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Abstract
Mutually intertwined supply chains in contemporary economy result in a complex network of

trade relationships with a highly non-trivial topology that varies with time. In order to under-

stand the complex interrelationships among different countries and economic sectors, as

well as their dynamics, a holistic view on the underlying structural properties of this network

is necessary. This study employs multi-regional input-output data to decompose 186

national economies into 26 industry sectors and utilizes the approach of interdependent net-

works to analyze the substructure of the resulting international trade network for the years

1990–2011. The partition of the network into national economies is observed to be compati-

ble with the notion of communities in the sense of complex network theory. By studying

internal versus cross-subgraph contributions to established complex network metrics, new

insights into the architecture of global trade are obtained, which allow to identify key ele-

ments of global economy. Specifically, financial services and business activities dominate

domestic trade whereas electrical and machinery industries dominate foreign trade. In order

to further specify each national sector’s role individually, (cross-)clustering coefficients and

cross-betweenness are obtained for different pairs of subgraphs. The corresponding analy-

sis reveals that specific industrial sectors tend to favor distinct directionality patterns and

that the cross-clustering coefficient for geographically close country pairs is remarkably

high, indicating that spatial factors are still of paramount importance for the organization of

trade patterns in modern economy. Regarding the evolution of the trade network’s substruc-

ture, globalization is well-expressed by trends of several structural characteristics (e.g., link

density and node strength) in the interacting network framework. Extreme events, such as

the financial crisis 2008/2009, are manifested as anomalies superimposed to these trends.

The marked reorganization of trade patterns, associated with this economic crisis in com-

parison to “normal” annual fluctuations in the network structure is traced and quantified by a

new widely applicable generalization of the Hamming distance to weighted networks.
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Introduction
In the last years, the international trade network (ITN, also often referred to as the world trade
web) has caught rising attention among the scientific community. To this date, there have been
numerous studies on the topological properties of the ITN which is commonly defined based
upon the evolving import/export relationships between countries [1–10]. The ITN has been
analyzed as both binary and weighted, as well as directed and undirected complex network.
Previous studies emphasize specific characteristics of the ITN, such as the distinctive non-ran-
dom topology of world trade [1] or the exposure of a core-periphery structure among countries
[11]. More detailed analyses have focused on commodity-specific multi-network approaches
[12, 13], also addressing important aspects such as the community structure of the ITN [14,
15]. Recent findings also shed light on the roles and functions of individual countries in the
ITN, highlighting the decline of the Western dominance in global trade [16].

Previous research on the ITN has mostly treated the countries as single nodes in the net-
work. This approach neglects important substructures of the national economies. With the
availability of multi-regional input-output (MRIO) tables [17–19] valuable and novel insights
into the substructure of the ITN can be obtained. Here, each national economy is decomposed
into industrial sectors trading with each other both domestically and internationally. Inter-
preted as a directed and weighted network, MRIO tables provide a more complete and highly
resolved picture of the ITN based on monetary flows between industries. Interdependent net-
works exhibit specific characteristics in the propagation of shocks different from those of sin-
gle, non-interacting networks [20, 21]. Therefore, an investigation of the ITN’s substructure is
vital in order to better understand the underlying risks of the spreading of an economic crisis
that may be triggered by a node’s failure to produce its standard output [22, 23].

This refinement of the ITN allows for a more holistic view on global trade and on the com-
plex interdependencies within the present-day global economy. In the process of globalization,
trade patterns have been reorganizing and international trade has been increasing almost con-
tinuously [24, 25]. In this setting the following questions arise naturally when investigating the
topological structure of world trade: How meaningful is the notion of national economies in an
international globalized economy, where few transnational corporations hold dominant posi-
tions on a global scale [26]? What roles do specific industrial sectors and countries play in the
ITN? In which industries and nations have trade relationships reorganized most along with
globalization? How do national economies adapt to increasing foreign trade relations?

In this work we illustrate that analyses of MRIO tables by means of complex network theory
offer meaningful techniques to address these questions. For this purpose, we employ a MRIO
database comprising annually averaged monetary flows between 186 countries with 26 indus-
trial sectors for the years 1990–2011. In particular, we focus on the interpretation of the ITN as
a network of mutually interdependent subnetworks. As each node in this network is labeled
with its country and industry, nodes can be intuitively grouped together either by country or
by industrial sector, building a national and sectoral partition, respectively (see Fig 1). In addi-
tion, we determine further data-driven partitions by utilizing established community detection
algorithms [27]. We measure the modularity score [28] to assess the quality of a partition with
respect to the notion of a community in a network and quantify the similarity between two par-
titions of the same network via the variation of information [29]. With the definition of parti-
tions of the ITN, network measures can be distinguished into internal and cross-subgraph
measures [30].

We utilize the aforementioned approach to identify key players with respect to specific
trade patterns and the assignment of roles to nodes in the ITN. For this purpose, we consider
proper generalizations of standard network measures (node strength, clustering coefficient and
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betweenness) to interdependent networks. To address the implications of the globalization pro-
cess for the resulting network structure, the evolution of the ITN structure is traced for the
period 1990–2011. We quantify trends in the respective network measures relating to internal
or cross-linkages of subgraphs. The appearance of significant anomalies from these trends sug-
gest the existence of an extreme event corresponding to the global financial crisis in 2008/2009.
We further introduce a generalization of the Hamming distance to weighted networks as a
measure to quantify the inter-annual reorganization of trade patterns and illustrate its effec-
tiveness in recognizing large-scale economic shocks and crises. Our results illustrate that the
interpretation of the ITN as a network of networks exhibits new insights into the structural
backbone of global trade and offers appropriate tools for the investigation of cross-sectoral eco-
nomic relations at both the global and regional scale.

Materials and Methods

Data and network construction
MRIO data summarize the monetary flows between industrial sectors and can be meaningfully
interpreted as a weighted and directed network of interdependent subgraphs, where nodes cor-
respond to sectors, weighted and directed links describe the annual volume of financial flows,
and subgraphs can be associated with national economies or the same industry sectors across
the ITN (cf. Fig 1).

In this work, we utilize data from the Eora MRIO table providing annual data for 1990–
2011 [18, 31]. The Eora database collects highly resolved trade data, decomposing each of the
186 countries contained into 26 industrial sectors. Monetary flows between two industrial sec-
tors are given in nominal US $. Thus, we construct for each year a network with N = 4836
nodes. For the ITN in 1990, we consider two nodes to be connected if the monetary flow
between two nodes exceeds 1 million US $, assuming that smaller values primarily represent
artifacts from harmonization procedures during the compilation process of Eora [23]. To mini-
mize inflationary effects, we adapt the threshold to the yearly US inflation rate [32] in the con-
struction of the ITN for the following years. After the establishment of links, a weight
proportional to the monetary flow is then attributed to each edge. In order to distinguish struc-
tural changes from effects arising from inflation, we normalize the weights to the annual global
trade volume for each year.

We further construct for each year a second network by fixing the amount of links to the
number of links in the ITN in 1990. Thereby, we assess the robustness of the results with
respect to varying the threshold during the network construction and disentangle effects which
are very sensitive to threshold variations in the construction process. The utilized threshold
values of the ITN and the network with constant link density are shown in Fig 2. The trend in

Fig 1. Illustration of sample subgraphs in the ITN. (A) According to the national partition Cc and (B)
according to the sectoral partition Cs.

doi:10.1371/journal.pone.0133310.g001
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the threshold value for the network with constant link density implies a rise in trade volume in
US $ and increasing entanglement in trade relationships. It should be noted that values of mon-
etary flows in US $ cannot be mapped trivially to the physical trade of goods. For example, a
constant flow of goods could result in a non-constant monetary flow, given volatile price and
exchange rate fluctuations. However, the mapping of monetary flows to physical flows is far
from trivial [33] and beyond the scope of this work.

Subnetworks
In order to analyze the substructure of the ITN, we interpret it as a network of interdependent
subnetworks [30, 34]. For this purpose, we assume a network G = (V, E) that consists of the set
of nodes V and set of links E, with the number of nodes N = jVj and the number of linksm =
jEj. The graph can be decomposed into subgraphs G0

p ½V 0
p � that are induced by the node subset

V 0
p � V with [pV

0
p ¼ V and V 0

p\V 0
q ¼ ;. Links can be distinguished according to whether or

not they connect nodes in the same subgraph, i.e. the (internal) link sets E0
pp connect nodes

belonging to the same subgraph p, whereas cross-link sets E0
p6¼q connect subgraphs via nodes

belonging to the subgraphs p and q, respectively. The full graph is represented by the possibly
asymmetric adjacency matrix A, with aij: = (A)ij, and the weight matrixW, with wij: = (W)ij
being proportional to the monetary flow between node i and j. We further define the N × N-
matrices

ðAautoÞij ¼
1; if ði; jÞ 2 [pE

0
pp

0; else
; ðAcrossÞij ¼

1; if ði; jÞ 2 [p6¼qE
0
pq

0; else
ð1Þ

((

that are convenient for the measurement of quantities that describe internal subgraph structure
(Aauto) or cross-subgraph relations (Across) with A = Aauto + Across.

For the ITN, the subsets V 0
p can be defined in various ways. Each node of the network

belongs to a specific country c and to an industrial sector s. Therefore, one of the self-evident

Fig 2. Thresholds for network construction. Lowest weight in the ITN taking US inflation into account (red)
and in the network with a fixed number of links (blue).

doi:10.1371/journal.pone.0133310.g002
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partitions Cc is a classification of nodes by country. Fig 1A illustrates an excerpt of this parti-
tion, with the full network consisting of 186 national subgraphs containing 26 nodes each. A
complementary approach Cs is to define subgraphs consisting of nodes from the same indus-
trial sectors, depicted in Fig 1B. The employment of dedicated community detection algorithms
[27] provides a third reasonable way to partition the ITN. In complex network theory, a com-
munity is characterized by high interconnectedness among the nodes within the same commu-
nity, whereas linkages to nodes out of the community are sparse.

Local network measures
Node degree and node strength. In an undirected and unweighted network with adja-

cency matrix A0, the connectivity of a node i is described by its degree ki ¼
P

j a
0
ji ¼Pj a

0
ij . In

the directed case (with adjacency matrix A), it is feasible to distinguish the in-degree kini and
the out-degree kouti , defined as

kini ¼
XN
j¼1

aji ; kouti ¼
XN
j¼1

aij : ð2Þ

In weighted networks, the degree ki is commonly replaced by the node strength si, which for
undirected networks with weight matrixW0 reads si ¼

P
j w

0
ij . In the directed case (with weight

matrixW), one again distinguishes in- and out-strengths defined as sini ¼Pjwji (s
out
i ¼Pjwij).

With a given partition C, the strength can be further distinguished into internal strength si;auto
and cross-strength si;cross

sini;auto ¼
XN
j¼1

wjiðAautoÞji ; sini;cross ¼
XN
j¼1

wjiðAcrossÞji ;

souti;auto ¼
XN
j¼1

wijðAautoÞij ; souti;cross ¼
XN
j¼1

wijðAcrossÞij :
ð3Þ

Local clustering coefficient. The local clustering coefficient measures the probability of
the existence of a link between two randomly selected neighbors of node i. In directed networks
different definitions of clustering coefficients exist. In this work, we follow the classification
scheme of Fagiolo [35] and consider the following five clustering coefficients (Fig 3):

Ccyc
i ¼ ðŴ3Þii

kini k
out
i � k$i

; Cmid
i ¼ ðŴŴTŴÞii

kini k
out
i � k$i

;

Cin
i ¼ ðŴTŴ2Þii

kini ðkini � 1Þ ; Cout
i ¼ ðŴ2ŴTÞ3ii

kouti ðkouti � 1Þ ;

Call
i ¼ ðŴ þ ŴTÞ3

ðkini þ kouti Þðkini þ kouti � 1Þ � 2k$i
:

ð4Þ

Here kini represents the in-degree and kouti the out-degree of node i according to Eq (2), while

k$i ¼ ðA2Þii denotes the number of bilateral links associated with i. With Ŵ¼ W1=3 ¼ fw1=3
ij g

the clustering coefficients take weights and directionality patterns into account. The “cycle”
pattern Ccyc

i and “middleman” pattern Cmid
i in Eq (4) describe a node’s importance as
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transmitter of monetary flows in the 3-motif, whereas Cin
i and Cout

i indicate a node’s role as sink
and source, respectively. The coefficient Call

i considers all possible 3-motifs.
In order to account for a given partition of a network into different subnetworks, the con-

cept of cross-clustering coefficients has been introduced in [30] and subsequently applied in
[36, 37]. For the case of directed networks, one has to again distinguish cross-clustering coeffi-
cients according to different patterns. Using

ðfWpÞij ¼
(
ŵij if ði; jÞ 2 E0

pp

0 else
ð5Þ

in networks with a defined subgraph structure and kpi being the number of connections from
node i to subgraph p (the cross-degree of i with respect to p [30]), the local cross-clustering
coefficient for the “cycle” pattern yields:

Cp;cyc
i ¼ ðŴfWpŴÞii

kp;ini kp;outi � kp;$i
; ð6Þ

with the cross-in-degree kp;ini ¼Pj2V 0
p
aji, cross-out-degree k

p;out
i ¼Pj2V 0

p
aij and bilateral cross-

degree kp;$i ¼Pj2V 0
p
aijaji.

Betweenness. The betweenness [38] measures the centrality of a node with respect to its
role as a mediator of the flow between nodes in the network. Generalizing the idea to interde-
pendent networks, the cross-betweenness [30] is defined as

bpqi ¼
X

j2V 0
p ;k2V 0

q ;k;j6¼i

sjkðiÞ
sjk

; ð7Þ

Fig 3. Clustering coefficients in a directed network. Following the definitions in Eq (4) the coefficients (A)
Ccyc

i , (B) Cmid
i , (C) Cin

i and (D) Cout
i are shown. For each coefficient two motifs contribute which are indicated by

the three large black links and the three small gray links, respectively.

doi:10.1371/journal.pone.0133310.g003
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quantifying the importance of node i to connect subgraphs p and q. Here, σjk is the total num-
ber of shortest paths from node j to node k, while σjk(i) is the number of these paths that
include node i. To calculate shortest paths, we neglect the weight information of links, focusing
on the question whether trade relations between sectors have been established or not. Note,
that shortest paths between nodes in V 0

p and V 0
q may pass through a third subgraph.

Global network measures
Link density. The ratio between the existing number of links and the maximum number

of possible links among the considered set of nodes is referred to as the link density. Conse-
quently, in the full directed network the link density reads ρfull =m/N2, given that self-connec-
tions are considered during network construction (ρfull =m/N(N − 1) if self-connections are
neglected). In a network of interdependent networks further topological properties are revealed
by distinguishing between the internal link density and the cross-edge density:

rauto ¼
P

pjE0
ppjP

pjV 0
pj2

; rcross ¼
P

p6¼qjE0
pqjP

p 6¼qjV 0
pjjV 0

qj
: ð8Þ

In partitions with subnetworks that are determined by community detection algorithms and
result in a high modularity score, ρauto exceeds ρcross by definition.

Global cross-clustering coefficient. In order to assess the structure of triangular linking
patterns between subnetworks, a global perspective on the cross-clustering coefficient is

required. With the local cross-clustering coefficient C
p;cyc

i
of node i (cf. Eq (6)), the associated

global cross-clustering coefficient from partition p to partition q is therefore defined as
[30, 36]

Cp;cyc
q :¼

X
i2V 0

q

C p;cyc
i : ð9Þ

Note that the relation in Eq (9) is not symmetric, i.e. Cp
q 6¼ Cq

p . The same approach can be

applied to all directionality patterns introduced in Eq (4).
Reciprocity. In a directed network the reciprocity characterizes the probability that a ran-

domly chosen link between two nodes also exists in the opposite direction. As self-connections
do not provide additional information about this probability, flows of the node to itself are
excluded:

r ¼ 1

m
Tr ½A� diagðAÞ�2 : ð10Þ

The respective inner and cross-reciprocity is then obtained by

rauto ¼
1

jAautoj
Tr ½Aauto � diagðAautoÞ�2 ; rcross ¼

1

jAcrossj
Tr ½Across�2 : ð11Þ

Hamming distance. The Hamming distance quantifies the dissimilarity between two net-
works G, G� that have the same set of nodes. Originally designed for unweighted networks [39]
with

HðG;G�Þ ¼
P

ijjaij � a�ijj
N2

; ð12Þ

the principle is extendable to weighted networks. Here, we introduce the following
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generalizations and compare their performance:

HsðG;G�Þ ¼ 1

N2

X
ij

jwij � w�
ijj

wij þ w�
ij

; ð13Þ

HmðG;G�Þ ¼ 1

N2

X
ij

jwij � w�
ijj

maxðwij;w�
ijÞ

; ð14Þ

HaðG;G�Þ ¼ 1

N2

X
ij

jwij � w�
ijj

F
with F ¼

P
ijwij þ

P
ijw

�
ij

jwj þ jw�j : ð15Þ

InHa the differences of link weights are normalized with respect to the average weight per link
in the two networks. The measure is dominated by links with large weight differences, whereas
this effect is balanced in the definitions ofHs and Hm. More specifically, each summand (i.e.
pair of nodes) in Eqs (13) and (14) accounts for a value in the interval [0, 1]. A summand is 1 if
a link from node i to j is present in G and absent in G� (or vice versa). Therefore,Hs andHm

can be considered as an extension of Eq (12) by additionally considering links that are present
in both networks but have different weights. We can thus distinguish between different contri-
butions to the Hamming distance according to Radebach et al. [40], allowing for a more
detailed assessment of the dissimilarity between the two networks. Let b and c be the number
of pairs that are linked in one network and unconnected in the other, with b counting the links
in the network with higher link density ρ. Then, the Hamming distance Hm can be decomposed
as follows:

HmðG;G�Þ ¼ Drþ lb þ Dwm :¼ b� c
N2

þ 2c
N2

þ 1

N2

X
ij

jwij � w�
ijjaija�ij

maxðwij;w�
ijÞ

: ð16Þ

Thus, three summands describing specific structural differences contribute to the Hamming
distance: the link density difference Δρ = (b − c)/N2, the blinking links lb = (2c)/N2 [41, 42], and
Δwm summarizing the change in weights between pairs where both networks exhibit a link.
The “corrected”Hamming distance is defined by neglecting contributions arising from link
density difference: H�

m ¼ Hm � Dr. The definitions Δws and H�
s ¼ Hs � Dr can be adapted

analogously.

Comparison of partitions
Modularity. One measure for the quality of a partitioning is modularity [28]. The modu-

larity Q is defined by the difference between the actual number of links within a community
and the number that would be expected in a randomly linked network with the same degree
sequence. For an undirected and unweighted network with adjacency matrix A0 the modularity
is defined as [28]

Qu ¼
1

2m

X
ij

a0ij �
kikj
2m

� �
dðSi; SjÞ ; ð17Þ

where ki is the degree of node i and Si, Sj denote the indices of the communities that nodes i
and j belong to. The Kronecker delta δ(Si, Sj) assures that only node pairs within the same com-
munity contribute to the sum in Eq (17).

Although various generalizations of the modularity exist, there is less consensus about the
formulation of a generally applicable quality function for partitions in directed networks [43].
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Arenas et al. [44] proposed defining the modularity in directed networks as

Qd ¼
1

m

X
ij

aij �
kouti kinj
m

� �
dðSi; SjÞ ; ð18Þ

comparing the link distribution within a community to the expectation in the directed configu-

ration model [45], with kinðoutÞi as defined in Eq (2). As suggested by Kim et al. [46] this
approach does not fully account for the directionality of links between nodes with the same in-
and out-degree, respectively. Alternative definitions for modularity are based on the attributes
of links with respect to the probability density of a random walker in the network [43]. How-
ever, in the context of international trade, these definitions would lead to misleading interpre-
tations that arise due to the fact that industry sectors produce added value and request final
demand, leading to unconserved monetary flows in the trade network. We therefore utilize Eqs
(17) and (18) for this work. By replacing the degree kini (kouti ) by the strength sini (souti ) and the
number of linksm with the sum of weights jWj = ∑ij wij in the network, the definitions of Q
given above are also applicable to weighted networks, i.e.

Qd;w ¼ 1

jWj
X
ij

wij �
souti sinj
jWj

� �
dðSi; SjÞ : ð19Þ

Variation of information. In order to quantify the difference between two partitions, we
measure the variation of information [29]

VIðC; C0Þ ¼ �
Xnq
q¼1

PðqÞ logPðqÞ �
Xn0q
q0¼1

Pðq0Þ logPðq0Þ � 2
X
q;q0

Pðq; q0Þ log Pðq; q0Þ
PðqÞPðq0Þ : ð20Þ

Here, the probability that a randomly drawn node belongs to cluster q in partition C with nq
clusters is denoted by P(q). P(q, q0) is then the joint probability that a random node belongs to
q in C and to q0 in C0. The value of VI returns 0 if C = C0 and reaches its maximum value of logN
in the case of nq = N and nq0 = 1.

Results
As previous studies have exposed, trade between countries exhibits a highly non-trivial topol-
ogy [2, 5–7]. Trade networks in present-day globalized economy are becoming increasingly
complex, resulting in interwoven trade activity between national economies and between
industrial sectors.

Subnetworks & Communities
An evident question in contemporary interconnected global economy is how meaningful the
notion of a national economy still is. We address this question by comparing the network
topology of a national partition (Cc) with the topology of the complementary sectoral partition
(Cs). A priori both partitions have their own justification. On the one hand, domestic (internal)
trade within a country is supported by a common policy framework and short geographical
distances. Thus, transportation and transaction costs between sectors in the same country are
kept comparatively low. On the other hand, in the industry classification used for this study,
many companies that are part of the supply chain of one product are aggregated to the same
industrial sector. Therefore, we expect that for a multi-level production process of goods, com-
plex supply chains result in high trading activity within the same sector.
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We assess how the definition of the national partition Cc and the sectoral partition Cs coin-
cides with the notion of communities in network theory [47]. For the community detection we
first consider the undirected and unweighted definition (Eq (17)) and utilize a distinguished
community detection algorithm and compare its performance with Cc and Cs. Specifically, we
employ the “multilevel algorithm” developed by Blondel et al., that extracts communities by a
heuristic method based on modularity optimization [27], and results in the partition Cm. The
algorithm was tested to return a relatively high modularity at fast calculation time compared to
other algorithms.

Two examples of communities of the partition Cm in the ITN of the year 2005 are listed in
Table 1. We find that the “multilevel algorithm” preferably assigns nodes belonging to the
same country also to the same community. Furthermore, strong economic interdependence
resulting from geographical proximity or historical and political connections are represented
in the community structure, e.g. most industries of France and Algeria are assigned to the same
community. This example illustrates that the communities found by the multilevel algorithm
tend to follow the national partition rather than the sectoral one.

To further quantify this finding, we measure the variation of information (VI) (Eq (20)) for
the ITN for the years 1990–2011 (see Fig 4A). For all years, the national partitions Cc show the
highest similarity with the partition of highest modularity, Cm. Thus, a comparison between
these two partitions allows for an identification of the strongest international trade relation-
ships forming the backbone of global trade. To assess the significance of the similarity between
Cc and Cm, we compare the values of VI with those computed for the partition Cm0 which is
obtained from a typical representation of the configuration model [48], i.e. from a random
graph that obeys the same degree sequence as the original ITN. As expected, the partition Cm0

differs significantly from Cc, as links are drawn at random in the configuration model.

Table 1. Compositions of two selected communities in Cm in the ITN 2005.

Community A Community B

# nodes country # nodes country

23 Germany 24 France

26 Austria 25 Algeria

24 Switzerland 1 Germany

20 Czech Republic 1 Belgium

25 Hungary 1 Luxembourg

24 Slovakia 1 Mauritania

24 Slovenia 1 Czech Republic

5 Denmark - -

3 Russia - -

2 Netherlands - -

2 Belgium - -

2 Poland - -

2 UK - -

2 Italy - -

2 Sweden - -

2 Lithuania - -

2 Finland - -

2 Norway - -

2 Turkey - -

+ 16 countries with 1 node each - -

doi:10.1371/journal.pone.0133310.t001
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However, this behavior is not observed for the sectoral partition. In fact, as VI(Cs, Cm)> VI(Cs,
Cm0), we conclude that Cs does not exhibit the features that are expected for communities in the
traditional network theoretical sense. Therefore, our results indicate that international trade
relationships are not primarily established among the sectors.

Taking also link directions and weights into account, the modularity Qd, w as defined in Eq
(19) is shown in Fig 4B for all partitions in the ITN for all years. Our previously described find-
ings are further supported by the fact that the modularity Qd, w is low for Cs, whereas the values
of Qd, w(Cc) are in the range of modularity values obtained with the community detection algo-
rithm. Over the 1990s, we observe a decreasing trend of both Qd, w(Cc) and Qd, w(Cm), whereas
the modularity of Cs is rising except for the period of the global financial crisis in 2009.

To assess the impact of the weights in the modularity calculation, Fig 4C shows the modu-
larity Qd by considering the degree and neglecting link weights in Eq (18). Here, the results
show a decreasing trend in Qd for all partitions. This decrease indicates an increasing entangle-
ment of trade patterns—possibly due to a rising complexity, as partitions in trade patterns
become less significant. In the ITN with constant link density for all years and neglecting
weights (see Fig 4D) this trend for Qd is considerably weaker. The qualitative differences
between Fig 4B and 4C indicate that industries with large trade volumes contribute signifi-
cantly to the value of Qd, w. From the comparatively high values of Qd, w we can conclude that
industries with large trade volume are grouped within tightly connected communities. The dif-
ference Qd, w(Cm) − Qd, w(Cc) increases slightly in Fig 4B. However, this difference does not
exhibit marked changes over time when link weights are neglected (cf. Fig 4C and 4D).

Fig 4. Topological properties of different partitions of the ITN. (A) Evolution of the variation of information
(VI) as similarity measure between two partitions of the ITN for 1990–2011. (B) ModularityQd, w in the
directed, weighted network for the partitions Cc, Cs and Cm in the ITN. (C) Unweighted modularityQd for the
partitions Cc, Cs, Cm in the ITN and for Cm0 in the random graph with identical degree distributions. (D)
Unweighted modularityQd for partitions in the ITN with constant link density.

doi:10.1371/journal.pone.0133310.g004
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To summarize the results presented above, our findings demonstrate that nations are still
valid partitions in the sense of communities in complex network science. High trading indus-
tries build particularly tightly connected communities. However, the modularity shows a
decreasing trend for all partitions in the ITN when link weights are neglected. This trend can
be explained by new established links with comparatively low trade volume that cause a rising
complexity of relationships within the global trade network. Interpreted in economic terms,
these findings represent the increasing complexity in global supply chains.

Role assignment in the ITN
The previously discussed partitions provide the basis for further analyses of the topological
substructure of the ITN. Here the comparison between the internal topology of subgraphs and
the cross-subgraph relations is of particular relevance. Certain nodes in the ITN often play a
characteristic role in global supply chains. For example, some developing countries are special-
ized on the export of specific goods or resources. Thus, from the interacting network perspec-
tive, the respective industry stands out as a source of monetary flow across subgraphs in the
national partition. To identify key industries and recognize their role in the global supply
chain, we focus in the following on three network measures: node strength, (cross-)clustering
coefficient and cross-betweenness.

Node strength. The strength of a node is a simple yet enlightening measure to quantify
the importance of a node in the ITN, as it describes the total amount of monetary flow entering
and leaving the node. The internal and cross-strength as defined in Eq (3) provide information
about the trading partners of each node. In order to assess characteristic trade patterns of
industries, si;auto and si;cross in partition Cc quantify the importance of an industry for domestic
and international trade, respectively. Thus, we aggregate the strength values of industry q over
all countries, sq ¼

P
i2V 0

q
si, for both the in-strength and out-strength. Table 2 summarizes the

sectors with the highest trade volume in the ITN of 2005. We observe that financial services
and business activities are particularly important for trade within a country, with domestic out-
put amounting to 23.1% of global trade. This corresponds to a share of 28% of domestic trade
as 81.9% of monetary flows in 2005 are transferred within the same country. The electrical and
machinery industry holds the largest share of international trade, with sinq;cross ¼ 3.9%. Petro-

leum and chemical goods follow second in the ranking of cross-country trade.
Fig 5 shows the distributions of si;auto and si;cross for both the national partition Cc (A) and

the sectoral partition Cs (B) for the year 2005. In Cc the distribution of domestic monetary flows

Table 2. Key sectors for internal and cross-country trade in the ITN 2005.

domestic input sinq;auto domestic output soutq;auto

% industry % industry

11.4 Financial Services & Businesses 23.1 Financial Services & Businesses

7.4 Electrical and Machinery 8.8 Petroleum, Chemical & Non-Metallic

7.1 Petroleum, Chemical & Non-Metallic 5.4 Transport

. . . .

foreign input sinq;cross foreign output soutq;cross

% industry % industry

3.9 Electrical and Machinery 2.9 Electrical and Machinery

3.2 Petroleum, Chemical & Non-Metallic 2.7 Petroleum, Chemical & Non-Metallic

1.6 Metal Products 1.4 Transport Equipment

. . . .

doi:10.1371/journal.pone.0133310.t002
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is shifted towards higher values compared to cross-country flows. This indicates that domestic
trade is likely to exceed international trade for randomly drawn nodes. As there are more sec-
tors abroad than in the same country of a node, this statement is even strengthened in signifi-
cance when flows per potential trading partners are considered. Again, this supports the
viewpoint of national economies being interconnected subgraphs in the ITN. In the sectoral
partition Cs cross-sectoral trade exceeds intra-sectoral trade by absolute value. However, taking
into account that there are more extra-sectoral nodes than intra-sectoral ones, trade within the
same sector dominates cross-sectoral trade by monetary flow per potential trading partner (see
Fig 5C).

Clustering and cross-clustering coefficient. In the directed ITN the five definitions of
clustering coefficients in Eq (4) describe different roles in the supply chain. We address the
question to what extent industrial sectors show typical clustering patterns. Let V 0

q be the subset
of nodes belonging to sector q in Cs and U 0

i be the subset of nodes in Cc belonging to the same
country as node i. Then

Cq ¼
X
i2V 0

q

CiP
j2U 0

i
Cj

ð21Þ

is the sectoral mean value of the clustering coefficient C averaged over all countries. In order to
avoid that the properties of the major economies dominate the results, Eq (21) is normalized
such that countries with high trade volume equally contribute to the average as countries with

Fig 5. Distributions of in- and out-strength for the ITN in 2005. (A) According to the national partition Cc
and (B) to the sectoral partition Cs. (C) Average strength per potential trading partner.

doi:10.1371/journal.pone.0133310.g005
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few trade. Fig 6 illustrates the results for the clustering coefficients as defined in Eq (21) in the
year 2005.

One observes characteristic distributions for the different clustering coefficients. In particu-
lar, the motif Cout

q appears comparatively more frequent in nodes belonging to financial inter-

mediation & business activities (cf. Fig 6D). This underlines the importance of the financial
industry as capital provider for investments. Raw materials and resources are produced in min-
ing & quarrying industries and are often subsequently sold to other sectors, leading to a high
rank in Cout

q . As shown in Fig 6B, the motif Cmid
q is frequently observed for sectors related to

trade and such that produce secondary products (e.g. petroleum, machinery). The construction
industry is dominant in the motif Ccyc

q (cf. Fig 6A), whereas electrical and machinery industries

dominate the pattern of Cin
q (cf. Fig 6C).

The global cross-clustering coefficient as defined in Eq (9) sheds light on characteristic
trade patterns between subgraphs in the world trade network. We measure Cp;all

q for all

Fig 6. Average rank of clustering coefficients Ccyc
q (A), Cmid

q (B), Cin
q (C), Cout

q (D) and Call
q (E) as defined in

Eq (21) for the ITN in 2005.

doi:10.1371/journal.pone.0133310.g006
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combinations of p and q in the national partition Cc and the sectoral partition Cs. A summary
of the highest obtained values is presented in Fig 7A and 7B. In the national partition, the
cross-clustering coefficient Cq

p is highest if p = q for the world’s largest economies. This is a rea-

sonable behavior, as we have observed a high link density and trade volume in these national
economies. Similar results are obtained for other directionality patterns of the clustering coeffi-
cient. As internal trade volume in subgraph p enters through a factor in the calculation of Cp

i

(see Eq (6)), subgraphs with a large trade volume exhibit large global cross-clustering coeffi-
cients. Therefore, the USA are involved in 20 of the 30 top global cross-clustering values in Cc
(cf. Fig 7A). Furthermore, we conclude that the global cross-clustering coefficient is large
between countries with high trade volumes and short geographical distance. For example,
industries in Canada and Mexico score a high cross-clustering coefficient in the USA and the
Netherlands, Belgium and France score high values in Germany (cf. Fig 7C). In Cs the electrical
and machinery industry is the dominant sector (cf. Fig 7B).

Cross-Betweenness. By definition, the betweenness of a node provides an estimate of a
sector’s importance in the global trade network. A higher resolved picture is provided by the
cross-betweenness (Eq (7)) that is confined to geodesics between two subgraphs. In particular,
the values bpqi of nodes not belonging to either p and q contain vital information about the
node’s importance in connecting these subgraphs. For each pair (p, q) of the 30 countries with
the highest trade volume in Cc (26 industry sectors in Cs), we calculate the cross-betweenness
fraction from nodes belonging to a third subgraph:

bpq ¼
X

i =2V 0
p[V 0

q

bpqi =
X
j2V

bpqj : ð22Þ

Fig 7. Ranking of the global cross-clustering coefficient. Cp;all
q for pairs of countries (A) and sectors (B).

(C) As an example, the global cross-clustering coefficients between Germany and the world’s largest
economies are shown.

doi:10.1371/journal.pone.0133310.g007
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A low value of βpq implies strong direct relations between subgraphs p and q as most geodesics
from nodes in p to nodes in q do not cross a third subgraph. The distributions of βpq in the
national and sectoral partition are shown in Fig 8.

We observe that the distribution of βpq for the national partition is shifted towards lower
values compared to Cs. This is another indicator of the strong connectivity within national
economies, as shortest paths between two countries often do not cross an additional third
country. In fact, in the sectoral partition β peaks at about 1. Thus, there are many shortest
paths from sector p to sector q that run through at least one additional industry sector.

We are interested in identifying the countries and industries that play a significant role in
connecting subgraphs q and p. Thus, we calculate the average over pairs (p, q) taking only val-
ues bpqi into account if i=2V 0

p [ V 0
p :

hbii ¼
X
p<q

bpqi ð1� dipÞð1� diqÞX
j=2V 0

p[V 0
q
bpqj

= nq

2

 !
: ð23Þ

Here, δip is defined as 1 if i 2 V 0
p , and 0 otherwise. The number of subgraphs that are consid-

ered in the average is represented by nq, normalizing Eq (23) such that
PN

i¼1hbii ¼ 1. The
importance of subgraph p in connecting other subgraphs is then obtained by

P
i2V 0

p
hbii. Our

results show that for the national partition Cc, Germany, USA and Switzerland hold most geo-
desics (Table 3). In the sectoral partition, however, USA, Germany and China lead the list with
the financial services & business activities being the sector with largest hbii (Table 4).

Statistical interdependencies between local network measures. A priori it is not known
how the different measures introduced above contribute to complementary information about
the network’s topology. In order to assess this issue, we investigate potential statistical interde-
pendencies between cross-node strength, cross-clustering coefficient and cross-betweenness
and present illustrative examples. A further theoretical study about possible correlations
between the introduced network measures is beyond the scope of this work.

Fig 8. Distribution of cross-betweenness fraction β (Eq (22)) for pairs in the national partition Cc and
the sectoral partition Cs of the ITN in the year 2005.

doi:10.1371/journal.pone.0133310.g008
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As link weights enter directly the calculation of the local cross-clustering coefficient in Eq

(4), we consider the correlation between Cp;all
i and the monetary flow sp;outi :¼X

j2V 0
p
wij from

node i into subgraph V 0
p. From the scatter plots we observe a stronger and generally positive

statistical relationship between both characteristics in the national partition (cf. Fig 9A) than in
the sectoral partition (cf. Fig 9B). The scatter plot between the local cross-clustering coefficient
and the cross-betweenness exhibits a similar picture. In the national partition, shown in Fig
9C, the two measures show a stronger interdependence than in the sectoral partition in Fig 9D.
This is due to the fact, that in the sectoral partition, one subgraph consists of 186 nodes from

countries with very different economic performances, leading to a wide spread of Cp;all
i . How-

ever, the national partition exhibits fewer variability in the strengths of the 26 nodes that
belong to the same country. We conclude that the cross-strength (measuring the overall mone-
tary flow originating from a node), the local cross-clustering coefficient (quantifying the occur-
rence of motifs across subgraphs), and the cross-betweenness (characterizing a node’s
importance in connecting two subgraphs) capture different aspects of a node’s role in the ITN,
although these three concepts are not fully unrelated conceptually.

Table 3. Average cross-betweenness as defined in Eq (23), aggregated by country.

National partition Cc Sectoral partition Cs

∑ hbii country ∑ hbii country

0.145 Germany 0.114 USA

0.103 USA 0.074 Germany

0.089 Switzerland 0.064 China

0.079 UK 0.038 France

0.066 China 0.036 Netherlands

0.061 Netherlands 0.032 Italy

0.050 Japan 0.030 Belgium

0.049 Italy 0.029 UK

0.043 France 0.025 Japan

0.041 Belgium 0.020 South Africa

doi:10.1371/journal.pone.0133310.t003

Table 4. Average cross-betweenness as defined in Eq (23), aggregated by industry.

National partition Cc Sectoral partition Cs

∑ hbii industries ∑ hbii industries

0.178 Re-export & Re-import 0.193 Finance & Business

0.153 Petroleum 0.146 Petroleum

0.152 Finance & Business 0.115 Electrical and Machinery

0.119 Electrical and Machinery 0.107 Re-export & Re-import

0.060 Metal Products 0.098 Transport

0.047 Transport 0.060 Food & Beverages

0.043 Wood and Paper 0.045 Metal Products

0.038 Education 0.031 Education

0.035 Food & Beverages 0.027 Mining and Quarrying

0.028 Textiles 0.025 Agriculture

doi:10.1371/journal.pone.0133310.t004
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Evolution of global interacting network measures in the ITN
As a final aspect, we study the evolution of the ITN and how globalization is represented in the
topological properties and substructures of global trade. As already demonstrated by the
decreasing trend of modularity (see Fig 4B), the community structure in the network has
become less significant along with the process of globalization. In the following we discuss how
reorganization of trade patterns affects the network structure at both the local (node strength)
and global scale (link density, reciprocity). We further investigate the speed of the reorganiza-
tion process via the Hamming distance and discuss relevant measures to observe anomalies in
trade patterns, in particular economic crises.

Node strength. In order to assess the evolution of the strength distributions presented in
Fig 5 we calculate the mean for each year between 1990 and 2011. Due to the fact that all mone-
tary flows are contained within the network, the mean of the output and input distributions is
identical. The employed normalization process to avoid inflationary effects during network
construction implies opposing trends in the means of si;auto and si;cross. In Fig 10A a trend
towards more international trade can be observed from the evolution of the means in the
national partition. However, in 2011 the mean domestic strength is still 4.4 times higher than
the respective value for international relations. In the sectoral partition no comparable trend is
observed with a practically stable mean. One could expect that technological progress leads to

Fig 9. Correlation between networkmeasures for different subgraphs (p, q). The scatter plots depict: (A)
the local cross-clustering coefficient Cp;all

i and the cross-strength sp;outi for subgraphs in the national partition:
China [CHN], Germany [GER] and USA. (B)Cp;all

i and sp;outi for the sectoral partition: Petroleum & Non-metallic
products [PeT], Finance & Businesses [FiN], and Electrical & Machinery [ElE]. (C) Cp;all

i and the cross-
betweenness bp;q

i in the national partition: Japan [JPN], Germany, China and USA. (D) Cp;all
i and bp;q

i in the
sectoral partition: PeT, FiN, ElE and Construction [CoN].

doi:10.1371/journal.pone.0133310.g009
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an adaptation of production functions to new technologies, and thus results in an adjustment
of input requirements. However, in the classification of industry sectors these effects are small
compared to the observed changes in the national partition.

Link density and reciprocity. Fig 10B reveals an increasing trend in the link density in all
parts of the network. The internal link density ρauto for domestic trade reaches 50% in 2011,
whereas the density for the full network ρ accounts for only 1.7%. In the sectoral partition, ρauto
exceeds ρcross with max(ρauto) = 5.5% in 2011. The results might be slightly biased due to the
fact, that data from national bureaus of statistics serve as main sources for the construction of
the Eora MRIO database, leading potentially to more accurate national data compared to inter-
national monetary flows [18]. However, this bias is not able to explain the observed magnitude
of differences in the link density between national and international trade. Therefore, our
results further emphasize the importance of trade relations within national economies. A devi-
ation from the trend of increasing link density is observed in 2009, when the link density
decreased compared to the previous year. This effect coincides with the financial crisis in 2008/
2009 that caused many countries to experience a recession in 2009 [49].

The reciprocity (Fig 10C) exhibits a different behavior depending on the considered parti-
tion. While rauto gradually increases in the national partition Cc, the reciprocity value peaks for
the full network in the year 2000. This indicates that domestically, new links are mainly estab-
lished between sectors that already possess a one-way trade relationship. However, reciprocity
in cross-country relations saturates in 2000. For the full network and in the sectoral partition
Cs, reciprocity even decreases after 2000. This indicates, that in this period most emerging links
are added as new one-way trade relationships between industrial sectors.

Fig 10. Evolution of ITN characteristics between 1990 and 2011. (A) Mean node strength, (B) link density
and (C) reciprocity. In addition to the properties of the full network, internal and cross-measures for the
sectoral (Cs) and national (Cc) partition are shown.

doi:10.1371/journal.pone.0133310.g010
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Hamming distance. To quantify the restructuring of trade relations, we measure the
Hamming distance between the ITN in the present and the preceding year. First, we compare
the results of the different generalizations (Eq (15)) of the Hamming distance (see Fig 11A).
The graphs ofHm,Hs and H follow identical trends with Hm peaking in 2009 at a value of
0.0049. To better understand the underlying dynamics of the reorganization process, we mea-
sure the decomposition of the Hamming distance as defined in Eq (16). We observe an increas-
ing effect of link density differences since the year 2000 (see Fig 11B). In the corrected
Hamming distance H�

m the rising trend since 2000 is significantly reduced. Therefore,H�
m is an

applicable measure to identify anomalies in trade patterns, such as the financial crisis in 2009.
Comparatively large values and fluctuations are visible in the early 1990s. These can partly be
explained by an adaptation of trade pattern to the new global political and economic land-
scapes that arose after the collapse of the Soviet Union in 1991. Furthermore, the contribution
of the difference in weights Δwm to the Hamming distance increases compared to the blinking
links lb. For comparison, Fig 11C shows the Hamming distance in the ITN with constant link
density for each year. In this network, the absolute values of H�

m are lower than in the threshold
based construction of the ITN. The peak in 2009 is still visible in the network with constant
link density, although less significant compared to the reorganization in the 1990s. We also
measure the Hamming distances restricted to internal and cross-subgraph connections for Cc
and Cs. However, differences in the trends are comparatively small, which implies that reorga-
nization in trading patterns occurs in both internal and cross-subgraph relations.

Fig 11. Hamming distance between the ITN in the current and the respective preceding year for 1991–2011. Various generalizations of H to weighted
networks are compared (A). The contributions as defined in Eq (16) are illustrated for the ITN constructed with thresholding (B) and constant link density (C).

doi:10.1371/journal.pone.0133310.g011
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Discussion
In this paper we have shown that the ITN, interpreted as a network of interdependent subnet-
works, exhibits a non-trivial and dynamic architecture. The methodology and tools presented
are well-suited for the assessment of both global and local properties of this network. Our
study provides a profound basis and reference for addressing more detailed research questions
and case studies on trade networks in the future. One of these studies, for example, could
include an assessment of impacts of specific trade agreements between regions on the structure
of global trade. The cross-betweenness would serve here as an appropriate tool in order to
quantify possible changes of a subnetwork’s importance in the global supply chain.

We have addressed the question how both national economies and the sectoral partition
stand out in the global network that consists of highly interwoven trade relationships. Our
results demonstrate that the country-based partition of industrial sectors closely resembles the
notion of communities in complex networks. However, an even higher modularity is achieved
with a suitable community detection algorithm, pointing to an increasing relevance of interna-
tional trade relationships. Important factors like geographical proximity and political linkages
between countries are expressed in the observed community structure. A more detailed assess-
ment of these factors and their implications for the network structure is an interesting subject
for further study. Clusters in the sectoral partition do not exhibit the characteristic linkage fea-
tures of communities. Nevertheless, by observing trade patterns in the sectoral partition, new
insights into the structure of the network are obtained.

A second key aspect of this study is the assignment of roles to the nodes in the ITN. Having
defined meaningful partitions, the distinction between internal and cross-subgraph properties
provides a new tool for unveiling the core functions of different sectors. For example, we find
that domestic trade is dominated by the financial services & business activities and that the
trade activity of this sector accounts for> 20% of global output. The clustering coefficient
allows to assess directionality patterns and to find characteristic roles of sectors in the supply
chain. Among others, the mining sector is identified as a predominantly output producing
industry, whereas trade businesses appear more frequently in the center of global supply
chains. Pairs of countries that are geographically close or exhibit large trade volume are often
characterized by high cross-clustering coefficients. Further more detailed insights into the
functional roles of industrial sectors and countries are provided by the cross-betweenness.

Finally, we have illustrated how globalization and economic crises have manifested them-
selves in the evolution of the substructure of the ITN. The increase of international interdepen-
dence is well observed in global network measures such as modularity and link density. The
almost continuous decrease in unweighted modularity for both the optimal and the national
partition suggests an overall increase in the complexity of trade relations, where the partition
into national economies becomes less significant. However, the trends of most relevant net-
work measures are interrupted in the year 2009, which coincides with the consequences of the
global financial and economic crisis. We have successfully introduced a meaningful generaliza-
tion of the Hamming distance to weighted networks that serves as a good indicator for the
associated strong reorganization processes of trade patterns.

In order to further strengthen the interpretations of our analysis, future work requires a
sophisticated mapping of monetary flows to the trade of goods in terms of physical material
flows. The price evolutions of different goods are highly heterogeneous and volatile on short
time-scales, leading to noise in the absolute values of monetary flows. Consequently, changes
in monetary values do not always represent changes in the physical flows of goods [33]. In
order to minimize artifacts originating from price fluctuations, a comparison of the results
with databases summarizing physical merchandise trade flows between industries would be
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required. Another opportunity for more detailed research is associated with community
detection in the directed ITN. Although a number of suggestions for a generalized quality
function of partitions have been formulated for directed networks (e.g. [46, 50]), the intuition
of a partition with high inter-cluster and low internal link density is not as straightforward as
in an undirected network [43]. The assessment of different quality functions and algorithms
that take the directionality pattern in an economically meaningful way into account would
refine the results of this study. We outline corresponding detailed analyses as a subject of
future work.
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