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Abstract
Here we present a method to estimate the total number of nodes of a network using locally
observed response dynamics. The algorithm has the following advantages: (a) it is data-driven.
Therefore it does not require any prior knowledge about the model; (b) it does not need to collect
measurements from multiple stimulus; and (c) it is distributed as it uses local information only,
without any prior information about the global network. Even if only a single node is measured,
the exact network size can be correctly estimated using a single trajectory. The proposed algorithm
has been applied to both linear and nonlinear networks in simulation, illustrating the applicability
to real-world physical networks.

1. Introduction

Complex networks consist of a number of connected nodes with interactions, revealing significant
phenomena in natural and social systems, including biology [1–4], climate [5–7] and electric power
systems [8–10], etc. Determining the total number of nodes is the first step in understanding networked
dynamical systems. Several examples lie in the system modeling [11, 12] and order reducing [13, 14].
Increase in the system’s size results in the exponentially increased complexity, which hampers the control of
the system. Thus, the modeling and order reduction are required to facilitate the simulations and the
production of a reliable and stable lower-order system. Getting the order of the system is firstly conducted
for both modeling and order reduction. Other examples include network identification (for instance,
biochemical reaction networks identification [15]) and reconstruction (dynamical and Boolean network
reconstruction [16, 17]). As for many methods solving these problems, it is generally assumed that the size
of the network is known. Besides, dynamical network analysis (synchronization analysis [18], robust
analysis and control design [19, 20]) are valid only if the size of the network is estimated or known as a
priori. Thus, network size estimation play a fundamental role in complex network theory.

However, many networks are decentralized, which means every node only has local information and
possibly it has a large number of hidden nodes (nodes in a network which one cannot measure and have no
information about). For example, when studying the brain, we place EEG-sensors, converting neuron
activities into electrical signals. But we can only collect signals from a few neurons. Hence, estimating the

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/abaf2f
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7858-0437
mailto:yye@hust.edu.cn


New J. Phys. 22 (2020) 093031 X Tang et al

total number of nodes with partially available information is a challenge. Some recent works considered
inferring the network size from available information but required model knowledge. For instance, [21, 22]
fitted the model parameters using adaptive Kalman filtering process or compressive sensing, and detected
the number of hidden nodes via fitting errors or anomalies. Other works detected the network size without
prior information about models but needed large amounts of data about the system evolution. [23–25]
determined the network size via collective behaviors from several stimuli with different initial conditions
and [26] used neural networks recognized the number of nodes describing the underlying physical system,
which required massive training data. However, acquiring the model parameters or collecting large amounts
of dynamical data can be costly and sometimes even impossible. How to infer a network size, from partially
observed response dynamics in a single trajectory (i.e., the evolution history of a single node) without any
prior information about the network model, is still unknown. Moreover, many related node counting works
focused on linear networks [24, 25, 27], but most real-world physical networks have nonlinear
characteristics.

In this paper, we propose a data-driven approach to estimate the size of a network using locally
measured dynamics (i.e., time series of observed state variables), without requiring any prior information
about the network and model. Our algorithm is based on the Hankel matrix [18], which is constructed
from the finite-time history of system outputs. The special time-delay structure of the Hankel matrix makes
it important in linear system identification [28, 29]. Here, we construct a Hankel matrix from locally
observed response dynamics of the network, and the rank of this matrix is shown to be the size of the
network (i.e., the total number of nodes) if the dimension of the Hankel matrix is sufficiently large.
Although Hankel-based analysis is a linear method, we show that the exact estimation of network size is
feasible both in linear and nonlinear networks that can evolve to a fixed point. Furthermore, the proposed
method is valid even in the case of only observing one node dynamics, which is applicable in many complex
networks with strictly restricted access.

2. Methods and results

2.1. Theory of estimating network size from locally measured dynamics
We consider a network with N nodes, which has the following dynamics

z(k + 1) = f (z(k)), (1)

where z(k) = [z1(k), z2(k), . . . , zN(k)]T ∈ R
N is the state variable of the system at time k, and f : RN → R

N

describes the underlying dynamics of the network. We assume that f is continuously differentiable. For both
linear and nonlinear systems which have a fixed point z∗ = 0, where 0 ∈ R

N is a vector with all elements
being 0 and z∗ = f (z∗), we make a first order approximation near z∗ of the network via x(k) = z(k) − z∗

and obtain a local linearization as follows:

x(k + 1) = Jx(k), (2)

where J ∈ R
N×N is the Jacobian matrix of f at z∗ [23].

To illustrate the main ideas of our technique, we first take an undirected network with linear dynamics
as an example, and we assume that the network dynamics is stable. Without loss of generality, we measure
the first p nodes in x(k), and we assume that these p nodes can actually be observed in the network. We
define an observation matrix C =

[
Ip 0

]
∈ R

p×N , where Ip is a p × p identity matrix and 0 represents the
p × (N − p) zero matrix. Thus, we obtain the output dynamics y(k) = Cx(k), where y(k) = [x1(k),
x2(k), . . . , xp(k)]T ∈ R

p. For example, when we use EEG-sensors to study the brain. The time series of
electrical signals is the observation from the network of neurons y(k). Thus, the number of sensors is p. Our
work is to infer the scale of the relevant N neurons from the dynamics of sensor signals. Measured nodes are
assumed to be observable in our case, i.e., the associated observability matrix for these nodes is

ON =

⎡
⎢⎢⎢⎣

C
CJ
...

CJN−1

⎤
⎥⎥⎥⎦ , (3)

which is assumed to have full column rank [30]. According to observability theory [31], the measurement
information is observable if and only if the rank of its observability matrix ON ∈ R

pN×N is N.
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Figure 1. Estimating a network size from locally observed dynamics. (a) Underlying topology of a network with 6 nodes. Only
two nodes z1 and z2 are measured (colored red and blue), while the other nodes (colored gray) in the dashed line box are not
measured. (b) Dynamics of each node in equation (1) [colors of trajectories match those of the nodes in (a)]. (c) Stacking
dynamical measurement y(k) into the Hankel matrix Hl. Hl is increased in size via addition of rows and columns until its rank
converges to the maximum value, which equals to the network size.

Figure 2. Linear dynamics and rank variation of Hankel matrix for N = 30, α = 0.1. (a) Linear dynamics of 30 nodes with
initial conditions zi(0) ∼ U(−10, 10) evolve around 0, where U stands for uniform distribution. Although z(k) looks similar for
large k, its absolute value looks different on logarithmic scale (i.e., the orders of magnitude of the state values varies greatly at
adjacent moments). (b) Rank variation of Hl which is constructed from one of node dynamical time series shown in (a).

For this observation y(k), we stack its time series into a Hankel matrix by:

Hl =

⎡
⎢⎢⎢⎣

y(0) y(1) . . . y(l − 1)
y(1) y(2) . . . y(l)

...
...

. . .
...

y(l − 1) y(l) . . . y(2l − 2)

⎤
⎥⎥⎥⎦ , (4)

where Hl ∈ R
pl×l, and l is the size of the Hankel matrix, so 2l − 1 is the total number of observations [18].

Decomposing Hl yields:
Hl = OlCl, (5)

where Ol =
[
CT JTCT . . . (Jl−1)TCT

]T ∈ R
pl×N is the observability matrix with l rows, and

Cl =
[
x(0) Jx(0) . . . Jl−1x(0)

]
∈ R

N×l will be the controllability matrix via controllability theory [32]
if the system is x(k + 1) = Jx(k) + Bu(k), with B = x(0) and u(k) is an impulse input, i.e., u(0) > 0 and
u(k) = 0 for k = 1, 2, . . . . If Hl is singular for some l, at least one of the two matrices Ol and Cl has a rank
smaller than l, indicating that at least one of Ol+1 and Cl+1 has rank smaller than l + 1, hence Hl+1 is
singular. According to the Cayley–Hamilton theorem, JN is a linear combination of I, J, J2, . . . , JN−1, so that
the last line of HN+1 is a linear combination of the previous ones. As a result, HN+1 is singular.

Theoretically, Hl has full rank for l � N, and Hl is singular for all l � N + 1. However, affected by the
convergence rate of the network systems and the numerical computation issues about the rank, Hl may
become defective at k � N in practice [27]. Nonetheless, as the size of Hl continuously increases, its rank
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Figure 3. Mean absolute estimation errors in different size of linear networks.

Figure 4. Size estimation of the weakly nonlinear system of equation (8). (a) Dynamical trajectory of the network evolves to the
fixed point z∗ = 0, and the dynamics of z4 affected by all other nodes dynamics. (b) The rank of Hankel matrix constructed from
dynamics of z4 increases to 3 and keeps constant, indicating that Ñ = 3.

may approach a constant provided that l is sufficiently large, and this constant is exactly the total number of
nodes N in the network. Thus, we can detect a network size via the maximum rank of H1, H2, H3, . . . to
have:

Ñ = max{rank(H1), rank(H2), rank(H3), . . . }, (6)

which is the estimation of the total number of nodes in the network. The framework of our algorithm is
illustrated in figure 1.

2.2. Performance
Firstly, we investigate the performance of our proposed data-driven method on linear network systems. We
manually add Gaussian noise to equation (2) by:

x(k + 1) = Jx(k) + v(k), (7)

where k ∈ N, v(k) = [v1(k), v2(k), . . . , vN (k)]T ∈ R
N is the Gaussian process noise. We set

vi(k) = αxi(k)ξi(k), where α ∈ R is the relative noise intensity, ξi(k) ∼ N (0, 1), and i ∈ {1, 2, . . . , N}.
α = 0 corresponds to a noiseless system. Figure 2(a) shows dynamics of a linear network with N = 30 and
α = 0.1. Although the system converges quickly, and z(k) looks similar for large k, the orders of the
magnitude difference of the state values at the adjacent moments are very large. Taking advantage of this
feature, we can compute the descending ordered singular values of Hl and infer the matrix rank with a
relative threshold. Figure 2(b) illustrates how the rank of Hl varies with l increasing, and Hl is constructed
from dynamics of only one node shown in figure 2(a). The rank converges to 30, and hence successfully
indicating the network size of figure 2(a). Moreover, we detect the network size with different numbers of
nodes and different noise intensities from the dynamical measurement of p observable nodes. In each

4
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Table 1. Estimation results for system of equation (8) with different observations.

Index of observed node(s) Estimation result Ñ

1, 3 1
2 2
1, 2 2

Figure 5. Dynamics of coupled Kuramoto oscillators network with N = 10, and rank variation of corresponding Hankel matrix
constructed from z1(k). (a) Trajectories of the nonlinear Kuramoto oscillators, with K = 10, θi(0) ∼ U(−10−6, 10−6),
ωi ∼ U(−10−11, 10−11). Moreover, we set

∑N
i=1 ωi = 0, so that the nonlinear dynamics can be approximated as linear dynamics

better [38]. (b) Rank variation of Hl which is constructed from time series of z1 shown in (a). The rank of Hankel matrix
increases to N = 10 and remains constant.

condition, we randomly generate 100 system matrices J that make the system convergent. For each system
matrix Js, s ∈ {1, 2, . . . , 100}, we independently evolve the network dynamics with the initial state
conditions drawn from the uniform distribution in [−1, 1]. If the estimation result of Js is Ñs, we get the
absolute estimation error for Js is es = |Ñs − N|, so the final mean absolute estimation error for this
condition is E =

∑100
s=1 es/100. The mean absolute estimation errors in different conditions are shown in

figure 3. It can be seen that, for the networks with different sizes, we can approximate the number of nodes
with extremely small error. Our method also performs well even if only a single node is measured. For small
networks with 10 or 30 nodes, we can detect the size of networks with almost zero error. For larger
networks, such as 50, 75 and 100 nodes, although the exact number of nodes cannot be accurately detected,
we can estimate the range of scales with small errors. For example, in a network with 100 nodes, when we
observe only one node and the relative noise intensity is 0.1, E = 5.32 means that the estimation result
indicates that the network has 95–105 nodes.

We also extend our method to nonlinear network systems, including weakly nonlinear networks,
coupled oscillators and biological networks, which further investigates the applicability in the real-world
physics models. For instance, the following noiseless network

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z1(k + 1) = (1 + εμ)z1(k)

z2(k + 1) = (1 + ελ)z2(k) − ελz1(k)

z3(k + 1) = (1 + εμ)z3(k)

z4(k + 1) = (1 + ελ)z4(k) + ελz3(k)z2(k)

(8)

is a weakly nonlinear system with four nodes, and its fixed point is z∗ = 0, so the first order approximation
is x � z − z∗ = z. The fourth node z4 connects other nodes in the network accordingly. Thus, we can
estimate the network size from z4 (see figure 4(a) for system dynamics, where μ = −0.05,λ = −1, the
sampling step ε = 0.3, and random initial condition that is drawn from the uniform distribution [−4, 4]
[33]). Interestingly, the estimation result using z4(k) in figure 4(b) is Ñ = 3 all the time. The reason is that
z1 and z3 have the same evolution process, and our algorithm will treat nodes with symmetric dynamics as a
single node. When we observe node z4, the algorithm tells us that only 3 independent state variables can
reconstruct the output information of z4. Thus, our algorithm is a process of minimal realization,
estimating the minimum number of nodes that can reconstruct the measurements [34, 35]. Estimation
results from other measurements shown in table 1 can also illustrate the minimal realization.

5
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Figure 6. Mean absolute estimation errors in different size of coupled Kuramoto oscillators networks.

Figure 7. Dynamics of Michaelis–Menten network with N = 50, α = 0.02 and rank variation of corresponding Hankel matrix.
(a) Michaelis–Menten dynamics of 50 nodes with initial conditions zi(0) ∼ U(−10−4, 10−4). State values evolve around 0, which
can be approximated by a linear process. (b) Rank variation of Hl which is constructed from one of node dynamical time series
shown in (a). The rank increases to N = 50 and remains constant.

Next, we take the Kuramoto oscillators as a paradigmatic example [36]. For any node i, i ∈ {1, 2, . . . , N},
the discrete model is

θi(k + 1) = θi(k) + ε

[
ωi +

K

N

N∑
i=1

Aij sin(θj − θi)

]
, (9)

where Aij is an element of the corresponding adjacency matrix A ∈ R
N×N , with Aij = 1 when there is an

edge from node j to node i, and Aij = 0 otherwise. The network consists of N oscillators, with phases θi,
natural frequencies ωi, coupling strength K and sampling step ε = 1

N . For ωi close to zero, and
‖θj − θi‖ � π

2 , the oscillators network can be approximated as a linear network. We then consider the WS
models [37] to generate adjacency matrix A and use Hankel matrix to estimate the network size. A network
with N = 10 and the success estimation observing only one node are shown in figure 5. For different size of
networks, the mean absolute error in 100 random adjacency matrices is shown in figure 6.

Our approach can also be generalized to Michaelis–Menten kinetics, which is a prestigious nonlinear
model in biochemistry [39]. The formula of node i, i ∈ {1, 2, . . . , N} is given by

zi(k + 1) = (1 − ε)zi(k) + ε
N∑

j=1

Wij
zj(k)

1 + zj(k)
+ v(k), (10)

where the sampling step ε = 1/N, and W ∈ R
N×N denotes the system matrix. When states evolve near 0,

the nonlinear system can be approximately linearized according to Taylor expansion. An example of
Michaelis–Menten dynamics with N = 50 is illustrated in figure 7(a), and the orders of magnitude of state

6
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Figure 8. Mean absolute estimation errors in different size of Michaelis–Menten networks.

values at the adjacent moments also vary greatly. We observe node z1 and construct Hl. Its rank variation is
illustrated in figure 7(b), showing Ñ = 50.

We conduct the same random experiment as for the linear networks, and figure 8 presents the mean
absolute error in different size network.

3. Conclusions and discussion

In summary, we propose a novel approach to estimate the size of a complex network from its locally
observed dynamics based on the Hankel matrix and Cayley–Hamilton theorem. Our major contribution of
this paper is successfully demonstrating that an extremely small number of observed nodes, even a single
trajectory, suffice to discover the range of the network size, and do not require any global or prior
information.

Our Hankel-based method is a process of minimal realization in system identification, that is, we find
the minimum number of nodes that can reconstruct the observation. If there are some nodes in the
network that do not affect the dynamical evolution of the measured nodes, we regard them as redundant
and not informative nodes in the network.

Finally, our future research will focus on generalizing our proposed method to real world data and more
complicated nonlinear network dynamics, such as systems with chaotic attractor, and investigating how to
detect high-dimensional network size using time series far from its fixed point.
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