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Abstract. Biomedical knowledge graphs such as STITCH, SIDER, and
Drugbank provide the basis for the discovery of associations between
biomedical entities, e.g., interactions between drugs and targets. Link
prediction is a paramount task and represents a building block for sup-
porting knowledge discovery. Although several approaches have been pro-
posed for effectively predicting links, the role of semantics has not been
studied in depth. In this work, we tackle the problem of discovering inter-
actions between drugs and targets, and propose SimTransE, a machine
learning-based approach that solves this problem effectively. SimTransE
relies on translating embeddings to model drug-target interactions and
values of similarity across them. Grounded on the vectorial represen-
tation of drug-target interactions, SimTransE is able to discover novel
drug-target interactions. We empirically study SimTransE using state-of-
the-art benchmarks and approaches. Experimental results suggest that
SimTransE is competitive with the state of the art, representing, thus, an
effective alternative for knowledge discovery in the biomedical domain.

Keywords: Knowledge graphs - Embeddings - Similarity function

1 Introduction

The discovery of interactions among entities is one of the main link prediction
tasks over knowledge graphs. Specifically, the problem of drug-target interaction
discovery, i.e., proteins that are targets of drugs, is a crucial task, given the fact,
that on average, bringing a new drug to the market, costs =~ $1.8 billion and
takes more than 10 years. Several approaches have been defined to tackle the
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Fig. 1. The Architecture. SimTransE receives an RDF knowledge graph and simi-
larities among its entities. The output is a set of predicted interactions.

problem of drug-target interaction discovery (e.g., [2,4]). Albeit effective, exist-
ing approaches are not able to exploit the semantics encoded in the main features
of the drugs or targets to enhance prediction. We present SimTransE approach
that exploits both similarities between entities, e.g., drugs and target, as well as
their connections in a knowledge graph. These features are considered by Sim-
TransE to represent entities into a vector space. SimTransE is based on TransE,
which utilizes the gradient descent optimization method to learn the embeddings
based on relations stated in a knowledge graphs. Similarly, SimTransE optimizes
the distance between embeddings, considering the existing interactions between
drugs and targets, but additionally, SimTransE takes into consideration domain
similarity values between drugs and between targets. Embeddings generated by
SimTransE are utilized to predict new interactions by applying the homophily
principle!. We conduct an empirical evaluation to assess the quality of Sim-
TransE with respect to TransE and a benchmarks of interactions between drugs
and targets. Our observed results suggest that considering similarity empow-
ers SimTransE and allows for the discovery of interactions between drugs and
targets that could be identified by baseline version of TransE.

2 The SimTransE Approach

After reviewing different approaches such as [2,4], we realize the benefits that
integrating the entity-entity similarity (e.g., target-target, drug-drug, and target-
drug) into a learning model can bring. The intuition behind this work is that vec-
tor embedding-based approaches effectively combine different dimensions of the
input data to learn embeddings. As a result, embeddings merge different dimen-
sions of the data giving a multi-dimensional entity representation. We present
SimTransE, an approach that maps each entity into multi-dimensional vector
space considering entity-entity similarities to improve the results of the link pre-
diction task. Thus, SimTransE is a vector embedding based machine learning
model to learn a bipartite graph interactions and predict unknown interactions.

2.1 Architecture

The SimTransE architecture comprises a pipeline with three main components.
Figure 1 shows the interaction between these components and the data flowing

! https://en.wikipedia.org/wiki/Homophily.
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among them. The Data Processor receives an RDF graph and creates dictionar-
ies and matrices understandable by SimTransE. Three sets of entity dictionaries
are created, i.e., left entities (the subjects), right entities (the objects), and rela-
tional entities. These dictionaries are used throughout the pipeline to create
vector embeddings. Secondly, two different sets of binary sparse matrices are
created. One representing the positive and negative interactions of entities.
Lastly, similarity matrices are built, i.e., given the m number of left entities and
n number of right entities, we prepare two square matrices where the similarity
score between entities from m to n are kept. The Model Trainer component
receives as input the entity and interaction dictionaries and similarity matri-
ces. The Model Trainer resorts to the stochastic gradient descent method
to optimize the position and direction of the embeddings in a vector space. The
Model Trainer uses interactions and similarities between entities to solve the
optimization problem, and generates embeddings as output; (Table 1 shows the
SimTransE interaction and objective functions). The Predictor component takes
the generated embedding vectors, interactions, and thresholds. Using the embed-
dings and thresholds, this component iterates over all the entities and identifies
interactions of each entity with every other entity. The Predictor component cal-
culates the precision and recall. Additionally, the Area Under Receiver (AUC)
and the Area Under the Precision-Recall Curve (AUPRC) are calculated.

2.2 Learning Vector Embeddings

State-of-art approaches use only connectivity patterns between entities to learn
the embeddings and perform predictions. Using just interactions among entities
is not enough real-world applications where domain-specific knowledge plays a
relevant role (e.g., during the prediction of drug-target interactions [8]). There
are very few known interactions and the ratio of positive to negative classes is
large, impacting, this, in the accuracy of the predictions. To tackle the problem
of unbalance ratio of positive to negative classes, SimTransE incorporates not
only entities interactions but similarities between entities during the learning
process. SimTransE creates duplicate positive classes and adds a set of positive
examples, which are generated using the similarity matrices. The similarity score
is considered as the weight of example in the learning process.

SimTransE? analyses the interactions and similarities between entities to
learn the embeddings. SimTransE is based on the work “Translating Embeddings
for Modelling Multi-relational Data” (TransE [1]). SimTransE intuition relies on
the basic idea of TransE, i.e., if two entities interacts with each other, then the
sum of first entity vector and relation vector should be approximately equal to
the second vector. If there is no interaction between the two entities, the sum of
first entity vector and relation vector will be far from the second entity vector.
Using the same principle, SimTransE locates vectors using the similarities as
well, and adds a new condition in the learning model that states similar entities

2 Algorithms are documented in our repository https://github.com/RDF-Molecules/
SimTransE.


https://github.com/RDF-Molecules/SimTransE
https://github.com/RDF-Molecules/SimTransE

252 A. Manzoor Bajwa et al.

Table 1. SimTransE interaction and objective function to learn embeddings

Interaction functions Objective functions
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should be closer than the dissimilar ones. Interactions are generated based on
the homophily principle that states that similar entities tend to interact with
similar entity. Further, we rely on thresholds captured from the meaning of the
similarity metrics and to decide when two entities can be considered similar.
Then the stochastic gradient descent optimization method is performed; a
mini-batch of drug-target interactions is generated according to a training set S
of interactions. The embeddings are updated during the learning process with
two objective functions: (1) L; minimizes the distance whenever this is greater
between actual and a corrupted triple with respect to the relation among them;
and (2) Ls minimizes the distance according to the similarity between the actual
and self-generated similar triples. The learning process stops when reaching the
total number of epochs, or depending on a threshold about the distance between
the generated embeddings and the training set.

2.3 Predicting Links

The fundamental task of link prediction is to identify a relations between two
entities. Yang et al. [9] define the link prediction formally as a task in a network
G = (V,E) where V is the set of nodes and E is the set of edges. The main
challenge to be achieved in this task is to predict whether there is or will be a
link e(u,v) between a pair of nodes u and v € V and e(u,v) ¢ E. To perform
link prediction, SimTransE uses the trained vector embeddings and calculates
the distance of each entity to every other entity with respect to the relation
between them. Based on this calculated distance and a given threshold, Sim-
TransE decides if the input entities are or not related. SimTransE ranks each
entity on the basis of distance and assigns a probability by comparing it with the
distance of other entities. If this probability is greater than the given threshold,
then SimTransE considers the link in the output.

To evaluate link prediction we measure: Precision, the ratio of correctly pre-
dicted interactions to total predictions; Recall, the ratio of correctly predicted
interactions to expect predictions; Area under Precision-Recall Curve ,
we calculate the area under precision recall curve as the metric to evaluate
our model, it does not consider true negatives since neither of both precision
and recall consider true negatives; Finally, we measure the Area under ROC
Curve, to evaluate our method since it works best when the problem of imbal-
anced classes exist in the dataset [9] (Fig. 2).
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3 Empirical Evaluation

We empirically study the effectiveness of SimTransE on the problem of predicting
links. We assess the following research questions: (RQ1) Is SimTransE able
to perform as good as the state-of-the-art similarity measures? (RQ2) Does
SimTransE perform well on the task of link prediction when applied to data
with lots of connections? To answer these questions, we evaluate SimTransE on
a state-of-the-art benchmark of drug-target interactions [8]; we report only on the
results of interactions between drugs and targets of the type Nuclear Receptor
and Ton Channel. TransE [1] is the baseline of the experiment. Additionally,
we utilize the link prediction technique, SemEP [4], that extracts interaction
from highly connected partitions of a knowledge graph; these interactions are
utilized to enhance the set of input interactions. Furthermore, we compute the
drug-drug and target-target similarity matrices; drug similarities are computed
using SIMCOMP [3] while target similarities are computed using a normalised
Smith-Waterman score [5].

Area under ROC Curve Area under ROC Curve
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Fig. 2. SimTransE exhibits good performance in both datasets.

Results and Discussion: From the output of SimTransE, we calculated: true
and false positives and true and false negatives. From these values, we derived
Precision, Recall, AUC, and AUPR?. We apply a blocking method on the gen-
erated similarity-based interactions, through percentiles, i.e., four percentiles
are considered: 80, 90, 95, and 100. Link prediction is validated following 10-
fold cross-validation, and we report the mean across the results of the ten folds.
Based on the observed outcomes, we can positively answer RQ1, i.e., SimTransE
performs well on all the datasets, and outperforms the baseline method TransE
in all cases. These results suggest that similarities between entities, e.g., drugs
and targets, have a positive impact on both the learning process and the link
prediction tasks. We observe, as well, that by increasing the number of connec-
tions between drugs and target (e.g., by using SemEP results) the effectiveness

3 Source code and formulas to calculate Precision, Recall, AUC, and AUPR are doc-
umented in our repository https://github.com/RDF-Molecules/SimTransE.
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of the approach improve even further. Few interactions are not predicted prop-
erly although they are present in the training set. For most of them, we find
that drugs and targets with few numbers of interactions are difficult to train
for SimTransE. This situation is improved after using the interactions predicted
from SemEP. Therefore, RQ2 is positively answered too.

4 Conclusions

In this paper, we presented SimTransE, a method to analyze interactions in
knowledge graphs to predict links, based on the vectorization of the entities. To
learn the embeddings, SimTransE uses not only the interactions among entities
but also values of similarity between them. To test the accuracy of SimTransE, we
compared its results against TransE, a prediction model for translational embed-
dings that uses only interactions among entities. SimTransE exhibited high accu-
racy and competitive result and outperformed TransE, one of the state-of-the-art
approaches. The observed results suggest that combining interaction and simi-
larity related semantics in the embeddings empowers the prediction model over
knowledge graphs. In future work, we plan to conduct a more exhaustive evalu-
ation to guarantee the reproducibility of the results, as well as the comparison
with other embedding creation models, e.g., TransH [6] and TransG [7].
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source, provide a link to the Creative Commons license and indicate if changes were
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The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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