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Gibbs point processes on path space: Existence, cluster
expansion and uniqueness

Alexander Zass

Abstract

We study a class of infinite-dimensional diffusions under Gibbsian interactions, in the context
of marked point configurations: the starting points belong to Rd, and the marks are the paths of
Langevin diffusions. We use the entropy method to prove existence of an infinite-volume Gibbs
point process and use cluster expansion tools to provide an explicit activity domain in which
uniqueness holds.

Introduction

In this work we consider infinitely many Langevin diffusions in interaction: through the lens of Gibbs
point process theory, we see a diffusion – starting in x ∈ Rd and with displacement

!
m(s), s ∈

[0, 1]
"

– as a marked point x = (x,m) ∈ E ..= Rd ×C0, where C0 is the space of continuous paths!
m(s), s ∈ [0, 1]

"
starting at m(0) = 0. On this state space we then consider a pair potential Φ

that acts on both the starting points and the trajectories of the marked points. This leads to a Gibbsian
energy functional H , with (finite but) not uniformly bounded interaction range, for which the questions
of existence and uniqueness of Gibbs point processes are far from trivial. In particular, we note how
the random marks are a priori unbounded.

We wish to remark that, while in this work we investigate Gibbs point processes on path space, the
existence and uniqueness methods we describe appear to be more general, and could be applied to
general marked models with pair interactions.

In this setting we can start from interactions which are common for classical systems in Rd, like the
Lennard–Jones pair potential, and use them to describe interactions between paths instead. We re-
mark, however, that the typical potentials that we consider (see Example 1) need a hard-core repulsion
near the origin in order to satisfy the stability conditions that are required in the method.

In Section 2 we tackle the existence question, via the Dobrushin–Lanford–Ruelle description of Gibbs
point processes. Under some stability assumptions for H , we are able to prove (in Theorem 1) the
existence of at least one infinite-volume Gibbs point process on path space P z with energy functional
H , for any activity z and inverse temperature β, by applying the entropy method presented for the
general marked setting in [16].

Moreover, we also show that, for any N ≥ 1, the N -point correlation function ρN of these Gibbs
point processes satisfy a (point-dependent) Ruelle bound of the following form: there exists a function
c : E → R+ such that, for almost any finite path configuration (x1, . . . , xN) ∈ E N ,

ρN(x1, . . . , xN) ≤
N#

i=1

c(xi).
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A. Zass 2

In Sections 3 and 4 we present, as a novel result, an explicit activity domain where uniqueness of the
Gibbs point process holds. This is obtained with the approach of cluster expansion and the Kirkwood–
Salsburg equations – a method which was first developed for lattice systems in the 1980s (see e.g.
[8]) and then extended to the continuous case (see e.g. [9, 11]). We are hopeful these techniques and
assumptions – presented here making use of the specificity of the path space properties – could be
adapted to different marked settings.

In the case of unmarked continuous point processes, the technique relies on considering a series
expansion of the correlation functions. As presented by D. Ruelle in [19], one first shows that the
correlation functions of a Gibbs point process can be expressed as an absolutely converging series
of cluster terms, and then proves uniqueness by considering a system of integral equations – the so-
called Kirkwood–Salsburg equations – that the correlation functions satisfy. In fact, these equations
can be reformulated as a fixed-point problem for an operator Kz in an appropriately chosen Banach
space, having therefore a unique solution.

The cluster expansion approach is actually well adapted to the marked setting. Indeed, S. Poghosyan
and D. Ueltschi develop, in [14], abstract techniques that can be used both in the classical and in the
marked setting, under assumptions of so-called modified-regularity of the interaction. These assump-
tions and techniques are further developed in [15] by S. Poghosyan and H. Zessin, proving uniqueness
of infinite-volume Gibbs point processes for potentials satisfying a certain stability condition (which they
refer to as Penrose stability ). Some similar result is presented by S. Jansen in [3], but making strong
use of the repulsive nature of the interaction she considers. These techniques can be restrictive in our
setting of unbounded marks (see Example 4), so we use here a different approach: inspired by the
work [5] of T. Kuna, our approach relies on some tree-graph estimates, that allow to prove a Ruelle
bound for the correlation functions of infinite-volume Gibbs point processes.

A key point, presented in Section 3 under a different set of assumptions than that of Section 2, con-
sists in using cluster expansion to obtain a Ruelle bound for the correlation functionals of a Gibbs point
process of activity z. In particular, we show that, under an additional regularity assumption for the inter-
action potential Φ, there exists an activity threshold zRu(β) > 0 such that, for any z ∈ (0, zRu(β)), the

correlation functions ρ(P )
N of any Gibbs point process P with activity z and inverse temperature β sat-

isfy a Ruelle bound as above, but where c is uniformly bounded: for almost any (x1, . . . , xN) ∈ E N ,

ρ
(P )
N (x1, . . . , xN) ≤ cN . This shows that the correlation functions belong to a certain Banach space

Xc.

In Section 4, after showing that there exists an activity threshold zcrit(β) > 0 such that, for any z ∈
(0, zcrit(β)), the norm of the Kirkwood–Salsburg operator Kz in Xc is bounded by 1, we show that the
associated equations have a unique solution and obtain the following uniqueness domain (in Theorem
2): for any β > 0 and z ∈ (0, zcrit(β)), there exists a unique infinite-volume Gibbs point process P
with activity z and inverse temperature β associated to the energy functional H .

1 The setting

We consider infinitely-many independent gradient diffusions and add a dependence between them by
introducing an interaction energy in the context of marked Gibbs point processes. In this setting, we
adopt the DLR description and set up the existence and uniqueness questions that are explored in the
later sections.
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Gibbs point processes on path space 3

1.1 Infinite-dimensional free system of Langevin diffusions

The basic mathematical object of this work is the following Langevin dynamics on Rd:

dX(s) = dB(s)− 1

2
∇V

!
X(s)

"
ds, s ∈ [0, 1], (1)

where B is a standard Rd-valued Brownian motion, and V : Rd → R is a smooth potential satisfying,
outside of some compact subset of Rd,

∃δ′, b1, b2 > 0, V (x) ≥ b1|x|d+δ′ and ∆V (x)− 1

2
|∇V (x)|2 ≤ −b2|x|2+2δ′ . (2)

It is a known result (see e.g. [17]) that, under these conditions, there exists a unique solution to the
SDE (1), which generates an ultracontractive semigroup (see [4, 2]). Moreover, for any δ < δ′/2,

E
$
esups∈[0,1]|X(s)−X(0)|d+2δ

%
< +∞. (3)

For the rest of this work, let δ > 0 be fixed.

1.2 The system with Gibbsian interaction

Consider now that any (continuous) path x on [0, 1] can be decomposed into its initial location x and
a (shifted) path m starting from 0. In other words, we identify x with the pair (x,m) ∈ E ..= Rd×C0,
where C0 is the space of continuous paths on [0, 1] starting at 0. The space C0, endowed with the
norm ‖m‖ given by the maximum displacement of the trajectory m, that is ‖m‖ ..= sups∈[0,1]|m(s)|,
is a normed space.

On C0, we consider the measure R, given by the law of the process X solution of (1) starting at
X(0) = 0. Notice that, thanks to (3), for any δ < δ′/2,

&

C0

e‖m‖d+2δ

R(dm) < +∞. (4)

We consider point measures on the product state space E . More precisely, we take the following
product measure on E :

λ(dx, dm) = dx⊗R(dm).

We denote by M the space of simple point measures (configurations) on E , i.e. of all σ-finite mea-
sures of the form

γ =
'

i

δxi , xi = (xi,mi) ∈ E , with xi ∕= xj if i ∕= j.

Since the configurations are simple, we identify them with the subset of their atoms:

γ ≡
(

x1, . . . , xn, . . .
)
⊂ E .

Moreover, for two disjoint configurations γ, ξ ∈ M , we denote by γξ their concatenation: γξ ..= γ∪ξ.
For γ ∈ M , |γ| denotes the number of its points; Mf ⊂ M is the subset of finite configurations, i.e.
with |γ| < +∞. We denote by o the configuration supported on the empty set.
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A. Zass 4

For any Λ ⊂ Rd, MΛ ⊂ M denotes the subset of point measures with support in Λ × C0, and
γΛ ..= γ ∩ (Λ×C0). Let B(Rd) denote the Borel σ-algebra on Rd, and Bb(Rd) the set of bounded
Borel subsets of Rd, which we often call finite volumes. For Λ ∈ Bb(Rd), |Λ| denotes its volume.

We denote by P(M ) (resp. P(MΛ)) the set of probability measures (or point processes) on M
(resp. MΛ). Finally, let N∗ ..= N \ {0}.

We consider the following measure (of infinite mass):

Definition 1.1. Fix z > 0. We define the measure π̃z = 1 +
*+∞

N=1

zN

N !
λ⊗N on Mf .

For any finite volume Λ, we consider as reference probability measure the marked Poisson point
process πz

Λ ∈ P(MΛ) with intensity parameter z, defined by renormalising the restriction π̃z
Λ of π̃z

to MΛ as follows:
πz
Λ(dγ) = e−z|Λ|π̃z

Λ(dγ).

As a modification of the Poisson point process, we introduce an interaction between the paths by con-
sidering the finite-volume Gibbs point process associated to an energy functional H . More precisely:

Definition 1.2. An energy functional H : Mf → R ∪ {+∞} is a measurable functional on the
set of finite configurations, with H(o) = 0 by convention. In this work we consider the energy of a
finite number N ≥ 1 of paths to be defined, for any γ = {x1, . . . , xN} ∈ Mf , by the sum of a
self-interaction term and a pair-potential term:

H(γ) ..=
N'

i=1

Ψ(xi) + β
'

1≤i<j≤N

Φ(xi, xj) ∈ R ∪ {+∞}, (5)

where β > 0 is the inverse temperature.

We denote the pair-interaction component of the energy as

EΦ(γ) ..=
'

1≤i<j≤N

Φ(xi, xj),

and the conditional energy of any path x ∈ E given any ξ ∈ M as

EΦ (x | ξ) ..=
'

y∈ξ

Φ(x, y).

Note that this infinite sum is not always well defined (see Assumption 2).

Finally, for any γ ∈ M , let

EΦ (γ | ξ) ..=
'

x∈γ
EΦ (x | ξ) .

be the conditional energy of the configuration γ given the configuration ξ.

We specify later a growth condition on the self potential Ψ, and consider different sets of assumptions
on the pair potential Φ : E × E → R ∪ {+∞}.

Definition 1.3. Let H be an energy functional as in (5). For any Λ ∈ Bb(Rd), the free-boundary-
condition finite-volume Gibbs point process on Λ with energy functional H , activity z > 0 and inverse
temperature β > 0 is the probability measure P z,β

Λ on MΛ defined by

P z,β
Λ (dγ) ..=

1

Zz
Λ

e−βH(γΛ) πz
Λ(dγ), (6)

where the partition function Zz
Λ is the renormalisation constant.

DOI 10.20347/WIAS.PREPRINT.2859 Berlin 2021



Gibbs point processes on path space 5

In this work we investigate the existence and uniqueness of an infinite-volume Gibbs point process, in
the following sense:

Definition 1.4. Let H be an energy functional as in (5). A probability measure P on M is said to be an
infinite-volume Gibbs point process with energy functional H , activity z > 0 and inverse temperature
β > 0, denoted P ∈ Gz,β(H), if it satisfies, for any Λ ∈ Bb(Rd) and any positive, bounded, and
measurable functional F : M → R, the following DLR equation (for Dobrushin–Landford–Ruelle)

&

M

F (γ)P (dγ) =

&

M

1

Zz
Λ(ξ)

&

MΛ

F (γΛξΛc)e−β
!
H(γΛ)+EΦ(γΛ|ξΛc )

"
πz
Λ(dγ) P (dξ), (DLR)

where the partition function Zz
Λ(ξ) depends on the boundary condition ξ.

A concept that will help in showing that such an infinite-volume measure exists is that of tempered
configuration. For such a configuration γ, the number |γΛ| of its points in any finite volume Λ, should
grow sublinearly w.r.t. the volume, while the norm ‖m‖ of its marks should grow as a fractional power
of it. More precisely,

Definition 1.5. The set of tempered path configurations is given by the increasing union M temp ..=+
t∈N∗ M t, where

M t ..=
(
γ ∈ M : ∀l ∈ N∗,

'

(x,m)∈γ
|x|≤l

(1 + ‖m‖d+2δ) ≤ tld
)
. (7)

We denote by G temp
z,β (H) ..= Gz,β(H) ∩ P(M temp) the set of tempered Gibbs point processes, i.e.

those whose support is included in the tempered configurations.

In what follows we show that a tempered Gibbs point process associated to infinitely-many interacting
Langevin dynamics exists as soon as the interaction energy satisfies some quite natural assumptions.

Assumption 1 (Self interaction growth and stability).
(Hself) The self potential Ψ : E → R ∪ {+∞} acting on each path is bounded from below by the

opposite of a power of its maximum displacement, i.e.

∃AΨ > 0 : inf
x∈Rd

Ψ(x,m) ≥ −AΨ‖m‖d+δ. (8)

(Hst.) The pair potential Φ : E × E → R ∪ {+∞} between two paths is a symmetric functional
that satisfies the following stability condition: there exists a constant BΦ ≥ 0 such that for any
finite configuration γ = {x1, . . . , xN} ∈ Mf ,

EΦ(γ) =
'

1≤i<j≤N

Φ(xi, xj) ≥ −BΦN . (9)

2 Existence of a Gibbs point process of diffusions

The proof of the existence of an infinite-volume Gibbs point process that we describe here makes use
of the specific entropy functional as a tightness tool, as in the general approach presented in [16].
In order for our path model of interacting Langevin diffusions to fit the setting of the aforementioned
paper, in this section we consider energy functionals H that satisfy, in addition to Assumption 1, the
following:

DOI 10.20347/WIAS.PREPRINT.2859 Berlin 2021



A. Zass 6

Figure 1: Two interacting paths of a
Langevin diffusion in R2. Each circle is
centred in the starting point, while the
radii of the coloured circles correspond
to their maximum displacement in the
time interval [0, 1]; the dotted circles
represent the security distance a0/2 in-
troduced in (10).

Assumption 2 (Range and local stability). The pair potential Φ : E × E → R ∪ {+∞} is such that

(Hr) Two diffusions xi, xj do not interact whenever they start too far away : there exists a constant
a0 ≥ 0 such that

Φ(xi, xj) = 0 whenever |xi − xj| > a0 + ‖mi‖+ ‖mj‖. (10)

(Hloc.st) There exists a constant B̄Φ ≥ 0 such that, for any path x ∈ E , for any configuration
ξ ∈ M temp,

EΦ (x | ξ) =
'

y∈ξ

Φ(x, y) ≥ −B̄Φ(1 + ‖m‖d+δ). (11)

Remark. We briefly comment on these two assumptions: the expression in (11) is well defined since,
as we will see in the proof of Theorem 1, the range assumption (Hr) implies that the infinite sum of
the conditional energy of x given ξ is actually given by a finite (random) number of terms.

It is easy to show that the following Lemma holds for the support of any Gibbs point process:

Lemma 2.1. For any activity z > 0 and inverse temperature β > 0, any infinite-volume Gibbs point
process P ∈ G temp

z,β (H) is supported on configurations with locally finite energy, that is configurations

γ ∈ M temp such that, for any ∆ ∈ Bb(Rd), EΦ(γ∆) < +∞. Note that this is true also whenever Φ
takes infinite values.

Example 1. Consider the following class of interactions, described by a path pair potential of the form

Φ(xi, xj) =
,& 1

0

φ(|xi − xj +mi(s)−mj(s)|)ds
-
1[0,a0+‖mi‖+‖mj‖](|xi − xj|), (12)

with φ given by the sum of two potentials on R+: φ = φhc + φl, where

• The potential φhc is pure hard core at some diameter R > 0, that is

φhc(u) = (+∞)1[0,R)(u).

• The potential φl satisfies a stability property, i.e. there exists a constant Bφ ≥ 0 such that, for
any admissible configuration {y1, . . . , yN}, N ≥ 1, the following holds (see [19], paragraph

DOI 10.20347/WIAS.PREPRINT.2859 Berlin 2021



Gibbs point processes on path space 7

3.2.5):
N'

i=1

φl(|yi|) ≥ −2Bφ, (13)

where a finite configuration {y1, . . . , yN} ⊂ Rd, N ≥ 1, is called admissible if, for any pair
yi ∕= yj , φ(|yi − yj|) < +∞.

Note how the coefficient a0 here plays the role of a sensitivity parameter (see Figure 1): if the pair
potential φ is repulsive (i.e. positive), then a0 can take any finite positive value. If instead φ is attrac-
tive (i.e. negative) on some region, a0 should be chosen in such a way that φ remains attractive on
[a0, +∞): φ(u) ≤ 0 if u ≥ a0 (see Figure 2). We now show that this class of potentials satisfy
Assumption 2.

Proof. Firstly, thank to the previous Lemma, we can actually restrict our study to the admissible con-
figurations. It is easy to see that the stability (9) of the potential Φ holds with BΦ = Bφ. Moreover,

setting l(t) ..= 2
d+δ
δ

−1t
1
δ , one can see that the range of the interaction is bounded by

r(γ,Λ) = 2l(t) + 2 sup
x∈γΛ

‖m‖+ 1 + a0,

i.e. for any x = (x,m) ∈ E and ξ ∈ M t, t ≥ 1, setting ∆ ..= B(x, r(γ,Λ)), the conditional energy
EΦ (x | ξ \ {x}) of x given ξ is actually given by EΦ

!
x | ξ∆\{x}

"
: it is a finite sum, and is bounded

from below by −2Bφ.

EΦ

!
x | ξ∆\{x}

"
=

.& 1

0

'

xi∈ξ∆\{x}

φ(|x− xi +m(s)−mi(s)|)ds
/
1{|x−xi|≤a0+‖m‖+‖mi‖}

≥ −2Bφ.

Notice how, under these conditions, the trajectories of two interacting paths x1 = (x1,m1) and x2 =
(x2,m2) are allowed to intersect, but at each time s the paths keep at a distance of at least R; the
hard-core component, indeed, imposes |x1 +m1(s)− x2 +m2(s)| ≥ R for any s ∈ [0, 1].

A particular case: Let φ be given by the sum of a hard-core component and a shifted Lennard–Jones
potential, i.e.

φ(u) = φhc(u) + φLJ(u−R)1[R,+∞)(u), u ∈ R+,

where φLJ(u) =
a

u12 − b
u6 , a, b > 0. Pictured in Figure 2 is an example with R = 1. We remark that

this potential has a non-integrable growth in a neighbourhood of its hard core component; in particular,
it does not satisfy Assumption 3 below, which is used for the uniqueness proof.

Example 2. One can consider a class of translation-invariant pair potentials. More precisely, let Φ be
invariant by translation: Φ(xi, xj) = Φ(xi − xj), with

Φ(x) =
,& 1

0

φ(|x+m(s)|)ds
-
1{|x|≤a0+‖m‖},

where φ is given by the above sum of a hard-core component and a shifted Lennard–Jones potential.

DOI 10.20347/WIAS.PREPRINT.2859 Berlin 2021
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10

20

1
0

+∞

2.5 3 3.5

a0

Figure 2: A shifted Lennard–Jones po-
tential φLJ(u − 1) = 16

!! 3/2
u−1

"12 −
! 3/2
u−1

"6"
with hard core diameter R =

1; it is always negative after a0 = 2.5,
and explodes as x → 1+.

Definition 2.2. Consider a configuration γ ∈ M . For any N ≥ 1, its factorial measure of order N is
given by

γ(N)(dx1, . . . , dxN) ..= γ(dx1)(γ \ {x1})(dx2) . . . (γ \ {x1, . . . , xN−1})(dxN).

By taking the expectation under a point process P we obtain its N -th factorial moment measure: a
measure α

(P )
N on E N defined by

α
(P )
N (·) ..= EP [γ

(N)(·)].

For any point process P , one can consider, for any N ≥ 1, its N -point correlation function, defined as
the Radon–Nikodym derivative of its N -th factorial moment measure α

(P )
N with respect to the product

measure (zσ)⊗N , where
σ(dx) ..= e−Ψ(x)λ(dx).

Proposition 2.3 ([12]). Let P ∈ Gz,β(H), z > 0, β > 0. Its N -point correlation function admits, for
σ⊗N -almost all (x1, . . . , xN) ∈ E N , the following representation:

ρ
(P )
N (x1, . . . , xN) = e−βEΦ(x1,...,xN )

&

M

e−βEΦ(x1,...,xN | ξ)P (dξ), (14)

as soon as this expression is well defined.

Remark. Note that ρ(P )
N (·) is a symmetric function, as for any (x1, . . . , xN) ∈ E k and any permutation

{i1, . . . , iN}, ρ(P )
N (xi1 , . . . , xiN ) = ρ

(P )
N (x1, . . . , xN).

We can now state our existence result.

Theorem 1. Let H be an energy functional as in (5), satisfying Assumptions 1+2. For any z > 0
and β > 0, there exists at least one infinite-volume tempered Gibbs point process P z,β ∈ G temp

z,β (H).

Moreover, for any N ≥ 1, the N -point correlation function of P z,β exists and can be written as in (14).

Proof. Let z > 0, β > 0. In order to apply the existence result of [16] to this path space context, we
show that a stability condition holds both for the energy of a finite configuration and for the conditional
energy, and that the random interaction range is finite (possibly unbounded). These conditions are
called in [16], (Hst.), (Hr), and (Hloc.st).

Step 1. We start by noting that (13) implies that the potential φ – defined on the location space Rd –
is stable in the sense of Ruelle (see [20]), with stability constant Bφ, i.e.

∀N ≥ 1, ∀{y1, . . . , yN} ⊂ Rd,
'

1≤i<j≤N

φ(|yi − yj|) ≥ −BφN .

DOI 10.20347/WIAS.PREPRINT.2859 Berlin 2021



Gibbs point processes on path space 9

The conditions (8) and (9) – on the self interaction and pair potential, respectively, yield the following
stability for the energy of a finite number of paths:

∀γ ∈ Mf , H(γ) ≥ −(Bφ ∨ AΨ)
!
|γ|+

'

(x,m)∈γ

‖m‖d+δ
"
.

Step 2. We now focus on analysing the range of the interaction: we show that for any tempered
configuration γ ∈ M t, t ≥ 1, and for any finite volume Λ, there exists a positive number r = r(γ,Λ)
such that

EΦ (x | ξ) =
'

y∈ξ
0<|y−x|≤r

Φ(x, y). (15)

Set l(t) ..= 2
d+δ
δ

−1t
1
δ . Using the definition of tempered configurations, one has that, for all l ≥ l(t)

and for any x ∈ γ ∈ M t such that |x| > 2l + 1 + a0,

|x|− ‖m‖
(7)
≥ |x|− 1

2
⌈|x|⌉ ≥ l + a0.

Thanks to condition (Hr), this means that the range of the interaction is bounded by

r(γ,Λ) = 2l(t) + 2 sup
x∈γΛ

‖m‖+ 1 + a0.

Step 3. Fix Λ ∈ Bb(Rd), and consider, for γ ∈ M and ξ ∈ M temp, the conditional energy of γΛ
given ξΛc , that is:

HΛ(γΛξΛc) ..= H(γΛ) + EΦ (γΛ | ξΛc) .

Thanks to (15), denoting ∆ ..= Λ⊕ B(0, r(γ,Λ)), we have

EΦ (γΛ | ξΛc) = EΦ

!
γΛ | ξ∆\Λ

"
=

'

xi∈γΛ

'

xj∈ξ∆\Λ

Φ(xi, xj). (16)

It is unfortunately not true – as used instead in Section 4 of [16] – that we can control the cardinality of
the second sum, i.e. the number of points of ξ∆, uniformly in γ. On the other hand, thanks to Lemma
2.1, we can assume that ξ∆ is of finite energy, and therefore use (13) to estimate

'

xi∈γΛ

'

xj∈ξ∆\Λ

Φ(xi, xj)

=

& 1

0

'

xi∈γΛ

'

xj∈ξ∆\Λ

φ(|xi − xj +mi(s)−mj(s)|)ds 1{|xi−xj |≤a0+‖mi‖+‖mj‖}

(13)
≥

& 1

0

'

xi∈γΛ

−2Bφ ≥ −2Bφ|γΛ|.

Together with the stability of γΛ 6→ H(γΛ), this yields the following lower bound for the conditional
energy:

HΛ(γΛξΛc) ≥ −(AΨ ∨ 2Bφ)
'

x∈γΛ

(1 + ‖m‖d+δ),

We can now apply, having checked its three conditions (Hst.), (Hr), and (Hloc.st), Theorem 1 of [16]:
there exists an infinite-volume Gibbs measure P z,β ∈ G temp

z,β (H).

The correlation functions of a Gibbs point process can be written as in (14) whenever the term
e−

!
i

!
y∈ξ Φ(xi,y) is well defined. Thanks to (11), this is indeed the case, as we have

*
y∈ξ Φ(x, y) ≥

−B̄Φ(1 + ‖m‖d+δ).

DOI 10.20347/WIAS.PREPRINT.2859 Berlin 2021



A. Zass 10

Proposition 2.4. For any N ≥ 1, the N -point correlation function ρ
(P z,β)
N of any Gibbs point process

P z,β constructed above satisfy a Ruelle bound : for σ⊗N -almost all (x1, . . . , xN) ∈ E N ,

ρ
(P z,β)
N (x1, . . . , xN) ≤

N#

i=1

c(xi), (17)

where c(x,m) ..= exp
!
βBΦ + βB̄Φ(1 + ‖m‖d+δ)

"
.

Proof. Putting together (9) and (11), we estimate

ρ
(P z,β)
N (x1, . . . , xN) ≤ eβBΦN

&

M temp

eβ
!N

i=1 B̄Φ(1+‖mi‖d+δ)P z,β(dξ),

yielding the desired bound.

Example 1 (continued). For the class of potentials described in Example 1, the Ruelle bound holds
uniformly in (x1, . . . , xN) ∈ E N , and is of the form

ρ
(P z,β)
N (x1, . . . , xN) ≤ e3βBφN . (18)

3 Ruelle bounds for correlation functions

Suppose you have a pair potential Φ – not necessarily satisfying the assumptions of the previous sec-
tion – and that you already have an infinite-volume Gibbs point process P ∈ Gz,β(H), not necessarily
constructed as above. In this section – under an additional regularity condition (Assumption 3) – we
use tools from cluster expansion (see, for example, [18, 20]) to find a domain of activity (0, zRu(β))
such that, for any z ∈ (0, zRu(β)), the correlation functions of P exist and satisfy a Ruelle bound.

An important tool is given by the Ursell kernel (see the work by R.A. Minlos and S. Poghosyan in
[10]), introduced in Section 3.2. As this method requires the correlation functions have a specific
representation, we assume a priori here that, for any N ≥ 1, the expression (14) for the N -point
correlation function ρ

(P )
N of any P ∈ Gz,β(H) is well defined.

3.1 Correlation functions

While we have so far decomposed the energy functional in (5) into self- and pair-interaction terms,
in order to set ourselves in the framework of cluster expansion – that typically deals exclusively with
pair interactions – in what follows we include the self-interaction term in the reference measure, and
define, for z > 0, the measure

π̃zσ =
+∞'

N=0

zN

N !
σ⊗N ,

and the corresponding Poisson point process πzσ. The finite-volume Gibbs point process P z,β
Λ defined

in (6) on MΛ can then be equivalently defined using πzσ and just the pair interaction EΦ(γ) =*
{x,y}⊂γ Φ(x, y) (in place of the full energy functional H):

P z,β
Λ (dγ) =

1

Zzσ
Λ

e−βEΦ(γΛ) πzσ
Λ (dγ),
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where Zzσ
Λ is the normalisation constant.

As we already mentioned, the proof of the uniqueness of the Gibbs point process revolves around
the study of its correlation functions, which we now introduce. We start by introducing a finite-volume
correlation function induced by the interaction Φ:

Definition 3.1. Let z > 0, β > 0. For any finite volume Λ ⊂ Rd, the finite-volume correlation function
ρ
(z,β)
Λ in Λ (with free boundary condition) is given, for any γ ∈ MΛ, by

ρ
(z,β)
Λ (γ) =

1

Z̃zσ
Λ

&

MΛ

e−βEΦ(ξγ)π̃zσ
Λ (dξ),

where Z̃zσ
Λ is the normalisation constant.

Remark. Note that, from the stability (9) of the pair potential Φ, there exists a functional

i : Mf \ {o} → E

such that for any non-empty path configuration γ there exists a path i(γ) ∈ γ where the sum of its
interactions with the other paths in γ is bounded from below:

∀γ ∈ Mf \ {o}, EΦ (i(γ) | γ \ {i(γ)}) ≥ −2BΦ. (19)

As a consequence, Φ is bounded from below by −2BΦ:

inf Φ(x, y) ≥ −2BΦ. (20)

In Example 1 below we make use of (20), while (19) is used in Proposition 3.8.

In the following we fix the inverse temperature parameter β > 0, and consider energy functionals H
such that, additionally to Assumption 1, the following holds:

Assumption 3 (regularity). The pair potential Φ satisfies the following uniform regularity condition (for
some, and therefore any, β > 0):

C(β) ..= sup
x∈E

&

E

|e−βΦ(x,y) − 1|σ(dy) < +∞.

Example 1 (continued). Suppose the potential φ = φhc + φl is integrable outside of the hard core,
that is

‖φ‖R+
..=

& +∞

R

|φl(u)|ud−1du < +∞,

then Assumption 3 holds. Indeed, since for any x ∈ (−∞, +∞],

|e−x − 1| ≤ x−ex
−
+ (1− e−x+

) ≤ |x|ex−
, (21)

where x− ..= max(0,−x) and x+ ..= max(0, x) are the negative and positive part of x, respectively,
we have

|e−βΦ − 1| ≤ β|Φ̄|e2βBφ ,

where we denote by Φ̄ the truncated pair potential, defined, for any x, y ∈ E , by

Φ̄(x, y) =

0
1 if Φ(x, y) = +∞
Φ(x, y) otherwise.
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0

2 · 103

+∞

1 2 31

φ(1)

a0

Figure 3: The sum of a hard-core po-
tential φhc and the Lennard–Jones po-
tential φLG. The integrable component
φLG of the potential has a maximum in
φLG(1).

Let φ̄(u) ..= 1{u<R} + φ(u)1{u≥R}. Using the above bound, we can estimate, for any x1 ∈ E ,
&

E

|e−βΦ(x1,x2) − 1|σ(dx2) ≤ e2βBφ

&

E

β|Φ̄(x1, x2)| σ(dx2)

≤ e2βBφ

&

E

& 1

0

β|φ̄(x2 +m2(s)− x1 −m1(s))|ds 1{|x2−x1|≤a0+‖m2‖+‖m1‖} σ(dx2)

(8)
≤ e2βBφ

&

C0

& 1

0

&

Rd

β|φ̄(x2 +m2(s)− x1 −m1(s))| dx2 ds e
AΨ‖m2‖d+δ

R(dm2)

≤ e2βBφβ
!
bdR

d + ‖φ‖R+

" &

C0

eAΨ‖m2‖d+δ

R(dm2),

which is finite thanks to the ultra-contractivity assumption, see (4).

A particular case: Suppose the potential φ is given by the sum of a hard-core potential φhc in [0,R)
and the Lennard–Jones potential φl ≡ φLJ in [R, +∞). In particular, it is finite in [R, +∞), with
maximum φl(R). Pictured in Figure 3 is an example with R = 1.

3.2 Cluster expansion: Ursell kernel and tree-graph estimates

In this subsection, after introducing the Ursell kernel, we use it to rewrite the correlation functions of
a Gibbs point process and – following an approach inspired by [1, 5] – use tree-graph estimates to
obtain a Ruelle bound for them. Our innovation comes from being able to obtain that the correlation
functions of any Gibbs point process satisfy a Ruelle bound with the same constant cz, uniformly in
the finite volume, therefore yielding uniqueness in the set of tempered Gibbs point processes.

We consider here undirected connected graphs. For any non-empty set A ⊂ Rd, a graph G on A
is given by a pair (V ,E): the vertex set V is a subset of A, and the set of edges is a subset of
{{x, y} ⊂ A : x ∕= y}. Indeed, for a graph G = (V ,E) on A, we write {x, y} ∈ G to denote the
edge xy ∈ E between two vertices x, y ∈ V . A tree T is a connected graph without loops. We also
introduce the following notations:

• Cn(A) denotes the set of all undirected connected graphs with n vertices belonging to A.
• T (A) denotes the set of all trees on A.

Note that the notion of graph G = (V ,E) ∈ Cn(A) does not depend on the possible orderings of
the points of the vertex set V = {x1, . . . , xn} ⊂ Rd. Moreover, when there is no risk of confusion,
we identify a graph G on {x1, . . . , xn} with the corresponding one on the index set {1, . . . ,n} ∈ N
(i.e. where the edge {xi, xj} corresponds with the edge {i, j}, see Figure 4).
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Gibbs point processes on path space 13

When using these notations on a finite configuration γ ⊂ Rd × C0, with an abuse of notations, we
write Cn(γ) as shorthand for Cn(projRd(γ)) (analogously for T ).

x1

x2

x5x3

x4 x6x7

x8

Figure 4: Example of a treee T ∈ T (A), where A =
{x1, . . . ,x8} ⊂ R2. It can be equivalently described by
placing the points of A on the vertices of a tree T̃ on
{1, . . . , 8} ∈ N. More precisely, T̃ on {1, . . . , 8} is con-
structed by placing an edge {i, j} ∈ T̃ if and only if there is
an edge {xi,xj} ∈ T .

Definition 3.2. For any two measurable functionals F ,G : Mf → R, define their ∗-product by

(F ∗G)(γ) ..=
'

ξ⊂γ

F (γ \ ξ)G(ξ), γ ∈ Mf .

with identity 1∗(γ) ..= 1{γ=o}. The space of measurable functionals with this operation is an algebra
A . Moreover, the set

A0
..= {F ∈ A : F (o) = 0}

is an ideal of A . The exponential and logarithm operators are defined by

exp∗ F ..=
'

n≥0

1
n!
F ∗n, log∗(1∗ + F ) ..=

'

n≥1

(−1)n−1

n
F ∗n.

Definition 3.3 (Ursell function and kernel). We introduce the two following notions:

• The Ursell function k : Mf → R is a functional on finite configurations, defined by setting

k(γ) ..= log∗(e−βEΦ)(γ), γ ∈ Mf .

Equivalently ([1], Proposition 4.3), k(o) = 0 and, for any γ with |γ| = n ≥ 1,

k(γ) =
'

G∈Cn(γ)

#

{x,y}∈G

!
e−βΦ(x,y) − 1

"
.

• The Ursell kernel k̄ : Mf × Mf → R is defined on disjoint configurations by

k̄(γ, ξ) ..=
1
exp∗(−k) ∗ (e−βEΦ)(γ, ·)

2
(ξ), γ, ξ ∈ Mf , γ ∩ ξ = o.

The Ursell kernel relates to the Ursell function as follows:

Lemma 3.4 ([1], Lemma 4.6). For any finite configuration γ ∕= o,

∀x ∈ γ, k̄({x}, γ \ {x}) = k(γ).

Moreover, it provides a new expression for the correlation functions:

Lemma 3.5 ([1], Proposition 4.5). Let γ ∈ MΛ, Λ ∈ Bb(Rd). If
3

MΛ
|k(ξ)|π̃zσ(dξ) < +∞, then

ρ
(z,β)
Λ (γ) =

&

MΛ

k̄(γ, ξ)π̃zσ(dξ). (22)
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Lemma 3.6 ([1], Remark 4.8). The Ursell kernel k̄ is the unique solution of the so-called non-integrated
Kirkwood–Salsburg equation

0
k̄(γ, ξ) = e−β

!
y∈γ\{x} Φ(x,y) *

η⊂ξ kη(x)k̄
!
(γ \ {x})η, ξ \ η

"

k̄(o, ξ) = 1{ξ=o},
(23)

where kη(x) ..=
#

y∈η

!
e−βΦ(x,y) − 1

"
, and x ∈ γ is chosen arbitrarily.

We now introduce a second functional Q, which satisfies a similar equation to (23), dominates the
Ursell kernel, and its simpler expression allows for more convenient computations.

Definition 3.7. Consider a functional Q on Mf ×Mf defined as follows: for any ξ ∈ Mf , Q(o, ξ) =
1{ξ=o}, and for any γ = {x1, . . . , xN}, N ≥ 1,

Q(γ, ξ) ..=
'

ξ1,...,ξN⊂ξ
ξi∩ξj=o ∀i ∕=j

Q({x1}, ξ1) · · ·Q({xN}, ξN),

where
0
Q({x}, ξ) ..= e2βBΦ(|ξ|+1)

*
T∈T ({x}∪ξ)

4
{y1,y2}∈T |e

−βΦ(y1,y2) − 1| if ξ ∕= o

Q({x}, o) = e2βBΦ .
(24)

Proposition 3.8 ([1], Proposition 4.10). The functional Q defined above is the unique solution of

0
Q(γ, ξ) = e2βBΦ

*
η⊂ξ|kη (i(γ))|Q (γ \ i(γ) ∪ η, ξ \ η)

Q(o, ξ) = 1{ξ=o},

where the functional i was defined in (19).

Corollary 3.9 ([1], Proposition 4.11). For any γ = {x1, . . . , xN}, N ≥ 1, and ξ ∈ Mf such that
γ ∩ ξ = o, we have

|k̄(γ, ξ)| ≤ Q(γ, ξ)

=
'

ξ1,...,ξN⊂ξ
ξi∩ξj=o ∀i ∕=j

Q({x1}, ξ1) . . . Q({xN}, ξN),

and

|k(γ)| ≤ e2βBΦ|γ|
'

T∈T (γ)

#

{xi,xj}∈T

|e−Φ(xi,xj) − 1|.

Lemma 3.10. For any finite volume Λ ⊂ Rd and N ≥ 1, for λ-a.a. x ∈ E ,

&

(Λ×C0)N
Q({x}, {y1, . . . , yN})σ(dy1) · · · σ(dyN)

≤ e2βBΦ(N+1)C(β)N−1(N + 1)N−1

&

Λ×C0

|e−βΦ(x,y) − 1|σ(dy).
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Proof. Using (24), we rewrite the l.h.s. as

e2βBΦ(N+1)
'

T∈T ([N+1])

&

(Λ×C0)N

#

{i,j}∈T

|e−βΦ(yi,yj) − 1| σ(dy1) · · · σ(dyN)

5 67 8
=.. IN

,

where we set yN+1
..= x , and [N + 1] ..= {1, . . . ,N + 1}. We estimate IN by induction on N ≥ 1:

• For N = 1,

I1 =

&

Λ×C0

|e−βΦ(x,y1) − 1|σ(dy1).

• For the inductive step, assume that, for all T ∈ T ([N ]),

&

(Λ×C0)N−1

#

{i,j}∈T

|e−βΦ(yi,yj) − 1|
N−19

i=1

σ(dyi) ≤ C(β)N−2

&

Λ×C0

|e−βΦ(yN ,y) − 1|σ(dy).

• Let T ∈ T ([N + 1]) be given, and root it in yN+1. There exists then an edge {j1, j2} ∈ T ,
where yj1 is a leaf, and yj1 ∕= yjN+1

. We obtain

&

(Λ×C0)N

#

{i,j}∈T

|e−βΦ(yi,yj) − 1|
N9

i=1

σ(dyi)

=

&

(Λ×C0)N−1

&

Λ×C0

|e−βΦ(yj1 ,yj2 ) − 1| σ(dyj1)

5 67 8
≤ C(β)

#

{i,j}∈T\{{j1,j2}}

|e−βΦ(yi,yj) − 1|
N9

i=1
i ∕=j1

σ(dyi)

≤ C(β)
&

(Λ×C0)N−1

#

{i,j}∈T\{{j1,j2}}

|e−βΦ(yi,yj) − 1|
N9

i=1
i ∕=j1

σ(dyi).

We can then use the inductive step to prove the assertion.

Moreover,

e2βBΦ(N+1)
'

T∈T ([N+1])

IN ≤ e2βBΦ(N+1)
'

T∈T ([N+1])

C(β)N−1

&

Λ×C0

|e−βΦ(yN+1,y) − 1|σ(dy),

and the claim follows, since the number of elements of T ([N + 1]) is (N + 1)N−1 (see Theorem
4.1.3 of [13]).

Lemma 3.11. Define the threshold activity

zRu(β)
..= (C(β)e2βBΦ+1)−1, (25)

and let z < zRu(β). For any finite volume Λ ⊂ Rd, for π̃zσ-a.a. γ ∈ Mf , if |γ| = N ≥ 1,
&

MΛ

|k̄(γ, ξ)|π̃zσ
Λ (dξ) ≤ cN

z ,

where

cz ..= e2βBΦ

.
1 +

e√
2π

log

.
1

1− z/zRu(β)

//
< +∞. (26)

Moreover, for any z < zRu(β), &

MΛ

|k(ξ)|π̃zσ
Λ (dξ) < +∞. (27)
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Proof. Let γ = {x1, . . . , xN}. From Corollary 3.9,
&

MΛ

|k̄(γ, ξ)|π̃zσ
Λ (dξ) ≤

N#

i=1

&

MΛ

Q({xi}, ξ)π̃zσ
Λ (dξ).

Thanks to Lemma 3.10,
&

MΛ

Q({xi}, ξ)π̃zσ
Λ (dξ) =

+∞'

N=0

zN

N !

&

(Λ×C0)N
Q({xi}, {y1, . . . , yN}) σ(dy1) · · · σ(dyN)

= e2βBΦ +
+∞'

N=1

zN

N !
e2Bφ(N+1)C(β)N−1(N + 1)N−1

&

Λ×C0

|e−βΦ(x,y) − 1|σ(dy)

5 67 8
≤C(β)

≤ e2βBΦ

:
1 +

e√
2π

+∞'

N=1

(z C(β)e2βBΦ+1)N

N3/2

;
≤ e2βBΦ

:
1 +

e√
2π

+∞'

N=1

(z C(β)e2βBΦ+1)N

N

;
,

where, in the third step, we used the inequality (N + 1)N−1 ≤ 1√
2π
eN+1 N !

(N+1)3/2
, which is a conse-

quence of Stirling’s formula: for any n ≥ 0,

√
2πnn+1/2e−ne1/(12n+1) ≤ n! ⇒ nn−2 ≤ 1√

2π
en

(n− 1)!

n3/2
.

For z < (C(β)e2βBΦ+1)−1 = .. zRu(β), the above series converges, and we obtain
&

MΛ

Q({xi}, ξ)π̃zσ
Λ (dξ) ≤ e2βBΦ

.
1 +

e√
2π

log

.
1

1− z/zRu(β)

//
= .. cz.

By using Corollary 3.9, and proceeding similarly to the proof of Lemma 3.10, we obtain that, for z <
zRu(β), &

MΛ

|k(ξ)|π̃zσ
Λ (dξ) < +∞.

Remark. Note that cz depends on z but is uniform in Λ; moreover, c0 = e2βBΦ .

3.3 A Ruelle bound for correlation functions

As a consequence of (27), we can use the representation (22) of the correlation function

ρ
(z,β)
Λ (γ) =

&

MΛ

k̄(γ, ξ)π̃zσ
Λ (dξ),

and use the above tree-graph estimates to obtain the following Ruelle bound:

Proposition 3.12. Let β > 0 and zRu(β) as defined in (25). For a pair potential Φ satisfying Assump-
tions 1+3, for any activity z ∈ (0, zRu(β)) and any finite volume Λ ⊂ Rd, the finite-volume correlation

function ρ
(z,β)
Λ satisfies, for π̃zσ-a.a. γ ∈ MΛ,

ρ
(z,β)
Λ (γ) ≤ c|γ|

z , (28)

where the constant cz is defined in (26). Moreover, a similar bound holds for the N -point correla-
tion functions of any P ∈ Gz,β(H): for any z ∈ (0, zRu(β)), for any N ≥ 1, for σ⊗N -almost all
{x1, . . . , xN} ⊂ E N

ρ
(P )
N (x1, . . . , xN) ≤ cN

z . (29)

DOI 10.20347/WIAS.PREPRINT.2859 Berlin 2021



Gibbs point processes on path space 17

Proof. Fix z < zRu(β). The first statement is an immediate consequence of Lemma 3.11. Moreover,
as the right hand side of (28) does not depend on Λ, this bound also holds in the limit as Λ ↑ Rd, so
for the limiting correlation function ρ

(z)
f (γ) ..=

3
Mf

k̄(γ, ξ)π̃zσ(dξ), γ ∈ Mf .

For the second statement, consider γ = {x1, . . . , xN}. It is known (see [15], Lemmas 12 and 15),

that the limiting correlation functional ρ(z)f (γ) coincides with the correlation function ρ(P )
N (γ) whenever

the expression in (14) is well defined. As this is true thanks to (14), the Ruelle bound (29) holds for
any P ∈ Gz,β(H).

4 Uniqueness via the Kirkwood–Salsburg equations

We are in the following situation: we have an infinite-volume Gibbs point process P ∈ Gz,β(H) asso-
ciated to a potential Φ (not necessarily constructed as in Section 2) and whose correlation functions
satisfy a Ruelle bound, and wish to understand whether it is indeed the unique such process associ-
ated to Φ and with activity z.

In this section we assume that, additionally to Assumption 1, the correlation functions of any P ∈
Gz,β(H) can be represented as in (14):

ρ
(P )
N (x1, . . . , xN) = e−βEΦ(x1,...,xN )

&

M

e−βEΦ(x1,...,xN | ξ)P (dξ).

The uniqueness proof is structured as follows: we prove that the correlation functions of a Gibbs
point process satisfy the Kirkwood–Salsburg equations. Moreover, thanks to the Ruelle bounds, these
correlation functions belong to an appropriate Banach space, where these equations have at most one
solution. From this, we obtain the uniqueness of the Gibbs point process P .

4.1 The Kirkwood–Salsburg equations

The key of this part is to show that the correlation functions (ρ(P )
N )N of any P ∈ Gz,β(H) solve, for all

N ≥ 1, for σ⊗(N+1)-almost all (x0, . . . , xN) ∈ E N+1, the sequence of Kirkwood–Salsburg equations

ρ
(P )
N+1(x0, . . . , xN) = e−βEΦ(x0 | x1,...,xN )

!
ρ
(P )
N (x1, . . . xN)

+
+∞'

k=1

zk

k!

& k#

j=1

(e−βΦ(x0,yj) − 1)ρ
(P )
N+k(x1, . . . , xN , y1, . . . , yk)σ

⊗k(dy1, . . . , dyk)
"
,

(KS)z

where, by convention, ρ(P )
0 = 1.

Note that the different nature of the Ruelle bounds of Section 2 and 3 – the former allows for a depen-
dence on the marks of the N points that the latter does not – requires two different approaches. We
first treat, in Section 4.2, the simpler case where the Ruelle bound holds for a constant c > 0; in Sec-
tion 4.3 we consider the situation in which the Ruelle bound holds for a positive function c : E → R+.
Accordingly, the Banach space in which we prove uniqueness is defined as follows:

Definition 4.1. The Banach space Xc is the set of all sequences r = (rN)N such that

∃ br ≥ 0 : ∀N ≥ 1, |rN(x1, . . . , xN)| ≤ br
N#

i=1

c(xi),
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endowed with the norm ‖r‖c equal to the smallest such br.

Note that, in the case of c > 0 constant, the right hand side reads brcN .

We can then interpret the Kirkwood–Salsburg equations as an operator acting on the Banach space
Xc.

Definition 4.2. Consider the Kirkwood–Salsburg operator Kz, z > 0, acting on Xc, given by

(Kzr)1(x0) =
+∞'

k=1

zk

k!

& k#

j=1

(e−βΦ(x0,yj) − 1)rN+k(x1, . . . , xN , y1, . . . , yk) σ
⊗k(dy1, . . . , dyk)

"
;

(Kzr)N+1(x0, . . . , xN) = e−β
!N

i=1 Φ(x0,xi)
!
rN(x1, . . . xN) (30)

+
+∞'

k=1

zk

k!

& k#

j=1

(e−βΦ(x0,yj) − 1)rN+k(x1, . . . , xN , y1, . . . , yk) σ
⊗k(dy1, . . . , dyk)

"
, N ≥ 1.

The Kirkwood–Salsburg equations(KS)z can now be rewritten as the following fixed-point problem in
the Banach space Xc:

r = Kzr + 1z,

where 1z = (1z,N)N is given by 1z,1(x1) = 1, 1z,N = 0 for N ≥ 2.

4.2 The case of uniform Ruelle bounds

In this subsection, we work with energy functionals EΦ and activities z > 0 such that Assumptions
1+3+4 hold. We consider the case of a Ruelle bound that holds for a constant c, uniformly in the points
x1, . . . , xN , that is:

Assumption 4 (Uniform Ruelle bound). Assume there exists a constant c > 0 such that, for any
P ∈ Gz,β(H), for any N ≥ 1, for σ⊗N -almost all {x1, . . . , xN} ⊂ E N , its correlation function ρ

(P )
N

satisfy, uniformly in {x1, . . . , xN}, the following Ruelle bound:

ρ
(P )
N (x1, . . . , xN) ≤ cN . (31)

Example 3. In what we have seen above, this holds

• For any z > 0, for Φ as in Example 1, P = P z,β (see (18)), with c = e3βBφ .
• For z ∈ (0, zRu(β)), under Assumption 3, with c = cz as defined in (26).

Proposition 4.3. Let z > 0, β > 0. Under Assumptions 1+3+4, the correlation functions (ρ(P )
N )N of

any P ∈ Gz,β(H) solve, for all N ≥ 1, for σ⊗(N+1)-almost all (x0, . . . , xN) ∈ E N+1, the Kirkwood–
Salsburg equation (KS)z defined above.

Proof. Thanks to the stability of Φ, we can define i as in (19), and assume, without loss of generality,
that x0 = i(γ).

We note first that the absolute convergence of the right hand side of (30) is guaranteed by the Ruelle
bound and the Ruelle regularity condition. Indeed,

+∞'

k=1

zk

k!

& k#

j=1

|e−βΦ(x0,yj) − 1|ρ(P )
N+k(x1, . . . , xN , y1, . . . , yk) σ

⊗k(dy1, . . . , dyk)
"

≤
+∞'

k=1

zk

k!
C(β)cN+k

z = cN
z

+∞'

k=1

(zczC(β))k
k!

≤ cN
z ezczC(β).
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Consider the (N + 1)-point correlation function of a Gibbs point process P :

ρ
(P )
N+1(x0, . . . , xN) = e−βEΦ(x0,...,xN )

&

M

e−βEΦ(x0,...,xN | ξ)P (dξ)

= e−βEΦ(x0 | x1,...,xN )e−βEΦ(x1,...,xN )

&

M

e−βEΦ(x0 | ξ)e−βEΦ(x1,...,xN | ξ)P (dξ).

Using the factorial measure ξ(k), we have the following expansion:

e−βEΦ(x0 | ξ) = 1 +
+∞'

k=1

1

k!

&

E k

k#

j=1

(e−βΦ(x0,yj) − 1) ξ(k)(dy1, . . . , dyk),

which is indeed absolutely convergent, since using the GNZ equations (see [12]) one has:
&

M

:
1 +

+∞'

k=1

1

k!

&

E k

k#

j=1

|e−βΦ(x0,yj) − 1| ξ(k)(dy1, . . . , dyk)

;
P (dξ)

(GNZ)
= 1 +

+∞'

k=1

zk

k!

&

E k

k#

j=1

|e−βΦ(x0,yj) − 1| e−βEΦ(y1,...,yk)

&

M

e−βEΦ(y1,...,yk | ξ)P (dξ) σ⊗k(dy1, . . . , dyk)

= 1 +
+∞'

k=1

zk

k!

&

E k

k#

j=1

|e−βΦ(x0,yj) − 1| ρ(P )
k (y1, . . . , yk)σ

⊗k(dy1, . . . , dyk)

(31)
≤ 1 +

+∞'

k=1

(zc)k

k!

&

E k

k#

j=1

|e−βΦ(x0,yj) − 1| σ⊗k(dy1, . . . , dyk) ≤ ezcC(β) < +∞,

(32)

where in the last line we used the Ruelle bound and the regularity assumption 3. We can then ex-
change summation over k and integration over M , yielding

e−βEΦ(x1,...,xN )

&

M

e−βEΦ(x0 | ξ)e−βEΦ(x1,...,xN | ξ)P (dξ)

= e−βEΦ(x1,...,xN )

&

M

e−βEΦ(x1,...,xN | ξ) P (dξ)

+
+∞'

k=1

1

k!

&

M

&

E k

e−βEΦ(x1,...,xN )−βEΦ(x1,...,xN | ξ)
k#

j=1

(e−βΦ(x0,yj) − 1) ξ(k)(dy1, . . . , dyk)P (dξ)

= ρ
(P )
N (x1, . . . , xN)

+
+∞'

k=1

zk

k!

&

E k

e−βEΦ(x1,...,xN ,y1,...,yk)
k#

j=1

(e−βΦ(x0,yj) − 1)

&

M

e−βEΦ(x1,...,xN ,y1,...,yk | ξ) P (dξ) σ⊗k(dy1, . . . , dyk)

= ρ
(P )
N (x1, . . . , xN)

+
+∞'

k=1

zk

k!

&

E k

k#

j=1

(e−βΦ(x0,yj) − 1)ρ
(P )
N+k(x1, . . . , xN , y1, . . . , yk) σ

⊗k(dy1, . . . , dyk),

and concluding the proof.
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Proposition 4.4. Under Assumptions 1+3+4, for any z > 0, β > 0, and any c > 0, the Kirkwood–
Salsburg operator Kz is a bounded operator in Xc.

Moreover, there exists a critical threshold

0 < zcrit(β)
..= inf{z > 0 : c−1

z e2βBΦ+zczC(β) > 1} ≤ zRu(β) (33)

such that, for any z ∈ (0, zcrit(β)), Kz is a contraction in Xcz , where cz is defined in (26), and zRu(β)
is defined in (25). For such activities there exists then at most one solution of (KS)z in Xcz .

Proof. For any r ∈ Xc, with ‖r‖c ≤ 1, we estimate

|(Kzr)N+1(x0, . . . , xN)| ≤ e−
!N

i=1 Φ(x0−xi)
!
cN

+
+∞'

k=1

zk

k!

& k#

j=1

|e−Φ(x0,yj) − 1|cN+k σ⊗k(dy1, . . . , dyk)
"

≤ e2βBΦcN
!
1 +

+∞'

k=1

(zc)k

k!

& k#

j=1

|e−Φ(x0,yj) − 1| σ⊗k(dy1, . . . , dyk)
"

≤ e2βBΦcN
!
1 +

+∞'

k=1

(zc)k

k!
C(β)k

"

= cN+1c−1e2βBΦ+zC(β)c.

The Kirkwood–Salsburg operator is then bounded in Xc: |||Kz|||c ≤ c−1e2βBφ+zC(β)c.

Consider now cz as defined in (26), and set f(z) ..= e
2βBφ+zczC(β)

cz
. We have f(0) = 1 and

f ′(z) = e2βBΦ
ezczC(β)

c2
z

!
C(β)(c2

z + zc′
zcz − c′

z

"
.

so that f ′(0) < 0. Indeed,

sign f ′(0) = sign
!
C(β)c2

0 − c′
0

"
= sign

!
C(β)e4βBΦ(1− e2/

√
2π)

"
= −1.

(see Figures 5 and 6), The set {z > 0 : c−1
z e2βBΦ+zczC(β) < 1} is then non-empty, and defining

zcrit(β)
..= inf{z > 0 : c−1

z e2βBΦ+zczC(β) > 1},

we have that, for any z < zcrit(β), the norm of Kz in Xcz is smaller than 1, so that it is a contraction in
Xcz .

Finally, note that, since limz→zRu(β)
− cz = +∞ and c−1

z e2βBΦ+zczC(β) = +∞ for z ≥ zRu(β), we
have that zcrit(β) ≤ zRu(β).

Example 1 (continued). Consider a potentialΦ in the class of Example 1. The Ruelle bound is satisfied
for c = e3βBφ (see (18)). For such a value of c, the Kirkwood–Salsburg operator Kz on Xc is a
contraction as soon as c−1e2βBΦ+zcC(β) < 1, that is for z < βBφ(C(β)e3βBφ)−1.
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Figure 5: Let Bφ = 0 (i.e. a repulsive
potential), β = 1, C(1) = 1. Plot of
z %→ c−1

z ezcz . The curve explodes as z
approaches zRB(1) = 1/e ≃ 0.37, and
the uniqueness domain is (0, zcrit(1)), where
zcrit(1) ≃ 0.304.

Figure 6: Let Bφ = 1, β = 1, C(1) =
1. Plot of z %→ c−1

z e2+zcz . The curve ex-
plodes as z approaches zRB(1) ≃ 0.05,
and the uniqueness domain is (0, zcrit(1)),
where zcrit(1) ≃ 0.041.

4.3 The case of non-uniform Ruelle bounds

In this subsection we allow for a weaker notion of stability, in particular, we work under the following
weakening of Assumption 1:

Assumption 1′ (Weak stability). Consider an energy functional H as in (5), where the self-potential
Ψ satisfies (8), but for which the stability condition (9) of the pair potential Φ is replaced by a weaker
one:

(Hw.st.) The pair potential between two paths is given by a symmetric functional Φ : E × E →
R ∪ {+∞} such that, for any {x0, . . . , xN} ⊂ E , there exist a function b : E → R+ and
some x ∈ {x0, . . . , xN} (w.l.o.g. x0) with

N'

i=1

Φ(x0, xi) ≥ −b(x0). (34)

Remark. We know from (19) that (Hw.st.) holds whenever Φ is a stable potential. Conversely, if Φ
satisfies (Hw. st.) for a constant b ≡ BΦ, then it is also stable for that same constant.

While in the previous section we assumed that the pair potential Φ satisfied a uniform regularity con-
dition (Assumption 3), here we work with potentials Φ that satisfy the following weighted regularity
condition (cf. [14]):

Assumption 3′ (Weighted regularity). There exist a function a : E → R+ and a critical activity
zcrit(β) > 0 such that, for any x ∈ E ,

zcrit(β)

&
ea(y)+b(y)|e−βΦ(x,y) − 1| σ(dy) ≤ a(x), (35)

with &

E

ea(x)+b(x)σ(dx) < +∞. (36)

Let a and b as above. We also assume that the correlation functions satisfy a Ruelle bound of the
following form:
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Assumption 4′ (Non-uniform Ruelle bound). For any P ∈ Gz,β(H), for any N ≥ 1, for σ⊗N -almost
all {x1, . . . , xN} ⊂ E N , the following holds:

ρ
(P )
N (x1, . . . , xN) ≤

N#

i=1

ea(xi)+b(xi).

Example 4. Consider a potential φ = φhc + φl, satisfying Assumptions 1 and 2, given by the sum of
a hard core potential (with hard core diameter R > 0) and a bounded potential φl, on [R, +∞):

∃Mφ > 0 : φl(u) ≤ Mφ ∀u ≥ R.

In particular, we recall from (11) that there exists a constant B̄Φ ≥ 0 such that, for any x = (x,m) ∈
E , for any ξ ∈ M temp,

EΦ (x | ξ) ≥ −B̄Φ(1 + ‖m‖d+δ). (37)

We show here that there exist functions a and b, and a threshold activity zcrit(β) > 0 such that
Assumptions 3′ and 4′ hold for any z ∈ (0, zcrit(β)).

Proof. Using (21), we have |e−βΦ − 1| ≤ |βΦ̄|e2βBΦ , and the weighted regularity condition follows
as soon as

ze2βBΦ

&

E

ea(x2)

& 1

0

β|φ̄(x2 +m2(s)− x1 −m1(s))|ds 1{|x2−x1|≤a0+‖m2‖+‖m1‖} σ(dx2) ≤ a(x1).

Considering a function a of the form a(x,m) = a(m) = A(1 + ‖m‖d+δ), for some constant A > 0
to be determined, and recalling that Ψ(x,m) ≥ −AΨ‖m‖d+δ, this reduces to

zβe2βBΦ

&

C0

eA(1+‖m2‖d+δ)

&

Rd

& 1

0

<<φ
!
|x1 +m1(s)− x2 −m2(s)|

"<<ds1{|x1−x2|≤a0+‖m1‖+‖m2‖}

dx2 e
AΨ‖m2‖d+δ

R(dm2) ≤ A(1 + ‖m1‖d+δ).

Estimating the left hand side leads to:

zβe2βBΦ

&

C0

!
bdR

d +Mφkdbd(a
d
0 + ‖m1‖d + ‖m2‖d)

"
eA(1+‖m2‖d)+AΨ‖m2‖d+δ

R(dm2),

where kd is such that (x + y + z)d ≤ kd(x
d + yd + zd), and bd the volume of the unit ball in Rd.

Setting

υA :=

&
eA(1+‖m‖d+δ)+AΨ‖m‖d+2δ

R(dm),

which is finite thanks to the definition of the measure R, we can fix A by the following (note that
A ≥ B̄Φ; the reason for this choice will be apparent shortly):

A ..= sup
u≥0

B̄Φ(1 + ud+δ) ∨ bd
!
Rd +Mφkd(a

d
0 + ud + 1)

"

1 + ud+δ
< +∞,

so that the regularity assumption is satisfied for a(x,m) = A(1 + ‖m1‖d+δ), b ≡ 2BΦ, and

zcrit(β)
..= (υAβe

2βBΦ)−1.

Note that, as the value of the integral υA is not easily controlled, the threshold activity zcrit(β) > 0 may
be very small.

From the representation (14) of the correlation functions and (37), the Ruelle bound of Assumption 4′

follows as well, as A ≥ B̄Φ by construction.
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It is easy to see that an analogous to Proposition 4.3 holds also for the case of non-uniform Ruelle
bound. Indeed, the computations are the same, except for using Assumption 3′ to prove the absolute
convergence of the series in (32).

Proposition 4.5. Let Φ such that Assumptions 1′+3′+4′ hold, and set c(x) ..= ea(x)+b(x). For any
β > 0 and z ∈ (0, zcrit(β)), the operator Kz is a contraction in Xc. For such activities there exists
then at most one solution of (KS)z in Xc.

Proof. For any r ∈ Xc, with ‖r‖c ≤ 1, we estimate

|(Kzr)N+1(x0, . . . , xN)| ≤ e−
!N

i=1 Φ(x0−xi)

. N#

i=1

c(xi)

+
+∞'

k=1

zk

k!

& k#

j=1

|e−Φ(x0,yj) − 1|
N#

i=1

c(xi)
k#

j=1

c(yj) σ
⊗k(dy1, . . . , dyk)

/

(34)
≤ eb(x0)

N#

i=1

c(xi)
,
1 +

+∞'

k=1

zk

k!

& k#

j=1

c(yj)|e−Φ(x0,yj) − 1| σ⊗k(dy1, . . . , dyk)
-

= eb(x0)
N#

i=1

c(xi)
,
1 +

+∞'

k=1

zk

k!

& k#

j=1

ea(y)+b(y)|e−Φ(x0,yj) − 1| σ⊗k(dy1, . . . , dyk)
-

(35)
≤ eb(x0)

N#

i=1

c(xi)
+∞'

k=0

(z/zcrit(β))
kak(x0)

k!

= eb(x0)
N#

i=1

c(xi)e
a(x0)z/zcrit(β) <

N#

i=0

c(xi).

The Kirkwood–Salsburg operator is then a contraction: |||Kz|||c < 1.

4.4 Uniqueness domain

We can now state the main result of this section. Recall that, both for the uniform and the non-uniform
Ruelle bound setting we have a critical threshold zcrit(β) > 0 such that for any z ∈ (0, zcrit(β)), the
Kirkwood–Salsburg operator Kz is a contraction in Xc. In the former case c > 0 is a constant, while
in the latter it is a non-negative function c : E → R+.

Theorem 2. Let H be an energy functional as in (5), satisfying either Assumptions 1+3+4 or Assump-
tions 1′+3′+4′. For any β > 0 and z ∈ (0, zcrit(β)), there exists at most one infinite-volume Gibbs
point process P in Gz,β(H).

Proof. Let β > 0, z ∈ (0, zcrit(β)), and consider two Gibbs point processes P , P̂ ∈ Gz,β(H).

(i) We know from Proposition 4.3, that the correlation functions ρ(P ) and ρ(P̂ ) both satisfy the
Kirkwood–Salsburg equations (KS)z.

(ii) By assumption, ρ(P ) and ρ(P̂ ) satisfy a Ruelle bound for the same c, and are therefore both
elements of Xc.

(iii) For z < zcrit(β), (KS)z has a unique solution, so that the correlation functions of P̂ – and

therefore its factorial moment measures (α(P̂ )
N )N – must coincide with those of P .
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(iv) For any N ≥ 1 and any bounded Γ ⊂ E , we compute

α
(P )
N (ΓN) = E

1
|γΓ|

!
|γΓ|− 1

"
. . .

!
|γΓ|−N + 1

"2

=

&

ΓN

ρN(x1, . . . , xN)z
Nσ(dx1) . . . σ(dxN)

≤
&

ΓN

N#

i=1

(zc(xi))σ(dx1) . . . σ(dxN) = (zcΓ)
N ,

with cΓ ..=
3
ΓN c(x)σ(dx). We have used here the fact that the Ruelle bound holds either for c

constant (under Assumption 4) or integrable (under Assumptions 3′+4′). We can then conclude
that P = P̂ (see [7, 6]); in other words, Gz,β(H) = {P}.

Example 1 (continued). Consider here a potential φ = φhc with a pure hard core at some diameter
R > 0, i.e. φl ≡ 0. Taking a0 = R in the range Assumption 2 yields a path potential Φ (stable, with
stability constant Bφ = 0) of the form

Φ(x1, x2) = (+∞) 1[0,R)

!
inf

s∈[0,1]
|x1 +m1(s)− x2 −m2(s)|

"
.

Under this interaction, two Langevin diffusions are forbidden from coming closer than R to each other,
at any given time s ∈ [0, 1].

For such a choice of Φ – which satisfies Assumptions 1+2+3+4 – the Gibbs point process P z,β con-
structed in Theorem 1 is the unique element of G temp

z,β (H).
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