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Abstract: This papermathematically investigates a special
kind of digital infinite-impulse response (IIR) filters, suit-
able for filtering out very low frequencies near zero from
digital signals. We investigate the transfer functions of
such filters from 1st to 3rd order and provide formulas to
calculate the filter coefficients from the desired cutoff
frequency.
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1 Introduction

Digital filtering plays a very important role in many data
processing systems. Sometimes it is necessary to remove a
time-invariant additive offset from a signal [1, 2]. Such
signal components are often named “DC offset”, the
respective filter “DC blocker” (DC = “Directed Current” in
contrast to “Alternating Current” = AC). For example,
Analog-to-Digital converters (ADCs) often possess such a
small constant offset that needs compensation or removal
[2, 3]. The required filter is a high-pass filter that lets
uniformly pass all signal frequencies except extremely
low ones, say few percent of the sampling rate or even
less.

This paper investigates a special kind of digital DC
blocker filters. We provide formulas to calculate the filter
coefficients when the desired corner frequency is known.
The filter structure can be implemented in software or
digital hardware.

2 Digital filter basics

A digital filter is a hardware or software unit that processes
an (infinite) series of digital input samples {xk}, producing
a series of output samples {yk}. Each output sample yk is a
linear combination of a number M of preceding input

samples xk−m (m = 0–M) and (optionally) a number N of
previous output samples yk−n (n = 1–N). If N = 0, we call it a
“Finite Impulse Response” (FIR) filter, since a singular
non-zero pulse at the input will lead to a finite number of
output pulses (at most M of them). If N > 0, the number of
emerging output pulses may theoretically be infinite. This
is the “Infinite-Impulse Response” (IIR) filter. It may
possess some complications such as insufficient stability,
but normally the desired spectral shaping of the output
signal, i.e., the filtering, can be achieved with less
computational effort than in FIR filters.

Mathematically, the filter is described by its equation

yk = ∑
M

m=0
bmxk−m + ∑

N

n=1
anyk−n (1)

where the xk−m are the input samples, yk−n the output
samples, and the bm and an are constant real coefficients.
Their values determine the characteristics of the filter,
i.e., the spectral shaping of the signal when it passes the
filter.

The samples are almost always taken at constant in-
tervals in timeΔt, or, in otherwords, at a constant sampling
frequency f s = 1/Δt. The input and output samples can
then be written as xk = x(k ⋅ Δt) and yk = y(k ⋅ Δt), respec-
tively. Equation (1) then transforms to

y(k ⋅Δt) = ∑
M

m=0
bmx((k−m) ⋅Δt)+ ∑

N

n=1
any((k−n) ⋅Δt) (2)

For investigating the spectral properties, we perform
a Fourier transform (in the following we only show
important final results, formore details consult a textbook
like [4–6]).

Y(Ω) = X(Ω) ∑
M

m=0
bme−iΩm + Y(Ω) ∑

N

n=1
ane−iΩn (3)

Here,X(Ω) andY(Ω) are the Fourier-transformed input
and output signals. Ω is the normalized angular fre-
quency. We normalize all frequencies to the sampling
frequency fS.

Ω = 2π ⋅ f ⋅ Δt = 2π ⋅ f/fS (4)

According to the Nyquist theorem, the highest fre-
quency component in the signal, whichmakes sense, is the
Nyquist frequency fN = ½ fS. Thus, the sensible range for Ω
is from 0 to π = 180° = Nyquist frequency. The sampling
frequency fS would correspond to Ω = 2π.
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The ratio of the output signal to the input signal in
frequency domain is denoted “transfer function” H(Ω).

H(Ω) = Y(Ω)
X(Ω) =

∑M
m=0 bme−iΩ⋅m

1 −∑N
n=1 ane−iΩ⋅n

(5)

The transfer function is a complex function of the
(normalized) frequency, i.e., it has a real and an imaginary
part, or an absolute value and a phase. The squared ab-

solute value |H(Ω)|2 is the most important feature of the
filter since it describes its spectral properties, i.e., which
frequency components are attenuated or amplified. Also,
the phase φ(Ω) is sometimes considered, but we will not
discuss this property in this paper. The absolute value
computes as:

|H(Ω)|2 =
∑M

m=0b
2
m + 2 ⋅∑M

m=1(cos(Ω ⋅m) ⋅(∑M
k=mbkbk−m))

1+∑N
n=1a2

n − 2 ⋅∑N
n=1(cos(Ω ⋅n) ⋅(an −∑N

k=n+1akak−n))
(6)

Finally, we investigate the stability of the filter. This
means, that the filter output samples {yk} are and
remain finite (limited) for any finite input sequence {xk}.
In particular, they must remain finite after a single input
pulse. Mathematically, instability occurs at poles of the
transfer function H(Ω). For investigating this property,
we transform (5) into the z domain by substituting
eiΩ = z :

H(Ω) = ∑M
m=0 bme−iΩ⋅m

1 − ∑N
n=1 ane−iΩ⋅n

= ∑M
m=0 bmz−m

1 −∑N
n=1 anz−n

(7)

The poles occur when the denominator is zero, i.e.,

1 − ∑
N

n=1
anz−n = 0 or zN − ∑

N

n=1
anzN−n = 0 (8)

The filter is stable when all complex poles zk of (7),
equivalent to the polynomial roots of (8), are inside
the unit circle of the z domain or, in other words, all
|zk| < 1 [6].

The stability of a filter depends only on the recursive
(feedback) coefficients an. FIR filters, where all an = 0, are
always stable.

3 DC blocker filters

The DC blocker filter shall block very low frequencies near
zero and let all higher signal components pass unchanged.
This is the high-pass behavior. The transfer function shall
be H(Ω) = 0 for Ω = 0 and H(Ω) = 1 for Ω = π (Nyquist
frequency).

3.1 First order

The textbook DC blocker filter ([4] chapter 13.23, [2]) is a 1st
order IIR filter having the transfer function

H(Ω) = 1 − e−iΩ

1 − α ⋅ e−iΩ⋅
(1.1)

This corresponds to the filter equation

yk = ( xk −xk−1) + α ⋅ yk−1 (1.2)

Parameter α determines the corner frequency. For the
DCblocker it is slightly less than one, say in the range 0.95–
0.99.

We will now derive these equations from our general
formulas in Section 2. Naming and normalization will
slightly differ from the conventions in (1.1) and (1.2). For
example: from (1.1) we deduce a pass-band gain of
H(Ω = π) = 2/(1 + α); in our normalizationwe getH(Ω = π) = 1
for any high-pass filter.

Inserting M = N = 1 into (5) leads to

H(Ω) = b0 + b1 ⋅ e−iΩ

1 − a1 ⋅ e−iΩ
(1.3)

For a high-pass filter we set the boundary conditions
H(Ω = 0) = 0 (frequency zero shall be blocked) and
H(Ω = π) = 1 (the Nyquist frequency component shall pass
unchanged). This allows elimination of two of the un-
known coefficients b0, b1 and a1.

From the first condition we get with e–i0 = 1:

H(Ω = 0) = b0 + b1

1 − a1
= 0 (1.4)

or, in other words, b1 = −b0 (provided that a1 ≠ 1).
From the second condition we get with e–iπ = −1:

H(Ω = π) = b0 − b1

1 + a1
= 1 (1.5)

or, in other words, b0 − b1 = 1 + a1. We redefine the one
remaining free parameter as b in the following way:

b0 = b b1 = −b a1 = b0 − b1 − 1 = 2b − 1 (1.6)

We insert this into (6):

|H(Ω)|2 = b2
0 + b2

1 + 2 ⋅ b0b1 ⋅ cos(Ω)
1 + a2

1 − 2 ⋅ a1 ⋅ cos(Ω)

= b2 + b2 − 2b2 ⋅ cos(Ω)
1 + ( 2b − 1)2 − 2 ⋅ ( 2b − 1) ⋅ cos(Ω)

= 2b2 ⋅ ( 1 − cos(Ω))
4b2 − 4b ⋅ ( 1 + cos(Ω)) + 2 ⋅ ( 1 + cos(Ω))

(1.7)
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We transform this equation using the trigonometric
relations (1 − cos(Ω)) = 2⋅sin2(1/2 ⋅ Ω), (1 + cos(Ω)) =
2⋅cos2(1/2 ⋅ Ω), and sin2(1/2 ⋅ Ω) + cos2(1/2 ⋅ Ω) = 1.

|H(Ω)|2 =
4b2 ⋅ sin2(½Ω)

4b2 +4(1− 2b) ⋅cos2(½Ω)
=

b2 ⋅ sin2(½Ω)
b2 ⋅(sin2(½Ω)+cos2(½Ω))+(1− 2b) ⋅cos2(½Ω)

=
b2 ⋅ sin2(½Ω)

b2 ⋅ sin2(½Ω)+ (1− 2b+b2) ⋅cos2(½Ω)

|H(Ω)|2 = 1

1+
(1−b)2 ⋅ cos2(½Ω)

b2 ⋅ sin2(½Ω)

(1.8)

We re-formulate the free parameter again as b = 1 − 1/2ω
or ω = 2(1 − b) (we will see the reason later):

|H(Ω)|2 = 1

1 + ( ω
2 − ω

⋅ cot(Ω
2
))2 (1.9)

For Ω in the range 0 ≤ Ω ≤ π, |H(Ω)|2 is a monotonic
function. Figure 1 shows some graphs. The larger ω, the
higher the corner frequency of the filter, i.e., the transition
point from blocking to passing behavior. In case ω = 0
Equation (1.9) has a singularity at Ω = 0.

A common criterion for the corner frequency is the
point, where the filter’s attenuation reaches 3 dB, i.e.,
|H(Ω)|2 = ½. We calculate this point from (1.9):

|H(Ω3dB)|2 = 1
2
= 1

1 + ( ω
2 − ω

⋅cot(Ω3dB

2
))2

( ω
2 − ω

⋅cot(Ω3dB

2
))2

= 1

tan(Ω3dB

2
) = ± ω

2 − ω
(1.10)

For a DC blocker, the corner frequency shall be low:
Ω3dB << 1. In this case, we apply the series expansion for
tan(x) = x − 1/3 x3 +… Also ω will be small, so that ω << 2.

Ω3dB ≈
2 ⋅ ω
2 − ω

≈ ω (1.11)

Our parameterω equals the (normalized, angular) 3 dB
corner frequency of the filter. If the latter is given, we can
calculate the filter coefficients b0, b1 and a1 (see (1.6) and
text above (1.9)):

a1 = 1 − Ω3dB

b0 = +(1 −½Ω3dB)
b1 = −(1 −½Ω3dB) (1.12)

These equations are valid only for small corner fre-
quencies. Equation (1.10), however, applies to any
frequency.

Finally, we verify the stability of the filter, which is
not always certain for IIR filters. For doing this, we have
to find the poles of (1.3). Inserting (1.12), the equation
reads as:

H(Ω) = b0 + b1e−iΩ

1 − a1e−iΩ⋅
= (1 −½ω) ⋅ (1 − e−iΩ)

1 − ( 1 − ω) ⋅ e−iΩ⋅

We substitute eiΩ = z for transforming into the z
domain:

H(Ω) = ( 1 −½ω) ⋅ ( 1 − z−1)
1 − ( 1 − ω) ⋅ z−1 = ( 1 −½ω) ⋅ ( z − 1)

z − ( 1 − ω)

The pole occurs when the denominator is zero, i.e.,

z − ( 1 − ω) = 0 or z = 1 − ω

In the z domain, the filter is stable when |z| < 1 [6]. This
is the casewhen 0 <ω < 2, which is fulfilled for a DC blocker
filter. However, the nearer ω to 0 (i.e., the smaller the
corner frequency), the more the filter approaches the sta-
bility limit.

Figure 1: Transfer function of 1st order DC blocker filters
(Equation [1.9]).
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3.2 Second order

Figure 1 depicts that the first order filters are not very steep.
For many applications, a smaller transition range between
stop and pass behavior is highly desired. This can be
achieved by increasing the order of the filter, i.e., the
number of coefficients.

For a 2nd order filter we have to set M = N = 2 in (5)

H(Ω) = b0 + b1 ⋅ e−iΩ + b2 ⋅ e−i2Ω

1 − a1 ⋅ e−iΩ − a2 ⋅ e−i2Ω
(2.1)

The boundary conditions for high-pass filter do not
change: H(Ω = 0) = 0 (frequency zero shall be blocked) and
H(Ω = π) = 1 (Nyquist frequency shall pass unchanged). This
again allows elimination of twoof theunknowncoefficients,
but we have five of them now: b0, b1, b2 and a1, a2.

From the first condition we get with e−i0 = 1:

H(Ω = 0) = b0 + b1 + b2

1 − a1 − a2
= 0 (2.2)

or, in other words, b1 = −(b0 + b2) (provided that
a1 + a2 ≠ 1).

From the second condition we get:

H(Ω = π) = b0 − b1 + b2

1 + a1 − a2
= 1 (2.3)

or, in other words, b0 − b1 + b2 = 1 + a1 − a2. Combining this
with the result from (2.2) leads to 2(b0 + b2) =
−2b1 = 1 + a1 − a2 or a1 = 2(b0 + b2) + a2 − 1. Inserting into (6)
yields

We transform this equation in a way similar to (1.6). Only main intermediate results are given.

|H(Ω)|2 = 2(b0+b2)2 ⋅(1−cos(Ω))−2b0b2 ⋅(1−cos(2Ω))
1+a2

2+(a2−1)2+4(b0+b2)2+4(b0+b2) ⋅(a2−1)+2(2(b0+b2)+a2−1) ⋅(a2−1)cos(Ω)−2a2cos(2Ω)

=
4(b0+b2)2 ⋅sin2(Ω /

2)−4b0b2 ⋅(1−cos2(Ω))
2(a2−1)2+4(b0+b2)2+8(b0+b2) ⋅(a2−1) ⋅cos2(Ω /

2)+2(a2−1)2 ⋅cos(Ω)+2a2 ⋅(1−cos(2 ⋅Ω))

=
4(b0+b2)2 ⋅sin2(Ω /

2)−4b0b2 ⋅(1−cos(Ω)) ⋅(1+cos(Ω))
4(b0+b2)2+8(b0+b2) ⋅(a2−1) ⋅cos2(Ω /

2)+2(a2−1)2 ⋅(1+cos(Ω))+4a2(1−cos(Ω)) ⋅(1+cos(Ω))

=
4(b0+b2)2 ⋅sin2(Ω /

2)−16 ⋅b0b2 ⋅sin2(Ω /

2) ⋅(1−sin2(Ω /

2))
4((b0+b2)2+4a2) ⋅sin2(Ω /

2)+4((b0+b2)2+(2(b0+b2)+(a2−1)) ⋅(a2−1)) ⋅cos2(Ω /

2)−16a2sin
4(Ω /

2)
=

4(b0−b2)2 ⋅sin2(Ω /

2)+16 ⋅b0b2 ⋅sin4(Ω /

2)
4((b0+b2)2+4a2) ⋅sin2(Ω /

2)+4((b0+b2)+(a2−1))2 ⋅cos2(Ω /

2)−16a2sin
4(Ω /

2)
=

(b0−b2)2 ⋅sin2(Ω /

2)+4 ⋅b0b2 ⋅sin4(Ω /

2)
(b0−b2)2 ⋅sin2(Ω /

2̇)+4(b0b2+a2) ⋅sin2(Ω /

2)−4a2 ⋅sin4(Ω /

2)+((b0+b2)+(a2−1))2 ⋅cos2(Ω /

2)

(2.5)

|H(Ω)|2 = b2
0 + ( b0 + b2)2 + b2

2 − 2( b0 + b2)2 ⋅ cos(Ω) + 2b0b2 ⋅ cos( 2 ⋅ Ω)
1 + ( 2( b0 + b2) + a2 − 1)2 + a2

2 − 2( 2( b0 + b2) + a2 − 1) ⋅ ( 1 − a2) ⋅ cos(Ω) − 2a2 ⋅ cos( 2 ⋅ Ω)
(2.4)
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This formula already looks pretty similar to the 1st
order transfer function (1.8), provided that b0 = b2 and
a2 =−b0 ⋅ b2. It will turn out that this setting is indeed a good
solution. Thus, we may set our remaining free parameters
as b0 = b2 = b and a2 = −b0 ⋅ b2 = −b2.

|H(Ω)|2 =
4b2 ⋅ sin4(Ω /

2)
4b2 ⋅ sin4(Ω /

2)+(2b−b2 − 1)2 ⋅cos2(Ω /

2)
= 1

1+( (1−b)2
2b ⋅ sin(Ω/2) ⋅cot(Ω2))

2 (2.6)

More generally, we may set b0 = b + β, b2 = b − β and
a2 = α − b0 ⋅ b2 = α − (b2 − β2). Inserting into (2.5) leads to:

Comparing (2.6) and (2.7) one finds that a small
non-zero β is almost equivalent to a change in b, i.e., to a
shift of the corner frequency. Moreover, only β2 is present
in (2.7), i.e., the sign of β is irrelevant. In contrast,
a negative α can lead to |H(Ω)|2 > 1 when the term
4α ⋅ sin2(1/2⋅Ω) + ((1−b)2 − α − β2)2 becomes negative.

Figure 2 shows some numerical simulations. It turns

out that α = 0 is in fact a good choice. Positive α leads to

flatter curve shape of the transfer function, whereas a

negative α may result in a peak of |H(Ω)|2. Both is not

desired. A slightly improved curve shape may be obtained

for small negative α ≈ −(1−b)2/8 = −ω2/16.
Coming back to our simple case (2.6), we re-define

the parameter b that determines the corner frequency as

ω = 2̅
√

(1 − b). The 2nd order Formula (2.8) is now very
similar to the 1st order Formula (1.9), but it has an addi-
tional factor ω/2 sin(1/2 ⋅ Ω) before the cot() term. This term
is responsible for the steeper transfer curve of the 2nd order
filter, compared to the 1st order one.

|H(Ω)|2 = 1

1 + ( ω
2 − 2̅

√
⋅ ω

⋅
ω

2 ⋅ sin(Ω/2) ⋅ cot(Ω2))
2 (2.8)

For Ω in the range 0 ≤ Ω ≤ π, |H(Ω)|2 is a monotonic
function. Figure 3 shows some graphs. The larger ω, the
higher the corner frequency of the filter, i.e., the transition
from blocking to passing behavior. In the case ω = 0 Equa-
tion (2.8) has a singularity at Ω = 0.

|H(Ω)|2 =
4β2 ⋅ sin2(Ω /

2)+4 ⋅ (b2 −β2) ⋅ sin4(Ω /

2)
4β2 ⋅ sin2(Ω /

2)+4α ⋅ sin2(Ω /

2)−4α ⋅ sin4(Ω /

2)+4(b2 −β2) ⋅ sin4(Ω /

2)+ (α+β2 − (1− 2b+b2))2 ⋅cos2(Ω /

2)
=

4β2 ⋅ sin2(Ω /

2) ⋅cos2(Ω /

2)+4b2 ⋅ sin4(Ω /

2)
4β2 ⋅ sin2(Ω /

2) ⋅cos2(Ω /

2)+4b2 ⋅ sin4(Ω /

2)+4α ⋅ sin2(Ω /

2) ⋅cos2(Ω /

2)+ (α+β2 −(1−b)2)2 ⋅cos2(Ω /

2)
= 1

1+
4α ⋅ sin2(Ω /

2)+ ((1−b)2−α−β2)2
4β2 ⋅cos2(Ω /

2)+4b2 ⋅ sin2(Ω /

2) ⋅cot2(Ω
2
)

(2.7)

Figure 2: Influence of non-zero α and β in Equation (2.7).
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We calculate the 3 dB corner frequency from (2.8):

|H(Ω3dB)|2 = 1
2
= 1

1+( ω2

4− ̅̅
8

√
⋅ω

⋅
cot(½Ω3dB)
sin(½Ω3dB))

2

( ω2

4− ̅̅
8

√
⋅ω

⋅
cot(½Ω3dB)
sin(½Ω3dB))

2

= 1

tan(½Ω3dB) ⋅ sin(½Ω3dB) =±( ω2

4− ̅̅
8

√
⋅ω

) (2.9)

For a DC blocker, the corner frequency shall be low:
Ω3dB << 1. In this case, we apply the series expansion for
tan(x) = x − 1/3 x3 +… and sin(x) = x − 1/6 x3 +…Alsoωwill

be small, so that
̅̅
8

√
ω << 4.

Ω3dB ⋅ Ω3dB ≈
4 ⋅ ω2

4 − ̅̅
8

√
⋅ ω

≈ ω2 (2.10)

Our parameter ω again equals the (normalized,
angular) 3 dB corner frequency of the filter. If the latter is
given, we can calculate the filter coefficients:

a1 = 3 − ( 1+ ̅̅
½

√
⋅ Ω3dB)2

= 2 ⋅ ( 1− ̅̅
½

√
⋅ Ω3dB) −½ ⋅ Ω2

3dB

a2 = −( 1− ̅̅
½

√
⋅ Ω3dB)2

b0 = 1 −
̅̅
½

√
⋅ Ω3dB

b1 = −2 ⋅ ( 1− ̅̅
½

√
⋅ Ω3dB)

b2 = 1 −
̅̅
½

√
⋅ Ω3dB (2.11)

These equations are valid only for small corner fre-
quencies. Equation (2.8), however, applies to any
frequency.

Finally, we verify the stability of the filter. We have to
find the poles of (2.1). Inserting (2.10), the z-transformed
equation reads as:

H(Ω) =
( 1 − ̅̅

½
√

⋅ ω) ⋅ ( z2 − 2z + 1)
z2 − ( 3−( 1 + ̅̅

½
√

⋅ ω)2)z + ( 1 − ̅̅
½

√
⋅ ω)2

The poles occur when the denominator is zero, i.e.,

z2 − 2 ⋅ ( 1− ̅̅
½

√
⋅ ω − 1 /4 ⋅ ω2)z + ( 1 − ̅̅

½
√

⋅ ω)2

= 0

This is a quadratic polynomial. Its roots are given by
Vieta’s formula:

z = ( 1− ̅̅
½

√
⋅ ω − 1 /4 ⋅ ω2)

±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅( 1− ̅̅

½
√

⋅ ω −¼ ⋅ ω2)2 − ( 1 − ̅̅
½

√
⋅ ω)2√

= ( 1− ̅̅
½

√
⋅ ω −¼ ⋅ ω2) ± ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 /16 ⋅ ω4 +
̅
⅛̅

√
⋅ ω3 −½ ⋅ ω2

√
For small ω << 1 the term under the square root is nega-

tive, i.e., the two poles are conjugate complex. Their absolute
value is givenby the sumof the squares of real and imaginary
parts:

|z|2 = ( 1− ̅̅̅
½

√
⋅ ω −¼ω2)2 + (½ ⋅ω2 −

̅
⅛̅

√
⋅ ω3 − 1 /16ω4)

= 1 +½ω2 + 1 /16ω4 − 2̅
√

⋅ ω −½ω2 +
̅
⅛̅

√
⋅ ω3

+½ ⋅ ω2 −
̅
⅛̅

√
⋅ ω3 − 1 /16ω4

= 1 − 2̅
√

⋅ ω +½ ⋅ ω2

|z|2 = ( 1 − ̅̅
½

√
⋅ ω)2

The filter is stable when |z| < 1. This is the case when

0 < ω < 2 2̅
√

, which is fulfilled for a DC blocker filter.
However, the nearer ω to 0 (i.e., the smaller the corner
frequency), the more the filter approaches the stability
limit.

3.3 Third order

In order to further increase the steepness of the transfer
function, wemay further increase the order of the filter. We

Figure 3: Transfer function of 2nd order DC blocker filters
(Equation [2.8]).
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will provide here the results for the 3rd order filter, without
giving all intermediate steps and results. The way of cal-
culations is similar to the 2nd order filter.

For a 3rd order filter we have to set M = N = 3 in (5)

H(Ω) = b0 + b1 ⋅ e−iΩ + b2 ⋅ e−i2Ω + a3 ⋅ e−i3Ω

1 − a1 ⋅ e−iΩ − a2 ⋅ e−i2Ω − a3 ⋅ e−i3Ω
(3.1)

The boundary conditions for high-pass filter do not
change:H(Ω = 0) = 0 (frequency zero shall be blocked) and
H(Ω = π) = 1 (Nyquist frequency shall pass unchanged).
This again allows elimination of two of the unknown co-
efficients, but we now have seven of them: b0, b1, b2, b3 and
a1, a2, a3.

From these boundary conditions we get:

H(Ω = 0) = b0 + b1 + b2 + b3

1 − a1 − a2 − a3
= 0 (3.2)

H(Ω = π) = b0 − b1 + b2 − b3

1 + a1 − a2 + a3
= 1 (3.3)

The calculations proceed in the same way as for 2nd
order. Since we have twomore free coefficients, we need
more criteria to pre-select some of them. On one-hand
side, we have chosen the bk coefficients to behave like
binomial coefficients (i.e., to have a relation b0 = b,
b1 = −3b, b2 = 3b, b3 = −b) in concordance with the lower
order filter’s bk coefficients. On the other hand, the
target |H(Ω)|2 transfer function should have only one
cot2(Ω/2) term. The calculations are quite lengthy, so
we report only the final results. The transfer function
reads as:

|H(Ω)|2 = 1

1 +⎛⎜⎝ ω3

4 ⋅ ( 1 − ω) ⋅ ( 2 − ω) ⋅ sin2(Ω
2
) ⋅ cot(Ω

2
)⎞⎟⎠2

(3.4)

Compared with (2.8), the power of the sin() term is
increased to 2nd power, which results in a higher steepness
at the corner frequency (see Figure 4). The corner frequency
is calculated from

⎛⎝ ω3

4 ⋅ ( 1 − ω)( 2 − ω) ⋅
cot(½Ω3dB)
sin2(½Ω3dB)

⎞⎠2

= 1 (3.5)

For small corner frequencies the series expansion
again finally results in

ω ≈ Ω3dB (3.6)

The filter coefficients compute as:

a1 = +6 − 7 ⋅ Ω3dB

2 − Ω3dB

a2 = −6 + Ω3dB

2 − Ω3dB
⋅ ( 1 − Ω3dB)2

a3 = +( 1 − Ω3dB)2

b0 = +( 1 − Ω3dB)
b1 = −3 ⋅ ( 1 − Ω3dB)
b2 = +3 ⋅ ( 1 − Ω3dB)
b3 = −( 1 − Ω3dB) (3.7)

Finally, we report without proof that for smallΩ3dB the
filter is stable. The pole’s absolute values are approxi-
mately at |z| ≈ (1 − ω).

Figure 4 shows the transfer functions 1st–3rd order for
filters with corner frequenciesΩ3dB = 1/32 andΩ3dB = 1/8. It
is clearly visible that the steepness of the transition region
between pass and stop regions increases with increasing
filter order. Please notice the reduced x axis range when
comparing with Figures 1 and 3.

4 Low-pass filters

The same principle can also be applied to low-pass filters
with a corner frequency near to theNyquist frequency. Also
such filters are needed in communication systems, for
example in those based on OFDM modulation [7, 8].

We sketch the calculations for the 1st order filter here. The
starting point is again (1.3), but for a low-pass filter we have to
swap the boundary conditions: H(Ω = 0) = 1 (frequency zero

Figure 4: Transfer function of 1st–3rd order DC blocker filters.
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shall pass) and H(Ω = π) = 0 (Nyquist frequency shall be
blocked). Equations (1.4) and (1.5) are the replaced by

H(Ω = 0) = b0 + b1

1 − a1
= 1 (4.1)

H(Ω = π) = b0 − b1

1 + a1
= 0 (4.2)

or, in other words, b0 = b1 and b0 + b1 = 1 − a1. Combining
leads to 2b0 = 2b1 = 1 − a1. We set ω = 1 + a1 and insert these
relations into (6):

|H(Ω)|2 = ½(2−ω)2 ⋅(1+cos(Ω))
1+(ω− 1)2 − 2 ⋅(ω− 1) ⋅cos(Ω)

= 1

1+( ω
2−ω tan(Ω

2
))2

(4.3)

Comparedwith (1.9), the cot() function is replacedwith
tan(). The corner frequency, where the filter’s attenuation
reaches 3 dB, computes as:

|H(Ω3dB)|2 = 1
2
= 1

1 + ( ω
2−ω ⋅tan( Ω3dB

2 ))2

( ω
2 − ω

⋅tan(Ω3dB

2
))2

= 1

cot(Ω3dB

2
) = ± ω

2 − ω
(4.4)

The corner frequency is now near to the Nyquist fre-
quency, which corresponds to Ω = π. This means
(π − Ω3dB) << 1. Under this condition, we transform (4.4)
using the relation cot(x) = tan(π/2 − x). After that, the
normal series expansion for tan(x) is possible.

cot(Ω3dB

2
) = tan( π − Ω3dB

2
) = ± ω

2 − ω

π − Ω3dB ≈ ± 2 ⋅ ω
2 − ω

≈ ω (4.5)

Our parameter ω equals the distance of the (normal-
ized, angular) 3 dB corner frequency of the filter to the
Nyquist frequency (half sampling rate). If the corner fre-
quency is given, we can calculate the filter coefficients b0,
b1 and a1 (see text above (4.3)):

a1 = (π − Ω3dB) − 1

b0 = 1 −½(π − Ω3dB)

b1 = 1 −½(π − Ω3dB) (4.6)

The low-pass filter coefficients (4.6) are equivalent to
their high-pass counterparts (1.12) except for the sign of a1
and b1. Inserting these coefficients into (1) results in the
instruction to compute the output samples yk of the filter
from the input xk.

yk = 1 − ω
2

( ) ⋅ xk + xk−1( ) − 1 − ω( ) ⋅ yk−1 (4.7)

The filter equations and coefficients for higher-order
low-pass filters can be derived in the same way as for the
DC blocker filters. This is left to another publication.

5 Implementation aspects

5.1 Calculating filter coefficients

When practically using the above results for designing one
of the investigated IIR high-pass filters, one first has to
calculate the normalized angular corner frequency (filter
attenuation 3 dB) that equals our filter parameter ω. From
(4) we get:

ω = Ω3dB = 2π ⋅
f3dB
fS

(9)

where f3 dB is the corner frequency in user units (e.g., MHz)
and fS is the sampling rate of the filter in the same units.

The filter equation for the first order DC blocker (or
high-pass) filter is then given by:

yk = 1 − ω
2

( ) ⋅ xk − xk−1( ) + 1 − ω( ) ⋅ yk−1 (10)

For the second order filter it is given by:

yk = ( 1 − ̅̅
½

√
ω) ⋅ ( xk −2xk−1 + xk−2)

+( 2− 2̅
√

⋅ ω −½ω2) ⋅ yk−1 − ( 1 − ̅̅
½

√
ω)2

⋅ yk−2 (11)

For the third order filter this equation is given by:

yk = (1−ω) ⋅(xk−3xk−1 +3xk−2 −xk−3)
+6−7ω
2−ω ⋅yk−1 −6+ω2−ω ⋅(1−ω)2 ⋅yk−2 +(1−ω)2 ⋅yk−3

(12)

In many cases, the exact value of the corner frequency
is not so critical. Then, one can attempt to choose the
parameter ω (or

̅̅̅
1/2

√
⋅ω in case of the 2nd order filter) to be

equal to a negative power of 2, like 1/8, 1/32, or so. For 1st
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and 2nd order filters, all filter coefficients can be well
expressed as simple fractions in this case. Thus, all math-
ematical operations can be well executed with integer ar-
ithmetics in hardware. This reduces the detrimental effects
of rounding errors, which might even lead to instabilities.

5.2 VHDL simulation

To test the designed filter architectures, we have un-
dertaken a simulation of example filters in time domain
in the hardware description language VHDL, which
would be a preferred candidate for a filter implementa-
tion in digital hardware. The simulation presented here
uses real arithmetics for all data, but also fixed point
simulations were carried out.

Figure 5 shows simulation waveforms of 1st–3rd order
filters with ω = 1/8 for the frequency range 0 < Ω/π < 0.1 (see
alsoFigure4). Thepinkwaveat the top is the input chirp signal
(frequency varies from 0 to 0.1 fN = 0.05 fS). The three blue
waveforms are the outputs of the 1st–3rd order DC blocker
filters. The gray line above each approximates the un-squared
transfer function |H(Ω)| (not |H(Ω)|2) as determined from the
signal maxima. The red curve at the bottom gives the actual
signal frequency as fraction of the Nyquist frequency.

6 Conclusions

We have investigated a class of IIR filters, namely high-
pass filters with very low corner frequency, also named

as DC blockers. The proposed 2nd and 3rd order filters
show a significantly smaller and steeper transition
range between stop and pass-band than the commonly
used 1st order filters. We have proven that the filters
are intrinsically stable (i.e., when not considering
rounding errors) and provide analytical formulas to
calculate the filter coefficients from the desired cutoff
frequency.
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