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Abstract

Mid-infrared spectroscopy (MIRS) has proven to be a cost-effective, high throughput measure-
ment technique for soil analysis. After multivariate calibration mid-infrared spectra can be used
to predict various soil properties, some of which are related to lime requirement (LR). The objec-
tive of this study was to test the performance of MIRS for recommending variable rate liming on
typical Central European soils in view of precision agriculture applications. In Germany, LR of
arable topsoils is commonly derived from the parameters organic matter content (SOM), clay
content, and soil pH (CaCl2) as recommended by the Association of German Agricultural Analyti-
cal and Research Institutes (VDLUFA). We analysed a total of 458 samples from six locations
across Germany, which all revealed large within-field soil heterogeneity. Calcareous topsoils
were observed at some positions of three locations (79 samples). To exclude such samples from
LR determination, peak height at 2513 cm–1 of the MIR spectrum was used for identification.
Spectra-based identification was accurate for carbonate contents > 0.5%. Subsequent LR deri-
vation (LRSPP) from MIRS-PLSR predictions of SOM, clay, and pH (CaCl2) for non-calcareous
soil samples using the VDLUFA look-up tables was successful for all locations (R2 = 0.54–0.82;
RMSE = 857–1414 kg CaO ha–1). Alternatively, we tested direct LR prediction (LRDP) by MIRS-
PLSR and also achieved satisfactory performance (R2 = 0.52–0.77; RMSE = 811–1420 kg CaO
ha–1; RPD = 1.44–2.08). Further improvement was achieved by refining the VDLUFA tables to-
wards a stepless algorithm. It can be concluded that MIRS provides a promising approach for
precise LR estimation on heterogeneous arable fields. Large sample numbers can be processed
with low effort which is an essential prerequisite for variable rate liming in precision agriculture.
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1 Introduction

Soil acidification is a natural process that is aggravated by
application of certain fertilizers (Goulding, 2016). Liming
counteracts soil acidification. Besides the neutralization of
acids, liming has various far reaching impacts on soil struc-
ture as well as on nutrient availability (Holland et al., 2018;
Frank et al., 2019). Thus, for economic and agronomic rea-
sons recommendations for optimum pH values exist in most
countries (Edmeades et al., 1985; Goulding, 2016; VDLUFA,
2000a). The extent of soil acidification as well as the extent
and rate of pH rise after liming depend on various soil proper-
ties such as clay and organic matter content (Robson, 2012;
Bloom et al., 2005).

In Germany, the Association of German Agricultural Analytic
and Research Institutes (VDLUFA) published a recommenda-
tion algorithm that comprises the following steps (VDLUFA,
2000a). Firstly, a target pH value with respect to management
(arable land or permanent grassland), soil texture (clay con-
tent), and SOM content is defined. Secondly, the actual soil

pH value is measured. Thirdly, lime dosage is derived from
the difference between target and actual pH value and given
in kg CaO ha–1, irrespective of the type of lime finally applied.
The scheme for arable soils is organized in look-up tables
where SOM contents and soil texture are grouped in only five
and six classes, respectively (VDLUFA, 2000b). Main reasons
for the coarse classification are that (1) clay and SOM are
mostly not analyzed but estimated and (2) the algorithm
should be simple, clear, and trustworthy for practitioners. The
actual pH is classified into five classes (A: very low; B: low;
C: optimal; D: high; E: very high). Despite rough classification
of input parameters, the measurement of actual pH has to be
precise, because a pH difference of 0.1 units can induce
changes in lime recommendation up to 2000 kg CaO ha–1.

In agricultural practice in Germany and many other countries,
soil testing is mostly based on a single composite topsoil
sample (0–30 cm depth) for an area of up to three hectares.
Consequently, within-field soil heterogeneity is not adequately
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considered (Robertson et al., 1993; Patzold et al., 2008;
Wallor et al., 2018). Thus, the common practice easily leads
to erroneous lime dosage on the sub-plot scale. Severe errors
may particularly occur if fields have both calcareous and non-
calcareous areas, because mixing of calcareous and non-
calcareous sub-samples causes the entire composite sample
to be calcareous and diminishes the recommended liming for
the whole area to zero.

During the last decade, sensor based soil data acquisition
and related precision farming applications made enormous
progress (Gebbers and Adamchuk, 2010; Kuang et al.,
2012). Infrared spectroscopy has potential for fast and pre-
cise quantification of various soil properties with minimum
effort (Viscarra Rossel et al., 2006; Hutengs et al., 2018).
Meanwhile, near-infrared (NIRS), visible-near infrared (vis-
NIRS) as well as mid-infrared spectroscopy (MIRS) can
replace or at least complement conventional laboratory meth-
ods for analyzing a wide range of soil properties (Bellon-
Maurel and McBratney, 2011; Soriano-Disla et al., 2014).
Compared to vis-NIRS, mid-infrared (MIR) spectra reveal
more distinct features and thus show higher correlations with
soil fertility parameters such as SOM and particle size distri-
bution. However, vis-NIRS is already established for mobile
measurements in situ (Mouazen et al., 2007; Rodionov et al.,
2015), while portable MIRS devices have only recently
become commercially available (Hutengs et al., 2018).

To derive soil properties from IR spectra, multivariate statis-
tics, such as partial least squares regression (PLSR), are
commonly applied. Prediction models for all relevant LR
parameters (i.e., SOM, soil texture, pH, and carbonate) have
been successfully calibrated using PLSR (e.g., Viscarra
Rossel et al., 2006; Soriano-Disla et al., 2014). In some
cases, even direct evaluation of mid-infrared spectral informa-
tion is possible. Carbonates can be assigned to bands at
2686–2460 cm–1, 1850–1784 cm–1, 1567–1295 cm–1,
889–867 cm–1, 734–719 cm–1, 719–708 cm–1, and
2910–2850 cm–1 (Mirzaeitalarposhti et al., 2016). In particu-
lar, the wavenumbers 2686–2460 cm–1 and 889–867 cm–1

are specific for carbonate in soil (Tatzber et al., 2010). Accord-
ingly, Tatzber et al. (2007) successfully determined carbonate
content in soil from the peak area of these two bands. How-
ever they did not take into account variations in spectral
response of different carbonates.

Using MIRS and PLSR modelling, Janik et al. (1998) and
Viscarra Rossel et al. (2006) proved successfully the potential
of MIRS to determine lime requirement for low organic matter
Australian soils. The study of Janik et al. (1998) was based
on 188 samples from northern Australia, while the study of
Viscarra Rossel et al. (2006) was based on 118 samples from
one single arable field. For Canadian soils, cation exchange
capacity (CEC) estimation and subsequent LR derivation
were successfully demonstrated by Leblanc et al. (2016).
However, in the latter study direct derivation of LR from MIR
spectra failed.

In view of a future introduction to precision agriculture, the
objective of this study is to explore more extensively the per-
formance of MIRS and PLSR to derive variable lime recom-

mendations on field scale and thereby on various arable fields
which reveal a large variability of soil characteristics within
and between the fields in the context of the German standard
LR algorithm.

The hypotheses of this study are:

(1) Calcareous samples can be identified based on carbonate
specific bands without evaluation of the whole spectrum
prior to further LR evaluation.

(2) The single parameters for determining LR (SOM, clay,
and pH) can be predicted by MIRS in combination with
PLSR.

(3) Single parameter predictions (SPP) are suitable for sub-
sequent derivation of precise lime requirement (LRSPP).

(4) MIRS-PLSR can also be used to directly predict lime re-
quirement (LRDP) in order to omit the detour via the single
parameter determination according to the VDLUFA
scheme.

To test the hypotheses, we investigated MIRS performance
on 458 topsoil samples from six different locations in Ger-
many. The chosen locations represented a wide range of soil
parent materials as listed in the next section.

2 Material and methods

2.1 Test sites and sampling

Overall 458 arable topsoil samples (0–30 cm depth) from six
locations in Western, Central, and Eastern Germany (see
Tab. 1) were collected to test the potential of MIRS for the
determination of lime requirement. The soils under study
were classified as Cambisols, Stagnosols, Luvisols, Cherno-
zems, Regosols, Arenosols, and Retisols according to the
IUSS Working Group WRB (2015). At the locations Asche-
berg (As), Bölingen (Bö), Hilberath (Hi) and Wilmersdorf (Wi),
one field each was uniformly managed. At Görzig (Gö) and
Heimbach (He), variable rate liming was conducted as part of
fertilizer experiments. The chosen locations revealed large
variability in soil texture, SOM content, and pH between and
also within the locations (Tab. 2).

2.2 Ground Truth measurements and lime
requirement (LR) recommendation

All samples were air-dried and sieved (< 2 mm) prior to reference
(ground truth) measurements with those standard laboratory
methods that are recommended by the VDLUFA. Soil texture
classes were determined from particle size analyses that were
conducted by the combined sieve and pipette method (ISO
11277, 2002). Total carbon content was determined after dry
combustion (elemental analysis; ISO 10694, 1995). To deter-
mine inorganic carbon the gas-volumetric Scheibler method
was used (ISO 10693, 2014). Soil organic matter content (SOM)
was determined from the difference between total carbon and
inorganic carbon multiplied by a factor of two (Pribyl, 2010). Soil
pH was measured with a glass electrode in a 1:2.5 suspension
of soil and 0.01 M CaCl2 (ISO 10390, 2005).
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Reference values for LR were calculated for all soil samples
following the official algorithm of the VDLUFA (2000a, 2000b).
Accordingly, soil texture was classified in five classes:
£ 5%, > 5–12%, > 12–17%, > 17–25%, and > 25% clay,
respectively. Organic soils form a separate class were not
relevant in this study. Further, SOM content was assigned
to five classes: £ 40, 41–80, 81–150, 151–300, and
> 300 g SOM kg–1, respectively. From the look-up table the
respective target pH was determined. Finally LR was derived
from the difference between the target and the measured pH
value.

The VDLUFA algorithm was (1) applied as-is and (2) con-
ceived as a continuous (i.e., stepless) algorithm (in the follow-
ing designated as refined VDLUFA). For this purpose, the
original VDLUFA values for SOM and clay contents were
interpolated in steps of 5 g kg–1 and 0.5%, respectively.

2.3 Spectral features of calcite and dolomite
containing soil samples

To investigate spectral features of carbonates in soil, refer-
ence loess loam material was mixed with different amounts of
calcite and/or dolomite. The loess material originated from the
Ap horizon of an arable field at the experimental farm of the
University of Bonn at Klein-Altendorf. Both carbonates were
purchased in defined quality from Alfa Aesar (Karlsruhe, Ger-
many; ACS reagent grade). The carbonates were added in
different quantities to the reference material in order to gener-
ate concentrations as follows: 2%, 5%, 10%, 20%, 40%,
60%, and 80% (w/w) of carbonates. In addition, the proportion
of calcite to dolomite was varied in 0.2% steps in order to imi-
tate spectral features of different calcareous soils. The refer-
ence material, pure calcite, and pure dolomite were investi-
gated separately. The spectra of the resulting 89 samples
were taken in the same way as for the other soil samples (see
below).

2.4 Spectroscopic measurements

For MIRS measurements 2 g of each sample were ground in
a ball mill. About 20 mg of the ground sample were divided in
fivefold repetition into the hollowed positions of a microtiter
plate and smoothed with a plunger. Diffuse reflectance mid-
infrared Fourier transform (DRIFT) spectra were recorded in
the laboratory with a Bruker Tensor 27 HTS-XT for automated
high-throughput screening (Bruker Optik, Ettlingen, Ger-
many). The device was operated with a liquid N2 cooled mer-
cury-cadmium telluride (MCT) detector and a broadband KBr
beam splitter. For each spectrum 120 scans at a resolution of
4 cm–1 and a spectral range of 7500–550 cm–1 were carried
out.

2.5 Spectra treatments and calibration of
prediction models

The fivefold repeated spectra measurements were averaged
in order to reduce noise. Furthermore, for multivariate data
analysis the spectral range was narrowed to 3800–550 cm–1.
Pre-tests had shown that data beyond 3800 cm–1 were not
relevant for our application. For chemometric modeling, the
spectroscopy software OPUS Quant was used (Bruker Optik,
Ettlingen, Germany). Partial least squares regression (PLSR)
based on the PLS 1 algorithm (Geladi and Kowalski, 1986;
Martens and Næs, 1989; Wold et al., 1996; Brereton, 2018)
was performed. For each location a separate prediction mod-
el was calibrated via leave-one-out cross validation (LOOCV).
To avoid overoptimistic evaluation of LOOCV modeling
results (Bellon-Maurel and McBratney, 2011), an additional
test-set validation was performed for the locations with
n > 70 samples. Therefore, the sample set was divided in
70% for calibration and 30% for validation. The optimum num-
ber of latent variables for the prediction models was selected
based on the smallest root mean square error of cross-valida-
tion (RMSECV) and root mean square error of prediction
(RMSEP), respectively. To avoid over-fitting, the maximum
number of latent variables was limited to ten. Five different
methods for spectra preprocessing were tested to eliminate
the physical effect of light scattering and to improve model
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Table 1: Parent materials and reference soil groups (RSG according to IUSS Working Group WRB, 2015) at the six locations under study.

Location Geographic setting Parent material & reference soil group (RSG)

Ascheberg (As) 51�45’32"N, 7�34’47"E Cretaceous marls partially covered by Saalian glacial till, aeolian sand, and fluvial sediments;
RSG: Cambisols, Stagnosols

Bölingen (Bö) 50�34’1"N, 7�5’5"E Pleistocene periglacial slope deposits consisting of (1) Devonian sand-, silt-, & claystones
weathered during Mesozoic & Tertiary, (2) scattered Tertiary basalt bombs, and (3) Weichselian
loess in variable amounts; RSG: Cambisols, Luvisols, Stagnosols

Görzig (Gö) 51�39’50"N, 11�59’48"E Weichselian loess; RSG: Chernozems, Regosols

Heimbach (He) 50�37’13"N, 6�32’36"E Pleistocene periglacial slope deposits consisting of weathered sand- and claystones from the
Upper Bunter sandstone; RSG: Cambisols

Hilberath (Hi) 50�34’45"N, 6�59’27"E Pleistocene periglacial slope deposits consisting of Devonian sand-, silt-, & claystones weath-
ered during Mesozoic & Tertiary, partially covered by Weichselian loess; RSG: Cambisols,
Stagnosols

Wilmersdorf
(Wi)

53�6’39"N, 13�54’21"E Weichselian glaciofluvial sands partly covering glacial till; RSG: Arenosols, Retisols, Luvisols,
Planosols
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accuracy (Varmuza and Filzmoser, 2009): none, first deriva-
tive, first derivative + standard normal variate (SNV), first
derivative + multiplicative scatter correction (MSC), and sec-
ond derivative. Preprocessing methods with the best predic-
tive power were selected. Predictive power was evaluated by
coefficient of determination (R2) between conventionally
measured and predicted values and RMSECV or RMSEP. We
also listed ratio of performance to deviation (RPD) values be-
cause it is widespread, although it generally provides the
same information as R2 (Minasny and McBratney, 2013). For
evaluation, RPD was classified according to Viscarra Rossel
et al. (2007): RPD < 1.0 poor, 1.0–1.4 weak, 1.4–1.8 fair,
1.8–2.0 good, 2.0–2.5 very good, and ‡ 2.5 excellent predic-
tion models; quantitative predictions are considered valuable
for models with RPD values > 1.8. With respect to subse-
quent derivation of LRSPP, R2 and root mean square error
(RMSE) were calculated.

3 Results and discussion

3.1 Identification of calcareous samples prior to
LRSPP estimation

Mixing known amounts of pure carbonates (calcite and dolo-
mite) with non-calcareous loess topsoil material caused
peaks of variable height in specific bands in the MIR spectra.
The strongest response occurred between 2670 cm–1 and
2450 cm–1 (Fig. 1). The same band was utilized by Tatzber
et al. (2007). Yet, spectral features of calcite and dolomite

revealed important differences. Calcite induced a large peak
at 2513 cm–1, while the dolomite peak appeared at
2523 cm–1; a second smaller dolomite peak was located at
2630 cm–1. Shifts in bands for calcite and dolomite were also
reported by Bruckman and Wriessnig (2013).

Besides wavelengths, also peak shapes varied: at equal car-
bonate contents, the major dolomite peak was less sharp.
Note that this study was conducted with powdery pure miner-
als that were mixed with ground soil in variable quantity and
combination. Spectral response of natural calcareous sam-
ples might deviate for several reasons. In nature, different
carbonates with varying Ca/Mg ratio do occur. Further, signals
from minerals coated with clay and/or SOM will be less clear
and less quantitative. The same might apply for pedogenic
(secondary) carbonates. However, we assume that the spec-
tra shown in Fig. 1 represented the end-members of possible
spectral shapes. In consequence, the characteristic features
(Fig. 1b) were considered appropriate to separate non-calca-
reous samples from those containing calcite and/or dolomite.
For our purposes, simple identification of carbonate presence
was sufficient, because calcareous soils do not require liming
irrespective of their carbonate content. Though, carbonate
quantification from MIR spectra was successfully conducted
by Tatzber et al. (2007) on the basis of peak areas in similar
bands as identified in our study. However, the authors did not
explicitly consider differences between different carbonates.
Our results suggest that simple peak area quantification is
perhaps defective if a sample contains different carbonates.
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The height of absorbance at 2513 cm–1 was successfully
used to empirically identify soil samples that do not require
liming (Fig. 2). After correction of baseline offset, peak height
> 0.014 absorption units (AU) at 2513 cm–1 was considered
an appropriate indicator for the presence of carbonate. Using
this threshold, 96% of the samples with carbonate contents
> 0.5% were correctly identified. However, identification of
carbonate contents < 0.5% was less accurate, especially for
dolomite containing samples, because the dolomite peak was
less pronounced (Fig. 1). Four samples from the location As
and one sample from Wi were erroneously classified as cal-
careous although being non-calcareous according to the HCl-
pretest. The respective measured pH values varied between
6.75 and 7.25, revealing the known uncertainty of the Schei-
bler method at very low carbonate contents.

3.2 Prediction of SOM, clay, and pH prior to
subsequent LRSPP

Separate models for SOM, clay and pH prediction were cali-
brated via PLSR and LOOCV for subsequent LR determina-
tion (Tab. 3). For each location a specific model was created
with the expectation to better consider prevailing soil condi-
tions (Minasny et al., 2009). Especially with regard to pH pre-
diction, local calibration is recommended, since the reasons
for soil acidity may differ from location to location (Soriano-
Disla et al., 2014). Consequently, merging geologically and
pedologically different locations in a single model would yield
worse prediction. In Tab. 3, R2, RMSECV, and RPD of
LOOCV are summarized. The six local models for SOM, clay,
and pH differed in performance but RPD was consistently
good to excellent (Tab. 3).

Test-set validation performance was largely equivalent to
LOOCV (Tab. 3). However, in four out of nine cases LOOCV
performed slightly better, confirming that LOOCV can some-
times be overoptimistic (Bellon-Maurel and McBratney,
2011). All in all, the calibration models were considered reli-
able to allow subsequent LR estimation.
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Figure 2: Relationship between lime requirement derived from con-
ventional SOM, clay, and pH analyses (ground truth; LRGT) and the
height of the CaCO3 peak at 2513 cm–1. The calcareous samples
from Ascheberg, Görzig, and Wilmersdorf are depicted as empty
symbols. All other samples are non-calcareous and plotted with filled
symbols. The peak height of 0.014 AU was empirically defined as
threshold to classify samples as calcareaous.

Table 3: Model parameters for MIRS-PLSR prediction of soil properties that are required for determination of lime requirement: soil organic
matter content (SOM), clay content and pH (CaCl2). Test-set validation was performed only for locations with n >70 samples; here, sample sets
were randomly divided in 70% for calibration (not shown) and 30% for validation. R2: coefficient of determination; RMSECV: root mean square
error of cross validation; RMSEP: root mean square error of prediction for test-set validation; RPD: ratio of performance to deviation; RPD
1.4–1.8 fair, 1.8–2.0 good, 2.0–2.5 very good, ‡ 2.5 excellent.

Location n SOM Clay pH (CaCl2)

(g kg–1) (%)

R2 RMSECV RMSEP RPD R2 RMSECV RMSEP RPD R2 RMSECV RMSEP RPD

Leave-one-out cross validation

Ascheberg 115 0.93 2.4 – 3.65 0.98 1.7 – 6.74 0.90 0.25 – 3.23

Bölingen 71 0.95 1.0 – 4.35 0.98 1.3 – 6.55 0.70 0.17 – 1.83

Görzig 112 0.83 2.0 – 2.44 0.72 1.0 – 1.90 0.87 0.15 – 2.72

Heimbach 62 0.82 0.7 – 2.37 0.72 1.1 – 1.89 0.92 0.17 – 3.53

Hilberath 39 0.73 2.7 – 1.93 0.71 1.4 – 1.84 0.75 0.23 – 2.01

Wilmersdorf 59 0.92 1.4 – 3.63 0.91 1.0 – 3.26 0.90 0.30 – 3.22

Test-set validation

Ascheberg 43 0.92 – 2.7 3.50 0.98 – 2.0 6.72 0.93 – 0.22 3.70

Bölingen 21 0.97 – 0.9 5.38 0.98 – 1.4 7.17 0.63 – 0.21 1.73

Görzig 33 0.79 – 2.2 2.19 0.67 – 1.0 1.75 0.88 – 0.14 2.84
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Note that SOM and clay content can be reliably predicted with
respect to IR-active functional groups and IR-active clay min-
erals, respectively. In contrast, pH can only be indirectly pre-
dicted due to correlations with other soil components, i.e.,
CEC, exchangeable cations, and SOM composition). Soil
acidity is controlled by several IR-active components (e.g.,
proton-rich clays, Al oxyhydroxide minerals and sulfides, oxi-
dizable ammonium and organic N as amides, and carboxylic
acids and phenols) that finally allow pH prediction (Minasny
et al., 2009; Soriano-Disla et al., 2014).

Varying model performance was consistent with the different
extent of soil heterogeneity at the studied locations (Tab. 2).
The surprisingly poor SOM prediction at Hi could be attributed
to the former long-term use as pear orchard. It is assumed
that a large variability in SOM quality occurred due to the
presence of wooden root remains, and former herbicide
stripes alternating with former grassed inter-row stripes. This
went along with highly variable SOM quantity. Especially, par-
ticulate organic matter fractions can strongly impact MIR
spectra (Bornemann et al., 2010).

3.3 Determination of lime requirement after
preceding single parameter MIRS predictions
(LRSPP)

For this approach, target pH and LR were picked from the
look-up tables (LRSPP) after preceding separate MIRS predic-
tion of SOM, clay, and pH and classification according to the
VDLUFA scheme (VDLUFA, 2000a). All samples from Bö,
He, Hi, and Wi had SOM contents £ 40 g kg–1 (Tab. 2) and
were grouped into the same class. In contrast, at As as well
as at Gö, samples belonged to two SOM classes (£ 40 g kg–1

and 41–80 g kg–1). Prediction of SOM via MIRS led to correct
class assignment of all samples from Bö, He, Hi, and Wi.
Classification for As and Gö (SOM contents up to 66 g kg–1

and 67 g kg–1, respectively) was correct in 95% and 88% of

all cases, respectively. Erroneous classification occurred par-
ticularly for SOM contents close to the class boundaries
(results not shown).

The SOM contents of the soils under study are representative
for the majority of arable topsoils in Germany (Steinmann
et al., 2016). Within-field variability of SOM of the investigated
soils was pronounced (Tab. 2) but can even be higher at other
sites (Hbirkou et al., 2012). However, in this study observed
within-field variability in SOM contents had no or only little im-
pact on recommended lime dosage because only two of the
VDLUFA SOM classes were represented.

In contrast, clay content had a significant impact on target pH
levels (Tab. 2) because five out of six VDLUFA texture
classes were represented in this study. A considerable spatial
variability of clay content—depending on occurring soil parent
materials—was also observed within the fields. Predictions
by MIRS achieved 90% concordance in assigning the sam-
ples to texture classes. Incorrect classification occurred only
when clay contents were close to class boundaries. As men-
tioned before, this was observed for SOM classification as
well. It is likely that incorrect classification happens also when
applying the conventional procedure (texture-by-feel and
SOM estimation by color).

Figure 3a shows the LR derived from conventionally meas-
ured data (ground truth, LRGT) versus LRSPP. To conclude,
separate MIRS predictions of the relevant parameters are
generally appropriate for finally estimating LR.

It is evident that the VDLUFA algorithm produces abrupt
changes in recommendation due to discretization. In particu-
lar, small variations in measured or predicted pH values
cause large differences in liming recommendation. For exam-
ple, a deviation as low as 0.1 pH units provokes variation of
lime dosage up to 2000 kg CaO ha–1. However, in other coun-
tries similar classification schemes and look-up tables are
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Figure 3: Lime requirement (LR) after conventional lab analyses (‘‘ground truth’’; LRGT) plotted against LR
on the basis of soil properties as separately predicted via mid-infrared spectroscopy (MIRS) (LRSPP) (a)
using the standard VDLUFA algorithm with soil organic matter and clay content classes and (b) using the
refined, i.e., stepless VDLUFA algorithm. Underlying MIRS prediction models were calibrated for each
location by leave-one-out cross validation. Empty symbols represent calcareous samples from Ascheberg,
Görzig, and Wilmersdorf.

J. Plant Nutr. Soil Sci. 2019, 182, 953–963 Mid-infrared spectroscopy for lime requirement prediction 959



applied (e.g., New Zealand: Edmeades et al., 1985; UK:
Goulding, 2016). It is obvious that such rough look-up table
schemes for LR estimation face methodological limits with
respect to precision farming applications.

For that reason, the VDLUFA algorithm was refined by replac-
ing the SOM and soil texture classes by a continuous function
(refined VDLUFA; Fig. 3b). As expected, this reduced scatter-
ing around the 1:1 line between LRGT and LRSPP considerably
(compare Fig. 3a, b). Improvement is also reflected by RMSE
and R2 values (Tab. 4).

3.3.1 Erroneous LRSPP determination in calcareous
samples

In both approaches (SPP original and refined) some samples
were erroneously included in the MIRS-LRSPP calculations
although they were calcareous as proven by the Scheibler
method (Fig. 3a, b, empty symbols). The respective samples
revealed measured pH < 7 at target pH ‡ 7 with respect to
their clayey texture. It is supposed that these samples con-
tained minuscule lime particles that were not dissolved during
pH measurement. Spectral identification of these samples as
calcareous had failed, most probably to very low carbonate
contents and/or to weak spectral response of dolomite. From
the methodological point of view, this is an uncertainty of the
approach. However, in agricultural practice, liming these
clayey soils is still appropriate in order to achieve the target
pH value which was defined by the VDLUFA as optimum pH
value. These high target pH values are necessary for clay
rich soils in order to improve, e.g., soil structure (Frank et al.,
2019). Liming would have at least no negative consequences
on plant development in this case. Thus, sporadic false-posi-
tive liming recommendations at target pH ‡ 7 were not
regarded as substantial procedural defect.

3.4 Direct prediction of lime requirement

To further reduce efforts for LR estimation, direct prediction
was tested (LRDP). This approach aimed also to avoid accu-
mulating errors from the individual single calibrations. Note
that no preceding identification of lime presence was con-
ducted in order to minimize efforts as far as possible. Indeed,
models for LRDP were successfully calibrated via LOOCV and
close correlation between LRDP and LRGT was observed for
all locations (Fig. 4a).

The statistical assessment of LRDP revealed a performance
almost equivalent to LRSPP (Tab. 4). For all locations except
Gö, R2 and RMSE were slightly worse compared to LRSPP. In
total, RMSE of the LRDP approach ranged from 811 to 1420
kg CaO ha–1. These errors seem important, but the range of
LRGT is significantly higher and ranged, e.g., at As from 0 kg
CaO ha–1 to more than 11000 kg CaO ha–1. The RPD for Gö,
Wi, and Hi still indicated fair predictions. For As and Bö, good
models, and for He even very good models were calibrated.
Test-set validation carried out at the locations with n > 70 was
also successful and achieved even better results [RPD = 2.02
(As), 2.23 (Bö), and 1.61 (Gö), respectively; results not
shown]. Again, replacing the look-up table by the refined
algorithm further enhanced performance of LR prediction
(Fig. 4a, b, Tab. 4).

Our well performing direct LR predictions were in good agree-
ment with studies by Janik et al. (1998) and Viscarra Rossel
et al. (2006). However, these two studies investigated Austral-
ian soils with mineralogical and pedological properties largely
deviating from the soils studied here. In addition, the refer-
ence methods to determine GT were different. While Janik
et al. (1998) used the 14-day equilibration approach by
Richards (1992), Viscarra Rossel et al. (2006) applied the
buffer method (Mehlich, 1976). The problem of erroneous LR
estimation in calcareous samples as described above was
not addressed in both studies.
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Table 4: Model parameters for the determination of lime requirement (LR) following four different MIRS based approaches: LRSPP: single
parameter predictions of soil properties and subsequent LR determination using the original VDLUFA look-up tables with classified SOM and
clay content; LRSPP (refined VDLUFA): like LRSPP, but using a refined VDLUFA algorithm based on continuous SOM and clay values; direct predic-
tion of lime requirement (LRDP) after with standard VDLUFA LR; direct prediction of lime requirement (LRDP), but with the refined VDLUFA algo-
rithm (R2: coefficient of determination; RMSE: root mean square error; RMSECV: root mean square error of cross validation; RPD: ratio of per-
formance to deviation).

Location n LRSPP (VDLUFA) LRSPP (refined VDLUFA) LRDP (VDLUFA) LRDP (refined VDLUFA)

(kg CaO ha–1) (kg CaO ha–1) (kg CaO ha–1) (kg CaO ha–1)

R2 RMSE R2 RMSE R2 RMSECV RPD R2 RMSECV RPD

Ascheberg 115 0.82 987 0.87 781 0.72 1220 1.89 0.76 1051 2.04

Bölingen 71 0.75 1030 0.75 832 0.71 1090 1.87 0.69 925 1.79

Görzig 112 0.54 832 0.71 525 0.55 811 1.48 0.66 561 1.72

Heimbach 62 0.86 970 0.92 645 0.77 1230 2.08 0.87 824 2.78

Hilberath 39 0.70 1414 0.78 1197 0.68 1420 1.77 0.74 1260 1.96

Wilmersdorf 59 0.61 857 0.68 716 0.52 905 1.44 0.47 903 1.38
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3.4.1 Erroneous LR prediction for calcareous samples
in the LRDP approach

Direct prediction was conducted without precedent spectral
carbonate identification. For a number of calcareous samples,
LRDP led to erroneous liming recommendation (–2000 to
4000 kg CaO ha–1; Fig. 4b). Predicted negative LR can sub-
sequently be corrected to zero. In particular, a false-positive
LR was determined for calcareous samples with high target
pH (i.e., clayey samples) and actual pH < 7 (i.e., samples with
remaining undissolved lime particles) as already described
above.

To unravel the causes for the obvious under-representation of
carbonate in model calibration, we examined the loading
weights of the first latent variables. It turns out that the carbo-
nate-specific bands were only of minor importance for cali-
brating LRDP (results not shown). As a consequence, the
LRDP was inappropriate for differentiation between calcareous
and non-calcareous samples. Thus, we recommend identify-
ing calcareous samples by peak height at 2513 cm–1 and the
subsequent exclusion of the related field sites from liming.

LR integrates several soil properties that depend on regional
(e.g., climatic) conditions; for practical purposes, LR is
adapted to agronomic needs. Successful LR prediction re-
flects the capability of MIRS to quantify the underlying soil
properties such as content and molecular composition of
organic matter (reflecting CEC as well as pH value), as well
as textural and mineral soil composition (content and proper-
ties of clay, iron oxides, and other minerals). In this regard,
the MIRS based prediction models go far beyond the look-up-
table approach. It can be concluded that MIRS generally
improves LR determination as compared to the common
practice. With MIRS suitable information for variable rate lim-
ing within the fields can be acquired.

4 Conclusions

This study showed that MIRS is an appropriate tool for varia-
ble rate liming recommendation based on the standard
German VDLUFA algorithm. Both tested approaches, the
determination of lime requirement from precedent separate
parameter prediction (LRSPP) and the direct prediction of lime
requirement (LRDP; Fig. 5) yielded reliable and accurate
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Figure 4: Lime requirement (LR) as directly predicted via mid-infrared spectroscopy (LRDP) compared to
LR derived from ground truth (LRGT)(a) using the standard VDLUFA algorithm with soil organic matter and
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brated for each location by leave-one-out cross validation. Empty symbols represent calcareous samples
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Figure 5: Recommended process flow for determination of lime
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tion from single parameter (SOM, clay, and pH) predictions (LRSPP)
and (ii) direct prediction (LRDP).
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results. The performance of LRDP is slightly less accurate
while LRSPP is more complex. In both approaches the identifi-
cation of calcareous samples via the carbonate specific band
at 2513 cm–1 is recommended, because false-positive liming
recommendations contradict the basic idea of precision agri-
culture. Concluding, MIRS as an easy, rapid and cheap
approach can contribute to a broader and site-specific evalu-
ation of LR in agricultural practice. This is notably true for pre-
cision farming applications, where large sample numbers
from field plots are to be analyzed.

As an extension of the standard German VDLUFA algorithm,
MIRS has the potential to refine the existing recommendation
tables by introducing a continuous algorithm. This approach
would easily increase the efficiency of variable rate liming.
Instead of mixing all soil samples from a field to create a com-
posite sample, for variable rate liming georeferenced single
samples within identified management zones have to be tak-
en. This approach is worth being tested with the upcoming
mobile MIRS devices.
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