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Abstract

We propose a phase field model for solid state dewetting in form of a Cahn-
Hilliard equation with weakly anisotropic surface energy and a degenerate mobil-
ity together with a free boundary condition at the film-substrate contact line. We
derive the corresponding sharp interface limit via matched asymptotic analysis
involving multiple inner layers. The resulting sharp interface model is consistent
with the pure surface diffusion model. In addition, we show that the natural bound-
ary conditions, as indicated from the first variation of the total free energy, imply
a contact angle condition for the dewetting front, which, in the isotropic case, is
consistent with the well-known Young’s equation.

1 Introduction

Dewetting of solid films is one of the important processes used for nanostructuring and
functionalizing surfaces for a variety of technological applications, such as for example
in thin-film solar cells and other optoelectronic devices. Examples can be found in
[8, 10, 30] and for a recent review we refer to Thompson [34]. Typically, the dewetting
scenario begins with the formation of a three-phase contact line between the thin solid
film, the solid substrate and the surrounding vapor phase. The subsequent retraction
of the film leads to the formation of a rim that eventually destabilizes into nano- or
micro- islands [35].

While this process is very similar to the dewetting of liquid thin films and investigated in
detail in [1, 9, 18] and recently reviewed in [7], the physical mechanisms for the mass
transport underlying solid film dewetting is quite different and is based on capillarity
driven surface diffusion [17, 35, 39]. In addition, for solid films further properties such
as anisotropy of its surface energy can dominate the dynamics [11, 36, 42]. This
can have important implication on the stability of the moving three-phase contact-line,
where vapor, solid film and substrate meet. For the equilibrium state the shape of a
nano- or micro crystal in contact with a substrate has been systematically derived as
well as experimentally validated in [20, 37].

Since the dynamical dewetting process usually involves a succession of topological
transitions of the thin dewetting film the phase field framework provides an adequate
modeling approach for a continuum description. In particular, for large-scale numerical
simulations the evolving complex geometries such as the creation and vanishing of in-
terfaces, occur naturally as part of the solution. This is in contrast to interface tracking
methods used for the corresponding sharp-interface models. However, establishing
the correct correspondence between the phase-field and sharp-interface models can
emerge as a non-trivial and subtel asymptotic problem and this is the main focus of
our present study.
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For the isotropic case a phase-field model for solid phase dewetting has been pro-
posed by Jiang et al. [16], where a phase-field function u = u(x) that lives on the
domain Ω which includes film-vapor interfaces, where u(x) = 0, has been defined
such that u(x) > 0 inside the film and u(x) < 0 inside the vapor phase. For this
phase-field variable the total free energy W combines the Ginzburg-Landau free en-
ergy density for the film-vapor system and the energy density of the wall

W =

∫
Ω

fFV dΩ +

∫
γw

fw dΓw, (1)

where

fFV ≡ λ

(
F (u) +

ε2

2
|∇u|

)
and fw ≡

γV S + γFS
2

− u(3− u2)

4
(γV S − γFS) (2)

with the constants ε denoting the interface width and λ the mixing energy density.
While the expression for fFV is well-known, the less familar expression for the wall-
energy is found from the conditions that fw = γV S, f ′w = 0 for u = −1 and fw = γFS,
f ′w = 0 for u = 1 as has been first constructed in [15, 41] and discussed further in [14]
for a problem of two-phase dewetting. Physically more meaningful but more involved
expressions for the wall energy can be found in [29].

A derivation via the first variational derivative of the total free energy functional with
respect to u then yields the correcponding chemical potential µ = 1/λ δW/δu so that
by making use of the fact that u is a conserved order parameter, the Cahn-Hilliard
equation [26]

∂tu = ∇ · j, j = M(u)∇µ, µ = F ′(u)− ε2∆u, (3)

is obtained, together with the natural (no-material flux) boundary condition ∂µ/∂n = 0
on ∂Ω. Here, M(u) denotes the mobility, j the flux and F the homogeneous free
energy. In Jiang et al. [16] the choice was M(u) = 1− u2 and F (u) = 1/2(1− u2)2.

The sharp-interface limits of these phase-field models require careful consideration
in order to predict the correct physical properties. In particular, in view of mobility M
and homogeneous free energy F different combinations have been investigated in
the literature and the results show that appropriate choices do significantly affect the
corresponding sharp-interface limit, see [26]. In [32] Taylor & Cahn show in general
how sharp-interface and diffuse-interface motion laws can be linked by being gradient
flows for analogous inner products. One of the first systematic asymptotic studies was
done by Pego [28], where he showed that for the combination

M(u) = M0(u) ≡ 1, (4a)

F (u) = F0(u) ≡ 1

2
(1− u2)2 (4b)

the sharp interface limit ε→ 0 leads to the well known Mullins-Sekerka problem [24].
His asymptotic technique has been frequently adapted by other authors in order to
show that pure surface diffusion flux is recovered for corresponding choices of free
energy F and mobility M as intended.
The choice considered by Pego (4) can be considered as an approximation of the
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Cahn-Hilliard equation (3) with a concentration dependent mobility and a logarithmic
free energy [26]

M(u) = M1(u) ≡ 1− u2, (5a)

F (u) = Fl(u) ≡ T

2
((1 + u) ln(1 + u) + (1− u) ln(1− u)) + F0(u), (5b)

in the shallow quench limit, T → 1, where T is the temperature. Cahn et al. [6] stud-
ied combination (5) in the deep quench limit, T = 0, and their analysis yields that (3)
together with (5) reduces to a model for surface diffusion in the limit ε→ 0.
Other combinations of free energy and mobility have frequently been applied in the
literature in order to approach surface diffusion, often simply to circumvent the numer-
ical difficulties of the logarithmic potential. Typical approximations are for example the
biquadratic free energy such as F0 in combination with a degenerate mobility such as
M1 or doubly degenerate mobility as M2(u) = (1 − u2)2 , see for example [16, 31].
However, some of these models do not reliably approach surface diffusion as intended
and has been criticized in the literature in particular in Guggenberger et al. [13]. Only
recently this was shown in [22], where via a systematic asymptotic analysis that in
addition takes account of contributions from exponential asymptotics, showed that for
M1 combined with the double-well potential F0 bulk diffusion will in fact enter into the
interfacial mass flux at the same order as surface diffusion and thereby would pre-
dict different physical processes. As a consequence of this, we show in our analysis
here that the doubly degenerate mobility will yield the correct limiting sharp-interface
model.

In addition we include in our Phase-field model also anisotropic surface energy γ(θ),
where θ is the interface orientation angle. We note that anisotropic surface energy
may lead to an ill-posed problem when there are missing orientations in the corre-
sponding Wulff shape, because then the surface energy is non-convex [12, 38]. In the
two-dimensional case this is equivalent to the surface tension γ(θ) + γ′′(θ) having a
sign change and this case is referred to as strongly anisotropic. The topic of strong
anisotropy in the Cahn-Hilliard equation was considered by Cahn and Taylor [5] where
they suggested to convexify the gradient energy to keep the equations well-posed.
Another convexication scheme was proposed by Eggleston et al. [12], where cor-
responding equilibrium solutions were remarkably close to the sharp-interface Wulff
shapes, but did not conserve mass. Moreover, in a work by Lowengrub et al. [38], an
efficient, second-order accurate and adaptive finite-difference methods is presented
to solve the regularized, anisotropic Cahn -Hilliard equation in two and three dimen-
sions.

When investigating the sharp-interface limit for dewetting film we also have to take
into account the limit towards adequate boundary conditions at triple junctions for the
anisotropic Cahn-Hilliard equation. Other studies that deal with the boundary con-
ditions at triple junctions have considered the isotropic Cahn-Hilliard equation [25],
where the ideas of [3] are adapted in order to show that in the asymptotic limit the
boundary condition leads to Youngs law at triple junctions [40], i.e.

γV S − γFS = γFV cos θC , (6)

where γV S, γFS and γFV are the interface energy densities describing the interfaces
between vapor and substrate, film and substrate, and film and vapor, respectively, θC
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Figure 1: A sketch of the model domain.

and the equilibrium contact angle. Of particular interest in our study is the technique
as well as the geometry presented in [27], in order to study the asymptotic behavior
at the contact line for our problem.

The paper is organized as follows. First we propose a phase field model for solving
the anisotropic surface-diffusion dewetting problem. In section 3 we derive the cor-
responding sharp-interface limit in the weakly anisotropic case and inside the model
domain which confirms the approach of surface diffusion for the present choice of
mobility M and free energy F . In section 4 we deal with the corresponding boundary
condition at the triple junction and apply an appropriate asymptotic method in order to
derive the anisotropic contact angle boundary condition.

2 Problem formulation

Considering a one-dimensional film/vapor interface, we define the domain Ω to be a
two-dimensional rectangular box around this interface with boundary ∂Ω = Γ0 ∪ Γ1 ∪ Γw
(see Fig. 1). Then for the phase-field function u as defined in the introduction the en-
ergy functional W may be extended following the approach by Kobayashi [19] and
similarly [33, 38], and we consider an anisotropic free energy functional of the form

fFV (u,∇u) = λ

(
F (u) +

ε2

2
γ(−∇u)2|∇u|2

)
, (7)

where F (u) is the homogeneous free energy, γ : R2 → R+ is the anisotropic interface
energy between film and vapor and λ represents the mixing energy density. Note that
γ depends on the direction of the outer normal vector at the interface and this direction
is represented by −∇u.
In this paper, we will consider the sharp interface limit for the case where the homo-
geneous free energy is the double well potential (4b). Moreover, following [19] we
assume that the anisotropy function satisfies γ(λv) = γ(v), for λ > 0 and v ∈ R2,
and exploit that in a two dimensional space, the direction −∇u in γ(−∇u) may be
written in polar coordinates. Thus there is an equivalent representation of γ which
only depends on θ, the angle of orientation of the interface relative to the positive x-
axis [19]. In order to determine θ in [−π, π] we chose the following common variation
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of the arctangent function

θ := arctan 2(uy, ux) =



arctan uy
ux

, for ux > 0

arctan uy
ux

+ π , for ux < 0, uy ≥ 0

arctan uy
ux
− π , for ux < 0, uy < 0

+ π
2

, for ux = 0, uy > 0

− π
2

, for ux = 0, uy < 0

0 , for ux = 0, uy = 0

(8)

and consider the following form of γ

γ = γ(θ) = γ (arctan 2(uy, ux)) .

Note that, since π and−π correspond to the same direction, we have to postulate that
γ(π) = γ(−π). Moreover we suppose that the system is weakly anisotropic, i.e.

γ(θ) + γ′′(θ) > 0, (9)

for all θ ∈ [−π, π], which ensures that the film-vapor interface is always smooth during
the evolution and the anisotropic model is mathematically well-posed [12].
As before we assume for the wall energy density [15]

fw(u) =
γV S + γFS

2
− u(3− u2)

4
(γV S − γFS), (10)

which satisfies fw = γV S and f ′w = 0 when u = −1 and fw = γFS and f ′w = 0 when
u = 1. It follows that the variational derivative of the energy functional W ε with respect
to u is

1

λ

δW ε

δu
= F ′(u)− ε2∇

(
γγ′
(
−uy
ux

)
+ γ2∇u

)
(11)

which suggests the following natural boundary conditions

ε m ·
[
γ(θ)γ′(θ)

(
−uy
ux

)
+ γ(θ)2∇u

]
+
f ′w
λ

= 0 (12)

on Γw, and

m ·
[
γ(θ)γ′(θ)

(
−uy
ux

)
+ γ(θ)2∇u

]
= 0 (13)

on ∂Ω \ Γw, where m is the unit outward pointing normal vector onto Ω.
We assume that the order parameter u is conserved and define the mass flux of u to
be

j = M(u)∇µ, (14)

where the chemical potential µ is the first variational derivative of W ε with respect to
u

µ(u) := F ′(u)− ε2∇
(
γγ′
(
−uy
ux

)
+ γ2∇u

)
(15)

and we chose the biquadratic diffusional mobility M(u) to be

M(u) =
(
1− u2

)2
. (16)
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Fick’s second law then yields the anisotropic Cahn-Hilliard equation

∂tu = ∇ · j, j = M(u)∇µ, µ = F ′(u)− ε2∇
(
γγ′
(
−uy
ux

)
+ γ2∇u

)
, (17a)

subject to the following boundary conditions

ε m ·
[
γ(θ)γ′(θ)

(
−uy
ux

)
+ γ(θ)2∇u

]
+
f ′w
λ

= 0, m · (M(u)∇µ) = 0, (17b)

on Γw and

m · ∇u = 0, m · (M(u)∇µ) = 0, (17c)

on ∂Ω\Γw. The aim of this paper is to study the sharp interface limit for the anisotropic
phase field model (17) with mobility M defined by (16) and free energy F defined by
(4b) on a long time scale, when the solution only changes slowly in time.

3 Dynamics away from the solid boundary

We now apply the method of matched asymptotic expansions in order to study the
long time behaviour of (17) in the limit ε→ 0 and capture the contribution from surface
diffusion. Observing that the evolution of the order parameter occurs at an O(1/ε2)
time scale (see [22]), we suggest to rescale time via τ = ε2t, so that the Cahn-Hilliard
equation reads

ε2∂τu = ∇ · j, j = M(u)∇µ, µ = F ′(u)− ε2∇
(
γγ′
(
−uy
ux

)
+ γ2∇u

)
, (18)

with mobility M defined by (16) and free energy F defined by (4b) and boundary
conditions (17b) and (17c).

We first study the asymptotic behaviour of the solution away from the solid boundary
at y = 0, where the boundary condition (17c) is not present and we only have the
condition

m · ∇u = 0, m · (M(u)∇µ) = 0, (19)

on ∂Ω.
Motivated by [22], we consider three layers, an outer layer away from the contact
line, an interior layer about the interface, and further, a second interior layer where
u is below and arbitrarily close to 1. The reason for considering this second interior
layer is, that in inner coordinates about the interface, the solution is similar to a tanh
function, which differs from its asymptotic value −1 as the inner coordinate tends to
−∞ by a small amount ε. Taking the exponential representation of tanh this distance
can be measured to be of O(ln(1/ε)), which means that the free boundary, where
u = 1, is asymptotically far away from the interface. Consequently a second interior
layer must match between the classic outer and inner solution.
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3.1 Outer problem

For the outer expansions, we will use

u = u0 + εu1 + ε2u2...,

µ = µ0 + εµ1 + ε2µ2...,

j = j0 + εj1 + ε2j2....

(20)

which suggests the following expansions for M(u) and F (u)

M(u) = M(u0) + εM ′(u0)u1 + ε2
(

1

2
M ′′(u0)u2

1 +M ′(u0)u2

)
+O(ε3)

F ′(u) = F ′(u0) + εF ′′(u0)u1 + ε2
(

1

2
F ′′′(u0)u2

1 + F ′′(u0)u2

)
+O(ε3).

Moreover we have
u0 = −1, µ0 = 0 (21)

as we suppose that the "phase is outside the solid film.

3.2 Inner problem

Similar as in [22, 28], we define the inner layer in a coordinate system relative to the
interface

x = R(s, τ) + ερ n(s, τ) (22)

where R is the position of the interface and n = (n1, n2)T is the unit outward normal
onto the film/vapor interface. The position of the interface is defined by

u(R, t) = 0, (23)

and the gradient operator in these curvilinear coordinates reads

∇ = nε−1∂ρ +
1

1 + ερκ
t∂s, (24)

where t = (t1, t2)T is the unit tangent, and according to the orientation of n we have
t = (n2,−n1)T .
For the inner expansions, we will use

U = U0 + εU1 + ε2U2...,

η = η0 + εη1 + ε2η2...,

J = ε−1J−1 + J0 + εJ1 + ε2J2....

(25)

and moreover introduce expansions for θ and γ respectively, as these are relevant for
the first three orders of the inner problem

θ = θ0 + εθ1 + ε2θ2...,

γ = γ(θ0) + εγ′(θ0)θ1 + ε2
(

1

2
γ′′(θ0)θ2

1 + γ′(θ0)θ2

)
....

(26)
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Notice that in inner coordinates and exploiting (t1, t2) = (n2,−n1) we have

uy
ux
∼ n2

n1

− ε Us
n2

1Uρ
+O(ε2)

for n1 6= 0, such that a Taylor-expansion of θ at ε = 0 leads to

θ = arctan 2 (n2, n1) +O(ε). (27a)

On the other hand, for n1 = 0, we have

uy
ux
∼ ε−1Uρ

Us
+O(1)

such that in the limit ε→ 0 the Taylor-expansion leads to

θ = sign

(
Uρ
Us

)
π

2
+O(ε). (27b)

which all together reveals that the leading order θ0 := arctan 2(n2/n1) is independent
of ρ and denoting γ0 := γ(θ0) the same holds true for the leading order γ0.
Applying these inner expansions in (18) we find that, the first two equations combined
become

ε2∂τU − εvn∂ρU = ∇(M(U)∇η) (28)

with vn = Rτ · n and where

∇ · (M(U)∇) =ε−2∂ρM(U0)∂ρ + ε−1

[
∂ρ

(
κρM(U0) +M ′(U0)U1

)
∂ρ − κρ∂ρM(U0)∂ρ

]
+

[
κ2ρ2∂ρM(U0)∂rho− κρ∂ρ

(
κρM(U0) +M ′(U0)U1

)
∂ρ

+

(
κρM ′(U0)U1 +

1

2
M ′′(U0)U

2
1 +M ′(U0)U2

)
∂ρ + ∂sM(U0)∂s

]
+O(ε).

(29)
Taking only the first equation in (18) we have

ε2∂τU − εvn∂ρU =
1

1 + ερκ

[
ε−1∂ρ

(
(1 + ερκ)Jn

)
+ ∂s

(
1

1− ερκ
Js

)]
so that in inner coordinates we will only need to know the normal component Jn = n·J
which can be expanded as

Jn =
M(U)

ε
∂ρη

= ε−1M(U0)∂ρη0 +M ′(U0)U1∂ρη0 +M(U0)∂ρη1

+ ε

[
M(U0)∂ρη2 +M ′(U0)U1∂ρη1 +M ′(U0)U2∂ρη0 +

1

2
M ′′(U0)U2

1∂ρη0

]
+ ε2

[
M(U0)∂ρη3 +M ′(U0)U1∂ρη2 +

(
M ′(U0)U2 +

1

2
M ′′(U0)U2

1

)
∂ρη1

+

(
M ′(U0)U3 +M ′′(U0)U1U2 +

1

6
M ′′′(U0)U3

1

)
∂ρη0

]
+O(ε3)

(30)

which also justifies our expansion for J.
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3.3 Inner layer near the contact line

Moreover, concerning the inner layer about the contact line, let σ(s, τ) be the position
of the free boundary in inner coordinates and consider coordinates centered about
this free boundary, i.e. s and

z = ρ+ σ(s, t). (31)

The second inner expansions about the contact line may then be written as

Ū = 1 + εŪ1 + ε2Ū2...,

η̄ = η̄0 + εη̄1 + ε2η̄2...,

J̄ = ε−1J̄−1 + J̄0 + εJ̄1 + ε2J̄2...

and we postulate the boundary conditions

Ū(0) = 1, ∂zŪ(0) = 0. (32)

Note that since the position of the two inner layers as well depends on ε, the positions
σ and R actually need to be expanded in terms of ε as well. But since we are only
interested in the leading order behaviour of the interface we use σ and R and their
leading order contributions interchangeably.
We now solve and match the outer and inner problems order by order.

3.4 Matching

3.4.1 Leading order

For the leading order outer problem we obtain

0 = ∇ · j0, j0 = M(u0)∇µ0, µ0 = F ′(u0), (33)

and the corresponding boundary conditions are m · ∇u = 0 and m · j0 = 0. Since we
suppose that the "phase is outside the solid film, we conclude that

u0 = −1, µ0 = 0. (34)

The leading order inner expansion reads

∂ρ(M(U0)∂ρη0) = 0, (35a)

F ′(U0)− ∂ρ
(
γ2

0∂ρU0

)
= η0. (35b)

Integrating once in ρ, we obtain

M(U0)∂ρη0 = a1(s, τ). (36)

From the matching conditions we require

lim
ρ→∞

U0(ρ) = −1, (37)
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which implies a1 ≡ 0 and therefore also η0 = 0. Moreover, from (27) we know that θ0

is constant in ρ, which leads to

2(U3
0 − U0)− γ2

0∂ρρU0 = 0 (38)

and, by applying the boundary condition U0(0) = 0, consequently

U0 = − tanh

(
1

γ0

ρ

)
. (39)

Using η0 = 0 we also conclude that

Jn,−1 = 0. (40)

Finally it is easily seen, that from the inner expansions about the contact line we get

Ū0 = 1, η̄0 = 0, J̄n,−1 = 0. (41)

O(ε) correction

The first two parts of the outerO(ε) correction problem for (18) are trivial, since µ0 = 0
and M(u0) = 0 and consequently

j1 = 0. (42)

The last equation becomes

µ1 = F ′′(u0)u1 = 4u1, (43)

which we need to match to η1 in the following.
As η0 = 0 we obtain for the first equation of the inner correction problem

∂ρ(M(U0)∂ρη1) = 0, (44)

such that M(U0)∂ρη1 is constant in ρ. Comparison with (30) then reveals that (44)
corresponds to the normal flux term Jn,0, which has to match with j0 and consequently
is zero. Thus η1 does not depend on ρ.
Applying curvilinear coordinates the equation for η1 reads

η1 = F ′′(U0)U1 −
(

t∂s
(
− γ0γ

′
0t∂ρU0 + γ2

0n∂ρU0

)
+ n∂ρ

(
γ0γ

′
0n∂sU0 + γ2

0t∂sU0

)
+ n∂ρ

(
− (γ1γ

′
0 + γ0γ

′
1) t∂ρU0 − γ0γ

′
0t∂ρU1 + 2γ0γ1n∂ρU0 + γ2

0n∂ρU1

))
.

(45)
Exploiting that γ0,n and t do not depend on ρ, applying the two-dimensional Frenet-
Serret formulae, i.e.

∂st = −κn, ∂sn = κt,

and using the ρ-independence of θ0 (see (27)) in order to calculate ∂sγ0, equation (45)
becomes

η1 = F ′′(U0)U1 − κ
(
γ′′0 + γ0

)
γ0∂ρU0 + κγ′20 ∂ρU0 + 2κγ′20 ρ∂ρρU0 − γ2

0∂ρρU1, (46)
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which reveals the ordinary differential equation

γ2
0∂ρρU1 − 2(3U2

0 − 1)U1 = −κc1γ0∂ρU0 + κc2 γ0∂ρU0 + 2κc2 γ0ρ∂ρρU0 − η1, (47)

where we substituted c1 := γ′′0 + γ0 and c2 :=
γ′20
γ0

. The general solution of (47) is given
by

U1 = C1 sech2

(
ρ

γ0

)
+ C2 sech2

(
ρ

γ0

)(
3ρ

8γ0

+
1

4
sinh

(
2ρ

γ0

)
+

1

32
sinh

(
4ρ

γ0

))
+

1

8
(2c1κ− η1) +

1

48
(2c1κ− 3η1)

(
2 cosh

(
2ρ

γ2

)
− 5 sech2

(
ρ

γ0

))
− 1

2
c2κ

(
ρ

γ0

)2

sech2

(
ρ

γ0

)
,

(48)
and including the interface condition U1(0) = 0 and boundedness as ρ→∞ to match
with the outer solution, the two constants are given by

C1 = − 1

16
(η1 + 2c1κ), C2 =

1

3
(3η1 − 2c1κ). (49)

Finally for the inner layer about the contact line we obtain F ′′(Ū0) = 4 and moreover
∂ρŪ0 = 0 leading to the ordinary differential equation

η1 = 4Ū1 − γ2
0∂zzŪ1, (50)

with initial conditions
Ū1(0) = Ū ′1(0) = 0. (51)

The solution of (50) satisfying (51) is

Ū1 =
η1

4
(1− cosh 2z̄). (52)

3.4.2 Exponential matching

We would now like to match the two interior layers. Since there are exponentially
small and exponentially large terms in the expansions, which can not be matched by
polynomial orders of ε we need to apply exponential matching as introduced by Lange
[21].
As γ0 is bounded everywhere, we denote z = ρ/γ0 to simplify matters.
To match expansions about the interface and the contact point free boundary, we first
note that as ρ→ −∞

U0 = 1− 2e2z +O(e4z), (53a)

U1 =
1

24
(2c1κ− 3η1)e−2z +

1

2
(c1κ− η1) (53b)

+

[(
7η1

4
− 11c1κ

6

)
+

(
3η1

2
− c1κ

)
z − 2c2κz

2

]
e2z. (53c)

The inner expansion about the free boundary can be rewritten as

Ū = 1 +
εη1

4
− εη1

8
e2z̄ − εη1

8
e−2z̄ +O(ε2). (54)
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Consequently we find the matching condition

η1

4
=

1

2
(c1κ− η1) ⇒ η1 =

2

3
c1κ, (55)

where c1 = γ′′0 + γ0 > 0.

O(ε2) correction

Since M ′(u0) = 0 we obtain for the outer correction problem

n · j2 = 0, (56)

and again the first two parts of (18) are automatically satisfied. The last part requires

µ2 =
1

2
F ′′′(u0)u2

1 + F ′′(u0)u2, (57)

where F ′′′(u0) = −12 and F ′′(u0) = 4.
Considering the inner correction problem and recalling that η0, η1 are independent of
ρ we obtain for the first part of (18)

∂ρ(M(U0)∂ρη2) = 0, (58)

thus M(U0)∂ρη2 is constant in ρ and since we can identify this expression via (30) as
Jn,1 which has to match with n · j1 we find that

Jn,1 = M(U0)∂ρη2 = 0. (59)

Therefore, η2 is independent of ρ.

O(ε3) correction

Consider the inner correction problem at this point. Since we haveM ′(U0) = M ′′(U0) =
0 we obtain from (30) that

Jn,2 = M(U0)∂ρη3. (60)

For ρ → ∞ the left hand side has to match with J̄n,2 and the right hand side with η̄3,
but since the first case is zero and the second a constant we immediately obtain

lim
ρ→−∞

Jn,2 = lim
ρ→−∞

M(U0)∂ρη3 = 0 (61)

Note that Jn,2 automatically matches with n · j2|χ0 which is zero for ρ→∞, where χ0

denotes the interface. Considering the last part of the correction problem for (18) and
exploiting that η0, η1 and η2 are independent of ρ we find

−vn∂ρU0 = ∂ρM(U0)∂ρ + ∂sM(U0)∂sη1

= ∂ρM(U0)∂ρ +
2

3
M(U0)∂ss(c1κ).
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An integration over (−∞,∞) then yields

vn =

(
2

3

)2

∂ss(c1κ). (62)

Finally we obtain the sharp interface problem which correctly describes the anisotropic
evolution due to surface diffusion

µ1 =
2

3
c1κ,

vn =

(
2

3

)2

∂ss((γ0 + γ′′0 )κ),

(63)

on χ0.

4 Sharp interface dynamics on solid boundaries

Now we would like to study the behavior of the anisotropic Cahn-Hilliard equation (18)
in a local domain around the contact point x0 with boundary condition (17b). Motivated
by [27] we study the behaviour of u in a box around the contact point x0. Introducing a
boundary layer and an interior layer which imply corresponding matching conditions,
we will show that the leading order system of (18) with boundary condition (17b) leads
to a contact angle boundary condition, which is referred to Young-Herring condition in
the literature [2, 23].
We first introduce the boundary layer near Γw

Figure 2: A sketch of the local domain.

z =
y

ε
, (64)

and expand U b(x, z) and µb into

U b = U b
0 + εU b

1 + ε2U b
2 ...,

µb = µb0 + εµb1 + ε2µb2....
(65)

13



Moreover we find for γb the expansion

γb = γ(θb0) +εγ′(θb0) + ...

=: γb0 + εγb0
′

+ ...
(66)

where

θb0 = lim
ε→0

arctan 2
(
∂zU

b
0 , ε∂xU

b
0

)
=


+π

2
, for ∂zU b

0 > 0

−π
2

, for ∂zU b
0 < 0

0 , for ∂zU b
0 = 0,

(67)

such that γ0 = γ(θ0) is piecewise constant and from Wulff’s theorem (see Appendix
D in [4]) we conclude that γ(π

2
) = −γ(−π

2
). The leading order problem of (18) then

reads

0 = ∂z
(
M(U b

0)∂zµ
b
0

)
, (68a)

µb0 = F ′(U b
0)− ∂z

(
(γb0)2∂zzU

b
0

)
, (68b)

with boundary condition

(γb0)2∂zU
b
0 =

f ′w(U b
0)

λ
, for z = 0. (68c)

Considering (68a) we first obtain that

a1(τ, x) = M(U b
0)∂zµ

0
b ,

and conclude from the no-flux boundary condition at z = 0 that a1 must be zero. This
also implies µb0 = 0 and consequently we obtain for (68b)

0 = F ′(U b
0)− ∂z

(
(γb0)2∂zU

b
0

)
. (69)

Multiplying by ∂zU b
0 and integrating over an arbitrary interval (z1, z2) we obtain∫ z2

z1

F ′(U b
0)∂zU

b
0 dz =

∫ z2

z1

∂z
(
(γb0)2∂zU

b
0

)
∂zU

b
0 dz (70)

which, since γb0 is piecewise constant and (z1, z2) is arbitrary, leads to

F (U b
0) =

1

2
(γb0)2

(
∂zU

b
0

)2
. (71)

Next we introduce an interior layer centered at x0. We choose inner coordinates which
are stretched in both directions, i.e.

η1 =
x

ε
, η2 =

y

ε
, (72)

and expand u and µ near η = (η1, η2) = 0 linearly as before

U in = U in
0 + εU in

1 + ε2U in
2 ...,

µin = µin0 + εµin1 + ε2µin2 ....
(73)
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Similar as before we have for γin the expansion

γin = γ(θin0 ) +εγ′(θin0 ) + ...

=: γin0 + εγin0
′

+ ...
(74)

where now we have
θin0 = arctan 2

(
∂η2U

in
0 , ∂η1U

in
0

)
. (75)

The leading order problem of (18) then reads

0 = ∇
(
M(U in

0 )∇µin0
)
, (76a)

µin0 = F ′(U in
0 )−∇η

(
γin0 γ

in
0

′
(
−∂η2U in

0

∂η1U
in
0

)
+ (γin0 )2∇ηU

in
0

)
, (76b)

where similar as for (68a) we obtain that µin0 = 0 and we have the leading order
boundary condition

γin0 γ
in
0

′
∂η1U

in
0 + (γin0 )2∂η2U

in
0 =

f ′w(U in
0 )

λ
, for η2 = 0. (76c)

Consider now a box R of size R1 in the η1-direction and R2 in the η2 direction (see
Fig. 2). Multiplying (76b) by ∂η1U

in
0 and integrating over R then leads to∫∫

R

∂η1U
in
0 F

′(U in
0 ) =

∫∫
R

∂η1U
in
0

[
∂η1

(
−γin0 γin0

′
∂η2U

in
0 + (γin0 )2∂η1U

in
0

)
+ ∂η2

(
γin0 γ

in
0

′
∂η1U

in
0 + (γin0 )2∂η2U

in
0

)]
,

(77)

which can be rewritten as

(LHS) :=

∫∫
R

∂η1

[
F (U in

0 ) +
1

2
(γin0 )2

(
U in

0η2

)2 − 1

2
(γin0 )2

(
U in

0η1

)2
+ γin0 γ

in
0

′
U in

0η1
U in

0η2

]
=

∫∫
R

∂η2

[
U in

0η1

(
γin0 γ

in
0

′
U in

0η1
+ (γin0 )2U in

0η2

)]
=: (RHS)

(78)
where we exploited that

1

2
∂η1(γ

in
0 )2 = γin0 γ

in
0

′ U
in
0η2η1

U in
0η1
− U in

0η1η2
U in

0η2(
U in

0η1

)2
+
(
U in

0η2

)2 ,

and used short forms, i.e. U in
0η1

for ∂η1U
in
0 , to provide a better overview. We first con-

sider the left-hand side (LHS) of (78), integrate in η1 and apply lim|η1|→∞ U
in
0η1

= 0,
which must be the case for finite energy solutions, which gives

lim
R1,R2→∞

(LHS) = lim
R1→∞

∫ ∞
0

[
F (U in

0 ) +
1

2
(γin0 )2

(
U in

0η2

)2
]R1

2

−R1
2

dη2. (79)

In order to match U in
0 with U b

0 for large η1 we have the matching conditions

lim
η1→+∞

U in
0 = lim

x→x+0
U b

0(x, η2) =: U b+
0 (x0, η2),

lim
η1→−∞

U in
0 = lim

x→x−0
U b

0(x, η2) =: U b−
0 (x0, η2),

(80)
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where U b+
0 denotes the solution which is more on the side of the “+”phase and U b−

0

the solution which is more on the side of the “−”phase. Moreover, recalling (71) and
(67) we obtain

U b+
0η2

=
1

|γb0|

√
2F (U b+

0 ), and U b−
0η2

= − 1

|γb0|

√
2F (U b−

0 ). (81)

Without loss of generality we now assume that U b+/−
0η2

6= 0, for η2 ∈ [0,∞), and find
for (79)

lim
R1,R2→∞

(LHS) =

∫ ∞
0

2F (U b+
0 (x0, η2)) dη2 −

∫ ∞
0

2F (U b−
0 (x0, η2)) dη2

=
√

2|γb0|
(∫ 1

0

√
F (t) dt+

∫ −1

0

√
F (t) dt

)
= |γb0|

(
2

3
− 2

3

)
= 0

(82)

where we also applied the definition of F (u) = 1
2
(1− u2)2. Note that if U b+/−

0η2
= 0 for

some subset M0 in [0,∞), the corresponding subinterval of (79) over M0 would be
zero anyway.

Considering the right hand side (RHS) of (78) we first obtain after integrating in η2 and
including the boundary condition (76c)

(RHS) =

[ ∫ R1/2

−R1/2

U in
0η1

(
γin0 γ

in
0

′
U in

0η1
+ (γin0 )2U in

0η2

)
dη1

]R2

0

=

∫ R1/2

−R1/2

U in
0η1

(
γin0 γ

in
0

′
U in

0η1
+ (γin0 )2U in

0η2

)
dη1

∣∣∣∣
R2︸ ︷︷ ︸

I

−
∫ R1/2

−R1/2

U in
0η1

f ′w(U in
0 )

λ
dη1︸ ︷︷ ︸

II

where (II) in the limit R1, R2 →∞ is

lim
R1,R2→∞

(II) =
1

λ

∫ 1

−1

f ′w(t) dt =
1

λ
(γFS − γV S). (83)

Analysing (I) we continue by transforming into curvilinear coordinates (see Fig. 3) for
which we have the relation

ξ = −η1 sin θL + η2 cos θL

χ = η1 cos θL + η2 sin θL
(84)

and consequently
∂η1 = − sin θL∂ξ + cos θL∂χ

∂η2 = cos θL∂ξ + sin θL∂χ.
(85)

Here θL ∈ (0, π) denotes the contact angle on the right hand side of the thin solid film
which has negative sign due to the geometric orientation (see Fig. 3). The transformed
integral then reads

(I) =

∫ −R1
2

sin θL+R2 cos θL

R1
2

sin θL+R2 cos θL

S dξ (86)
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Figure 3: A sketch of the coordinate transformation.

where

S =γin0 γ
in
0

′
(
− sin θL

(
U in

0ξ

)2
+ 2 cos θLU

in
0ξU

in
0χ −

cos2 θL
sin θL

(
U in

0χ

)2
)

+ (γin0 )2

(
cos θL

(
U in

0ξ

)2
+

(
sin θL −

cos2 θL
sin θL

)
U in

0ξU
in
0χ − cos θL

(
U in

0χ

)2
) (87)

Now, R1 � 1 and R2 � 1 implies χ� 1 and therefore limχ→∞ ∂χU
in
0 = 0. Taking the

limit R1 →∞, R2 →∞ in the following way:

lim
R1,R2→∞

(I) = lim
α→∞

lim
R1→∞
R2→∞

|R1 sin θL +R2 cos θL| <
α

∫ −R1
2

sin θL+R2 cos θL

R1
2

sin θL+R2 cos θL

S dξ (88)

leads to

lim
R1,R2→∞

(I) = −
(
−γin0 γin0

′
sin θL +

(
γin0
)2

cos θL

)∫ ∞
−∞

(
U in

0ξ

)2
dξ (89)

where we applied that

lim
χ→∞

γin0 = γin0 (arctan 2 (cos θL,− sin θL)) = γ0 (90)

and consequently γin0 is constant in χ and ξ. Moreover note that (90) reveals, that γin0
is equivalent to γ0 from Section 3.2. Finally we obtain by once more using (71) and

U in
0ξ = − 1

γ0

√
2F (U in

0 ), (91)

that ∫ ∞
−∞

(
U in

0ξ

)2
dξ =

2

γ2
0

∫ ∞
−∞

F (U in
0 ) dξ

= −
√

2

γ0

∫ −1

1

√
F (t) dt =

1

γ0

4

3
.

(92)

All together we obtain by merging the results for (LHS) and (RHS) in (78)

0 =
4

3
(−γ0

′ sin θL + γ0 cos θL)− 1

λ
(γV S − γFS) (93)
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which is, up to scalars, the correct surface- energy minimizing equilibrium contact
angle boundary condition, referred to as Young-Herring condition [23]. Note that if
we consider the contact angle on the right hand side θR, where sin θR < 0 due to
the geometric orientation, we obtain in an analogous way the same equation which
suggests to rewrite (93) in general form

0 =
4

3
(−γ0

′ sin θC + γ0 cos θC)− 1

λ
(γV S − γFS), (94)

for θC ∈ (0, π). If the surface energy is isotropic, i.e. γ ≡ const. equation (94) reduces
to the well- known Young’s equation. Moreover we would like to remark, that in the
case of weak anisotropy, i.e. γ + γ′′ > 0, which is provided by this paper, equation
(94) has a unique solution θC . In order to observe the number of possible choices for
θC it is convenient to consider (94) as a function of θ, i.e.

h(θ) :=
4

3
(−γ0

′ sin θ + γ0 cos θ)− 1

λ
(γV S − γFS) (95)

and determine the number of zeros. Differentiating with respect to θ reveals

h′(θ) := −4

3
(γ0
′′ + γ0) sin θ (96)

which is always negative for weak anisotropy and θ ∈ (0, π) such that h(θ) is strictly
monotonically decreasing and can only have one zero in this interval.

5 Conclusion

In the present work we investigated a phase-field model describing the dewetting
from a solid substrate. The main goal was to establish the connection to a corre-
sponding sharp-interface model that accounts for surface diffusion as the dominant
mechanism that drives the dynamics. The focus of this study was the systematic and
careful asymptotic analysis to treat the multiple boundary and interfacial layers that
occur as the sharp-interface limit is approached, both for the isotropic as well as for
the anisotropic case.

We established that by using exponential asymptotic matching the bi-quatratic mo-
bility yields the correct limiting model, in contrast to for example other choices such
as M(u) = 1 − u2, which have been used before in the literature, see for example
Jiang et al. [16] in this context of application. Such mobilities lead to sharp-interface
models that contain bulk diffusion as an additional driving force to the same order of
magnitude, as previously shown by Lee et al. [22].

A further problem concerned the asymptotics of the contact-line motion as the solid
substrate is approached. For this the outer problem has to be matched to the bound-
ary layer near the solid substrate and moreover it had to match the interior interfacial
layer. As a result the Young-Herring condition is obtained.

For comparison to realistic scenarios and experimental results of dewetting solid films,
such as dewetting crystalline Si films, used for nanopatterning of surfaces, our phase-
field model will be extended to a higher dimension and and investigated numerically in

18



an upcoming separate article. Of interest is here the study of the solid-solid contact-
line instability, which, according to experimental results by [11], seems to be a function
of the crystalline orientation.
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