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Abstract

Inspired by a problem in steel metallurgy, we prove the existence, regularity,
uniqueness, and continuous data dependence of solutions to a coupled parabolic
system in a smooth bounded 3D domain, with nonlinear and nonhomogeneous
boundary conditions. The nonlinear coupling takes place in the di�usion coef-
�cient. The proofs are based on anisotropic estimates in tangential and normal
directions, and on a re�ned variant of the Gronwall lemma.

1 Introduction
We present here a study of the following system of parabolic equations, in the domain
QT = Ω× (0, T ) , Ω ⊂ RN :

θt −∆θ = r(θ, c) (1.1)
ct − div (D(θ, c)∇c) = 0 (1.2)

with boundary conditions on ∂Ω

∂θ

∂ν
+ h(x, θ, θΓ(x, t)) = 0 (1.3)

−D(θ, c)
∂c

∂ν
= b(x, t) (1.4)

and initial conditions

θ(x, 0) = θ0(x) (1.5)
c(x, 0) = c0(x) . (1.6)

The properties of the nonlinearities r,D , and h , as well the hypotheses on the data
b , θΓ , θ0 , and c0 will be speci�ed in the next section.
The original motivation for the study of this system comes from an industrial process,
named gas carburizing. This is a heat treatment of steel with the peculiarity of adding
a certain amount of carbon to the surface of the workpiece. In this method, the surface
composition of the low carbon steel changes by di�usion of carbon and results in a
hard outer surface with good resistance properties. In the above system, θ represents
the absolute temperature and c is the carbon concentration.
In the literature, there are many di�erent approaches to model such processes. In
general, the phenomenon can be described as follows: at �rst the steel is heated up to
reach a certain temperature, high enough to allow a good di�usion of carbon into the
steel, at this temperature carbon is supplied to the surface, afterwards � but still at
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high temperature � there is a di�usion stage for the carbon into the steel, and �nally
the workpiece is rapidly cooled down.
We don't intend here to go into the details of the process, but, for an accurate de-
scription of gas carburizing and its modeling, we refer to [4] and references therein.
The analysis carried out here does not cover the complete model proposed in [4], where
also the evolution of phase fractions in the steel was taken into account. On the other
hand, we obtain additional regularity and continuous data dependence results that are
not available in [4]. Note that the system of equations considered in the present paper
still describes a very general situation, including the interactions between temperature
evolution and di�usion of carbon in all stages of the process. This is re�ected in the
carbon di�usion coe�cient D(θ, c) and in the heat source term r(θ, c) .
Another relevant issue for applications addressed from this model is the fact that the
boundary condition for the temperature θ encompasses heat exchanges by conduc-
tion, convection and radiation. Indeed, during the di�usion period after carburizing,
in principle the stage in which the desired carbon pro�le is achieved, the workpiece
remains at a very high temperature and neglecting the thermal radiation e�ect could
be too simplifying. This is why we require no growth restriction on h(x, θ, θΓ) , and
the boundary condition (1.3) thus includes also the case

∂θ

∂ν
+ α(x)(θ − θΓ) + β(x)(θ4 − θ4

Γ) = 0,

with coe�cients α(x), β(x) ≥ 0 , α(x) + β(x) ≥ α0 > 0 .
The function θΓ is the external temperature of the atmosphere. The �ux of car-
bon through the surface of the workpiece is expressed by the function b(x, t) . This
quantity can be adjusted by an operator, therefore, from the point of view of further
applications, can be seen as a control parameter for an optimal control strategy.
The main result of this paper is the proof of uniqueness, in three dimensions, of a
solution to (1.1)�(1.6), and its Lipschitz continuous dependence on the data θΓ , b , θ0 ,
and c0 .
The outline of the proof is the following. First, under appropriated regularity assump-
tions, we prove existence of a generalized solution (θ, c) of the system (1.1)�(1.6),
with

θ ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)), c ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′).

By a maximum principle and Moser iteration we also prove that the solution θ(x, t)
is positive and uniformly bounded from above in QT only assuming linear growth of
r(θ, c) .
Secondly we show by elementary means that θ has the additional regularity

∇θ ∈ L2(0, T ;L∞(Ω)).

To this aim, we proceed in several steps. Due to the nonlinearity in the boundary
condition (1.3), we �rst regularize the boundary condition with a parameter δ > 0 that
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we eventually let tend to zero. We follow the estimation technique proposed in [9] for
elliptic equations with linear boundary conditions. Here, however, we obtain di�erent
estimates in tangential and normal directions and it is necessary to use an embedding
theorem for anisotropic spaces that we prove in the Appendix by the methods of [3].
The last part contains the proof of uniqueness and stability for the whole system. It is
based on an Lp -variant of the Gronwall lemma, that we believe to be of independent
interest.
A similar (degenerate) system with applications in biology has recently been consid-
ered in [2] under homogeneous Neumann boundary conditions. Other applications of
quasilinear parabolic systems with coupling in the di�usion coe�cient can be found
e. g. in [10, 11].
The paper is organized as follows: in Section 2 we present the set of assumptions and
state the main results of the paper. In Section 3 we prove existence of a weak solution.
In Section 4 we treat the regularity of the solution and in the Section 5 we conclude
with the uniqueness and stability result for the whole system in 3D. The Appendix is
devoted to the proof of an anisotropic embedding theorem.

2 Main results
We denote by V the Sobolev space H1(Ω) = W 1,2(Ω) , by V ′ its dual, and state
for system (1.1)�(1.6) two sets of hypotheses: Hypothesis 2.1 for existence and its
stronger version 2.2 for regularity and uniqueness. Note that we do not assume any
upper bound for the growth of h .

Hypothesis 2.1 The domain Ω ⊂ RN , N ≤ 3 , has Lipschitzian boundary. We
prescribe the data b ∈ L2(∂Ω× (0, T )) , c0 ∈ L2(Ω) , θ0 ∈ V ∩L∞(Ω) , and assume that
there exists a constant θ∗ ≥ 0 such that θ0 ≥ θ∗ a. e. The function h is measurable
in x and continuous in θ and θΓ , with the properties

θΓ ≥ θ∗ ⇒ h(x, θ∗, θΓ) ≤ 0 ,

∃a > 0 ∀m > 0 ∃Cm > 0 : θΓ ≤ m, θ ≥ 0 ⇒ h(x, θ, θΓ) ≥ aθ − Cm.

Furthermore,

� θΓ ∈ L∞(∂Ω× (0, T )) , (θΓ)t ∈ L2(∂Ω× (0, T )) , θΓ ≥ θ∗ a. e.,
� r,D are continuous and there exist constants d0, d1, r1 such that

0 < d0 ≤ D(θ, c) ≤ d1, 0 ≤ r(θ, c) ≤ r1(|θ|+ |c|).

Hypothesis 2.2 In addition to Hypothesis 2.1, we assume that the domain Ω is of
class C2,1 , that is, the outward normal vector has Lipschitz continuous derivatives.
There exist connected relatively open subsets Γj of ∂Ω , j = 1, . . . , n , which are C2,1 -
di�eomorphic to open bounded subsets of R2 , and a function h0 ∈ W 2,∞(∂Ω) such
that h(x, θ, θΓ) = h0(x)(θ − θΓ) on ∂Ω \⋃n

j=1 Γj . Furthermore,
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� θ0 ∈ W 2,2(Ω) ,
� h is of class W 2,∞

loc with respect to all variables,
� θΓ ∈ L2(0, T ;W 2,2(∂Ω)) , (θΓ)t ∈ L2(0, T ;W 1,2(∂Ω)) ,
� r, F, ∂θF are globally Lipschitz continuous with respect to both variables θ and
c , where we set

F (θ, c) =

∫ c

0

D(θ, c′)dc′ .

��Ω
Γ1

Γ2

Figure 1. An admissible domain Ω . Thick lines denote the nonlinear boundary
regions.

We deal with the following weak formulation of (1.1)�(1.4).
∫

Ω

(θt ϕ+∇θ · ∇ϕ− r(θ, c)ϕ) dx+

∫

∂Ω

(h(x, θ, θΓ(x, t))ϕ dS = 0 (2.1)
∫

Ω

(ct ψ +D(θ, c)∇c · ∇ψ) dx+

∫

∂Ω

b(x, t)ψ dS = 0 (2.2)

for every test functions ϕ, ψ ∈ V .

Theorem 2.3 (Existence) Let Hypothesis 2.1 hold. Then there exists K0 > 0 and a
solution (θ, c) to the system (2.1)�(2.2) with initial conditions (1.5)�(1.6), with the
regularity c ∈ L2(0, T ;V ) , ct ∈ L2(0, T ;V ′) , θt ∈ L2(QT ) , ∇θ ∈ L∞(0, T ;L2(Ω)) ,
and such that θ∗ ≤ θ(x, t) ≤ K0 a. e.

Theorem 2.4 (Regularity) Let Hypothesis 2.2 hold. Then every solution (θ, c) to
(2.1)�(2.2) from Theorem 2.3 has the additional regularity ∇θ ∈ L2(0, T ;L∞(Ω)) .

To simplify the notation, we introduce the symbol

|w(t)|p =

(∫

Ω

|w(x, t)|pdx
)1/p

for t ∈ (0, T ) , (2.3)

to denote the partial Lp(Ω)-norm of a generic function w : QT → Rd , d ≥ 1 , with an
obvious modi�cation for p = ∞ .
The main goal of this paper is the following uniqueness and continuous dependence
result. It will be based on the partial Kirchho� transform

u = F (θ, c) (2.4)
with F from Hypothesis 2.2.
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Theorem 2.5 (Uniqueness and continuous data dependence) Let Hypothesis 2.2 hold,
and let (θ1, c1), (θ2, c2) be two solutions with the regularity from Theorem 2.4 corre-
sponding to the same h(x, ·) , and to di�erent data θ0

i , c
0
i , θΓi, bi , i = 1, 2 , satisfying

Hypothesis 2.2. Let ui = F (θi, ci) , i = 1, 2 , be de�ned by the Kirchho� transform
(2.4). Set θ̄ = θ1 − θ2 , ū = u1 − u2 , c̄0 = c01 − c02 , θ̄0 = θ0

1 − θ0
2 , θ̄Γ = θΓ1 − θΓ2 ,

b̄ = b1 − b2 . Then there exists a constant M > 0 such that the inequality

|θ̄(t)|22 +

∣∣∣∣∇
∫ t

0

ū(τ)dτ

∣∣∣∣
2

2

+

∫ t

0

(|∇θ̄|22 + |ū|22
)
(τ) dτ ≤ M α(t) , (2.5)

holds for every t ∈ [0, T ] , where we set

α(t) = |θ̄0|22 + |c̄0|22 +

∫ t

0

∫

∂Ω

|θ̄Γ(x, τ)|2dS dτ +

∫ t

0

∫

∂Ω

|b̄(x, τ)|2dS dτ . (2.6)

Note that the method of [2] yields a slightly di�erent estimate, where |∇ ∫ t

0
ū(τ)dτ |2

is replaced by |c̄(t)|V ′ .

3 Proof of existence
We �x some K > 0 that will be speci�ed later, and set

hK(x, θ, θΓ) = h(x,max{θ∗,min{θ,K}}, θΓ) .

Instead of (1.1)�(1.4), we consider the decoupled and truncated problem
∫

Ω

(θt ϕ+∇θ · ∇ϕ− r(θ, ĉ)ϕ) dx+

∫

∂Ω

hK(x, θ, θΓ(x, t))ϕ dS = 0 (3.1)
∫

Ω

(
ct ψ +D(θ̂, ĉ)∇c · ∇ψ

)
dx+

∫

∂Ω

b(x, t)ψ dS = 0 (3.2)

for every test functions ϕ, ψ ∈ V , with given functions θ̂, ĉ ∈ L2(QT ) , and with initial
conditions (1.5)�(1.6). We now use the Schauder �xed point theorem. For mc,mθ > 0 ,
we �x the set

Z(mθ,mc) =

{
(θ, c) ∈ L2(QT )× L2(QT ) :

∫ T

0

|θ(t)|22 dt ≤ mθ ,

∫ T

0

|c(t)|22 dt ≤ mc

}
.

(3.3)
Choosing successively ϕ = θ and ϕ = θt in (3.1), and ψ = c in (3.2), we obtain the
bounds ∫ T

0

(|ct(t)|2V ′ + |∇c(t)|22) dt+ sup
t∈(0,T )

|c(t)|22 ≤ C , (3.4)

∫ T

0

(|θt(t)|22 + |∆θ(t)|22) dt+ sup
t∈(0,T )

|∇θ(t)|22 ≤ C

(
1 +

∫ T

0

|ĉ(t)|22 dt

)
, (3.5)
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where C is a constant independent of θ̂ and ĉ . We now easily �nd mθ and mc

such that the solution (θ, c) belongs to Z(mθ,mc) whenever (θ̂, ĉ) ∈ Z(mθ,mc) . The
solution mapping associated with (3.1)�(3.2) is compact in L2(QT ) × L2(QT ) , hence
it admits a �xed point, which is a solution to (1.5)�(2.2) with h replaced by hK .
It remains to �nd uniform bounds θ∗ ≤ θ ≤ K0 independent of K . Choosing K > K0 ,
we eventually obtain the assertion.
To do so, we �rst choose in (3.1) ϕ = −(θ∗− θ)+ , where z+ denotes the positive part
of an element z ∈ R . We obtain

1

2

d

dt

∫

Ω

|(θ∗ − θ)+|2 dx+

∫

Ω

|∇(θ∗ − θ)+|2 dx ≤ 0 ,

hence θ(x, t) ≥ θ∗ a. e.
The upper bound is obtained by Moser iterations similarly as in [6]. Set f(x, t) =
r(θ(x, t), c(x, t)) and θK = min{θ,K} . Estimates (3.4)�(3.5), Sobolev embeddings,
and interpolations in Lebesgue spaces yield f ∈ L2(0, T ;L6(Ω)) ∩ L∞(0, T ;L2(Ω)) ⊂
Lq(QT ) for q = 10/3 . The function θ is a solution of the equation

∫

Ω

(θt ϕ+∇θ · ∇ϕ− f(x, t)ϕ) dx+

∫

∂Ω

h(x, θK , θΓ(x, t))ϕ dS = 0 (3.6)

for every ϕ ∈ V . We may choose in particular ϕ = pθp−1
K for p > 1 , with the intention

to let p tend to ∞ . In the remaining part of this section, we denote by C any constant
independent of K and p . Setting vKp = θ

p/2
K , we obtain from (3.6) after integration

with respect to t that

|vKp(t)|22 +

∫ t

0

|∇vKp(τ)|22 dτ + ap

∫ t

0

∫

∂Ω

|vKp(x, τ)|2 dS dτ (3.7)

≤ Cp + Cp

(∫ t

0

∫

Ω

|f | |vKp|2/p′ dx dτ +

∫ t

0

∫

∂Ω

|vKp(x, τ)|2/p′ dS dτ

)
,

where prime denotes here and in the sequel the conjugate exponent. Using Hölder's
inequality, we eliminate the boundary integrals and obtain

|vKp(t)|22 +

∫ t

0

|∇vKp(τ)|22 dτ ≤ Cp + Cp

∫ t

0

∫

Ω

|f | |vKp|2/p′(x, τ) dx dτ (3.8)

≤ Cp + Cp‖f‖q‖vKp‖2/p′
2q′ ,

where we use for simplicity the notation

‖v‖r =

(∫ T

0

∫

Ω

|v(x, t)|r dx dt

)1/r

for v ∈ Lr(Ω × (0, T )) and r ≥ 1 . Set q0 = (N/2) + 1 . Then q0 < q , and we de�ne
% > 0 by the formula q′0 = (1 + %)q′ . From the Gagliardo-Nirenberg inequality we
obtain the estimate

‖vKp‖2
2q′0
≤ C

(
sup

t∈(0,T )

|vKp(t)|22 +

∫ t

0

|∇vKp(τ)|22 dτ

)
,
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hence, by virtue of (3.8) and Young's inequality, we obtain

‖vKp‖2
2q′0
≤ Cp max

{
1, Cp, ‖vKp‖2

2q′
}
, (3.9)

that is,
‖θK‖pq′0 ≤ (Cp)1/p max {C, ‖θK‖pq′} , (3.10)

with a constant C independent of K and p . We now set pj = (1+%)j , zj = ‖θK‖pjq′0 ,
and yj = max{C, zj} for j = 0, 1, 2, . . . . Then (3.10) has the form

yj ≤ (Cpj)
1/pj yj−1 for j ∈ N . (3.11)

This can be rewritten as

log yj ≤ C (1 + %)−j(1 + j) + log yj−1 for j ∈ N , (3.12)

hence the sequence yj is bounded by a constant C independent of K . Consequently,
there exists K0 such that

‖θK‖p ≤ K0 (3.13)
independently of p and K , which is the desired estimate that enables us to complete
the proof of Theorem 2.3. ¥

4 Proof of regularity
We give here a straightforward proof of Theorem 2.4, which will follow from a regularity
result for linear heat equation with nonlinear boundary condition
∫

Ω

(vt ϕ+ A(x)∇v · ∇ϕ+B(x, t) · ∇ϕ− f(x, t)ϕ) dx+

∫

∂Ω

h(x, v, vΓ(x, t))ϕ dS = 0

(4.1)
for every test function ϕ ∈ W 1,2(Ω) , with initial condition v(x, 0) = v0(x) , where
A = (Aij)

N
i,j=1 : Ω → RN×N

sym is a symmetric matrix function such that there exists
κ > 0 with the property

∀ξ ∈ RN : A(x)ξ · ξ ≥ κ |ξ|2 a. e. , (4.2)

and f : QT → R , B : QT → RN , h : ∂Ω × R2 → R , and vΓ : ∂Ω × (0, T ) → R are
given functions.
The reasons for introducing the functions A(x) and B(x, t) , which do not appear in
(2.1), are purely technical. They arise as a result of deformations of the domain and
partition of unity.
Consider a set Ω ⊂ RN of the form

Ω = {(x′, xN) ∈ RN−1 × R : xN > g(x′)} , (4.3)

with a given function g . The regularity results read as follows.
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Theorem 4.1 Let Ω be as in (4.3), and let g ∈ W 2,∞(RN−1) . We make the following
assumptions:

� h is a globally Lipschitz continuous function in all variables; furthermore, with
v, vΓ ∈ R �xed, the functions h(·, v, vΓ), ∂`h(·, v, vΓ) belong to L2(∂Ω) for all
` = 1, . . . , N − 1 ;

� A ∈ W 1,∞(Ω;RN×N
sym ) , B ∈ L2(0, T ;W 1,2(Ω;RN)) , Bt ∈ L2(QT ;RN) ;

� v0 ∈ W 1,2(Ω) , f ∈ L2(QT ) , vΓ ∈ L2(0, T ;W 1,2(∂Ω)) , (vΓ)t ∈ L2(0, T ;L2(∂Ω)) .
Let v ∈ L2(0, T ;V ) such that vt ∈ L2(0, T ;V ′) be a solution to (4.1). Then v has the
regularity vt ∈ L2(QT ) , v ∈ L2(0, T ;W 2,2(Ω)) , and ∇v ∈ L∞(0, T ;L2(Ω)) .

Theorem 4.2 Let Ω be as in (4.3), and let g ∈ W 3,∞(RN−1) . We make the following
assumptions:

� h is of class W 2,∞ with respect to all variables; furthermore, with v, vΓ ∈ R
�xed, the functions h(·, v, vΓ) , ∂`h(·, v, vΓ) , ∂`∂mh(·, v, vΓ) belong to L2(∂Ω) for
all `,m = 1, . . . , N − 1 ;

� A ∈ W 2,∞(Ω;RN×N
sym ) , B ∈ L2(0, T ;W 2,2(Ω;RN)) , Bt ∈ L2(QT ;RN) ;

� v0 ∈ W 2,2(Ω) , f ∈ L2(0, T ;W 1,2(Ω)) , vΓ ∈ L2(0, T ;W 2,2(∂Ω)) ,
(vΓ)t ∈ L2(0, T ;W 1,2(∂Ω)) .

Let v ∈ L2(0, T ;V ) such that vt ∈ L2(0, T ;V ′) be a solution to (4.1). If N ≤ 3 , then
v has the regularity vt ∈ L2(QT ) , v ∈ L2(0, T ;W 2,2(Ω)) , and ∇v ∈ L2(0, T ;C(Ω̄)) .

The authors do not know of any reference for Theorem 4.2. It is true that the boundary
nonlinearity is quite weak, but it cannot be easily removed, because the trace of vt

would come into play, for which no estimate is available. An extension of the general
parabolic regularity theory from [5, 6, 8] might possibly work here, but we propose
instead an elementary proof based on the method from [9] designed originally for
elliptic equations with linear boundary conditions.
We �rst consider the case that Ω is a half-space of the form

Ω = RN
+ := {(y′, yN) : y′ ∈ RN−1, yN > 0} . (4.4)

For a general function w ∈W 1,2(RN
+ ) , we have the identity

w2(y′, yN)− w2(y′, 0) = 2

∫ yN

0

w(y′, z) ∂Nw(y′, z) dz ,

hence, for every M > 0 , integrating w.r.t. yN , we have by Fubini's Theorem that

w2(y′, 0) ≤ 1

M

∫ M

0

w2(y′, yN) dyN + 2

∫ M

0

|w(y′, z)| |∂Nw(y′, z)| dz .
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Letting M tend to ∞ , we obtain the trace interpolation formula

|w(·, 0)|2L2(RN−1) ≤ 2|w|2 |∂Nw|2 , (4.5)

or, as a consequence,

∀ε > 0 ∃Cε > 0 ∀w ∈ W 1,2(RN
+ ) : |w(·, 0)|2L2(RN−1) ≤ Cε |w|22 + ε |∇w|22 . (4.6)

For domains of the form (4.3) with a Lipschitzian function g , this inequality reads
after substitution in the integrals as

∀ε > 0 ∃Cε > 0 ∀w ∈ W 1,2(Ω) :

∫

∂Ω

|w(x)|2 dS ≤ Cε |w|22 + ε |∇w|22 . (4.7)

By a partition of unity argument, we obtain (4.7) for every Lipschitzian domain Ω ,
see also [9].
In the context of (4.4), we rewrite Eq. (4.1) as
∫

RN
+

(vt ϕ+ (A∇v +B) · ∇ϕ− f ϕ) dy +

∫

RN−1

h(y′, v(y′, 0, t), vΓ(y′, t))ϕ(y′, 0) dy′ = 0.

(4.8)
We will also deal with the regularized problem

∫

RN
+

(vt ϕ+ (A∇v +B) · ∇ϕ− f ϕ) dy (4.9)

+

∫

RN−1

(δ∇y′v(y
′, 0, t) · ∇y′ϕ(y′, 0) + h(y′, v(y′, 0, t), vΓ(y′, t))ϕ(y′, 0)) dy′ = 0

with some δ ≥ 0 , where ∇y′ denotes the partial gradient ∇y′v = (∂1v, . . . , ∂N−1v) ,
which has to be satis�ed in the case δ > 0 for every test function ϕ(y′, yN) from the
space

W = {ϕ ∈W 1,2(RN
+ ) : ϕ(·, 0) ∈ W 1,2(RN−1)} .

Our goal is to derive bounds for its solution independent of δ , which then imply the
corresponding estimates for the solution of (4.8).

Lemma 4.3 Let v0 ∈ W 1,2(RN
+ ) , f ∈ L2(RN

+ × (0, T )) , A ∈ W 1,∞(RN
+ ;RN×N

sym ) ,
B ∈ L2(0, T ;W 1,2(RN

+ ;RN)) , and vΓ ∈ L2(0, T ;W 1,2(RN−1)) be given. Let there exist
a function h1 ∈ L2(RN−1)∩L∞(RN−1) such that h together with all its �rst derivatives
is bounded above by h1 . Then there exists a constant C1 > 0 independent of δ ≥ 0
such that the solution v to (4.9) satis�es for all t ∈ [0, T ] the estimate

|∂`v(t)|22 +

∫ T

0

|∇∂`v(t)|22 dt+ δ

∫ T

0

∫

RN−1

|∂`∂mv(y
′, 0, t)|2 dy′ dt ≤ C1 (4.10)

for all `,m = 1, . . . , N − 1 .
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Proof. A solution v ∈ L2(0, T ;W ) such that vt ∈ L2(0, T ;W ′) to (4.9) can be con-
structed e. g. by implicit time discretization using the Schauder �xed point theo-
rem in each time step. The passage to the limit can be carried out using the com-
pactness lemma in [7, Section 1.5] and the compact embedding of W in the space
H = {ϕ ∈ L2(RN

+ ) : ϕ(·, 0) ∈ L2(RN−1)} . The solution is unique, and satis�es the
bound

|v(T )|22 +

∫ T

0

|∇v(t)|22 dt+ δ

∫ T

0

∫

RN−1

|∇y′v(y
′, 0, t)|2 dy′ dt ≤ C0 (4.11)

by virtue of (4.6) and Gronwall's lemma, with a constant C0 independent of δ . To ob-
tain higher order estimates, we denote by e` for ` = 1, . . . , N the `-th unit coordinate
vector, and by D`

s for s 6= 0 the linear mapping

D`
s(v)(y, t) =

1

s
(v(y + se`, t)− v(y, t)).

Let ϕ ∈ W be given. In (4.9), we choose consecutively test functions ϕ̃(y) = ϕ(y)
and ϕ̃(y) = ϕ(y − se`) for some ` = 1, . . . , N − 1 , and subtract the two identities.
This yields, after a suitable substitution, that
∫

RN
+

(
D`

svt ϕ+
(
A(y + se`)∇(D`

sv) + (D`
sA)∇v +D`

sB
) · ∇ϕ+ f(y, t)D`

−sϕ
)
dy (4.12)

+

∫

RN−1

(
δ∇y′D

`
sv(y

′, 0, t) · ∇y′ϕ(y′, 0) +D`
s

(
h(y′, v(y′, 0, t), vΓ(y′, t))

)
ϕ(y′, 0)

)
dy′ .

For ϕ(y) = D`
sv(y, t) , we have in particular the estimate

1

2

d

dt

∣∣D`
sv(t)

∣∣2
2
+ κ

∣∣∇(D`
sv(t))

∣∣2
2
+ δ

∫

RN−1

|∇y′D
`
sv(y

′, 0, t)|2 dy′ (4.13)

≤ |∇A|∞ |∇v(t)|2
∣∣∇(D`

sv(t))
∣∣
2
+ (|f(t)|2 + |∇B(t)|2)

∣∣∇(D`
sv(t))

∣∣
2

+

∫

RN−1

h1(y
′)(1 + |D`

svΓ(y′, t)|+ |D`
sv(y

′, 0, t)|) |D`
sv(y

′, 0, t)| dy′ .

We can pass to the limit as s → 0 and obtain from (4.11), (4.6), and Gronwall's
lemma the bound

|∂`v(t)|22 +

∫ T

0

|∇∂`v(t)|22 dt+ δ

∫ T

0

∫

RN−1

|∇y′∂`v(y
′, 0, t)|2 dy′ dt (4.14)

≤ C
(
1 + C0 + |∇v0|22 + |∇A|2∞ +

∫ T

0

|f(t)|22 dt+

∫ T

0

|∇y′vΓ(t)|22,RN−1dt
)

with a constant C independent of δ , which we wanted to prove. ¥

Lemma 4.4 Under the hypotheses of Lemma 4.3, assume in addition that (vΓ)t ∈
L2(RN−1 × (0, T )) and Bt ∈ L2(RN

+ × (0, T );RN) . Then there exists a constant C2

independent of δ ≥ 0 such that the solution v to (4.9) satis�es for every t ∈ [0, T ] the
estimate

δ

∫

RN−1

|∇y′v(y
′, 0, t)|2 dy′ + |∇v(t)|22 +

∫ T

0

(
|v(t)|2W 2,2(RN

+ ) + |vt(t)|22
)

dt ≤ C2 . (4.15)
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Proof. We discretize Eq. (4.9) in time, test by the time increment of v , and let the
time step tend to 0 . In the limit we obtain the identity

∫

RN
+

(|vt|2 − f vt −Bt · ∇v
)

dy +
d

dt

∫

RN
+

(
1

2
A(y)∇v +B

)
· ∇v dy (4.16)

+
d

dt

∫

RN−1

(
δ

2
|∇y′v|2 + ĥ(y′, v, vΓ)

)
dy′ =

∫

RN−1

∂vΓ
ĥ(y′, v, vΓ) (vΓ)t dy′ ,

where
ĥ(y′, v, vΓ) =

∫ v

0

h(y′, u, vΓ) du .

We have
ĥ(y′, v, vΓ) ≤ h1

2
v2 + |v| (h1|vΓ|+ |h(y′, 0, 0)|)

and
|∂vΓ

ĥ(y′, v, vΓ)| ≤ h1|v| .
This yields the estimate

δ

∫

RN−1

|∇y′v(y
′, 0, t)|2 dy′ +

∫ t

0

|vt(τ)|22 dτ + |∇v(t)|22 (4.17)

≤ C
(
1 + |∇v0|22 +

∫ t

0

|f(τ)|22dτ +

∫

RN−1

|vΓ(y′, t)|2dy′

+

∫ t

0

∫

RN−1

|(vΓ)t(y
′, t)|2dy′ dτ

)

with a constant C independent of δ and t as a consequence of (4.6) and Gronwall's
lemma. By Lemma 4.3, we have ∇∂`v ∈ L2(RN

+ × (0, T )) for all ` = 1, . . . , N −
1 . To �nish the proof, we now choose in Eq. (4.9) any test function ϕ = ϕ0 ∈
L2(0, T ;W 1,2(RN

+ )) with a compact support in RN
+ . We integrate by parts in all terms

except for ANN∂Nv ∂Nϕ , and obtain an identity of the form
∫ T

0

∫

RN
+

ANN(y)∂Nv(y, t) ∂Nϕ0(y, t) dy dt =

∫ T

0

∫

RN
+

Ψ(y, t)ϕ0(y, t) dy dt (4.18)

with a function Ψ ∈ L2(RN
+ × (0, T )) . Hence, ∂N(ANN(y)∂Nv(y, t)) belongs to

L2(RN
+ × (0, T )) . By (4.2), we have ANN(y) ≥ κ , and since ANN ∈ W 1,∞(RN

+ ) ,
we obtain the L2 -bound for ∂2

Nv , and the proof of Lemma 4.4 is complete. ¥

Lemmas 4.3 and 4.4 enable us to rewrite Eq. (4.9) in strong form

vt − div (A(y)∇v +B(y, t))− f(y, t) = 0 a. e. in RN
+ × (0, T ) , (4.19)

N∑
j=1

ANj∂jv +BN − δ∆y′v + h(y′, v, vΓ(y′, t)) = 0 a. e. in RN−1 × (0, T ) , (4.20)

where ∆y′ is the Laplacian with respect to y′ .
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Lemma 4.5 Let N ≤ 3 and δ > 0 . Under the hypotheses of Lemma 4.4, assume in
addition that v0 ∈ W 2,2(RN

+ ) , f ∈ L2(0, T ;W 1,2(RN
+ )) , A ∈ W 2,∞(RN

+ ;RN×N
sym ) , B ∈

L2(0, T ;W 2,2(RN
+ ;RN)) , vΓ ∈ L2(0, T ;W 2,2(RN−1)) , (vΓ)t ∈ L2(0, T ;W 1,2(RN−1)) ,

and that there exists a function h2 ∈ L2(RN−1)∩L∞(RN−1) such that h together with
all its �rst and second derivatives is bounded above by h2 . Then there exists a constant
C3 > 0 independent of δ such that the solution v to (4.9) satis�es for all t ∈ [0, T ]
the estimate

|∂m∂`v(t)|22 +

∫ T

0

|∇∂m∂`v(t)|22 dt+ δ

∫ T

0

∫

RN−1

|∂`∂m∂kv(y
′, 0, t)|2 dy′ dt ≤ C3 (4.21)

for all `,m, k = 1, . . . , N − 1 .

Proof. Passing to the limit in (4.12) as s→ 0 , we obtain
∫

RN
+

(
∂`vt ϕ+ (A∇∂`v + (∂`A)∇v + ∂`B) · ∇ϕ− ∂`f(y, t)ϕ

)
dy (4.22)

+

∫

RN−1

(δ∇y′∂`v · ∇y′ϕ+ ∂`(h(y
′, v(y′, 0, t), vΓ(y′, t)))ϕ(y′, 0) dy′ = 0 .

Similarly as in (4.12), we apply to (4.22) the operator Dm
s with m ∈ {1, . . . , N − 1} ,

and set ϕ(y) = Dm
s ∂`v(y, t) , with the intention to proceed as in the proof of Lemma

4.3. Here, the situation is more delicate because the second derivatives of the nonlinear
term h(y′, v, vΓ) will be involved. We obtain the inequality

1

2

d

dt
|Dm

s ∂`v(t)|22 + κ |∇(Dm
s ∂`v(t))|22 + δ

∫

RN−1

|∇y′D
m
s ∂`v(y

′, 0, t)|2 dy′ (4.23)

≤ γ(t) + C

∫

RN−1

(|∂`v||∂mv|+ |∂`∂mv|)|∂`∂mv|(y′, 0, t) dy′ ,

where γ ∈ L1(0, T ) includes all terms that have already been estimated above, and C
is a constant independent of t and δ . The right hand side of (4.23) is in L1(0, T ) by
virtue of Lemmas 4.3 and 4.4 and of the interpolation inequality

|ψ|L4(RN−1) ≤ C(|ψ|L2(RN−1) + |ψ|1/2

L2(RN−1)
|∇y′ψ|1/2

L2(RN−1)
) (4.24)

for every ψ ∈ W 1,2(RN−1) . Indeed, the bound still depends on δ , and this dependence
has to be removed. Passing to the limit in (4.23) as s→ 0 and using (4.24), we obtain

1

2

d

dt
|∂m∂`v(t)|22 + κ |∇∂m∂`v(t)|22 + δ

∫

RN−1

|∇y′∂m∂`v(y
′, 0, t)|2 dy′ (4.25)

≤ γ(t) + C

∫

RN−1

(|∇y′v|4 + |∂`∂mv|2)(y′, 0, t) dy′

≤ γ(t) + C

∫

RN−1

|∂`∂mv|2(y′, 0, t) dy′

+C
(|∇y′v(·, 0, t)|4L2(RN−1) + |∇y′v(·, 0, t)|2L2(RN−1) |∆y′v(·, 0, t)|2L2(RN−1)

)
,
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with a possibly di�erent function γ ∈ L1(0, T ) and di�erent constants C independent
of t and δ . Formula (4.5) enables us to estimate the right hand side of (4.25) from
above by

γ(t) + C
(|∂`∂mv|2|∂N∂`∂mv|2 + |∇y′v|22|∂N∇y′v|22 + |∇y′v|2|∂N∇y′v|2|∆y′v|2|∂N∆y′v|2

)
.

By Lemma 4.3, we have |∇y′v|2 ≤ C1 , and β(t) := |∂N∇y′v(t)|2 belongs to L2(0, T ) .
Hence, by Young's inequality, we obtain from (4.25) the estimate

d

dt

2∑

`,m=1

|∂m∂`v(t)|22 +
2∑

`,m=1

|∇∂m∂`v(t)|22 ≤ γ(t) + C

2∑

`,m=1

(|∂`∂mv|22 + β2(t)|∆y′v|22
)
,

(4.26)
and from Gronwall's argument we obtain (4.5). ¥

We now let δ tend to 0 and prove the following step.

Lemma 4.6 Under the hypotheses of Lemma 4.5, there exists a constant C4 > 0
such that the solution v to (4.8) satis�es for all t ∈ [0, T ] the estimate

|∂N∂`v(t)|22 +

∫ T

0

|∇∂N∂`v(t)|22 dt ≤ C4. (4.27)

for all ` = 1, . . . , N − 1 .

Proof. From Lemma 4.5 it follows that the solution v to (4.8) satis�es (4.19)�(4.21)
with δ = 0 . Let us consider now test functions ϕ with compact support in RN

+ , and
apply the operator DN

s to Eq. (4.8). As a counterpart of (4.12), we obtain
∫

RN
+

(
DN

s vt ϕ+(A(y+ seN)∇(DN
s v)+ (DN

s A)∇v+DN
s B) ·∇ϕ−DN

s f(y, t)ϕ
)
dy = 0 .

(4.28)
Passing to the limit as s→ 0 yields
∫

RN
+

(
∂Nvt ϕ+ (A(y)∇∂Nv + (∂NA(y))∇v + ∂NB(y, t)) · ∇ϕ− ∂Nf(y, t)ϕ

)
dy = 0 .

(4.29)
Let V0 denote the space W 1,2

0 (RN
+ ) . We choose any ϕ0 ∈ V0 , set ϕ = AN` ϕ0 in (4.22),

ϕ = ANN ϕ0 in (4.29), and obtain, using the formula

A∇∂`v · ∇(AN` ϕ0) = A∇(AN` ∂`v) · ∇ϕ0 + (A∇∂`v · ∇AN`)ϕ0 − ∂`v(A∇AN` · ∇ϕ0) ,

that
∫

RN
+

(
AN` ∂`vt ϕ0 + A∇(AN` ∂`v) · ∇ϕ0 + (A∇∂`v · ∇AN`)ϕ0︸ ︷︷ ︸

I

− ∂`v(A∇AN` · ∇ϕ0)︸ ︷︷ ︸
II

(4.30)

+ (∂`A∇v + ∂`B) · ∇(AN` ϕ0)︸ ︷︷ ︸
III

−AN` ∂`f(y, t)ϕ0

)
dy = 0
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for all ` = 1, . . . , N . Consider now the function w =
∑N

`=1AN`∂`v . Summing up the
above identities over ` and using (4.20), we see that w is a solution of the nonhomo-
geneous Dirichlet problem

∫

RN
+

(
wt ϕ0 + A(y)∇w · ∇ϕ0 − f1(y, t)ϕ0

)
dy = 0 ∀ϕ0 ∈ V0 , (4.31)

with boundary condition

w(y′, 0, t) +BN(y′, 0, t) + h(y′, v(y′, 0, t), vΓ(y′, t)) = 0 (4.32)

on RN−1 × (0, T ) as a consequence of (4.20) with δ = 0 . The function f1 in (4.31)
has the form

f1 =
N∑

`=1

(
AN`∂`f − A∇∂`v · ∇AN`︸ ︷︷ ︸

I

− div ((∂`v)A∇AN`)︸ ︷︷ ︸
II

+AN`div ((∂`A)∇v + ∂`B)︸ ︷︷ ︸
III

)
,

(4.33)
hence it belongs to L2(RN

+ × (0, T )) . The symbols I, II, III denote corresponding
terms in (4.30) and (4.33). We now �x a smooth function % with compact support in
R+ and such that %(0) = 1 , and set

w1(y, t) = BN(y, t) + %(yN)h(y′, v(y, t), vΓ(y′, t)) . (4.34)

The function w0 := w−w1 is a solution to the homogeneous Dirichlet problem for the
following counterpart of (4.31)

∫

RN
+

(
(w0)t ϕ0 + A(y)∇w0 · ∇ϕ0 − f2(y, t)ϕ0

)
dy = 0 ∀ϕ0 ∈ V0 , (4.35)

where
f2 = f1 − (w1)t + divA(y)∇w1 . (4.36)

Let us check that f2 ∈ L2(RN
+ × (0, T )) . By virtue of Lemmas 4.4�4.5, this will be the

case provided we prove that

∇v ∈ L4(RN
+ × (0, T )) . (4.37)

To this end, we refer to [3, Theorem 10.2], see also Remark A.3, which states that
there exists a constant C > 0 such that for every function ξ ∈ L2(RN

+ × (0, T )) with
the regularity ∂2

` ξ, ∂Nξ ∈ L2(RN
+ × (0, T )) for all ` = 1, . . . , N − 1 , and for every

σ ∈ (0, 1] we have the inequality (note that N ≤ 3 !)

|ξ|4 ≤ C

(
σ−1/2|ξ|2 + σ1/2

(
|∂Nξ|2 +

N−1∑

`=1

|∂2
` ξ|2

))
. (4.38)

This can be equivalently written as

|ξ|4 ≤ C


|ξ|2 + |ξ|1/2

2

(
|∂Nξ|2 +

N−1∑

`=1

|∂2
` ξ|2

)1/2

 . (4.39)
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In (4.39), we choose ξ = ∂kv(t) for k = 1, . . . , N and a. e. t . From Lemmas 4.4�4.5
we obtain (4.37), hence f2 ∈ L2(RN

+ × (0, T )) .
Similarly as in the proof of Lemma 4.3, we now apply the operator D`

s to Eq. (4.35)
for ` = 1, . . . , N − 1 and test by ϕ0 = D`

sw0 . Using the identity
∫

(D`
sw1)tD

`
sw0 dy =∫

(w1)tD
`
−sD

`
sw0 dy , we may let s tend to 0 and conclude that ∂`∇w0 belongs to

L2(RN
+ × (0, T )) for all ` = 1, . . . , N − 1 . By Lemma 4.5, and since ANN ≥ κ ,

we obtain that ∂`∂
2
Nv ∈ L2(RN

+ × (0, T )) for all ` = 1, . . . , N − 1 , and the proof is
complete. ¥

We now de�ne the anisotropic spaces

Xp,q =

{
w ∈ L1(RN

+ ) :

∫ ∞

0

(∫

RN−1

|w(y′, yN)|qdy′
)p/q

dyN <∞
}
.

We can extend the functions de�ned on RN
+ by symmetry to RN , and use Corollary

A.2 in the Appendix to obtain the compact embedding

Y :=
{
w ∈ L1(RN

+ ) : ∂Nw ∈ Xp0,q0 , ∇y′w ∈ Xp1,q1
} ⊂ Cα(RN

+ ) ∩ L∞(RN
+ ) (4.40)

in the space Cα(RN
+ ) ∩ L∞(RN

+ ) of bounded α -Hölder continuous functions for some
α > 0 , provided

p′0
p1q0

+
1

q1
<

1

N − 1
,

where p′0 is the conjugate exponent to p0 . As a direct consequence, we have

Lemma 4.7 Under the conditions of Lemma 4.5, we have ∇v ∈ L2(0, T ;L∞(RN
+ )) .

Proof. The functions ∂`v for ` = 1, . . . , N − 1 belong to L2(0, T ;W 2,2(RN
+ )) , which is

embedded into L2(0, T ;L∞(RN
+ )) by classical Sobolev embedding theorems, see [1, 3].

For w(y, t) = ∂Nv(y, t) and a. e. t ∈ (0, T ) , we have

|∂`w(t)|X6,6 = |∂`w(t)|6 ≤ C (|∂`w(t)|2 + |∇∂`w(t)|2) for ` = 1, . . . , N − 1 ,

|∂Nw(t)|X2,q ≤ C (|∂Nw(t)|2 + |∇y′∂Nw(t)|2)

with a constant C > 0 and for every q ≥ 2 . Hence, (4.40) is ful�lled with p0 = 2 ,
q0 = q , p1 = q1 = 6 , and it su�ces to integrate over t . ¥

This enables us to prove here Theorems 4.1 and 4.2.
Proof of Theorems 4.1 and 4.2. We substitute in (4.1) new variables y′ = x′ , yN =
xN − g(x′) , and obtain for the new unknown function ṽ(y′, yN) = v(y′, yN + g(y′)) the
equation
∫

RN
+

(
ṽt ϕ+ (Ã∇ṽ + B̃) · ∇ϕ− f̃ ϕ

)
dy+

∫

RN−1

h̃(y′, ṽ(y′, 0, t), vΓ(y′, t))ϕ(y′, 0) dy′ = 0

(4.41)
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for every ϕ ∈ W 1,2(RN
+ ) , where

f̃(y′, yN , t) = f(y′, yN + g(y′), t),

ṽΓ(y′, t) = vΓ(y′, g(y′), t) ,

h̃(y′, v, vΓ) = h(y′, g(y′), v, vΓ)
√

1 + |∇y′g(y′)|2 ,
Ã(y′, yN) = LT (y′)A(y′, yN + g(y′))L(y′),

B̃(y′, yN , t) = LT (y′)B(y′, yN + g(y′), t),

and where the matrix L has the form

L =




1 0 . . . 0 −∂1g
0 1 . . . 0 −∂2g

. . .
0 0 . . . 1 −∂N−1g
0 0 . . . 0 1



.

Theorem 4.1 now follows from Lemma 4.4, Theorem 4.2 is a consequence of Lemma
4.7. ¥

We are now ready to prove Theorem 2.4.
Proof of Theorem 2.4. The nonlinear boundary condition is active only on the subsets
Γj of ∂Ω for j = 1, . . . , n . We choose a covering Ω̄ ⊂ ⋃n

j=1 Ωj of Ω with the property
that Γj ⊂ Ωj and Γi ∩ Ω̄j = ∅ for i 6= j . We now �nd a smooth partition of
unity 1 =

∑n
j=1 λj(x) on Ω̄ such that suppλj ⊂ Ωj , and set vj = θ λj , f(x, t) =

r(θ(x, t), c(x, t)) . After suitable deformations and rotations, we may assume that each
set Ωj can be extended to a domain Ω̃j of the form (4.3). To derive the equation for
vj , we test the equation

∫

Ω

(θt ϕ+∇θ · ∇ϕ− f(x, t)ϕ) dx+

∫

∂Ω

h(x, θ, θΓ(x, t))ϕ dS = 0 (4.42)

by ϕ = λjϕ̃ , and obtain
∫

Ω̃j

((vj)t ϕ̃+∇vj · ∇ϕ̃+Bj · ∇ϕ̃− fj(x, t) ϕ̃) dx+

∫

∂Ω̃j

h(x, vj, vΓj(x, t)) ϕ̃ dS = 0 ,

(4.43)
with Bj = −θ∇λj , fj = fλj −∇θ ·∇λj , vΓj = θΓλj . Here we have used the fact that
λj = 1 on Γj , and that h is linear on ∂Ω̃j \ Γj .
The assumptions of Theorem 4.1 are satis�ed; hence, each vj has the regularity (vj)t ∈
L2(Ωj × (0, T )) , vj ∈ L2(0, T ;W 2,2(Ωj)) . From the formula θ =

∑n
j=1 vj it follows

that θt ∈ L2(Ω× (0, T )) , θ ∈ L2(0, T ;W 2,2(Ω)) . Consequently, we may use Theorem
4.2 and obtain ∇vj ∈ L2(0, T ;L∞(Ωj)) for each j , hence ∇θ ∈ L2(0, T ;L∞(Ω)) . ¥
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5 Proof of continuous data dependence
Let the hypotheses of Theorem 2.5 hold. In terms of (θi, ui) , Eqs. (2.1)�(2.2) have
the form

∫

Ω

((θi)t ϕ+∇θi · ∇ϕ−R(θi, ui)ϕ) dx+

∫

∂Ω

h(x, θi, θΓi(x, t))ϕ dS = 0 (5.1)
∫

Ω

(G(θi, ui)t ψ +∇ui · ∇ψ −H(θi, ui)∇θi · ∇ψ) dx+

∫

∂Ω

bi(x, t)ψ dS = 0 (5.2)

for every test functions ϕ, ψ ∈ V , where G , H , and R are de�ned by the identities

F (θ,G(θ, u)) = u , H(θ, u) =
∂F

∂θ
(θ,G(θ, u)) , R(θ, u) = r(θ,G(θ, u)) . (5.3)

Hypothesis 2.2 implies that G,H,R are Lipschitz continuous in both variables, 1/d1 ≤
∂uG ≤ 1/d0 .
Set Ui(x, t) =

∫ t

0
ui(x, τ) dτ , u0

i = F (θ0
i , c

0
i ) , Ū = U1−U2 . We consider the di�erence

of the equations (5.1) for i = 1 and i = 2 , tested by ϕ = θ̄ , integrate the di�erence of
the equations (5.2) for i = 1 and i = 2 from 0 to t , and test by ψ = Ūt . We denote
by C any constant independent of the solutions, and by ε a small parameter, which
will be suitably chosen. Since θi and θΓi are uniformly bounded, we may assume that
h is Lipschitz continuous in θ and θΓ . Hence, using (4.7) for an appropriate ε , we
obtain

∫

Ω

(
θ̄t θ̄ + |∇θ̄|2) dx ≤

∫

Ω

(R(θ1, u1)−R(θ2, u2))θ̄ dx+ C

∫

∂Ω

(|θ̄Γ|+ |θ̄|)θ̄ dS

≤ C

∫

Ω

(|θ̄|+ |Ūt|)|θ̄| dx+ C

∫

∂Ω

|θ̄Γ|2 dS , (5.4)

∫

Ω

(G(θ1, U1t)−G(θ2, U2t)) Ūt(x, t) dx+
1

2

d

dt

∫

Ω

|∇Ū |2(x, t) dx (5.5)

=

∫

Ω

(∫ t

0

(
H(θ1, U1t)∇θ1 −H(θ2, U2t)∇θ2

)
(x, τ) dτ

)
· ∇Ūt(x, t) dx

−
∫

∂Ω

(∫ t

0

b̄(x, τ) dτ

)
Ūt(x, t) dS +

∫

Ω

(G(θ0
1, u

0
1)−G(θ0

2, u
0
2)) Ūt(x, t) dx

=
d

dt

∫

Ω

(∫ t

0

(
H(θ1, U1t)∇θ1 −H(θ2, U2t)∇θ2

)
(x, τ) dτ

)
· ∇Ū(x, t) dx

−
∫

Ω

(
H(θ1, U1t)∇θ1 −H(θ2, U2t)∇θ2

) · ∇Ū(x, t) dx

− d

dt

∫

∂Ω

(∫ t

0

b̄(x, τ) dτ

)
Ū(x, t) dS +

∫

∂Ω

b̄(x, t) Ū(x, t) dS

+

∫

Ω

(c01 − c02) Ūt(x, t) dx .
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Integrating Eq. (5.5)�(5.4) with respect to t and using the hypotheses on the data,
we obtain

1

2

∫

Ω

|θ̄|2(x, t) dx+

∫ t

0

∫

Ω

|∇θ̄(x, τ)|2dx dτ (5.6)

≤ C

∫ t

0

∫

Ω

(|θ̄|+ |Ūt|)|θ̄|(x, τ) dx dτ + C

∫ t

0

∫

∂Ω

|θ̄Γ|2dS dτ +
1

2

∫

Ω

|θ̄0|2(x) dx ,
1

d1

∫ t

0

∫

Ω

|Ūt(x, τ)|2 dx dτ +
1

2

∫

Ω

|∇Ū |2(x, t) dx (5.7)

≤ C

∫

Ω

(∫ t

0

(
(|θ̄|+ |Ūt|)|∇θ1|+ |∇θ̄|) (x, τ) dτ

)
|∇Ū(x, t)| dx

+C

∫ t

0

∫

Ω

(
(|θ̄|+ |Ūt|)|∇θ1|+ |∇θ̄|) (x, τ) |∇Ū(x, τ)| dx dτ

+

∫

∂Ω

(∫ t

0

|b̄(x, τ)| dτ
)
|Ū(x, t)| dS +

∫ t

0

∫

∂Ω

|b̄(x, τ)| |Ū(x, τ)| dS dτ

+C

∫ t

0

∫

Ω

|θ̄(x, τ)| |Ūt(x, τ)| dx dτ + C

∫

Ω

|c̄0| |Ū(x, t)| dx .

Using Hölder's and Young's inequalities, we may rewrite (5.6)�(5.7) as

|θ̄(t)|22 +

∫ t

0

|∇θ̄(τ)|22 dτ (5.8)

≤ C

(
α(t) +

∫ t

0

|θ̄(τ)|22 dτ

)
+ ε

∫ t

0

|Ūt(τ)|22dτ ,
∫ t

0

|Ūt(τ)|22 dτ + |∇Ū(t)|22 (5.9)

≤ C

∫

Ω

(∫ t

0

(
(|θ̄|+ |Ūt|)|∇θ1|+ |∇θ̄|) (x, τ) dτ

)2

dx

+C

∫ t

0

(
(|θ̄|2 + |Ūt|2)|∇θ1|∞ + |∇θ̄|2

)
(τ) |∇Ū(τ)|2 dτ

+C

(
α(t) +

∫ t

0

|θ̄(τ)|22dτ
)

+ ε

(
|Ū(t)|22 +

∫ t

0

∫

∂Ω

|Ū(x, τ)|2 dS dτ +

∫

∂Ω

|Ū(x, t)|2 dS

)
,

with α(t) de�ned by (2.6). The �rst two integrals on the right hand side of (5.9) will
be estimated using Minkowski's inequality

(∫

Ω

(∫ t

0

(
(|θ̄|+ |Ūt|)|∇θ1|+ |∇θ̄|) (x, τ) dτ

)2

dx

)1/2

(5.10)

≤
∫ t

0

(∫

Ω

(
(|θ̄|+ |Ūt|)|∇θ1|+ |∇θ̄|)2

(x, τ) dx

)1/2

dτ

≤
∫ t

0

(
(|θ̄|2 + |Ūt|2)|∇θ1|∞ + |∇θ̄|2

)
(τ) dτ ,

18



and Hölder's and Young's inequalities

C

∫ t

0

(
(|θ̄|2 + |Ūt|2)|∇θ1|∞ + |∇θ̄|2

)
(τ) |∇Ū(τ)|2 dτ (5.11)

≤ C

∫ t

0

(
1 + |∇θ1(τ)|2∞

) |∇Ū(τ)|22 dτ + ε

∫ t

0

(|θ̄|22 + |Ūt|22 + |∇θ̄|22
)
(τ) dτ .

respectively. Using the inequality d
dt
|Ū(t)|2 ≤ |Ūt(t)|2 a. e., we have in (5.9)

|Ū(t)|22 ≤
(∫ t

0

|Ūt(τ)|2 dτ

)2

.

For the boundary terms in (5.9), we refer to the trace embedding (4.7). We thus obtain
from (5.8)�(5.10) the inequality

|θ̄(t)|22 + |∇Ū(t)|22 +

∫ t

0

(|∇θ̄|22 + |Ūt|22
)
(τ) dτ (5.12)

≤ C

(
α(t) +

∫ t

0

(1 + |∇θ1|∞)2 (|θ̄|22 + |∇Ū |22
)
(τ) dτ

)

+C

(∫ t

0

(1 + |∇θ1|∞)
(|∇θ̄|22 + |Ūt|22

)1/2
(τ) dτ

)2

.

Inequality (5.12) is of the form

v(t) +

∫ t

0

s2(τ) dτ ≤ C

(
α(t) +

∫ t

0

β2(τ) v(τ) dτ +

(∫ t

0

β(τ) s(τ) dτ

)2
)
, (5.13)

with

β = 1 + |∇θ1|∞ ∈ L2(0, T ) , v(t) = |θ̄(t)|22 + |∇Ū(t)|22 , s2(t) = |∇θ̄(t)|22 + |Ūt(t)|22.
(5.14)

To estimate v(t) and s(t) , we derive below in Lemma 5.2 a re�ned variant of the
Gronwall lemma. Recall �rst the classical Gronwall estimate.

Lemma 5.1 Let α ∈ L∞(0, T ) and γ ∈ L1(0, T ) be given nonnegative functions, and
let a nonnegative function v ∈ L∞(0, T ) satisfy for a. e. t ∈ (0, T ) the inequality

v(t) ≤ α(t) +

∫ t

0

γ(τ) v(τ) dτ .

Then for a. e. t ∈ (0, T ) we have

v(t) ≤ α(t) +

∫ t

0

α(τ) γ(τ) e
R t

τ γ(σ) dσ dτ ≤ sup ess
0<τ<t

α(τ) e
R t
0 γ(σ) dσ .
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Sketch of the proof. The assertion follows directly by integrating the inequality
d

dt

(
e−
R t
0 γ(σ) dσ

∫ t

0

γ(τ) v(τ) dτ

)
≤ e−

R t
0 γ(σ) dσ α(t) γ(t) .

¥

Lemma 5.1 can be viewed as a result of the fact that the L∞ -norm of the function
v is bounded above by its weighted L1 -norm. We now show that an Lp -Gronwall
estimate still holds if the L∞ -norm on the left-hand side is replaced with an Lp -norm
for p > 1 .

Lemma 5.2 Let p > 1 and its conjugate exponent p′ = p/(p − 1) be �xed, and let
α ∈ L∞(0, T ) , γ1 ∈ L1(0, T ) , and γ2 ∈ Lp′(0, T ) be given. Let nonnegative functions
v ∈ L∞(0, T ) , s ∈ Lp(0, T ) satisfy for a. e. t ∈ (0, T ) the inequality

v(t) +

∫ t

0

sp(τ) dτ ≤ α(t) +

∫ t

0

γ1(τ) v(τ) dτ +

(∫ t

0

γ2(τ) s(τ) dτ

)p

.

Then there exists a constant M such that for a. e. t ∈ (0, T ) we have

v(t) +

∫ t

0

sp(τ) dτ ≤M sup ess
0<τ<t

α(τ) . (5.15)

Proof . Set G2 =
(∫ T

0
γp′

2 (τ) dτ
)1/p′

. We �x δ such that for every t ∈ [0, T ] we have
(∫ t

(t−δ)+
γp′

2 (τ) dτ

)1/p′

≤ 1

2
,

and consider �rst t ∈ [0, δ] . By Hölder's inequality we have
(∫ t

0

γ2(τ) s(τ) dτ

)p

≤
(∫ t

0

γp′
2 (τ) dτ

)p−1 ∫ t

0

sp(τ) dτ ≤ 2−p

∫ t

0

sp(τ) dτ ,

and the assertion follows from Lemma 5.1. Assume now that inequality (5.15) is proved
for t ∈ [0, kδ] with a constant M = Mk , and consider t ∈ (kδ, (k + 1)δ] . We have

(∫ t

0

γ2(τ) s(τ) dτ

)p

=

(∫ t−δ

0

γ2(τ) s(τ) dτ +

∫ t

t−δ

γ2(τ) s(τ) dτ

)p

≤ 2p−1

((∫ t−δ

0

γ2(τ) s(τ) dτ

)p

+

(∫ t

t−δ

γ2(τ) s(τ) dτ

)p
)

≤ 2p−1Gp
2

∫ t−δ

0

sp(τ) dτ +
1

2

∫ t

t−δ

sp(τ) dτ

≤ 2p−1Gp
2Mk sup

0≤τ≤kδ
α(τ) +

1

2

∫ t

0

sp(τ) dτ .

Using Lemma 5.1 again, we complete the proof by induction over k . ¥

We are able now to �nish the proof of Theorem 2.5. Indeed, inequality (5.13) has the
form as in Lemma 5.2, with p = 2 , α replaced by Cα , γ1 = Cβ2 , and γ2 = C1/pβ ,
with v and s given by (5.14). The assertion of Theorem 2.5 therefore follows from
inequality (5.13) and Lemma 5.2. ¥
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A Appendix: An anisotropic embedding theorem
We prove here an embedding theorem for anisotropic Sobolev spaces that is needed in
Section 4. For a vector p = (p1, . . . , pN) we de�ne the space Lp(RN) as the subspace
of L1(RN) of functions u such that the norm

‖u‖p =




∫

R

(
. . .

∫

R

(∫

R
|u(x)|p1 dx1

)p2/p1

dx2 . . .

)pN/pN−1

dxN




1/pN

(A.1)

is �nite. For a matrix P = (Pij)
N
i,j=1 , Pij = 1/pij , we de�ne the anisotropic Sobolev

space
W 1,P(RN) =

{
u ∈ L1(RN) :

∂u

∂xi

∈ Lpi(RN) , i = 1, . . . , N

}
, (A.2)

where pi = (pi1, . . . , piN) .
We denote by I the identity N × N matrix, and by 1 the vector 1 = (1, 1, . . . , 1) .
The spectral radius %(P) of P is de�ned as

%(P) = max{|λ| : λ ∈ C, det(P− λI) = 0} = lim sup
n→∞

|Pn|1/n . (A.3)

Theorem A.1 Let %(P) < 1 , and let

(I−P)−11 = b = (b1, . . . , bN) . (A.4)

Then W 1,P(RN) is embedded in L∞(RN) , and there exists a constant C > 0 such that
each u ∈ W 1,P(RN) has for all x, z ∈ RN the Hölder property

|u(z)− u(x)| ≤ C ‖u‖W 1,P(RN )

N∑
i=1

|zi − xi|1/bi . (A.5)

The identity (A.4) can be written as

b = (I + P + P2 + . . . )1 .

Since all entries of P are positive, we obtain bi > 1 for all i , so that the right hand side
of (A.5) is meaningful. Note also that in the isotropic case pij = p , Theorem A.1 gives
the well known embedding condition p > N with Hölder exponent 1/b = 1− (N/p) .

Proof. Following [3], we �x a smooth function Φ with compact support in RN such
that

∫
RN Φ(x) dx = 1 , and for σ > 0 and u ∈ W 1,P(RN) set

uσ(x) = σ−|b|
∫

RN

Φ
(x− y

σb

)
u(y) dy , (A.6)

where |b| = ∑N
i=1 bi and

x− y

σb
=

(
x1 − y1

σb1
, . . . ,

xN − yN

σbN

)
.
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By substitution, we have the identity

uσ(x) =

∫

RN

Φ(z)u(x− σbz) dz , (A.7)

which implies that
lim
σ→0

|uσ − u|1 = 0 . (A.8)

We di�erentiate uσ with respect to σ , integrate by parts with respect to y , and obtain

∂uσ(x)

∂σ
= −

N∑
i=1

σ−|b|−1+bi

∫

RN

Ψi

(x− y

σb

)∂u(y)
∂yi

dy , (A.9)

where
Ψi(z) = bizi Φ(z) for z ∈ RN .

By the anisotropic Hölder inequality we have
∣∣∣∣
∂uσ(x)

∂σ

∣∣∣∣ ≤
N∑

i=1

σ−|b|−1+bi

∥∥∥Ψi

( ·
σb

)∥∥∥
p′i

∥∥∥∥
∂u

∂yi

∥∥∥∥
pi

, (A.10)

where p′i is the componentwise conjugate of pi . By substitution, we have
∥∥∥Ψi

( ·
σb

)∥∥∥
p′i

= σ
PN

j=1 bj/p′ij‖Ψi‖p′i = σ|b|−(Pb)i‖Ψi‖p′i . (A.11)

This and (A.4) yield the following estimate independent of σ and x :
∣∣∣∣
∂uσ(x)

∂σ

∣∣∣∣ ≤
N∑

i=1

σbi−(Pb)i−1‖Ψi‖p′i
∥∥∥∥
∂u

∂yi

∥∥∥∥
pi

=
N∑

i=1

‖Ψi‖p′i
∥∥∥∥
∂u

∂yi

∥∥∥∥
pi

=: U . (A.12)

For σ > σ̃ > 0 we have

|uσ(x)− uσ̃(x)| ≤ (σ − σ̃)U ,

hence uσ converge uniformly in L∞(RN) as σ → 0 . In view of (A.8), its limit is u ,
which thus belongs to L∞(RN) ∩ C(RN) , and we have for all σ > 0 the embedding
inequality

|u(x)| ≤ |uσ(x)|+ σU ≤ σ−|b||u|1 + σU . (A.13)
To prove the Hölder estimate, we replace u(x) in (A.13) by u(x+ hei)− u(x) , where
ei is the i-th unit coordinate vector and h > 0 is arbitrary. We obtain

|u(x+ hei)− u(x)| ≤ |uσ(x+ hei)− uσ(x)|+ 2σU , (A.14)

where

uσ(x+ hei)− uσ(x) = σ−|b|
∫

RN

Φ
(x− y

σb

)
(u(y + hei)− u(y)) dy (A.15)

= −σ−|b|
∫ h

0

∫

RN

Φ
(x− y

σb

) ∂u
∂yi

(y − sej) dy ds .
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This and (A.11) entail

|uσ(x+ hei)− uσ(x)| ≤ hσ−|b|
∥∥∥Ψi

( ·
σb

)∥∥∥
p′i

∥∥∥∥
∂u

∂yi

∥∥∥∥
pi

≤ hσ−(Pb)i‖Ψi‖p′i
∥∥∥∥
∂u

∂yi

∥∥∥∥
pi

.

(A.16)
We thus conclude from (A.14) that there exists a constant C > 0 such that for all
u ∈ W 1,P(RN) , x ∈ RN , σ > 0 , and h > 0 we have

|u(x+ hei)− u(x)| ≤ C
(
hσ−(Pb)i + σ

) N∑
j=1

∥∥∥∥
∂u

∂yj

∥∥∥∥
pj

. (A.17)

In particular, for σ = h1/bi we obtain, by virtue of (A.4), the formula

|u(x+ hei)− u(x)| ≤ C h1/bi ‖u‖W 1,P(RN ) , (A.18)

and (A.5) follows from the triangle inequality. ¥

Corollary A.2 The space Y de�ned in (4.40) satis�es the condition in Theorem A.1
if and only if

p′0
p1q0

+
1

q1
<

1

N − 1
. (A.19)

Proof. The matrix P− λI has the form

P− λI =




1/q1 − λ 1/q1 . . . 1/q1 1/p1

1/q1 1/q1 − λ . . . 1/q1 1/p1

. . .
1/q1 1/q1 . . . 1/q1 − λ 1/p1

1/q0 1/q0 . . . 1/q0 1/p0 − λ



,

and its determinant is

det(P− λI) = (−λ)N−2

((
N − 1

q1
− λ

)(
1

p0

− λ

)
− N − 1

q0p1

)
.

We easily check that all roots of the equation det(P − λI) = 0 are in absolute value
smaller than 1 if and only if condition (A.19) holds. ¥

Remark A.3 The embedding formula (4.38) in R3 can be derived in a straightfor-
ward way from (A.6), where we set b1 = b2 = 1

2
, b3 = 1 . Put u(y′, yN) = ξ(y′, yN)

for yN > 0 , u(y′, yN) = ξ(y′,−yN) for yN < 0 . Assuming that Φ(z) = Φ(−z) , we
may set Ψ̂1(z) =

∫ z1

−∞ Ψ1(s, z2, z3)ds , Ψ̂2(z) =
∫ z2

−∞ Ψ2(z1, s, z3)ds . Then Ψ̂1, Ψ̂2 have
compact support and we may integrate by parts in (A.9) to obtain

∂uσ

∂σ
(x) = −

2∑
i=1

σ−|b|−1+2bi

∫

R3

Ψ̂i

(x− y

σb

)∂2u(y)

∂y2
i

dy

−σ−|b|−1+b3

∫

R3

Ψ3

(x− y

σb

)∂u(y)
∂y3

dy .
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Integrals of the form
∫
R3 Ψ∗

(
x−y
σb

)
u∗(y) dy with u∗ ∈ L2(R3) can be estimated in

L4(R3) using the Young inequality for convolutions as
∣∣∣
∫

R3

Ψ∗
( · − y

σb

)
u∗(y) dy

∣∣∣
4
≤ σ(3/4)|b||Ψ∗|4/3|u∗|2. (A.20)

Hence, by virtue of the choice of b , we have
∣∣∣∂u

σ

∂σ

∣∣∣
4
≤ Cσ−1/2

(∣∣∣∂
2u

∂y2
1

∣∣∣
2

+
∣∣∣∂

2u

∂y2
2

∣∣∣
2

+
∣∣∣ ∂u
∂y3

∣∣∣
2

)
, |uσ|4 ≤ Cσ−1/2|u|2 , (A.21)

and (4.37) follows from the inequality

|u|4 ≤ |uσ|4 +
∣∣∣
∫ σ

0

∂uσ′

∂σ′
dσ′

∣∣∣
4
. (A.22)
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