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Abstract

In this paper we study scalar multivariate non-stationary subdivision schemes with

a general integer dilation matrix. We present a new numerically efficient method for

checking convergence and Hölder regularity of such schemes. This method relies on the

concepts of approximate sum rules, asymptotic similarity and the so-called joint spectral

radius of a finite set of square matrices. The combination of these concepts allows us to

employ recent advances in linear algebra for exact computation of the joint spectral radius

that have had already a great impact on studies of stationary subdivision schemes. We

also expose the limitations of non-stationary schemes in their capability to reproduce and

generate certain function spaces. We illustrate our results with several examples.

Keywords: multivariate non-stationary subdivision schemes, approximate sum rules, asymp-

totic similarity, joint spectral radius.

Classification (MSCS): 65D17, 15A60, 39A99

1 Introduction

In this paper we study multivariate non-stationary subdivision schemes with a general dilation

matrix M ∈ Zs×s all of whose eigenvalues are in absolute value larger than 1, i.e. ρ(M−1) < 1.
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Subdivision schemes are efficient iterative methods for generating smooth surfaces or functions

from a given initial set of data c(1) := {c(1)(α), α ∈ Zs} by means of local refinement with

rules stored in {Sa(k) , k ≥ 1}. The subdivision operators Sa(k) : ℓ(Zs) → ℓ(Zs) are linear and,

at each step of the subdivision recursion, the refinement rules define a map from the coarser

sequence c(k) ∈ ℓ(Zs) to the denser finer sequence c(k+1) ∈ ℓ(Zs) via

c(k+1) := Sa(k)c(k), Sa(k)c(k)(α) :=
∑
β∈Zs

a(k)(α−Mβ)c(k)(β), k ≥ 1, α ∈ Zs . (1)

A subdivision scheme whose refinement rules are level dependent is said to be non-stationary

(see, [14], for example), or, sometimes, non-homogeneous (see, [3], for example). In this paper

we opt for using the term non-stationary and, therefore, denote by stationary a scheme whose

refinement rules are level independent (the scheme is therefore specified by a unique set of

refinement coefficients a(k) = a = {a(α), α ∈ Zs} for all k ≥ 1). Moreover, we consider non-

stationary subdivision schemes {Sa(k) , k ≥ 1} whose subdivision masks - the sets of refinement

coefficients a(k) = {a(k)(α), α ∈ Zs}, i.e. the sequence of real numbers indexed by Zs, - are

each supported in {0, . . . , N}s, N ∈ N.

A notion of convergence for the non-stationary scheme {Sa(k) , k ≥ 1} is established using

the sequence {F (k), k ≥ 1} of continuous functions F (k) that interpolate the data c(k) at the

parameter values M−kα, α ∈ Zs, namely

F (k)(M−kα) = c(k)(α), α ∈ Zs, k ≥ 1. (2)

Definition 1. The scheme {Sa(k) , k ≥ 1} applied to the initial data c(1) ∈ ℓ(Zs) is called

convergent, if there exists the limit function gc(1) ∈ C(Rs) (which is nonzero for at least one

initial nonzero sequence c(1)) such that the sequence {F (k), k ≥ 1} in (2) converges to gc(1), i.e.

gc(1) := lim
k→∞

Sa(k)Sa(k−1) · · ·Sa(1)c(1) = lim
k→∞

F (k). (3)

We call the scheme {Sa(k) , k ≥ 1} Cℓ−convergent, ℓ ≥ 0, if gc(1) ∈ Cℓ(Rs).

Let δ0,α, α ∈ Zs, be the Kroneker delta symbol, i.e. δ0,0 = 1 and zero otherwise. An

interesting fact about convergent schemes is that the compactly supported basic limit functions

ϕk obtained from the initial sequence δ := {δ(α) = δ0,α, α ∈ Zs}, when starting from the mask

at level k,

ϕk := lim
ℓ→∞

Sa(k+ℓ)Sa(k+1) · · ·Sa(k)δ, k ∈ N,
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are mutually refinable, i.e., they satisfy the functional equations

ϕk =
∑
α∈Zs

a(k)(α)ϕk+1(M · −α), k ∈ N. (4)

The popularity of stationary and non-stationary schemes is due to their applications in geomet-

ric modeling [3, 14], non-stationary multiresolution analysis [2, 9, 17, 23], isogeometric analysis

[25]. From 1995 and up to recently, convergence and regularity of non-stationary subdivision

schemes have been usually determined through a comparison to the so-called asymptotically

equivalent stationary scheme, see [15] and its univariate generalization in [16].

Let ℓ ≥ 0. We recall that {Sa(k) , k ≥ 1} and a stationary scheme Sa are called asymptotically

equivalent (of order ℓ), if they satisfy

∞∑
k=1

mkℓ/s∥Sa(k) − Sa∥∞ < ∞, where ∥Sa(k)∥∞ := max
ε∈E

{∑
α∈Zs

|a(k)(Mα + ε)|

}
, (5)

where the set E := {ε0, . . . , εm−1} is a set of representatives of Zs/MZs, m := |det(M)| and
ε0 = 0 := (0, . . . , 0).

The main contribution of this paper is a new numerically efficient method for checking con-

vergence and Hölder regularity of non-stationary schemes. The importance of this method is

that it helps to enrich the family of existing non-stationary schemes and, thus, the class of

functions generated by such subdivision schemes. The method we propose, see section 3, relies

on the concepts of approximate sum rules, asymptotic similarity and the joint spectral radius

of a bounded set of square matrices [12, 29].

Definition 2. The joint spectral radius (JSR) of a finite collection of square matrices A :=

{Aj : j = 1, . . . , J}, J ∈ N, is defined by

ρ(A) := lim
n→∞

max
jℓ=1,...,J

∥∥∥∥∥
n∏

ℓ=1

Ajℓ

∥∥∥∥∥
1/n

.

Note that this definition of ρ(A) is independent of the choice of the matrix norm ∥ · ∥.
Note also that for a bounded - but not finite - set of matrices this definition is also applicable

after replacing limmax by lim sup. In the stationary case, it is well-known that the Hölder

regularity of the subdivision limits, as well as the rate of convergence of the corresponding
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subdivision scheme, are given explicitly in terms of JSR of special matrices constituting A (so-

called transition matrices) restricted to their common invariant subspace, see [28] and references

therein. In the non-stationary setting, the concept of the joint spectral radius is not directly

applicable and has no straightforward generalization as it heavily relies on certain polynomial

reproduction property of subdivision, which determines this invariant subspace. Indeed, in the

non-stationary case, the set A is replaced by a sequence of sets whose matrix elements may

have no common invariant subspaces at all. The latter phenomenon creates the main obstacle

for the generalization of the matrix techniques to the non-stationary case.

To make our method work, we established a link between stationary and non-stationary

settings by means of approximate sum rules and asymptotic similarity. These notions of ap-

proximate sum rules and asymptotic similarity further relax the sufficient criteria for regularity

given in [8, 15, 16]. The new weaker sufficient conditions, we propose, are close to being nec-

essary, see Section 4.1. Thus, already in the univariate binary case, our sufficient conditions

for convergence and regularity of non-stationary schemes cannot be relaxed much further. An

important intrinsic difference between stationary and non-stationary settings as well as the

estimates of Hölder regularity are discussed in Section 3.3. We also expose the limitations of

non-stationary schemes in their capability to reproduce and generate certain function spaces,

see Section 4.2. In Sections 3.2 and 4.2, we illustrate our results with several examples. Note

that, due to our assumption on the supports of the masks a(k), one cannot expect that the

non-stationary schemes whose properties can be analyzed using our method generate or repro-

duce functions of smaller support or higher smoothness than their asymptotic similar stationary

counterparts.

Acknowledgements. The authors are grateful to the Mathematical Institute at Oberwol-

fach for offering optimal working conditions through the Research In Pairs program in 2013.

2 Background and preliminary definitions

In this section we recall basic important facts about subdivision and provide background and

preliminary definitions and results.

We start by recalling that a stationary subdivision scheme Sa, which is convergent to a Cℓ

limit, has a symbol a∗(z) :=
∑
α∈Zs

a(α)zα, z ∈ (C \ 0)s, zα := zα1 zα2 · · · zαs , that satisfies the
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so-called sum rules of order ℓ+ 1, see e.g. [3, 23], or reference therein. Define the set

Ξ = {e2πiM−T ξ : ξ is a coset representative of Zs/MTZs} , (6)

which contains 1 := (1, 1, . . . , 1).

Definition 3. The symbol a∗(z) satisfies the sum rules of order ℓ+ 1 if

a∗(1) = m, and max
|η|≤ℓ

max
ϵ∈Ξ\{1}

|Dηa∗(ϵ)| = 0 . (7)

In the above definition, Dη, η ∈ Ns
0, denotes the η−th directional derivative.

In the stationary setting, it is well-known that the JSR of a suitably defined set of square

matrices characterizes the subdivision convergence. To state the corresponding result in the

non-stationary setting, we need to introduce some additional notation. By ℓ0(Zs) we denote a

space of finitely supported scalar sequences. For ε ∈ E, we denote by Aε the linear operator

on ℓ0(Zs)

Aεv :=
∑
β∈Zs

v(β)a(ε+M · −β), v ∈ ℓ0(Zs), (8)

derived from the subdivision mask a. The linear operators Aε constitute the finite collection

A := {Aε : ε ∈ E}. For a given finite set K ⊂ Zs, we denote by ℓ(K) ⊂ ℓ0(Zs) the linear space

of all sequence supported in K.

Definition 4. A set V ⊂ ℓ(K) is called admissible for A or A-admissible, if V is invariant

under all Aε, ε ∈ E, i.e., if v ∈ V , then Aεv ∈ V for any ε ∈ E.

If V is a finite dimensional subset of ℓ(K) which is A-admissible, then the finite collection

A|V := {Aε|V : ε ∈ E} of linear operators Aε|V : V → V,

has a corresponding finite collection of matrix representations (in a basis of V ) denoted by

T |V := {Tε,a|V = [a(ε+Mα− β)]α,β∈K |V , ε ∈ E}. (9)

By [6], for a given a ∈ ℓ0(Zs), one can choose K =
∞∑
r=1

M−rG, where G is given by

G := (supp(a) ∪ {0})− E + {−1, 1}s = {0, . . . , N}s − E + {−1, 1}s.
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Then, by e.g. [2, 6, 21, 22],

V := {v ∈ ℓ(K) :
∑
α∈K

v(α) = 0}, (10)

and the following characterization establishes the connection between the convergence of sta-

tionary subdivision schemes and the value of the JSR of T |V .

Proposition 1. Let a ∈ ℓ0(Zs) be a subdivision mask. The subdivision scheme Sa is convergent

if and only if ρ(T |V ) < 1, for V defined in (10).

The result of Proposition 1 has been extended for the Cℓ-regularity analysis of stationary

schemes, see e.g. [6, 4, 22]. In this case, one considers the restriction of Tε,a to the finite

dimensional invariant subspaces Vℓ, V0 = V , that ”mimic” taking the derivatives of associated

basic limit function, see e.g. [2, 22] for the structure of Vℓ. Once the subspaces Vℓ are properly

defined the corresponding regularity result, see e.g. [6], states the following.

Proposition 2. Let a ∈ ℓ0(Zs) be a subdivision mask. The subdivision scheme Sa is C
ℓ−convergent

if and only if ρ(T |Vℓ
) < m−ℓ/s, for Vℓ suitably defined.

Although there is a multitude of results that deal with Hölder and Sobolev regularity of

subdivision limits in both stationary and non-stationary settings, in this paper, we are interested

in ”extensions” of Propositions 1 and 2 to the multivariate non-stationary setting under milder

sufficient conditions than in [8, 15, 16]. For this purpose we note that, due to non-stationarity,

instead of one subdivision symbol we have a sequence of subdivision symbols {a(k)∗ (z), k ≥ 1}
defined by

a(k)∗ (z) :=
∑
α∈Zs

a(k)(α)zα, z ∈ (C \ 0)s, k ≥ 1,

and a sequence of associated trigonometric polynomials

a(k)∗ (e−i2πω) =
∑
α∈Zs

a(k)(α)e−i2πω·α, e−iω := (e−iω1 , . . . , e−iωs), ω ∈ Rs, k ≥ 1.

We continue by introducing what we call the approximated sum rules, which are the main

ingredient of our analysis.

Definition 5. Let ℓ ≥ 0. The sequence of symbols {a(k)∗ (z), k ≥ 1} satisfies approximate sum

rules of order ℓ+ 1, if

µk := a(k)∗ (1)−m and δk := max
|η|≤ℓ

max
ϵ∈Ξ\{1}

m−k|η|/s|Dηa(k)∗ (ϵ)| (11)
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satisfy
∞∑
k=1

µk < ∞ and
∞∑
k=1

m kℓ/sδk < ∞ . (12)

Note that one can always rescale each of the symbols a
(k)
∗ (z) in such a way that all µk = 0

and, thus, trivially summable. Note also that the approximate sum rules of order 1 are weaker

than the asymptotic equivalence in (5) as (11)-(12) require

∞∑
k=1

max
ε∈E

{∣∣ ∑
α∈Zs

a(k)(Mα + ε)− a(Mα + ε)
∣∣} < ∞.

To comply with the notation in [8], we recall the notion of asymptotic similarity.

Definition 6. A stationary Sa and a non-stationary {Sa(k) , k ≥ 1} subdivision schemes are

called asymptotically similar, if lim
k→∞

a(k) = a .

In Definition 7, we also generalize the notion of asymptotic similarity to the cases, when

the sequence {a(k), k ≥ 1} has infinitely many accumulation points that define stationary

schemes. This allows us, for example, to analyze the smoothness of non-stationary schemes

that at different levels of subdivision recursion have unrelated symbols.

3 Convergence and regularity of non-stationary schemes

In this section we first derive sufficient conditions for convergence of a certain big class of non-

stationary subdivision schemes. In Subsection 3.1, we show that a non-stationary subdivision

scheme satisfying approximated sum rules of order 1 and asymptotically similar to a convergent

stationary scheme is convergent as well. We also present a generalization of this convergence

result for schemes that are asymptotically similar in terms of Definition 7, see Theorem 2. In

Subsection 3.2, we illustrate the differences between the concepts of asymptotic equivalence

and the generalized asymptotic similarity. In the last Subsection 3.3, we point out one of the

crucial differences between stationary and non-stationary settings which makes it necessary to

separate convergence and regularity analysis in the latter case. We also state the regularity

results that are in preparation.

7



3.1 Convergence

In this section we always assume that the non-stationary schemes satisfy Definition (7) for

ℓ = 0, i.e. they satisfy the following.

a) “Approximate sum rules of order 1.” The sequence of masks {a(k), k ≥ 1} satisfies

“approximate sum rules of order 1”.

Theorem 1. If the non-stationary scheme {Sa(k) , k ≥ 1} satisfies a), i.e. the approximate

sum rules of order 1, and is asymptotically similar to a convergent stationary scheme Sa, then

it is C0(Rs)−convergent.

Proof. As recalled in Section 2, in the stationary case, we denote by V the subspace of

ℓ(K) invariant under all Tε,a, which we denote by Tε in the sequel. After a suitable change

of basis, the canonical row unit vector (1 0 . . . 0) becomes a common left-eigenvector of the

operators Tε, ε ∈ E, which thus can be assumed to have block diagonal structure,

Tε =


1 bε

0
... Qε

0


T

.

It is well-known that convergence of a non-stationary scheme is equivalent to the convergence

of the associated cascade algorithm [17], i.e. for every v ∈ V ⊥ with V in (10), the sequence

with elements T
(1)
ε . . . T

(k)
ε v converges as k goes to infinity for every choice of ε ∈ E (we remark

that ε varies depending on k). After an appropriate change of basis, the canonical row unit

vector (1 0 . . . 0) becomes a quasi-common left-eigenvector of the operators T
(k)
ε , ε ∈ E (this

can be derived similarly to what is done in [2, 21] in the stationary case). In other words, we

get the decomposition

T (k)
ε = T̃ (k)

ε +∆(k)
ε , ε ∈ E, k ≥ 1, (13)

with

T̃ (k)
ε =


1 b

(k)
ε

0
... Q

(k)
ε

0


T

, ∆(k)
ε =


0 0 · · · 0

c
(k)
ε O


T

,
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where, due to to the asymptotic similarity assumption, b
(k)
ε and Q

(k)
ε converge as k → ∞ to bε

and Qε, respectively, and c
(k)
ε converges to a zero vector (we denote by O the zero matrix of

suitable dimension).

Moreover a) implies that the sequence ∥∆(k)
ε ∥ is summable with respect to k.

By assumption, Sa is convergent, thus, we have ρ ({Qε, ε ∈ E}) < 1. The existence of

the extremal operator norm of {Qε, ε ∈ E} and the continuity of the joint spectral radius

imply that there exists k̄ such that ρ
(
{Q(k)

ε , ε ∈ E, k ≥ k̄}
)
< 1. By well-known results (see

e.g. [1]) on the joint spectral radius of block triangular families of matrices we obtain that

ρ
(
{T̃ (k)

ε , ε ∈ E, k ≥ k̄}
)
= 1. Moreover, the family of matrices {T̃ (k)

ε , ε ∈ E, k ≥ k̄} is non-

defective (see e.g. [18]), thus by [1, 29], there exists an extremal operator norm ∥ · ∥ such

that

∥T̃ (k)
ε ∥ ≤ 1 for all ε ∈ E, k ≥ k̄. (14)

This implies that for all vectors v ∈ V ⊥, the product T̃
[1]
ε . . . T̃

[k]
ε v converges as k goes to infinity

for every choice of ε ∈ E. By assumption a), we also have

∥∆(k)
ε ∥ ≤ C(δk + µk) := δ̃k where

∞∑
k=1

δ̃k < ∞, (15)

where C is a constant which does not depend on k. For n, ℓ ∈ N, consider any specific sequence

T (n)
ε . . . T (n+ℓ)

ε =
(
T̃ (n)
ε +∆(n)

ε

)
. . .
(
T̃ (n+ℓ)
ε +∆(n+ℓ)

ε

)
= T̃ (n)

ε . . . T̃ (n+ℓ)
ε +Rn,ℓ

where Rn,ℓ is obtained by expanding all the products. From (14)-(15) we get lim
n→∞

Rn,∞ = O

implying convergence of
k∏

j=1

T
[j]
ε v as k → ∞. The reasoning for lim

n→∞
Rn,∞ = O is as follows

∥Rn,∞∥ ≤
∞∑
j=1

(
∞∑
k=n

δ̃k

)j

=
∞∑
j=0

(
∞∑
k=n

δ̃k

)j

− 1 =

∞∑
k=n

δ̃k

1−
∞∑
k=n

δ̃k

.

�

It is worthwhile to remark that Theorem 1 generalizes [8, Theorem 10] dealing with the uni-

variate case under the assumption that the non-stationary scheme reproduces constants. The

result of Theorem 1 is also a generalization of the corresponding results in [15, 16] that require

that stationary and non-stationary schemes are asymptotically equivalent.
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The previous result can be extended in several directions. One possible extension, whose proof

is similar to the proof of Proposition 1, makes use of the following notions.

Definition 7. For the mask sequence {a(k), k ≥ 1} define ∂A to be the set of its limit points,

i.e.

a ∈ ∂A, if ∃{kn, n ∈ N} such that lim
n→∞

a(kn) = a .

Remark 1. (i) In general, for an arbitrary compact set B of masks, there exists a non-

stationary subdivision scheme {Sa(k) , k ≥ 1} for which ∂A = B. (ii) For asymptotically

similar schemes the sets of limit points ∂A coincide. However, the converse is not true in

general. Indeed, if the sets of limit points coincide, then the schemes may not be asymptotically

similar.

Definition 8. A set of masks ∂A is said to satisfy simultaneous contractibility (of order 0) if

for all a ∈ ∂A the joint spectral radius of the finite sequence T |V = {Tε,a|V , ε ∈ E} satisfies

ρ(T |V ) < 1.

We conclude this section with an useful generalization of Theorem 1.

Theorem 2. Assume that the non-stationary scheme {Sa(k) , k ≥ 1} satisfies the approximate

sum rules of order 1. Assume further that the corresponding set ∂A satisfies simultaneous

contractibility of order 0. Then the non-stationary scheme {Sa(k) , k ≥ 1} is C0−convergent.

The proof is analogous to that of Theorem 1 and is, therefore, omitted.

In the next subsection, we illustrate our convergence results with several examples.

3.2 Examples

Already in the binary univariate case we give several simple examples showing the advantage

of relaxing the condition of asymptotic equivalence.

Example 1. We start by considering a non-stationary scheme based on masks which are level

dependent convex combination of two masks a,b ∈ ℓ0(Z) that define two stationary convergent

subdivision schemes. See also [7]. The new non-stationary subdivision scheme has a mask given

by

a(k) =

(
1− 1

k

)
a+

1

k
b, k ≥ 1. (16)
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This non-stationary scheme does not satisfy the conditions in (5) since

∑
k∈N

max
ε∈{0,1}

{∑
α∈Z

|a(k)(ε+ 2α)− a(ε+ 2α)|

}
= max

ε∈{0,1}

{∑
α∈Z

|b(ε+ 2α)− a(ε+ 2α)|

}
·
∑
k∈N

1

k
.

Nevertheless, it satisfies the assumptions of Theorem 1, since all symbols satisfy

a(k)∗ (1)− 2 = 0, a(k)∗ (−1) = 0, k ≥ 1 ,

i.e. µk = 0, δk = 0 and, by construction, lim
k→∞

a(k) = a.

Figure 1 shows the result of 12 iterations of the non-stationary subdivision scheme based on the

cubic and linear splines that is on a = {1
8
, 1

2
, 3

4
, 1

2
, 1

8
} and b = {1

2
, 1, 1

2
} when starting with

the initial delta sequence δ := {0, 0, 1, 0, 0}.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. Result of 12 iterations of the non-stationary subdivision scheme in (16)

One could also use the results of [8] for checking the convergence of this non-stationary

scheme.

In the next example neither the results of [8] nor the ones in [15, 16] are applicable.

Example 2. Generalizing the previous example we construct the non-stationary scheme based

on the sequence of masks

a(k) =

{ (
1− 1

k

)
a+ 1

k
b, k even;(

1− 1
k

)
c+ 1

k
d, k odd;

k ≥ 1 , (17)

with a, b, c, d ∈ ℓ0(Z) defining four stationary convergent subdivision schemes and with a, c,

having the same support. In this case, even though the notion of asymptotically equivalence is

not applicable, but Theorem 2 allows us to establish the convergence of the scheme in (17).
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Figure 2 shows the result of 12 iterations of the non-stationary subdivision scheme based on the

stationary masks a = { 1
32
, 6

32
, 15

32
, 20

32
, 15

32
, 6

32
, 1

32
}, b = {1

8
, 1

2
, 3

4
, 1

2
, 1

8
},

c = {− 1
16
, 0, 9

16
, 1, 9

16
, 0, − 1

16
} and d = {1

2
, 1, 1

2
} when starting with the initial delta

sequence δ := {0, 0, 1, 0, 0}.

−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4
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Fig. 2. Result of 12 iterations of the non-stationary subdivision scheme (17)

Example 3. We continue by constructing the sequence of masks {a(k), k ≥ 1} where

a(k) =

{(
1

4
− 1

k

)
,

(
3

4
− 1

k2

)
,

(
3

4
+

1

k

)
,

(
1

4
− 1

k2

)}
, k ≥ 1 . (18)

Obviously, lim
k→∞

a(k) = a with a =
{

1
4
, 3

4
, 3

4
, 1

4

}
the mask of the Chaikin subdivision scheme.This

non-stationary scheme does not satisfy the conditions in (5) since∑
k∈N

max
ε∈{0,1}

{∑
α∈Z

|a(k)(ε+ 2α)− a(ε+ 2α)|

}
= max

{∑
k∈N

1

k2
,
∑
k∈N

1

k

}
= ∞.

Nevertheless, the non-stationary scheme (18) satisfies the assumptions of Theorem 1 since all

symbol are such that

a(k)∗ (1)− 2 = − 2

k2
a(k)∗ (−1) =

2

k2
, k ≥ 1 ,

i.e. µk = −δk =
2
k2

which are summable sequences.

Figure 3 shows the result of 12 iterations of the non-stationary subdivision scheme based on

(18) when starting with the initial delta sequence δ := {0, 0, 1, 0, 0}.

−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
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Fig. 3. Result of 12 iterations of the non-stationary subdivision scheme (17)

3.3 Outlook: Regularity

One of the striking facts about the non-stationary setting is that the well-known fact that

Cℓ−convergence of a stationary scheme implies its C0−convergence is no longer true.

Remark 2. Consider again the univariate binary case with M = 2. It is a well-known fact

that the convergence of Sa in the stationary case is equivalent to the fact that the difference

scheme Sb with

a∗(z) = (1 + z) b∗(z), z ∈ C \ 0,

is zero convergent, i.e for every u ∈ V the product ∥Tε1 . . . Tεnu∥ goes to zero as n goes to ∞.

In the non-stationary case, this characterization is not valid. Consider a non-stationary scheme

with the masks

a(k) =

(
1 +

1

k

)
a, k ≥ 1. (19)

Note that µk = 2
k
and δk = 0, thus, the non-stationary scheme is asymptotically similar to Sa

and the associated trigonometric satisfies

a∗
(k)(k) = (1 + z)

(
1 +

1

k

)
b∗(z), z ∈ C \ 0.

We show next that the zero convergence of the associated difference schemes with the symbols

(1 + 1/k)b∗(z) does not imply the convergence of the corresponding non-stationary scheme.

Indeed, for u ∈ V and εj ∈ {0, 1}, we get

∥T (1)
ε1

. . . T (n)
εn u∥ =

n∏
k=1

(
1 +

1

k

)
∥Tε1 . . . Tεnu∥ = (n+ 1)∥Tε1 . . . Tεnu∥.

The convergence of Sa implies the existence of an extremal operator norm such that

∥Tε1 . . . Tεnu∥ ≤ Cγn, γ < 1.

Therefore, the norm ∥T (1)
ε1 . . . T

(n)
εn u∥ goes to zero as n goes to ∞, but the corresponding non-

stationary scheme is not convergent. Otherwise, its basic limit function ϕ1 would satisfy

ϕ̂1(ω) = ϕ̂1(0)
∞∏
k=1

a(k)∗ (e−i2π2−kω), ω ∈ R,
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where

ϕ̂1(0) = lim
n→∞

2
n∏

k=1

(
1 +

1

k

)
= lim

n→∞
2(n+ 1) = ∞.

Not to overwhelm the reader with the technical details of the proofs of our regularity results,

we postpone those to a forthcoming publication [5]. For completeness, we only state them here

to show that the method we propose can also be used to check the regularity of limits of

non-stationary schemes. The constant αϕ1 in the following two results determines the Hölder

exponent of the refinable limit function ϕ1 in (4).

Theorem 3. Let ℓ ≥ 0. If the masks {a(k) , k ≥ 1}, satisfy sum rules of order ℓ+ 1 and

ρℓ := ρ
{
T ε,a|Vℓ

∣∣∣ ε ∈ E , a ∈ ∂A
}

< m−ℓ/s ,

then the scheme {Sa(k) , k ≥ 1} converges, its basic limit function ϕ1 ∈ Cℓ(Rs) and

αϕ1 ≥ −s logm ρℓ.

Theorem 4. Let ℓ ≥ 0. Assume that the non-stationary scheme {Sa(k) , k ≥ 1} satisfies

approximate sum rules of order ℓ + 1 and is asymptotically similar to a convergent stationary

scheme Sa with a stable refinable function φ ∈ Cℓ(Rs). Then {Sa(k) , k ≥ 1} converges to a

refinable function ϕ1 ∈ Cℓ(Rs) with

αϕ1 ≥ max
{
αφ , −s lim sup

k→∞

logm δk
k

}
. (20)

4 Further properties of non-stationary schemes

In this section we consider binary univariate case only with M = 2 and the symbols a
(k)
∗ scaled

so that all µk = 0. For such schemes, in Subsection 4.1, we show that the approximate sum rules

in Definition 5 are very close to being necessary for the Hölder regularity of a non-stationary

schemes. This resembles the stationary setting, motivates our multivariate convergence results

and, more important, their generalization to the smoothness analysis in [5]. Indeed, in the

binary univariate case, we show that under stability assumptions the Cℓ−regularity of a non-

stationary scheme implies that the sum rules defects δk := maxj≤ℓ 2
−k j|Dja

(k)
∗ (−1)| and µk

must decay faster than 2−ℓk. Although there is still a gap, even in the case ℓ = 0, between this

necessary condition limk→∞ δk = 0 and the sufficient condition
∑

k∈N δk < ∞. Nevertheless,

14



even in the simplest binary univariate case, our weaker conditions for convergence and regularity

of non-stationary scheme cannot be relaxed by much to improve even further the results in

[8, 15, 16].

In the last Subsection 4.2, we show that already in the binary univariate case the generation

and reproduction properties of non-stationary schemes are limited to some special subspaces of

functions.

4.1 Necessary conditions for regularity of non-stationary schemes

Before proving the announced result we consider a preliminary Proposition that studies the

infinite products of certain trigonometric polynomials. To this purpose we need to discuss

some preliminary facts:

Let {ak, k ∈ N} be a sequence of algebraic polynomials of degree N . We write pk(x) =

ak(e
−2πix) for the corresponding trigonometric polynomials and assume that ak(1) = pk(0) = 1

for all k. A pair of complex numbers {z,−z} is a pair of symmetric roots for a polynomial a,

if a(z) = a(−z) = 0.

It is known that if a refinable function is stable, then the symbol a of the corresponding

refinement equation has no symmetric roots on the unit circle {z ∈ C : |z| = 1}. We consider

the following function

f(x) =
∞∏
k=1

pk(2
−kx) , x ∈ R . (21)

By [11], if the sequence {ak, k ∈ N} is bounded, then this product converges uniformly on each

compact subset of R, and hence, f is an analytic function.

We continue with the following proposition.

Proposition 3. Assume a sequence of polynomials {ak, k ∈ N} tends to a polynomial a that

has no symmetric roots on the unit circle. Then, for every ℓ ≥ 0, the assertion f(x) = o(x−ℓ)

as x → +∞ implies that δk = o(2−ℓk) as k → ∞, where δk is defined in (12).

Proof. We consider the assumption f(x) = o(x−ℓ) for points of the form x = 2k−1d + t,

where d is a fixed natural number, t is an arbitrary number from a fixed segment [0, σ], and

k → ∞. The parameters d ∈ N and σ > 0 will be chosen in a special way.

First, we define σ. Since pk tends to the polynomial p(·) = a(e−2πi·) as k → ∞, it follows that

the sequence {pk, k ∈ N} is bounded. Moreover, pk(0) = 1 for all k. Hence, product (21)
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converges uniformly on each compact set to an analytic function f , and f(0) = 1. This implies

that there are σ ∈ (0, 1) and C0 > 0 such that for every r ≥ 0, R ∈ N ∪ {∞} we have∣∣∣ R∏
j=1

pj+r

(
2−jx

) ∣∣∣ ≥ C0 , x ∈ [0, σ] . (22)

Now let us choose the number d. To this end we consider the binary tree defined as follows:

the number 1/2 is at the root, the numbers 1/4 and 3/4 are its children, and so on. Every

vertex α has two children α/2 and (α+1)/2. For convenience we shall identify a vertex and the

corresponding number. Thus, all vertices of the tree are dyadic points of the interval (0, 1): the

nth level of the tree (i.e., the set of vertices with the distance to the root equal to n) consists

of points 2−n−1j, where j is an odd number from 1 to 2n+1 − 1.

The trigonometric polynomial p has at most N zeros on the period [0, 1), and hence, on the tree.

Therefore, there is a number q such that all roots of p on the tree are contained on levels j ≤ q.

Since the polynomial a has no symmetric roots, it follows that for every vertex of the tree, at

least one of two its children is not a root of p. Whence, there is a path of length q along the tree

starting at the root (all paths are without backtracking) that does not contain any root of p.

Let 2−q−1d be the final vertex of that path, d is an odd number, 1 ≤ d ≤ 2q+1 − 1. Denote as

usual by {x} the fractional part of a number x. We see that the sequence {2−1d}, . . . , {2−q−1d}
does not contain roots of p. The sequence {2−q−2d}, {2−q−3d}, . . . does not contain them either,

because there are no roots of p on levels bigger than q. Let n be the smallest natural number

such that 2−q−nd < σ/2. We have p(2−1d) · · · p(2−q−nd) ̸= 0. Since pk → p as k → ∞, and all

pk are equi-continuous on R, it follows that there is a constant C1 > 0 such that∣∣∣ q+n∏
j=1

pk+j

(
2−jd+ 2−k−jx

) ∣∣∣ ≥ C1 , x ∈ [0, σ] (23)

for all sufficiently large k. Now we are ready to estimate the value f(2k−1d+ t). We have∣∣∣ f(2k−1d+ t
) ∣∣∣ =

∣∣∣ k−1∏
j=1

pj
(
2k−1−jd+ 2−jt

) ∣∣∣× ∣∣∣pk(2−1d+ 2−kt
) ∣∣∣×

×
∣∣∣ q+n∏
j=1

pk+j

(
2−jd+ 2−k−jt

)∣∣∣ × ∣∣∣ ∞∏
j=1

pk+q+n+j

(
2−j(2−q−nd+ 2−k−q−nt)

)∣∣∣ .
To estimate the first product, we note that 2k−1−jd ∈ Z, whenever j ≤ k − 1, and hence

pj
(
2k−1−jd + 2−jt

)
= pj(2

−jt). So, the first product is equal to
∣∣∏k−1

j=1 pj(2
−jt)

∣∣, which is,
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by (22), bigger than or equal to C0, for every t ∈ [0, σ].

The third product
∣∣∏q+n

j=1 pk+j(2
−jd+2−k−jt)

∣∣, by (23), is at least C1. Finally, the latter product

is bigger than or equal to C0. To see this it suffices to use (22) for R = ∞, r = k + q + n, x =

2−q−nd+ 2−k−q−nt and note that x < σ by the choice of n. Thus,

|f(2k−1d+ t)| ≥ C2
0C1

∣∣pk(2−1d+ 2−kt
)∣∣ .

On the other hand, f(2k−1d+ t) = o(2−ℓk) as k → ∞, consequently pk(2
−1d+ 2−kt) = o(2−ℓk).

The number d is odd, hence, by periodicity, pk(2
−1d+ 2−kt) = pk(1/2 + 2−kt). Thus, we arrive

at the following asymptotic relation: for every t ∈ [0, σ] we have

pk
(
1/2 + 2−kt

)
= o

(
2−ℓk

)
as k → ∞ . (24)

This already implies that Djpk(1/2) = o(2(j−ℓ)k) as k → ∞, for every j = 0, . . . , ℓ. Indeed,

consider the Tailor expansion of the function h(t) = pk
(
1/2 + 2−kt

)
at the point 0 with the

remainder in Lagrange form:

h(t) =
ℓ∑

j=0

Djh(0)

j!
tj +

Dℓ+1h(θ)

(ℓ+ 1)!
t ℓ+1 , t ∈ [0, σ] ,

where θ = θ(t) ∈ [0, t]. Substituting Djh(0) = 2−jkDjpk(1/2), we get

pk(1/2 + 2−kt) =
ℓ∑

j=0

Djpk(1/2)

j!
2−jk tj +

Dℓ+1pk(1/2 + 2−kθ)

(ℓ+ 1)!
2−(ℓ+1)k t ℓ+1 , t ∈ [0, σ] .

First, we estimate the remainder. Since the sequence of trigonometric polynomials {pk, k ∈ N}
is bounded, the norms ∥Dℓ+1pk∥C[0,σ] do not exceed some constant C2. Therefore,∣∣∣∣Dℓ+1pk(1/2 + 2−kθ)

(ℓ+ 1)!
2−(ℓ+1)k t ℓ+1

∣∣∣∣ ≤ C2

(ℓ+ 1)!
2−(ℓ+1)k σ ℓ+1 = o(2−ℓk) as k → ∞ .

Combining this with (24), we get∥∥∥∥∥
ℓ∑

j=0

Djpk(1/2)

j!
2−jk tj

∥∥∥∥∥
C [0,σ]

= o(2−ℓk) as k → ∞ . (25)

Since, in a finite-dimensional space, all norms are equivalent, the norm of an algebraic poly-

nomial of degree ℓ in the space C[0, σ] is equivalent to its largest coefficient. Whence, (25)

implies that max
j=0,...,ℓ

|Djpk(1/2)|
j!

2−jk = o(2−ℓk) as k → ∞. Expressing now the derivatives of ak by
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derivatives of pk, we obtain max
j=0,...,ℓ

2−jk|Djak(−1)| = o(2−ℓk) as k → ∞, which completes the

proof.

�
We are finally ready to prove the announced necessary conditions for convergence of non-

stationary subdivisions schemes.

Theorem 5. Let a binary subdivision scheme with the mask a be convergent to a continuous

stable function; let {a(k), k ≥ 1} be a sequence of masks supported on [−N,N ] such that

lim
k→∞

a(k) = a .

If the non-stationary subdivision scheme {Sa(k) , k ≥ 1} converges to a Cℓ(R), ℓ ≥ 0, function,

then lim
k→∞

2 ℓkδk = 0.

Proof of Theorem 5. Let pk(ω) = a
(k)
∗ (e−2πiω) be the symbol of the k−th mask in the

trigonometric form. If the non-stationary scheme converges to a continuous compactly sup-

ported refinable function ϕ, then its Fourier transform ϕ̂(ω) =
∫
R ϕ(x)e

−2πixωdx is given by

ϕ̂(ω) =
∞∏
k=1

pk(2
−kω), ω ∈ R . (26)

If ϕ ∈ Cℓ(R), then ϕ̂(ω) = o(ω−ℓ) as ω → ∞. Since the refinable function of the limit mask a

is stable, it follows that its symbol a∗(z) has no symmetric roots on the unit circle. The claim

follows by Proposition 3.

�

4.2 Reproduction and generation properties of non-stationary schemes

To expose certain limitations of non-stationary schemes, it suffices again to consider only the

univariate case. In the univariate case, M is simply an integer larger than 2. In this subsection,

we show that the generation and reproduction properties of non-stationary schemes are limited

to some special subspaces of functions. More precisely, we will show that the zero sets of the

Fourier transforms of the limit functions ϕk of such schemes are certain unions of the sets

Γr = {ω ∈ C : a(r)∗ (e−i2πM−rω) = 0}, r ≥ k,
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and that the sets Γr are such that Γr +M rZ = Γr. Thus, some elementary functions cannot

be generated by non-stationary schemes, see example 6. Another requirement that

ϕ̂k(ω) =

∫
R
ϕk(x)e

−i2πxωdx, ω ∈ C, k ∈ N,

is an entire function, also limits the reproduction and generation properties of non-stationary

subdivision schemes.

Proposition 4. Let {ϕk, k ∈ N} be continuous functions of compact support satisfying

ϕk(x) =
∑
α∈Z

a(k)(α)ϕk+1(Mx− α), k ∈ N, x ∈ R.

Then

{ω ∈ C : ϕ̂k(ω) = 0} =
∪
r≥k

Γr,

such that the sets Γr satisfy

Γr +M rZ = Γr.

Proof. Let k ∈ N. By Paley-Wiener theorem, the Fourier transform ϕ̂k defined on R has

an analytic extension

ϕ̂k(ω) =

∫
R
ϕk(x)e

−i2πxωdx, ω ∈ C,

to the whole complex plane C and ϕ̂k is an entire function. By Weierstraß theorem [10], every

entire function can be represented by a product involving its zeroes. Define the sets

Γr = {ω ∈ C : a(r)∗ (e−i2πM−rω) = 0}, r ∈ N.

Let zr,1, . . . , zr,N be the zeros of the polynomials a
(r)
∗ (z), z = e−i2πM−rω, counting their multi-

plicities. Then

Γr = iM r

N∪
ℓ=1

Ln(zr,ℓ),

where, by the properties of the complex logarithm, each of the sets iM rLn(zr,ℓ) consists of

sequences of complex numbers and is M r−periodic. Thus, each of the sets Γr satisfy

Γr +M rZ = Γr, r ∈ N.

The definition of ϕ̂k as an infinite product of the trigonometric polynomials a
(r)
∗ (e−i2πM−rω),

r ≥ k, yields the claim.
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�
The first two examples we present here illustrate the capability of non-stationary schemes

to reproduce and generate exponential polynomials.

Example 4. The basic limit function of the simplest stationary scheme is given by ϕ1 = χ[0,1).

Its Fourier transform is

ϕ̂1(ω) =
1− e−i2πω

i2πω
, and {ω ∈ C : ϕ̂1(ω) = 0} = Z \ {0}.

The mask symbol a∗(z) = 1 + z has a single zero at z = −1, i.e. e−i2π2−rω = −1 for ω =

2r{1
2
+ k k ∈ Z}, r ∈ N0. In other words, Γ1 = {1 + 2k : k ∈ Z} and Γr = 2Γr−1 for r ≥ 2.

Therefore,

{ω ∈ C : ϕ̂1(ω) = 0} =
∪
r∈N

Γr.

Example 5. One of the basic limit function of the simplest non-stationary scheme is given by

ϕ1(x) = χ[0,1)(x)e
λx, λ ∈ C. Its Fourier transform is

ϕ̂1(ω) =
e−i2πω+λ − 1

−i2πω + λ
, ω ∈ C, and {ω ∈ C : ϕ̂1(ω) = 0} = − iλ

2π
+ Z \ {0}.

The mask symbol a
(k)
∗ (z) = 1+eλ2

−r
z has a single zero at z = −e−λ2−r

, i.e. e−i2π2−rω = −e−λ2−r

for ω = − iλ
2π

+ 2r{1
2
+ k : k ∈ Z}, r ∈ N. Note that Γ1 = − iλ

2π
+ {1 + 2k : k ∈ Z} and∪

r∈N

2r{1
2
+ k : k ∈ Z} = Z \ {0}.

Therefore,

{ω ∈ C : ϕ̂1(ω) = 0} =
∪
r∈N

Γr.

The next example shows that not all compactly supported functions can be reproduced by

any non-stationary subdivision scheme.

Example 6. For example the compactly supported function

f(x) = χ[−1,1](x)
2√

1− x2
, x ∈ R,

cannot be a limit of any non-stationary subdivision scheme. Indeed, its Fourier transform

J0(ω) =

∫
R
f(x)e−ixωdx, ω ∈ C,
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is the Bessel function J0 of the first kind, which is entire, but has only positive zeros. The lower

bound for its zeros j0,s, s ∈ N, is given by j0,s >
√
(s− 1

4
)2π2, see [26]. Thus, proposition 4

implies the claim. We used a different definition of the Fourier transform to be consistent with

the literature.
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