopi evolution of data with temperatureIn this setion we use the theory of Young measures, see for instane [Tay96, War99,Daf00℄, and derive some restritions for any thermodynami limit of the hain.Let Ω = {
(
t, α

)
: 0 ≤ t ≤ tfin, α ∈ [0, 1]}, and let (Ni)i be a sequene with Ni → ∞.Moreover, for any i let Q(i)

α (t) = (r
(i)
α (t) v

(i)
α (t)), 0 ≤ t ≤ Nitfin and α = 1, ..., Ni,be a solution of Newton's equation, and suppose that the total energy of the initialdata is proportional to Ni, i.e.

Ni∑

α=1

(
1

2

(
v(i)

α (0)
)2

+ Φ
(
r(i)
α (0)

))
= O(Ni). (4.1)Under some suitable assumptions on the potential (say boundedness of Φ′′ for sim-pliity) the funtions Q(i)

α (t) are ompat with respet to the onvergene of Youngmeasures in the following sense. There is at least a subsequene, still denoted by
(Ni)i, and a family of probability measures (

t, α
)
7→ µ

(
t, α, dQ

) suh that for anyontinuous observable ψ = ψ(Q) = ψ(r, v) the following onvergene is satis�ed
∫

Ω

ψ
(
Q(i)

(
Ni t, Ni α

))
ξ
(
t, α

)
dt dα

i→∞−−−→
∫

Ω

〈ψ〉
(
t, α

)
ξ
(
t, α

)
dt dα. (4.2)Here ξ is an smooth test funtion, and 〈ψ〉

(
t, α

) is given by
〈ψ〉

(
t, α

)
=

∫

R2

ψ(Q)µ
(
t, α, dQ

)
. (4.3)For �xed (

t, α
)
∈ Ω, the probability measure µ(

t, α, dQ
) desribes the mirosopiosillations in the viinity of (

t, α
), and for any observable Ψ the number 〈Ψ〉

(
t, α

)gives the loal mean value of Ψ.Here we onsider the ommon probability distribution of distane and veloity in-stead of their separate statistis so that any measure µ(
t, α, dQ

) an be interpretedas a weight funtion de�ned on the mirosopi state spae whih is spanned bydistane and veloity.In �1 we have seen that Newton's equations are equivalent to the two mirosopionservation laws (1.3), from whih one an derive the mirosopi onservationof energy ėα(t) = −fα(t) + fα+1(t) with eα(t) = 1
2
v2

α+1(t) + Φ(rα(t)) and fα(t) =
−vα(t)Φ′(rα(t)). As a diret onsequene, every Young measure limit must satisfythe following marosopi onservation laws of mass, momentum and energy

∂ t 〈r〉 − ∂α 〈v〉 = 0,

∂ t 〈v〉 − ∂α 〈Φ′(r)〉 = 0, (4.4)
∂ t

〈
1
2
v2 + Φ(r)

〉
− ∂α 〈vΦ′(r)〉 = 0.18



This system of PDEs gives some restritions for any young measure limit of theatomi hain. However, in general we an not express the �uxes in terms of thedensities, and hene the system (4.4) is not losed, i.e. it does not determine themarosopi evolution ompletely. We mention that (4.4) shows that any Youngmeasure limit is a measure-valued solution of the p-system in the sense of DiPerna,see [Hör97, Daf00℄. In addition, it is a measure-valued solution of the energy equation(1.11).Within modulation theory we will start with some assumptions onerning the stru-ture of the mirosopi osillations in the hain. Afterwards we will identify furthermarosopi evolution laws extending (4.4), and onstitutive relations that lose theextended system.4.2 Whitham modulation equations for wave trainsHere we desribe Whitham's modulation theory for the atomi hain with hyperbolisaling. For further examples onerning modulation theories of disrete system werefer to [HLM94, SW00, FP99, DK00, GM04, GM06℄, and to [GHM06a, GHM06b℄for an overview.A modulated traveling wave is an approximate solution of Newton's equation (1.1)satisfying
xα(t) =

1

ε
X(εt, εα) + X̃

(
εt, εα,

1

ε
Θ(εt, εα)

)
, (4.5)where X and Θ are marosopi funtions. The generi traveling wave parameters

(r, v, k, ω) now are marosopi �elds depending on (
t, α

), and read
ω = ∂ t Θ, k = ∂α Θ, v = ∂ tX r = ∂αX. (4.6)The mirosopi osillations are desribed by

X̃
(
t, α, ϕ

)
= X

(
r
(
t, α

)
, v

(
t, α

)
, k

(
t, α

)
, ω

(
t, α

)
, a

(
t, α

)
, ϕ

)
, (4.7)where X(r, v, k, ω, a, ϕ) is a smooth family of 1-periodi wave trains depending onthe parameters ~u = (r, v, k, ω, a) as well as on the phase ϕ. We use an additionalparameter a, whih might be the entropy S or the parameter γ. However, in anyase we impose an abstrat dispersion relation

ω = Ω(r, k, a). (4.8)The modulation equations are PDEs whih desribe the marosopi evolution of themodulated parameter (r, v, k, ω, a), and ensure that (4.5) indeed provides approxi-mate solutions. For their formal derivation we use Whitham's variational approah,see [Whi74, FV99, DHM06℄, and [GHM06a, GHM06b℄ for a more general setting.19



In a �rst step we insert the ansatz (4.5) into the expression for the total ation inthe atomi hain, and expand all arising terms in powers of ε. This gives rise to theredued ation integraltotal ation = L(X, Θ, a) =

tfin∫

0

1∫

0

L
(
~u
(
t, α

))
dα dt, (4.9)with L(~u) = L(~u, X(~u, ·)) and

L(~u, X) =

∫ 1

0

(
1

2
(v + ω ∂ϕX)2 − Φ(r + ∇kX)

)
dϕ,where (∇kX)(ϕ) = X(ϕ+ k). In a seond step we apply the priniple of least ationto (4.9). The variation with respet to a gives ∂aL = 0, whih reovers the dispersionrelation (4.8), and the variations with respet to X and Θ yield

∂ t ∂vL+ ∂α ∂rL = 0 and ∂ t ∂ωL+ ∂α ∂kL = 0, (4.10)respetively. Moreover, the de�nitions (4.6) imply two further evolution equations,namely ∂ t r − ∂α v = 0 and ∂ t k − ∂αω = 0.In the last step we reformulate all marosopi identities by using the thermody-nami de�nitions from �3, and as a onsequene we �nd that the modulation equa-tions take the form
∂ t

(
r, v, k, S

)
+ ∂α

(
−v, +p, −ω, +g

)
= 0. (4.11)These equations represent the marosopi onservation laws for mass, momentum,wave number and entropy. Moreover, they imply the onservation of energy via

∂ tE + ∂α

(
pv + gω

)
= 0. (4.12)and thus we an regard the system (4.11) as an extension of (4.4). Reall that thelosure for (4.11) and (4.12) is provided by the equation of state E = 1

2
v2+U(r, k, S)and the Gibbs equation (2.5). However, for almost all interation potential Φ we lakexpliit expressions for the equations of state, and therefore we annot haraterizethe properties of (4.11).Finally, we display the modulation equations for the harmoni hain

∂ t

(
r, v, k, S

)
− ∂α

(
v, c2 r, ω(k), ω′(k)S

)
= 0, (4.13)whih follow from (4.11) by means of the equation of state (3.19), and the harmonidispersion relation (3.18).
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4.3 The justi�ation problemSo far, there is no known rigorous derivation of the modulation equations for thenonlinear ase. For this reason we formulate a onjeture, following similar results forpartial di�erential equations [KSM92, Sh98, Mie02℄. We assume that the potential
Φ is su�iently smooth, and that a smooth family of traveling waves X(~u, ϕ) withindependent parameters ~u = (r, v, k, ω) is given. Moreover, we assume that thefollowing set M is open

M =

{
~u = (r, v, k, ω)

∣∣∣∣
the system (4.11) is stritly hyperboli in ~u,the traveling wave X(~u, ·) is linearly stable }

.For a given solution ~̃u = ~̃u
(
t, α

) of (4.11) we de�ne
Mε

α(t) =


 r̃(εt, εα) + (ÂkV)

(
~̃u(εt, εα), 1

ε
Θ̃(εt, εα) + 1

2
k̃(εt, εα)

)

ṽ(εt, εα) + ω̃(εt, εα) V

(
~̃u(εt, εα), 1

ε
Θ̃(εt, εα)

)

 ,where V abbreviates ∂ϕX, and the modulated phase Θ̃ is given by (4.6). We believethat the following onjeture is in the heart of the matter.Conjeture 4.1. Let ~̃u be a su�iently smooth solution of Whitham's equationde�ned for t ∈ [0, tfin], and suppose that ~̃u takes values in M. Then there exists asuitable Banah spae Υε, and some exponent κ > 0 suh that

‖Qε(t) −Mε(t)‖Υε
= O(εκ), ‖Qε(0)‖Υε

= O(1) (4.14)for all ε, and all t with 0 ≤ εt ≤ tfin.At the moment we are far from being able to prove this onjeture in this generalform. However, it does hold rigorously for the harmoni hain and the hard spheremodel.The proof for the harmoni hain essentially relies on the linearity of Newton'sequations, whih allows to ontrol the residuum, see [DHM06℄. In addition, thereis further rigorous derivation of (4.11) in the ontext of Wigner measures. For thedetails we refer to [Mie06℄, and for similar results to [Ma02, Ma04℄. The rigorousjusti�ation for the hard sphere model is based on the observation that both themirosopi dynamis and the marosopi equations beome muh simpler in theEulerian representation of thermodynamis, f. [Her04℄On a formal level we expet a lose relation between stability of wave trains andhyperboliity of modulation equations; if Whitham's equations (4.11) are not hyper-boli, then the orresponding initial value problem is ill-posed, whih indiates thattraveling waves are unstable due to a Benjamin-Feir instability, see e.g. [Whi74,BM95℄. However, for arbitrary interation potential Φ, neither stability riterionsnor hyperboliity onditions are available up to now. Having linearly degenerateeigenvalues, the harmoni hain and hard sphere model are not prototypial and21



do not provide further insight. Only the small amplitude limit gives some riteriafor the hyperboliity of (4.11). Starting with the equation of state (3.21) we anompute the harateristi speeds for (4.11), see [DHM06℄, and end up with the fol-lowing riterion. The system (4.11) has four real eigenvalues, and is thus hyperboli,if
N̂(r, k) =

(
Φ′′′(r)

)2 (
7 − 8 cos (2πk) + cos (4πk)

)
+

Φ′′(r)Φ(4)(r)
(
4 cos (2πk) − 3 − cos (4πk)

)is positive, but has two imaginary eigenvalues for N̂(r, k) < 0. For k = 1/2 theorresponding formula was already given in [Fla96℄.5 Numerial justi�ation ofmodulation theoryAlthough there is no rigorous justi�ation for the modulation equations (4.11), nu-merial simulations strongly indiate that they provide the right thermodynamidesription for a wide lass of initial value problems for the atomi hain. We referto [DH06℄ whih gives a detailed thermodynami interpretation of several numerialexperiments. The main results an be summarized as follows.
(i) If all marosopi �elds are smooth, then the arising osillations in the atomidata an be desribed in terms of modulated traveling waves, and the maro-sopi dynamis is governed by the modulation system (4.11).

(ii) Modulated traveling waves desribe the mirosopi osillations emerging whenold data form shoks.
(iii) If the shoks emerge from data with temperature, then usually the miro-sopi osillations exhibit a more ompliated struture, and (single-phase)modulation theory fails in this ase.Conerning the last item, results for the Toda hain suggest a hierarhy of modu-lation models, enumerated by the number of phases, where shoks on a lower levelrequire the model of the next level, see e.g. the review [LLV93℄ and the referenestherein.Note that these numerial observation are valid only if the interation potential
Φ is onvex, the marosopi sale results from the hyperboli saling, and themirosopi initial data are given by modulated traveling waves.In this setion we give an brief survey on the numerial justi�ation from [DH06℄,and present a typial example with periodi boundary onditions and smooth maro-sopi �elds. Moreover, in �6 we study the numerial solution of a Riemann problemwith old initial data, and give an improved disussion of its marosopi limit.22



In order to study the marosopi behavior of the atomi hain for large N wemust evaluate the thermodynami properties of the numerial data whih are themarosopi �elds of the loal mean values, and the loal distribution funtions ofthe atomi data. The omputation of both mean values and distribution funtionsrelies on mesosopi spae-time windows. In what follows let F = IFT × IFP be suha window where IT and IP are sets of time steps and partile indies, respetively.The window F is mesosopi if and only if it is very small on the marosopi sale,but ontains a lot of partiles as well as time steps, i.e. ♯IT, ♯IP ∼ Nκ for someexponent κ with 0 < κ < 1. In partiular, any F desribes the mirosopi viinityof a ertain marosopi point ZF = (tF , αF).For any atomi observable ψ we an easily ompute the mean value 〈ψ〉F of ψ withrespet to eah window F by a simple averaging formula. Note that there is a loserelation to the notion of Young measures. In partiular, if the atomi data onvergefor N → ∞ in the sense of Young measures, then 〈ψ〉F is a good approximationfor 〈ψ〉(tF , αF) from (4.3). Moreover, by means of F we an ompute the ompletemeasure µ(
tF , αF , dQ

), see [DH06℄ for the details.The miro-maro transition of modulation theory relies on the hypothesis that allatomi osillations an be desribed by modulated wave trains. If this is right, thenthe mirosopi distributions funtions within any spae-time window F must beequivalent to an exat wave train. Of ourse, the parameters of this wave train maydepend on F . In order to justify this hypothesis for given F , we have to identifyfour wave train parameters, namely the spei� length rF , the mean veloity vF ,the wave number kF and a fourth parameter whih might be the parameter γF , thefrequeny ωF , the entropy SF , or the temperature TF .The values of rF , vF and TF are given by mean values of mirosopi observables.This reads rF = 〈r〉F , vF = 〈v〉F , and TF = 〈v2〉F − 〈v〉2F . Determining kF and ωFis not so obvious, beause they have no immediate physial interpretation on themirosopi sale. To overome this problem we introdue auxiliary observables Ψkand Ψω, see [DH06℄ for their de�nitions, and set
kF := 〈Ψk〉F , ωF := 〈Ψω〉F .In the next step we start a numerial sheme similar to (3.3), whih allows to pre-sribe the values rF , vF , kF and TF , see [DH05℄ for details, and ompute an exatwave train with these parameters. For any F , the sheme yields a pro�le funtion

VF as well as a frequeny ωTW
F whih does not result from the auxiliary observable

Ψω but satis�es a dispersion relation.Finally, we ompare the mirosopi distribution funtions from the numerial datawith their marosopi preditions whih an be expressed in terms of VF . In par-tiular, aording to modulation theory, the support of the mirosopi distribution23



funtions must equal the urve
ϕ 7→ QTW(ϕ) =

(
rF + ÂkVF(ϕ+ kF/2), vF + ωF VF(ϕ)

)
. (5.1)This rather strong predition an be hek for given numerial data.Smoothly modulated initial dataWe study the evolution of data with temperature by imposing initial data in formof smoothly modulated binary osillations, i.e. we set

rα(0) =

{
r odd(εα) if α is odd,
r even(εα) if α is even, vα(0) =

{
v odd(εα) if α is odd,
v even(εα) if α is even,where r odd, r even, v odd and v even may be read o� from Figure 5.1. We solvedNewton's equation for the Toda hain with N = 4000 up to the marosopi time

tfin = 0.4 by means of the Verlet sheme, see [SYS97, HLW02℄.Figure 5.1 ontains snapshots of the atomi data for several marosopi times, wherethe blak olored urves represent the loal mean values, and Figure 5.2 shows thepro�les for some marosopi �elds at time t = 0.4. We observe that the atomi dataare highly osillating on the mirosopi sale so that any appropriate mathematialdesriptions of the limit N → ∞ must rely on measures. The omputation of wavenumber and frequeny is illustrated in Figure 5.3, showing the osillating values ofthe auxiliary observables Ψk and ΨΩ as well as their marosopi mean values.In Figure 5.4 we ompare the mirosopi distribution funtions with their maro-sopi preditions from modulation theory for six mesosopi spae-time windowsat t = 0.4. For eah of these windows we represent the distribution funtion ofmirosopi data by a density plot with high (Gray) and low (White) probability for�nding a partile. Note that the support of every distribution funtions is ontainedin losed urves, and that the distribution funtions vary on the marosopi sale.
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Figure 5.1: Snapshots of the atomi distanes and veloities at several marosopitimes. The vertial lines at t = 0.4 mark the spae-time windows for Figure 5.4.24
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6 The shok problemSine we expet a hyperboli system desribing the marosopi limit, it is naturalto investigate Riemann problems and interpret the results in terms of hyperbolitheory. A goal of this is to indiate seletion priniples for Riemann solvers thataount for the marosopi limit of atomi hains.We would naively expet to �nd rarefation fans, shoks and possibly ontat dis-ontinuities, that are seleted by harateristi urves and entropy onditions andwhose veloities are determined by harateristi veloities and Rankine-Hugoniotonditions.It turns out that this piture is invalid when mirosopi osillations our, leading tomodulated wave trains as mentioned in �4. Instead, we �nd a situation very similarto the zero dispersion limit of the KdV equation mentioned in �1, where dispersiveshok fans replae Lax-shok, and where veloities are not given by harateristiveloities of the limiting Burger's equation, orresponding to the p-system in ourase. Faed with a large number of publiations on this matter, we restrit refereneshere to [LLV93, LP05, El05℄ and the bibliographies therein.We fous on old initial data, i.e. onstant displaements and veloities with a singlejump at some ᾱ∗, i.e.
(r, v)(ᾱ, 0) = (r−, v−) , ᾱ ≤ ᾱ∗ , and (r, v)(ᾱ, 0) = (r+, v+) , ᾱ > ᾱ∗.The marosopi limit of the harmoni potential for suh Riemann problems is oldand desribed by (4.13). It is therefore desribed by the orresponding p-system,whih is a linear 1D wave equation, whose dynamis an be understood diretlyfrom the d'Alembert solution form, so there are only ontat disontinuities.For general nonlinear potentials, there is numerial evidene that dispersive shoksappear for initial data leading to Lax-shoks of the p-system, while rarefation dataleads to old marosopi limits desribed by the p-system. In Figure 6.1 we plota typial situation for illustration, and sketh a dispersive shok fan in Figure 6.3.We are partiularly interested in the transition of the Whitham modulation at itsfront.Remark 6.1. For onvex �ux, i.e. Φ′′′ > 0, the p-system an be solved uniquelyin terms of at most two rarefation or shok waves [Smo94℄. For non-onvex �uxthe situation is more ompliated, and the entropy onditions for the p-system nolonger agree, beause eigenvalues are no longer genuinely nonlinear [KS97, LeF02℄.A spei� hoie of a onvex-onave potential for (1.1), numerially yields a maro-sopially old, strong shok, onneting states with equal harateristi veloities,and traveling with a di�erent Rankine-Hugoniot veloity. In partiular, it is not aontat disontinuity or Lax shok, but a (fast) underompressive shok. Details onthis phenomenon will be published elsewhere.The marosopi dynamis in spae-time for Riemann data appear to be self-similar,hene reduible to a marosopi veloity variable c = α/t = ᾱ/t̄. More formally, we26
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Figure 6.1: Riemann problem with N = 4000 and Φ(r) = (r−1)2/2−cos(2(r−1))/4with one rarefation wave and one dispersive shok: snapshots of atomi distanesand veloities for t̄ = 0.0, t̄ = 0.15, and t̄ = 0.3.assume that the Young measure µ(c) arising in the marosopi limit for (initiallyold) Riemann problems at eah c is either a point measure or supported on a losedurve, orresponding to a wave train, so that from the modulation ansatz (4.5) weobtain X̃(c, ϕ) and analogously, from �4.3, an expression Mε(c, ϕ) for the vetor ofmodulated distanes and veloities. We use the phase variable ϕ to parametrize thesupport of µ(c). In ase µ(c) is a point measure, we obtain a strong limit where
X̃(c, ϕ) ≡ 0.A dispersive shok spans a range of speeds from the shok bak veloity, cb, to theshok front veloity, cf . To ease notation, we assume 0 < cb < cf , and that theonstant states to the left and right of the dispersive shok are (r−, v−) and (r+, v+)as skethed in Figure 6.3.It is instrutive to view the modulation of wave trains in a dispersive shok as theseletion of a urve in the set of wave trains X̃(c, ϕ) parametrized by cb < c < cfin terms of the wave train parameters (r(c), k(c), ω(c)). This urve bridges theenergy jump between the onstant states (r−, v−) and (r+, v+), and the wave trainsbeome singular at cb and cf . Based on numerial evidene [HFM81℄ and resultsfor the Toda hain [VDO91, Kam91℄, we assume that Mε(cb) ≡ (r−, v−) has zeroamplitude, and the shok front Mε(cf) orresponds to a soliton with bakgroundstate (r+, v+), where k(cf) = ω(cf) = 0. Note that this is a singular limit of (3.4)and that Theorem 3.10 implies in�nite kineti energy γ(cf). We plot wave trainsand �elds within a dispersive shok in Figure 6.2.More preisely, the shok front is assumed to be a homolini orbit

H(s) := lim
c→cf

Mε(cf)in the phase saling ϕ = ωs with asymptoti state lims→±∞H(s) = (r+, v+). Weexpet the onvergene to the asymptoti state is exponential in s, thus Lp-normsof [H(s)− (r+, v+)] are �nite. In terms of the wave train pro�le X and V = ∂ϕX we27



0. 1.
+1.00

+1.50

+2.00
Distances

0. 1.
+1.44

+1.72

+2.00
Mean Distance

+0.95 distance +2.05
-0.04

+0.83

ve
lo

ci
ty

distribution functions

0. 1.
+0.00

+0.03

+0.07
Temperature

0. 1.
+0.00

+0.61

+1.21
Entropy

Figure 6.2: Example for dispersive shoks. Left: snapshots of atomi distanesand their loal mean values. Center: superposition of several distribution funtionswithin the shok; positions of the spae-time windows are marked by vertial lines.Right: snapshots of temperature and entropy.an write the seond omponent H2 of H as
H(s) := H2(s) − v+ = lim

c→cf
ω(c)V(c, ω(c)s) = lim

c→cf

d

ds
X(c, ω(c)s).Both the vanishing amplitude at cb and sinusoidal osillations, and the homoliniorbit at cf are natural odimension-1 singularity along a urve of wave trains viewedas periodi orbits.Assuming a soliton at the shok front means in partiular that the modulationsystem does not have a strong shok, whih is hallenging to on�rm numerially asdisussed below. Instead, we onjeture that at the shok front the entropy S jumpsand (r, v, k, ω) are ontinuous with unbounded derivative. Heuristially, the exessenergy at the jump in the initial data annot be dissipated by the onservativesystem, but is transported dispersively via osillations with two new degrees offreedom, frequeny and wave number.Properties at and near the solitonWe predit the saling of temperature and related quantities assuming the saling ingeneri or onservative homolini bifurations of ODEs [VF92℄, where the unfoldingparameter, here c, is exponentially small in the period, here 1/ω. We thus expet

cf − c ∼ e−κ/ω, for some κ > 0, and so
ω(c) ∼ k(c) ∼ 1/ log(cf − c),beause Theorem 3.9 implies the same saling in k. Indeed, this saling ould beon�rmed for the ase of Toda potential using the expliit solutions in [DKV95℄,and also appears in the formal derivations in [El05℄.Temperature, entropy, entropy �ux. The de�nition T = ω2

∫ 1

0
V(ϕ)2dϕ of the tem-28



perature of a wave train yields
T (c) =

∫ 1

0

[ω(c)V(c, ϕ)]2 dϕ = ω(c)

∫ 1/ω(c)

0

[ω(c)V(c, ω(c)s)]2 dsand thus (assuming smoothness) the limiting temperature of the soliton
lim
c→cf

T (c) = lim
c→cf

ω(c)

∫ 1/ω(c)

0

[ω(c)V(c, ω(c)s)]2 ds =

∫ ∞

0

H(s)2ds lim
c→cf

ω(c) = 0,beause the L2 norm of H is �nite. Then the salings of temperature T , entropy Sand entropy �ux g, see (3.16), are given by
T (c) ∼ (log(cf − c))−1 , g(c) ∼ S(c) = T (c)/ω ∼ 1,where we used cS ′ = g′. We thus predit that the temperature is ontinuous for all cand deays to zero like 1/ log. Entropy and entropy �ux vanish in old regions, butontinuously approah a �nite, non-zero value and jump to zero beyond the shokfront.Sine the temperature also deays towards the shok bak, we expet a unimodalurve T (c) with a unique maximum, as is the ase in e.g. a planar ODE where theinterior of a homolini orbit is �lled with periodi orbits and an ellipti equilibrium.However, these salings and limiting values are di�ult to on�rm numerially, be-ause the 1/ log deay is hard to resolve, and the shok front ould not be simulatedin isolation from the rest of the modulation region due to boundary e�ets.Norm parameter γ. On aount of Theorem 3.10, the norm parameter γ grows atleast like 1/k, so that γ(c) ≥ −C log(cf − c), for a onstant C > 0. This agrees withthe predition from the above entropy saling, beause

γ(c) =
S

2ω
=

T

2ω2
∼ 1

ω
∼ log(cf − c).Mean distane and veloity. Assuming that c unfolds the homoliniity as a generi(or Hamiltonian) ODE, the �ow time through a �xed small region near (r+, v+)grows logarithmially in c and thus for the average values we obtain the saling

r(c) = r+ − r1/ log(cf − c) + h.o.t. v(c) = v+ − v1/ log(cf − c) + h.o.t.,with some onstants r1, v2, sine the limiting values are those of the orrespondingRiemann data.Note that the �rst equation in (4.4) implies −cr′ = v′ in the sense of distributions,where ′ = d/dc. Therefore, −cfr1 = v1, and so
cf = −v1/r1 (6.1)replaes the Rankine-Hugoniot jump ondition.29



Propagation speeds. The modulation equations yield �ve equations for the propa-gation speed of the shok front; four in term of leading order expansions suh as
−cr′ = v′ → −c = dv/dr above, and one jump ondition c|[S]| = |[g]|. Indeed,in numerial simulations of dispersive shoks all these veloities are lose to thatobtained from the slope of the shok front in spae-time.The onservation of wave number implies −ck′ = ω′ and thus throughout the disper-sive shok we have −c = cg := dω/dk, whih is the group veloity and not the phaseveloity cph := −ω/k of wave trains. Note that here, −c is the expeted propagationveloity due to the hoide of sign for ω in (3.3) and (4.7).In partiular, the shok front should move with the limiting group veloity, whilethe soliton speed naturally is the limiting phase veloity. However, in the solitarylimit, phase and group veloity typially oinide, beause for L = 1/k we have theidentity

cg = cph − L
dcph

dL
,where dcph

dL
is exponentially small for generi and onservative homolini bifurationsin ODE [VF92℄; the identity follows from dcph

dk
=

cg−cph

k
.Reall that the phase veloities of wave trains were estimated in (3.14) and rigorouslyimply that the soliton veloity is bounded (essentially) by p-system harateristisveloities c−, c− of the left and right states r−, r+. However, in numerial simu-lations, the shok front veloity cf never exhausted these bounds, but was stritlybetween c− and c+.
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Figure 6.3: Left: Sketh of a dispersive shok for the marosopi limit of a shokproblem in (1.1). Dashed line is the p-system Lax shok with speed crh, dotted thep-system harateristi veloities c± of left and right states (r±, v±). Right: skethof the r-modulation at some time t̄∗ > 0 with 1/ log saling at cf .On the other hand, the shok veloity of the p-system is given by the Rankine-Hugoniot ondition crh =
√

(Φ′(r−) − Φ′(r+))/(r− − r+), and in all ases (for Φ′monotone) we numerially found the veloity ordering skethed in Figure 6.3, thatis,
cb < c+ < crh < cf < c−,where crh−cf ∼ 5%. Charateristis point into the dispersive shok fan, and indeed,we seem to �nd dispersive shoks only if c− < crh < c+, see also Remark 6.1.30



Finally, we mention that the veloity cb of the shok bak, where wave trains havesmall amplitude, numerially agrees with the predition from harmoni modulationequations, i.e. cb =
√

Φ′′(r−) sin(πk(cb))/πkb.Remarks and open problemsThe ourrene of dispersive shoks has only been proven rigorously for some om-pletely integrable ases, in partiular the Toda hain [VDO91, Kam91℄. Unfortu-nately, the literature on this issue is not easily aessible to non-speialists, and wefound it inonlusive onerning the rigorous justi�ation of a hyperboli systemof Whitham modulation equations. In fat, neither the observation that the shokfront is a soliton, nor the saling at the shok front, nor the veloity of the shokbak seem to be worked out.Similarly, to our knowledge, the seletion mehanism for the soliton has not beenformulated in terms of initial values for the Riemann problem (though the shokfront veloity for the Toda shok problem an be omputed expliitly [VDO91℄). Anobservation towards a seletion priniple ould be that in numerial experiments forvanishing initial veloities, the dispersive shok exhausts preisely the range betweenthe initial jump in the r-omponent. We also observe that the dispersive shok in
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