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Abstract. “Do machines perform better than humans in visual recog-
nition tasks?” Not so long ago, this question would have been consid-
ered even somewhat provoking and the answer would have been clear:
“No”. In this paper, we present a comparison of human and machine
performance with respect to annotation for multimedia retrieval tasks.
Going beyond recent crowdsourcing studies in this respect, we also report
results of two extensive user studies. In total, 23 participants were asked
to annotate more than 1000 images of a benchmark dataset, which is the
most comprehensive study in the field so far. Krippendorff’s α is used
to measure inter-coder agreement among several coders and the results
are compared with the best machine results. The study is preceded by
a summary of studies which compared human and machine performance
in different visual and auditory recognition tasks. We discuss the results
and derive a methodology in order to compare machine performance in
multimedia annotation tasks at human level. This allows us to formally
answer the question whether a recognition problem can be considered as
solved. Finally, we are going to answer the initial question.

1 Introduction

In the field of multimedia analysis and retrieval, human performance in recogni-
tion tasks was reported from time to time [2,9,12,13,15,16,20–23], but has not
been evaluated in a consistent manner. As a consequence, the quality of human
performance is not exactly known and estimates exist only for few recognition
tasks. The design of the related human experiments also varies noticeably in
many respects. For example, crowdsourcing is often utilized to employ annota-
tors [9,12–16,23], which is coming along with some methodological issues. The
number of human participants varies from 1 to 40 in the studies considered in
this paper. The same is true for the experimental instructions and their exper-
tise, in particular for crowdworkers. This, for example, makes it nearly unfeasible
to evaluate and compare machine performance at human level across different
tasks. In fact, we know little in general about human performance in multimedia
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content analysis tasks. As a consequence, the question when such a task can be
considered as solved cannot be answered easily. The related question is addressed
by this paper: How can we systematically set machine performance in relation
to human performance? If human ground truth data are the (only) baseline,
machine performance can basically never be better than (human) ground truth
data. But considering the impressive recent advances in deep learning for pat-
tern recognition tasks, it is desirable to set machine performance in relation to
human-level performance in a systematic manner.

Another issue is related to ground truth data for retrieval tasks: The relevance
of multimedia documents at retrieval time for a certain user is not known in
advance and it depends on the user’s current search task and context. The issue
of evaluating multimedia analytics systems has been also stressed recently by
Zahálka et al. [25]. For example, a detective is interested in every occurrence of
a suspicious object (e.g., a car) in any size. On the other hand, a TV journalist,
who searches for material for re-use in order to illustrate the topic mobility,
might be interested only in retrieval results showing a car in an “iconic” view,
i.e., placed clearly in the foreground.

In this paper, we review a number of papers reporting human performance in
visual and auditory recognition tasks. This aims at putting together some parts
of the puzzle: How well do machines perform in such tasks compared to humans?
To answer this question, the results are set in relation to the current state of
the art of automatic pattern recognition systems. Furthermore, we present a
comprehensive user study that closes the gap of comparing in detail human and
machine performance in annotation tasks for realistic images, as they are used
in the PASCAL VOC (Visual Object Classes) challenge [4,5], for example. More
than 1000 images have been annotated by 23 participants in a non-crowdsourcing
setting. The number of images also allows us to draw conclusions about rarely
occuring concept categories such as “cow” or “potted plant”. It is suggested to
evaluate the reliability of users’ annotations by Krippendorff’s α [10,11], which
measures the agreement among several coders. The results of the presented study
are discussed and conclusions are drawn for the evaluation of computer vision
and multimedia retrieval systems: A methodology is introduced that enables
researchers to formally compare machine performance at human level in visual
and auditory recognition tasks. To summarize, the contributions of this paper
are as follows:

– Surveying and comparing human and machine performance in a number of
visual and auditory pattern recognition tasks,

– presenting a comprehensive user study regarding image annotation yielding
insights into the relation of human and machine performance,

– introducing the concept of inter-coder reliability in the field of multimedia
retrieval evaluation for comparing human and machine performance,

– proposing an evaluation methodology that allows us to evaluate machine per-
formance at human level in a systematic manner, and

– suggesting two indices for measuring human-level performance of systems.
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The remainder of the paper is structured as follows. Section 2 surveys studies
that compared human and machine performance for different visual and auditory
recognition tasks. Section 3 deals with a comprehensive user study regarding
image annotation and related results are presented. A methodology to evaluate
machine performance at human level in a systematic way is suggested in Sect. 4.
Finally, some conclusions are drawn in Sect. 5.

2 Human and Machine Performance in Visual
and Auditory Recognition Tasks

In this section, we briefly survey related work which compared human and
machine performance for some multimedia analysis tasks. Yet, human perfor-
mance has been considered only in a small number of studies.

Some studies evaluated human performance in the task of visual concept
classification. Kumar et al. [12] as well as Lin et al. [14] measured the human
inter-coder agreement and compared experts against crowdsourcing annotators.
Other papers reported the performance of humans and machine systems on some
benchmark datasets. Jiang et al. [9] presented a dataset for consumer video
understanding. For this dataset, the human annotations were significantly bet-
ter than the machine results. Parikh and Zitnick [16] investigated the role of data,
features, and algorithms for visual recognition tasks. An accuracy of nearly 100%
is reported for humans on two PASCAL VOC datasets, whereas machine per-
formance was around 50% on both datasets in 2008. Xiao et al. [23] presented
the dataset SUN (Scene Understanding) for scene recognition consisting of 899
categories and 130,519 images. Scene categories are grouped in an overcomplete
three-level tree. Human performance reached 95% accuracy at the (easy) first
level and 68.5% at the third level of the hierarchy, while the machine perfor-
mance of 38% accuracy was significantly below human accuracy in this study.
Russakovsky et al. [18] surveyed the advances in the field of the ImageNet chal-
lenge [3] from 2010 to 2014. The best result in 2014 was submitted by Szegedy
et al. [19] (GoogLeNet) and achieved an error rate of 6.66%. Russakovsky et al.
compared this submission with two human annotators and discovered that the
neuronal network outperformed one of them. He et al. [8] claimed their system
to be the first one that surpassed human-level performance (5.1%) on ImageNet
data by achieving an error rate of 4.94%.

Phillips et al. [17] conducted one of the first comparisons of face identifica-
tion capabilities of humans and machines. Interestingly, at that time the top
three algorithms were already able to match or to do even better face identifica-
tion compared with human performance on unfamiliar faces under illumination
changes. Taigman et al. [20] presented a deep learning system for face verifica-
tion that improves face alignment based on explicit 3D modelling of faces. A
human-level performance of 97.35% accuracy was reported for the benchmark
“Faces in the Wild” (humans: 97.53% accuracy).

Other interesting comparisons between humans and machine systems include
camera motion estimation (Bailer et al. [2]), music retrieval (Turnbull et al. [20]),
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and the geolocation estimation of images (Weyand et al. [22]). These studies also
demonstrated that machines can reach or outperform human performance.

While the experiments of Parikh and Zitnick [16] with respect to re-
engineering the recognition process did not provide evidence that humans are
superior to machines, other reported results on PASCAL VOC and other data
sets showed that humans perform significantly better on classifying natural scene
categories. The reported results for visual concept classification [9,12,15,23]
indicate that human performance is (far) better than the respective state of
the art for automated visual concept classification at that time. Although He
et al. claimed in 2015 that human-level performance has been surpassed by their
approach [8], this claim remains questionable since only two human annota-
tors were involved in the underlying study of Russakovsky et al. [18]. There are
also some methodological issues in the reported experiments of the other stud-
ies, for example, experimental settings are not well defined, the employment of
crowdsourcing is critical, or the number of images is too small which prevents
drawing conclusions for rare classes. Hence, stronger empirical evidence still has
to be provided for a meaningful comparison of human and machine performance.
Therefore, in the remainder of this paper we address these issues by a compre-
hensive user study and derive a methodology to measure machine performance
at human level.

3 User Study: Human Performance in Image Annotation

The analysis of previous work shows that the settings of the majority of stud-
ies do not allow us to compare human performance against machine learning
approaches for image classification tasks. In this section, we present two user
studies measuring human performance in annotating common image categories
of daily life in a realistic photo collection (PASCAL VOC [4,5]). The design of
this study is described in Sect. 3.1. The inter-coder agreement of the two exper-
iments is evaluated using Krippendorff’s α (Sect. 3.2). Furthermore, the results
of the best machine systems submitted to PASCAL VOC’s leaderboard are set
in relation to the human agreement (Sect. 3.3). Finally, the results are made
comparable in a systematic manner (Sect. 3.4).

3.1 Experimental Design

We have randomly selected 1,159 images from the PASCAL VOC test set. The
relatively high number of images - compared to other studies - allows us to also
obtain statistically relevant insights into human performance for less frequent
concepts. For example, the concept cow is visible only in 34 out of 1,159 images,
whereas the concept person occurs in 420 images. However, using PASCAL
VOC’s test set comes along with the disadvantage that the ground truth data
are not available, in contrast to training and validation data. On the other hand,
submission results are available only for the test set at PASCAL VOC’s home-
page. Therefore, we created ground truth for this test data subset by ourselves.
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In total, twenty-three students (3rd and 4th year) were asked to annotate
images of the test set with respect to 20 concept categories (see also Table 1),
18 students participated in the first and five other students participated in the
second experiment. They were rewarded 25e for participating in the experiment.
All students were members of the Department of Electrical Engineering and
Information Technology at the Jena University of Applied Sciences.

The participants were instructed to label images with respect to the presence
of objects of 20 categories but without localizing them. Multiple object classes
can be visible in an image, i.e., it is a multi-labeling task. This task corresponds to
the classification task of the VOC challenge 2012. The study was further divided
in two experiments. In the first experiment, the participants were instructed
without using the PASCAL VOC annotation guidelines [1], since we aimed at
measuring human performance based on common sense and existing knowledge
about categories of daily life. In the second experiment, the participants were
asked to annotate the images according to the PASCAL VOC guidelines.

The annotation process was divided in four batches that consisted of a slightly
decreasing number of images. After each batch, the participants were allowed to
make a break of 10–15 min. The annotation process had to be completed within
four hours. The images were presented to all participants in the same order. They
had to mark the correct object categories via corresponding checkboxes. When
a user has finished annotating an image, he proceeded with the next image. The
software did not allow users to return to a previously annotated image. All users
completed the task within the given time limit.

3.2 Measuring Inter-Coder Agreement: Krippendorff’s α

Krippendorff’s α (K’s α)[10,11] measures the agreement among annotators and
is widely used in the social sciences to evaluate content analysis tasks. K’s α
is a generalization of several known reliability measures and has some desirable
properties [11], it is (1) computable for more than two coders, (2) applicable to
any level of measurement (ordinal, etc.) and any number of categories, (3) able to
deal with incomplete and missing data, and (4) it is not affected by the number
of units. In its general form K’s α is equal to other agreement coefficients:

α = 1 − Do

De
, where (1)

Do is the observed disagreement and De is the expected disagreement due to
chance. Krippendorff discusses differences of K’s α with respect to other agree-
ment coefficients [10] as well as explains its computation for various situations
(depending on the number of coders, missing data, level of measurement, etc.)
[11]. Hayes and Krippendorff provided a software that computes K’s α [6].

3.3 Results for Inter-Coder Agreement

Agreement When not Using VOC Guidelines. The experimental results
are displayed in Table 1 for the 1159 images of the PASCAL VOC test set. They
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show the inter-rater agreement among the 18 coders by means of K’s α. Across
all concept categories and users, K’s α is 0.913. The largest agreement among the
annotators is observable for the three categories airplane, cat, and bird, whereas
the categories dining table, chair, and potted plant yield the lowest agreement.

Table 1. User agreement (K’s α) on a subset of PASCAL VOC test set, number of
samples per category in this subset, and best machine-generated results (AI-1 and AI-2,
avg. precision) on the whole test set.

Concept #Samples
per concept

Human (K’s α) AI-1 AI-2

Airplane 77 0.980 0.986 0.998

Cat 96 0.978 0.955 0.990

Bird 101 0.976 0.934 0.976

Dog 123 0.974 0.947 0.989

Sheep 35 0.970 0.874 0.950

Cow 34 0.960 0.821 0.943

Horse 42 0.959 0.929 0.985

Bus 45 0.956 0.910 0.959

Train 55 0.953 0.960 0.987

Boat 46 0.940 0.922 0.964

Motorbike 55 0.938 0.921 0.972

Bicycle 68 0.909 0.860 0.947

TV monitor 63 0.898 0.827 0.942

Person 420 0.895 0.950 0.988

Car 126 0.848 0.836 0.948

Sofa 79 0.796 0.678 0.868

Bottle 93 0.761 0.654 0.836

Dining table 61 0.737 0.796 0.881

Chair 123 0.716 0.734 0.904

Potted plant 59 0.668 0.594 0.768

Overall/MAP − 0.913 0.854 0.940

Some interesting observations can be made. First, larger deviations of inter-
coder agreement are observable for the different categories. Applying the rule of
thumb that α > 0.8 corresponds to a “reliable” content analysis [10], it turns
out that the users’ annotations cannot be considered as such for five categories:
sofa, bottle, dining table, chair, and potted plant (K’s α even only 0.67).

Table 1 shows also the results AI-1 and AI-2, which are the best submissions
at PASCAL VOC’s leaderboard website1 for the competitions comp1 and comp2,
1 http://host.robots.ox.ac.uk:8080/leaderboard/main bootstrap.php.

http://host.robots.ox.ac.uk:8080/leaderboard/main_bootstrap.php
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respectively, by means of average precision (AP ). The difference between the
two is that comp2 is not restricted to the training set. Please note that these
results of the user study and the VOC submissions are not directly comparable
at this stage due to two reasons. First, the users annotated only a subset of the
original test set. Second, different evaluation measures are used. In particular,
the measures differ in the way how agreement by chance is considered. A more
fair comparison resolving these issues is conducted in the subsequent section.

Anyway, when we set the inter-rater agreement in relation to the performance
of the currently best machine results, we find that the correlation of K’s α and
AP with respect to the categories is 0.88 (AI-1) and 0.89 (AI-2), respectively. In
particular, it is observable that the machine learning approaches perform worst
for the same five categories as humans do.

Agreement When Using VOC Guidelines. In this experiment, it is inves-
tigated whether the inter-coder agreement is improved when more precise def-
initions are provided to the users. For this purpose, we have asked five other
students (from the same department) to annotate the same 1159 images – this
time based on the PASCAL VOC annotation guidelines [1]. The guidelines give
some hints how the annotator should handle occlusion, transparency, etc.

Interestingly, the inter-coder agreement was not improved by using the guide-
lines. The inter-coder agreement in this experiment (measured again by K’s α)
is 0.904, in contrast to 0.913 without guidelines. The difference between the
mean values of K’s α with respect to all 20 categories is not statistically relevant
(paired student’s t-test, two-sided, significance level of 0.05), i.e., the reliability of
human annotations is equal in both experiments. Although the participants used
the annotation guidelines, the annotators did not achieve a better agreement in
this experiment.

3.4 Comparing Human and Machine Performance

Since ground truth data for PASCAL VOC 2012 test set are not publicly avail-
able, we have created ground truth data for the related subset on our own. The
ground truth data have been created according to PASCAL VOC annotation
guidelines (see above). Critical examples were discussed by three group mem-
bers (experts), two of them being authors of the paper. If a consistent agreement
could not be achieved, then the example was removed for the related category.

In addition, we have trained a convolutional neural network (called AI-3 from
now on) and evaluated its performance on the 1159 images. This allows us to
apply AI-3 on the whole PASCAL test set as well as on the subset used in the
human annotation study. Finally, this link enables us to compare human and
machine performance for visual concept classification on PASCAL VOC test
set data. We use the convolutional neural network of He et al. [7] consisting
of 152 layers, which we fine-tuned on the PASCAL VOC training dataset. The
network was originally trained on the ImageNet 2012 dataset [18]. Furthermore,
we have reduced the number of output neurons to the number of classes (in this
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case 20) and used a sigmoid transfer function to solve the multi-class labeling
task of PASCAL VOC. Seven additional regions are cropped and evaluated per
test image in the classification step to achieve better results. The mean average
precision (MAP) for AI-3 is very similar for both datasets (0.871 vs. 0.867 on
subset), although the difference of AP (for the subset and the whole test set) is
larger for some classes, e.g., chair and train. The system AI-3 performs slightly
better than AI-1. The results on both sets are depicted in Fig. 1.

Fig. 1. Results (average precision in %) of the best and the worst human annotator,
as well as of the best PASCAL VOC leaderboard submissions for comp1 and comp2.

Now, based on this analysis, the ground truth data allow us to compare
human and machine performance using the same evaluation measure (average
precision). But one issue still needs to be resolved. The annotators label the
relevance of images only with “0” or “1” (in contrast to the real-values system
scores). The (random) order of images labeled with “1” affects the measure of
average precision. Due to this, we have calculated the “best case” (oracle) and
the “worst case” possible retrieval results based on the human annotations.

Regarding the “best case” in the first experiment, there are three human
annotators that are significantly better than AI-2 (paired student’s t-test, one-
sided, significance level of 0.05). These annotators achieve a mean average preci-
sion of 96.5 %, 96.3 %, and 95.3 %, respectively. However, regarding the “worst
case” ordering, all human annotation results are significantly worse than AI-2,
the best result (of the worst cases) achieves a mean average precision of 91.6 %.
In other words, the results are sensitive to the ranking order of the images which
are labeled as “relevant”.

The results for the best annotator of our second experiment (using VOC
guidelines) are similar. The best “best case” mean average precision is 96.9 %,
this is the only human result of experiment 2 that is significantly better than
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AI-2. Again, in case of “worst case” ordering, AI-2 is significantly better than
all human annotation results.

Regarding both experiments, we have also estimated the best annotator
(coming from experiment 2, with respect to best case ordering) and the worst
annotator (coming from experiment 1, with respect to worst case ordering) with
respect to our ground truth data. The results are displayed in Fig. 1. Again,
the best results of the machine vision systems are presented as well. Regarding
oracle results of the best human annotator, the automatic AI-2 system is only
better for the two categories horse and cat. The AI-2 system achieved better
results than AI-3. This can be explained by the fact that AI-3 relied only on
the official training set, whereas AI-2 used additional data. However, the AI-3
system outperforms the worst human annotator in the most cases.

Overall, the results indicate that the automatic system AI-2 indeed reaches
performance comparable or even superior to humans. To be more precise, even
when (artificially) optimizing the ranking of the human annotations with respect
to ground truth data, the system AI-2 still was better than 9 participants and
was on a par with 6 participants (only 3 human “best case” results were better
than AI-2) in experiment 1 (all results based on a paired student’s t-test, one-
sided, significance level of 0.05). It is similar for experiment 2: AI-2 is better
than 2 human “best case” results (both experiments: 11), on a par with another
2 results (both experiments: 8), and a single human annotator performed better
(both experiments: 4). In other words, the system AI-2 is at least on a par with
83 % (or better than 48 %) of the human participants in our study.

4 Measuring Machine Performance at Human Level

4.1 Issues of Measuring Human-Level Performance

The performance of multimedia retrieval systems is often measured by average
precision (AP ). However, this measure has some known drawbacks. First, the
measure depends on the frequency of a concept. Considering the definition of
average precision, it is clear that the lower bound is not zero but determined by
the frequency of relevant documents in the collection. When randomly retriev-
ing documents, the average precision will be equal to a concept’s frequency on
average. This has been stressed, e.g., by Yang and Hauptmann who suggested
the measure ΔAP (delta average precision) to address this issue [24]. Second,
the upper bound of 1.0 is also not reasonable. If we consider that the agreement
in our user study is below 0.8 for five categories and is even only 0.67 for potted
plant, the question arises how we have to interpret an average precision of, for
example 67 % and 100 %, respectively. If two raters agree with K’s α only with
0.67, and one rater corresponds to ground truth, it is basically possible that the
67 %-result has the same quality as the 100 %-result (from another perspective,
in another context). Hence, the question remains: how can we formally measure
whether a machine-based result is comparable to or even better than a human
result? This question is addressed in the subsequent section.
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4.2 An Experimental Methodology and Two Indices
for Comparisons with Human-Level Performance

In this section, we propose an experimental methodology and two novel easy-
to-use measures, called human-level performance index (HLPI) and human-
level performance ranking index (HLPRI). The proposed methodology is aimed
at providing a systematic guidance to measure human-level performance in
multimedia retrieval tasks. It is assumed that a visual or auditory concept is
either present or not in a multimedia document. Furthermore, it is assumed
that a standard benchmark dataset is available. First, ground truth data G
should be created by knowledgeable experts E of the related domain. If pos-
sible, the reliability of these expert annotations should be measured as well
(K’s α should exceed at least 0.8 as a rule of thumb) in order to ensure that
the relevance of categories is well-defined. Critical examples should be subse-
quently discussed among the group of experts E. If no consistent decision is pos-
sible, then such examples should be appropriately marked or discarded from the
dataset.

The group of human participants H should consist of at least five anno-
tators/coders, who share a similar knowledge level regarding the target domain
(e.g., experts, if performance is to be measured at expert level). The annotations
of the group H are used to evaluate human performance in the given task. The
annotation process should be conducted in a well-defined setting. The latter two
criteria (same knowledge level, well-defined setting) normally preclude a crowd-
sourcing approach. Apart from other measures, the inter-rater agreement among
the annotators should be also estimated by Krippendorff’s α. K’s α is suggested
since it can potentially also deal with other levels of measurement (than binary).
Then, the agreement (accuracy) ahuman is the median of the agreement scores
(e.g., measured by K’s α or AP ) of the coders H with respect to G. The machine-
generated result is also compared to G, yielding the agreement amachine. Often,
several instances of a machine system, e.g., caused by different parametrizations
or training data, exist. In this case, it is also reasonable to test all these instances
with respect to G and use the median as amachine. In this way, it can be pre-
vented that a system is better only due to fine-tuning or by chance. Then, the
human-level performance index is defined as

HLPI =
amachine

ahuman
, (2)

assuming that human inter-coder agreement is better than chance, i.e.,
Ahuman > 0. If HLPI > 1.0, then machine performance is possibly better. How-
ever, this has to be verified and ensured by an appropriate statistical significance
test.

A second measure the human-level performance ranking index (HLPRI) is
suggested. This index is based on a sorted list in descending order according to
the agreement measurements of the n human annotators with respect to ground
truth data G. Let b be the number of machine results to be evaluated that are
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better than human annotation results, and let w be the number of machine
annotation results that are worse (in the sense of statistical relevance). Then,
the human-level performance ranking index is defined by

HLPRI =
b + 1
w + 1

(3)

HLPRI of AI-2 is 2.4 and 1.5 in our experiments 1 and 2, respectively.

5 Conclusions

In this paper, we have investigated the question whether today’s automatic
indexing systems can achieve human-level performance in multimedia retrieval
applications. First, we have presented a brief survey comparing human and
machine performance in a number of visual and auditory recognition tasks. The
survey has been complemented by two extensive user studies which investigated
human performance in an image annotation task with respect to a realistic photo
collection with 20 common categories of daily life. For this purpose, the well-
knwon PASCAL VOC benchmark has been used. We have measured the human
inter-coder agreement by Krippendorff’s α and observed that the reliability of
annotations noticeably varies for the concepts. Krippendorff’s α was below 0.8 for
5 out of 20 categories, which indicates that these categories are not well-defined
and are prone to inconsistent annotation. This is an issue for the creation of
ground truth data and subsequent evaluation as well.

In addition, we have carefully compared human and machine performance for
image annotation. It turned out that the best submission at PASCAL VOC’s
leaderboard is better than 11 or at least on a par with 19 out of 23 participants of
our study. This indicates that the submission has indeed reached above-average
human-level performance for the annotation of the considered visual concepts.

We have also addressed the issue of measuring human-level performance
of multimedia analysis and retrieval systems in general. For this purpose, we
have suggested an experimental methodology that integrates the assessment of
human-level performance in a well-defined manner. Finally, we have derived two
easy-to-use indices for measuring and differentiating human-level performance.
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