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We present an all speed scheme for the Euler-Korteweg model. We study a semi-implicit
time-discretisation which treats the terms, which are stiff for low Mach numbers, implicitly
and thereby avoids a dependence of the timestep restriction on the Mach number. Based
on this we present a fully discrete finite difference scheme. In particular, the scheme is
asymptotic preserving, i.e., it converges to a stable discretisation of the incompressible
limit of the Euler-Korteweg model when the Mach number tends to zero.

1 Introduction

This work is concerned with the numerical simulation of compressible multi-phase flows via a phase
field approach. Specifically we consider the isothermal Euler-Korteweg (EK) model, see e.g. [3, 4],
which allows for mass fluxes across the interface. This model is a diffuse interface model solving one
set of partial differential equations (PDEs) on the whole computational domain. The solution of this PDE
system already contains the position of the phase boundary. There are several works on numerical
methods for the Euler-Korteweg and the Navier-Stokes-Korteweg equations, see [10, 6, 15]. All these
works focus on stability properties of their respective schemes. In particular, in [6, 15], fully implicit
time discretisations are used to obtain stable schemes. We aim at constructing a scheme which is
computationally faster as it needs to solve only one implicit equation per timestep while still being
stable for reasonable timestep sizes independent of the Mach number.

For background on asymptotic preserving and all-speed schemes let us refer to the further developed
case of single phase flows while we like to stress that all speed schemes are of particular importance in
multi-phase flows due to the different speeds of sound in both phases. However, unsteady compressible
flows with small or strongly varying Mach number occur in many physical and engineering applications,
and are not limited to multi-phase phenomena.

While the general development of shock capturing schemes for compressible flows is quite mature,
these schemes encounter severe restrictions in case of low Mach flows. These problems are due to
the speed of acoustic waves being much larger than the speed of the flow. In fact, explicit-in-time shock
capturing schemes need to satisfy a Courant-Friedrichs-Levy (CFL) timestep restriction in order to be
stable. This condition states that the maximal timestep is inversely proportional to the maximal wave
speed which scales with the reciprocal of the Mach number. In addition, these schemes also need
artificial dissipation proportional to the maximal wave speed. Therefore, for small Mach numbers, the
spatial resolution has to be very high to ensure that the solution is not dominated by artificial viscos-
ity. There have been many contributions concerning all speed schemes for compressible flows, i.e.,
schemes which work well for space and time discretisations independent of the Mach number. Different
approaches for the isentropic Euler equations can be found in, [9, 16, 24, 25, e.g.].



The scheme at hand is based in the asymptotic preserving (AP) methodology. For a family of models
M ε converging to a limit modelM0 for ε→ 0 this methodology consists in constructing discretisations
M ε

∆ ofM ε such that for fixed discretisation parameter ∆ the limit limε→0M
ε
∆ is a stable and consistent

discretisation of M0. Since the fundamental works [19, 20] asymptotic preserving schemes have been
the topic of many studies in computational fluid dynamics, in recent years, see [1, 5, 7, 8, 11] and
references therein. In particular, the algorithm presented here is inspired by [9].

To be more precise let us introduce the model under consideration: On some space–time domain Ω×
(0, T ) with T > 0 and Ω ⊂ Rd open and bounded with Lipschitz–boundary we study the following
balance laws for the density ρ and the velocity v :

ρt + div(ρv) = 0

(ρv)t + div(ρv ⊗ v) +
1

M2
∇p(ρ) =

γ

M2
div
((
ρ∆ρ+

1

2
|∇ρ|2

)
I−∇ρ⊗∇ρ

) (1.1)

where M > 0 is the Mach number, γ > 0 is a capillarity coefficient, p = p(ρ) is a (normalised)
non-monotone pressure function and I ∈ Rd×d is the identity matrix. We like to stress that this paper
addresses the low Mach number limit, i.e., M → 0, not the sharp interface limit, i.e., γ → 0. Thus, we
assume γ to be small but fixed. We complement (1.1) with initial data

ρ(·, 0) = ρ̄, v(·, 0) = v̄ (1.2)

and boundary data

v = 0, ∇ρ · ν = 0 on ∂Ω× (0, T ), (1.3)

where ν denotes the outward pointing unit normal vector to ∂Ω. A consequence of these boundary
conditions is the global conservation of mass

d

dt

∫
Ω

ρ(·, t) d x = 0.

For sufficiently smooth initial data equation (1.1) has solutions with ρ ∈ L2((0, T ), H1(Ω)), i.e., no
shocks appear. Essentially, this is due to the energy dissipation equality, see (1.7) below. For details
concerning well-posedness and regularity of solutions we refer to [3]. In this work we restrict our at-
tention to solutions of (1.1) which do not develop shocks. We aim at constructing a scheme having the
following properties:

� Conservation of mass, see Remark 4.2.

� Asymptotic preservation, i.e., it converges to the right limit for M → 0, see Lemma 4.5 and
(4.29).

� Stability of the scheme in the low Mach limit, see Lemma 4.7.

� Stability of the scheme for generic Mach numbers, see Lemma 4.9.

� No timestep restriction involving M .
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Remark 1.1 (Momentum balance). While conservation of momentum would also be a desirable prop-
erty of our scheme, it seems to be incompatible with the other properties we pursue, see [15] for more
details on this issue. As there are no shocks it seems acceptable not to enforce conservation of mo-
mentum. For a detailed exposition of the problems which may be caused by the use of nonconservative
schemes we refer the reader to [18].

Remark 1.2 (Extension to the Navier-Stokes-Korteweg system). The scheme presented here will be
easily extendable to the Navier-Stokes-Korteweg (NSK) system in case of small Reynolds numbers.
The NSK system is obtained from (1.1) by including a viscosity term in the momentum balance. This is
elaborated upon in Remark 3.1.

Let us note that the phases (liquid/vapour) can be identified with the density values for which p′(ρ) > 0,
cf., Figure 1. In addition, the pressure is related to the Helmholtz free energy density W = W (ρ) via
the Gibbs-Duhem equation

p(ρ) := ρW ′(ρ)−W (ρ), in particular, p′(ρ) = ρW ′′(ρ). (1.4)

The non-monotone pressure and non-convex local part of the energy density are key features of the

p(ρ)

bliquidvapor ,

W (ρ)

bliquidvapor

Figure 1: Sketch of energy density and pressure.

multi-phase character of the problem at hand. They make the first order part of (1.1) hyperbolic-elliptic
and make the well-posedness analysis as well as the construction of stable numerical schemes rather
involved. To be precise, we assume W ∈ C2((0,∞), [0,∞)) and that there exist 0 < α < β < ∞
such that W is strictly convex on (0, α) ∪ (β,∞) and strictly concave on (α, β). As

div

((
ρ∆ρ+

1

2
|∇ρ|2

)
I−∇ρ⊗∇ρ

)
= ρ∇∆ρ (1.5)

it is straightforward to rewrite (1.1), by introducing an auxiliary variable Λ, as

ρt + div(ρv) = 0

(ρv)t + div(ρv ⊗ v) +
1

M2
ρ∇Λ = 0

W ′(ρ)− γ∆ρ− Λ = 0.

(1.6)
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Moreover, it is classical to check that energy is conserved for strong solutions of (1.1) equipped with
boundary conditions (1.3), see [15, e.g.], i.e.,

d

dt

∫
Ω

1

M2

(
W (ρ) +

γ

2
|∇ρ|2

)
+

1

2
ρ|v|2 d x = 0. (1.7)

The non-local (gradient) term in the energy is responsible for including surface tension (capillary) effects
in the model. It also makes the interface smeared out and thereby prevents the formation of shocks. It
follows from Γ-limit arguments that the thickness of the interfacial layer is proportional to

√
γ, see [23,

e.g.]. The Euler-Lagrange equations of the energy from (1.7) with a prescribed mass constraint are

λ =
1

M2
(W ′(ρ)− γ∆ρ) , v = 0, (1.8)

where λ ∈ R is the Lagrange multiplier associated to the prescribed mass constraint.

The outline of the remainder of this paper is as follows: In §2 we study a formal low Mach limit of the
EK equations. §3 is devoted to investigating a semi-discretisation in time. This semi-discretisation is the
basis of the fully discrete scheme which is stated and studied in §4. To conclude, we present numerical
experiments in §5.

2 Low Mach Limit

While the low Mach limits of the Euler and Navier-Stokes equations have been rigorously studied in
[21, 22, 14, e.g.], less is known for the case of the hyperbolic-elliptic system with dispersion at hand. For
a combined low Mach and sharp interface limit see [17]. As the interest of this study is mainly numerical
we consider a formal low Mach limit of (1.6) in this section. To this end, we assume expansions of all
quantities in M2

ρ = ρ0 +M2ρ1 + o(M2), Λ = Λ0 +M2Λ1 + o(M2), v = v0 + o(1) (2.1)

where we assume ρ0, ρ1,v0,Λ0,Λ1 to be sufficiently smooth for the subsequent calculations to make
sense and ρ0 > 0. We assume the mass inside Ω to be prescribed independent of M and thus

ρ1(·, t) ∈ H1
m(Ω) := {ϕ ∈ H1(Ω) :

∫
Ω

ϕ d x = 0}

for all t ∈ (0, T ).We impose the boundary conditions (1.3) such that ∂tρ0(·, t) ∈ H1
m(Ω). By inserting

(2.1) into (1.6) we immediately obtain

Λ0 = W ′(ρ0)− γ∆ρ0 = const. (2.2)

This is the leading order Euler-Lagrange equation. In particular, (2.2) holds for t = 0 such that the initial
data need to be some extremum of the energy functional. We will only consider the more restrictive
situation that for ρ = ρ̄0, i.e., the zeroth order of the initial data, the bilinear form

Bρ : H1
m(Ω)×H1

m(Ω)→ R, (ϕ, ψ) 7→
∫

Ω

W ′′(ρ)ϕψ + γ∇ϕ∇ψ d x (2.3)
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is coercive.

This condition, in particular, implies that ρ̄0 is an isolated minimiser of the leading order energy. Com-
puting the derivative of (2.2) with respect to t we find

W ′′(ρ0)∂tρ0 − γ∂t∆ρ0 = const. (2.4)

By continuity considerations we see that Bρ remains coercive for ρ sufficiently near to ρ̄0 and ρ0(·, t)
is arbitrarily near to ρ̄0 for t small enough. Moreover, ∂tρ0 ∈ H1

m(Ω), thus, (2.4) is uniquely solvable
for small t and the unique solution is ∂tρ0 = 0. Via a continuation argument we get ρ0(·, t) = ρ̄0 for
all t ∈ [0, T ).

Inserting ∂tρ0 = 0 into (1.6)1 we infer that the leading order momentum is solenoidal, i.e.,

div(ρ0v0) = 0. (2.5)

The low Mach limit is closed by the evolution equation for v0 which reads

ρ0(v0)t + ρ0(v0 · ∇)v0 + ρ0∇Λ1 = 0, (2.6)

where Λ1 can be determined via the elliptic (as ρ0 > 0) equation

−div(ρ0∇Λ1) = div(ρ0(v0 · ∇)v0) (2.7)

such that it enforces the constraint (2.5). Let us note that the role of the chemical potential Λ changed
in the limit process. In the compressible case Λ is given by a constitutive relation. In the incompressible
case Λ is decomposed into a (fixed) background state Λ0 given by the constitutive law and a Lagrange
multiplier Λ1. To finish this section we state a stability result for the leading order velocity, which we will
aim to recover as an inequality in the discrete setting.

Lemma 2.1 (Conservation of kinetic energy). For a given ρ0 ∈ H1(Ω) let (v0,Λ1) be a strong solution
of (2.5), (2.6) with v0|∂Ω = 0. Then,

d

dt

∫
Ω

ρ0|v0|2 d x = 0.

Proof. Multiplying (2.6) by v0 and integrating over Ω we obtain because of ∂tρ0 = 0

1

2

d

dt

∫
Ω

ρ0|v0|2 d x = −
∫

Ω

1

2
ρ0v0 · ∇(|v0|2) + ρ0v0 · ∇Λ1 d x. (2.8)

The assertion of the Lemma follows from (2.8) using integration by parts, (2.5) and the boundary con-
ditions.

Remark 2.2 (Expansion of the energy). Due to (2.2), (1.3) and ρ1(·, t) ∈ H1
m(Ω) we have∫

Ω

1

M2
(W (ρ) +

γ

2
|∇ρ|2) +

1

2
ρ|v|2 d x

=

∫
Ω

1

M2
(W (ρ0) +

γ

2
|∇ρ0|2) d x +

∫
Ω

1

2
ρ0|v0|2 d x +O(M2), (2.9)

5



such that at least formally

d

dt

∫
Ω

1

M2
(W (ρ) +

γ

2
|∇ρ|2) +

1

2
ρ|v|2 d x =

d

dt

∫
Ω

1

2
ρ0|v0|2 d x +O(M2),

i.e., the leading order rate (of change) of the total energy is the rate of the kinetic energy.

3 A semi-discrete scheme

In this section we describe and investigate a semi-discretisation in time of (1.1) which can be used
together with any space discretisation approach. We show that this scheme converges to a stable
discretisation of the incompressible problem determined in §2 for fixed timestep sizes and M → 0.

3.1 Semi-discretisation in time

The discretisation described here is inspired by the scheme for the compressible isothermal Euler
equations in [9], where an elliptic equation for ρn+1 and an explicit equation for vn+1 are derived.
Our generalisation of this approach leads to a Cahn-Hilliard like equation for ρ; the discretisation of
which might reintroduce an order O(M) timestep restriction, see [2]. To avoid such a constraint we
decompose the double well potential W as the difference of two convex C2–functions U, V

W (ρ) = U(ρ)− V (ρ).

We assume that V ′′(ρ) ≥ κV > 0 for all ρ > 0. We subdivide the time interval [0, T ] into a partition
of N consecutive adjacent subintervals whose endpoints are denoted t0 = 0 < t1 < . . . < tN = T .
The n-th timestep is denoted τn = tn+1 − tn and τ := maxn=1,...,N τn. We will consistently use the
shorthand F n(·) := F (·, tn) for a generic timedependent function F . We propose the following time
discretisation:

ρn+1 − ρn + τndiv((ρv)n+1) = 0

(ρv)n+1 − (ρv)n + τndiv(ρnvn ⊗ vn) +
τn
M2

ρn∇Λn+1 − τnµh∆vn = 0

U ′(ρn+1)− V ′(ρn)− γ∆ρn+1 − Λn+1 = 0,

(3.1)

where we require
∇ρn+1 · ν = 0, vn+1 = 0 on ∂Ω (3.2)

and choose ρ0 = ρ̄, v0 = v̄. Moreover, µh is an artificial viscosity coefficient. The idea of decompos-
ing the energy into a part which is treated explicitly and a part which is treated implicitly can already be
found in [13, 26]. Note that (3.2) implies ρn+1 − ρn ∈ H1

m(Ω).

In order to show that one timestep of (3.1) can be decomposed into an implicit equation determining
ρn+1, Λn+1 and an explicit expression for vn+1 we insert the expression for (ρv)n+1 from (3.1)2 into
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(3.1)1 which yields

ρn+1 − ρn + τndiv(− τn
M2

ρn∇Λn+1) = Φn

U ′(ρn+1)− V ′(ρn)− γ∆ρn+1 − Λn+1 = 0,
(3.3)

where
Φn := τndiv(−(ρv)n + τndiv(ρnvn ⊗ vn)− τnµh∆vn).

In this way we (implicitly) introduce higher (4th) order derivatives which require an additional boundary
condition. We introduce the following artificial boundary condition

∇Λn+1 · ν = 0 on ∂Ω (3.4)

which seems natural as (3.3) resembles one timestep in a semi-discretised Cahn-Hilliard equation with
density dependent mobility. It is important to note that due to the explicit discretisation of the concave
part of W we get an elliptic system. An alternative would be to use a discretisation like in [2]. In that
case we would need to choose the the parameter θc (introduced in [2]) carefully in order to avoid a
timestep restriction of the form τn .M , see [2, Thrm. 2.1].

Due to our discretisation of the double–well potential we have an elliptic problem for (ρn+1,Λn+1), i.e.,
(3.3), and vn+1 is explicitly given by (3.1)2. We will not investigate the well-posedness of (3.3) here, but
study it in the fully discrete case, see Lemma 4.3.

Remark 3.1 (Extension to NSK). The discretisation given in (3.3) is easily extendable to the isothermal,
compressible Navier-Stokes-Korteweg system, by substituting the artificial viscosity µh by the physical
viscosity or the reciprocal of the Reynolds number, in a non-dimensionalised setting. Similarly ∆vn

might be replaced by div(σn
NS), where σNS denotes the full Navier-Stokes stress tensor. The explicit

treatment of the viscous term is particularly adequate for high Reynolds numbers, see [12]. An implicit
treatment of the viscosity is not possible in our framework as it would make the right hand side of (3.3)1
depend on vn+1.

3.2 The low Mach number limit

Assuming the well–posedness of the scheme, we study its behaviour for M → 0. To this end, we
assume the following expansions of the fields in M2 for every n ∈ {0, . . . , N}

ρn = ρn0 +M2ρn1 + o(M2), Λn = Λn
0 +M2Λn

1 + o(M2), vn = vn0 + o(1), (3.5)

and compatibility of the initial data with the compatibility constraints, i.e.,

W ′(ρ0
0)− γ∆ρ0

0 = const, div(ρ0
0v

0
0) = 0, ρ0

0 > 0. (Hsd)

Lemma 3.2 (Semi-discrete AP property). Provided the solution of (3.3), (3.1)2 satisfies the expansion
(3.5) and the initial data fulfil (Hsd), then

ρn0 = ρ0
0 and div(ρn0v

n
0 ) = 0 for all n ∈ {0, . . . , N}.
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Proof. The proof uses induction. For n = 0 the assertion becomes

ρ0
0 = ρ0

0 and div(ρ0
0v

0
0) = 0

which is valid as we assume (Hsd). For the induction step we have the induction hypothesis

ρn0 = ρ0
0 and div(ρn0v

n
0 ) = 0.

In particular, this implies ρn0 > 0. Thus, the leading order of (3.3)2 and (3.4) imply

U ′(ρn+1
0 )− γ∆ρn+1

0 − V ′(ρn0 ) = const. (3.6)

By induction hypothesis and (Hsd) we have

U ′(ρn0 )− γ∆ρn0 − V ′(ρn0 ) = const. (3.7)

Computing the difference of (3.6) and (3.7) we obtain

U ′(ρn+1
0 )− U ′(ρn0 )− γ∆(ρn+1

0 − ρn0 ) = const. (3.8)

Due to the convexity of U , the fact that ρn+1
0 − ρn0 ∈ H1

m(Ω) and Poincare’s inequality we find ρn+1
0 =

ρn0 upon testing (3.8) with ρn+1
0 −ρn0 .We note that the solution of the scheme still satisfies (3.1)1. Thus,

div(ρn+1
0 vn+1

0 ) =
ρn0 − ρn+1

0

τn
= 0.

In view of Lemma 3.2 our discretisation becomes a constrained evolution equation for v0 with Lagrange
multiplier Λ1 :

div(ρ0
0v

n+1
0 ) = 0

ρ0
0(vn+1

0 − vn0 ) + τndiv(ρ0
0v

n
0 ⊗ vn0 ) + τnρ

0
0∇Λ1 = τnµh∆vn0

(3.9)

which is a consistent discretisation of (2.5), (2.6), i.e., the low Mach limit of the PDE system.

3.3 Stability in the low Mach limit

We will show stability of (3.9).

Lemma 3.3 (Kinetic energy estimate). The solution (vn0 ,Λ
n
1 )n∈{0,...,N} of (3.9) satisfies∫

Ω

ρ0
0|vn+1

0 |2 d x =

∫
Ω

ρ0
0|vn0 |2 − τn(ρ0

0v
n
0 ) ·Dvn0 (vn+1

0 − vn0 )

− 2µhτn|Dvn0 |2 − τnµhDvn0 : (Dvn+1
0 −Dvn0 ) d x. (3.10)
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Remark 3.4 (Stability). Let us stress two facts about the possible increase in energy allowed in Lemma
3.3:

1 We expect vn+1
0 −vn0 andDvn+1

0 −Dvn0 to be of order τ, thus, the possible increase in energy
per timestep is of order τ 2. Hence, the Lemma ensures the stability of the scheme in the low
Mach limit independent of the actual value of M.

2 In the fully discrete setting we will have a discrete inverse inequality at our disposal which will
enable us to prove that our discrete version of

∫
Ω
ρ0

0|vn0 |2 d x is decreasing in n, up to boundary
terms.

Proof of Lemma 3.3. We start by testing (3.9)2 by (vn+1
0 + vn0 ). This gives using integration by parts

and (3.2)

0 =

∫
Ω

ρ0
0(|vn+1

0 |2 − |vn0 |2) + τndiv(ρ0
0v

n
0 ⊗ vn0 ) · vn0 + τndiv(ρ0

0v
n
0 ⊗ vn0 ) · vn+1

0

− τndiv(ρ0
0(vn+1

0 + vn0 ))Λn+1
1 − µhτn(∆vn0 ) · (vn0 + vn+1

0 ) d x. (3.11)

Note that due to Lemma 3.2
div(ρ0

0(vn+1
0 + vn0 )) = 0 (3.12)

and∫
Ω

div(ρ0
0v

n
0 ⊗ vn0 ) · vn0 d x = −

∫
Ω

(ρ0
0v

n
0 ⊗ vn0 ) : Dvn0 d x

= −1

2

∫
Ω

ρ0
0v

n
0 · ∇(|vn0 |2) d x =

1

2

∫
Ω

div(ρ0
0v

n
0 )(|vn0 |2) d x = 0. (3.13)

Using (3.12) and (3.13) in (3.11) we find

0 =

∫
Ω

ρ0
0(|vn+1

0 |2 − |vn0 |2) + τn(ρ0
0v

n
0 ) ·Dvn0 (vn+1

0 − vn0 )

+ 2µhτn|Dvn0 |2 + τnµhDvn0 : (Dvn+1
0 −Dvn0 ) d x, (3.14)

concluding the proof.

This finishes our considerations concerning the low Mach limit. We have seen that the scheme con-
verges to a stable approximation of the right set of equations, i.e., (2.5) and (2.6).

3.4 Stability for generic Mach numbers

Here we study the stability of the scheme in case of generic Mach numbers.
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Lemma 3.5 (Energy estimate). Let

τn < min
{
µh,

ρnminµh
2(‖vn‖∞ + ‖vn+1‖∞)2‖ρn+1‖2

∞

}
with ρnmin = min

x∈Ω
ρn(x)

where ‖ · ‖∞ := ‖ · ‖L∞(Ω), then∫
Ω

1

M2

(
W (ρn+1) +

γ

2
|∇ρn+1|2

)
+

1

2
ρn+1|vn+1|2 d x

≤
∫

Ω

1

M2

(
W (ρn) +

γ

2
|∇ρn|2

)
+

1

2
ρn|vn|2 d x

+

∫
Ω

τ 2
n

2κVM2
|vn+1|2|∇Λn+1|2 + τ 2

n|div(ρn+1vn+1)|2|vn|4 +
µhτn

2
|Dvn+1 −Dvn|2 d x.

(3.15)

Remark 3.6 (Stability). We like to stress that:

1 The possible increase in energy per timestep isO(τ 2).

2 In the fully discrete case we will be able to control
∫

Ω
µhτn

2
|Dvn+1 −Dvn|2 d x via an inverse

inequality.

Proof of Lemma 3.5. We multiply (3.1)1 with 1
M2 Λn+1 − 1

2
|vn+1|2 and (3.1)2 with vn+1. Integrating

over Ω and summing both equations gives

0 =

∫
Ω

(ρn+1 − ρn)
(

1
M2 (U ′(ρn+1)− γ∆ρn+1 − V ′(ρn))− 1

2
|vn+1|2

)
+ τndiv(ρn+1vn+1)

(
1
M2 Λn+1 − 1

2
|vn+1|2

)
+ ρn+1|vn+1|2 − ρnvn · vn+1

+ τndiv(ρnvn ⊗ vn) · vn+1 +
τn
M2

ρnvn+1 · ∇Λn+1 − τnµhvn+1 ·∆vn d x.

(3.16)

Let us consider the terms in (3.16) one by one. Since U and V are convex we have

U(ρn+1)− U(ρn) ≤ (ρn+1 − ρn)U ′(ρn+1),

−V (ρn+1) + V (ρn) ≤ −(ρn+1 − ρn)V ′(ρn)− κV
2

(ρn+1 − ρn)2.
(3.17)

Moreover, integration by parts, (3.2) and Young’s inequality imply

−
∫

Ω

(ρn+1 − ρn)∆ρn+1 d x =

∫
Ω

|∇ρn+1|2 −∇ρn · ∇ρn+1 d x ≥ 1

2

∫
Ω

|∇ρn+1|2 − |∇ρn|2 d x

(3.18)
and, again by integration by parts and Young’s inequality, we see∣∣∣ τn
M2

∫
Ω

div(ρn+1vn+1)Λn+1+ ρnvn+1 ·∇Λn+1 d x
∣∣∣ =

∣∣∣∣ τnM2

∫
Ω

(ρn − ρn+1)vn+1 ·∇Λn+1 d x

∣∣∣∣
≤ κV

2M2

∫
Ω

(ρn+1 − ρn)2 d x +
τ 2
n

2κVM2

∫
Ω

|vn+1|2|∇Λn+1|2 d x. (3.19)
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Using integration by parts we find∣∣∣∣τn ∫
Ω

div(ρn+1vn+1)(−1

2
|vn+1|2) + div(ρnvn ⊗ vn) · vn+1 d x

∣∣∣∣
=

∣∣∣∣τn ∫
Ω

(ρn+1vn+1 ⊗ vn+1) : Dvn+1 − ρn(vn ⊗ vn) : Dvn+1 d x

∣∣∣∣
≤ τn

∫
Ω

|ρn+1 − ρn||vn|2|Dvn+1| d x + τn

∫
Ω

ρn+1(|vn|+ |vn+1|)|vn+1 − vn||Dvn+1| d x

≤ τn

∫
Ω

τ 2
n

µh
|div(ρn+1vn+1)|2|vn|4 d x +

τnµh
4

∫
Ω

|Dvn+1|2 d x

+
τn
µh
‖ρn+1‖2

∞

∫
Ω

|vn+1 − vn|2(|vn|+ |vn+1|)2 d x +
τnµh

4

∫
Ω

|Dvn+1|2 d x.

(3.20)

In addition, by Young’s inequality we have

µhτn

∫
Ω

Dvn+1 : Dvn d x = µhτn

∫
Ω

|Dvn+1|2 d x− µhτn
∫

Ω

Dvn+1 : (Dvn+1 −Dvn) d x

≥ µhτn
2

∫
Ω

|Dvn+1|2 d x− µhτn
2

∫
Ω

|Dvn+1 −Dvn|2 d x. (3.21)

It also holds that

− 1

2
(ρn+1 − ρn)|vn+1|2 + ρn+1|vn+1|2 − ρnvn · vn+1

=
1

2
ρn+1|vn+1|2 − 1

2
ρn|vn|2 +

1

2
ρn|vn+1 − vn|2. (3.22)

Inserting (3.17)–(3.22) into (3.16) we get

0 ≥
∫

Ω

1

M2

(
W (ρn+1)−W (ρn) +

γ

2
|∇ρn+1|2 − γ

2
|∇ρn|2

)
+

1

2
ρn+1|vn+1|2 − 1

2
ρn|vn|2

+
1

2
ρnmin|vn+1 − vn|2 − τ 2

n

2κVM2
|vn+1|2|∇Λn+1|2 − τ 3

n

µh
|div(ρn+1vn+1)|2|vn|4

− τn
µh
‖ρn+1‖2

∞(‖vn‖∞ + ‖vn+1‖∞)2|vn+1 − vn|2 − µhτn
2
|Dvn+1 −Dvn|2 d x.

(3.23)

The assertion of the Lemma follows from our assumptions on τn.

4 The fully discrete scheme

In this section we consider a fully discrete finite difference scheme, which is based on the semi-
discretisation investigated in §3. We restrict ourselves to the case of a Cartesian mesh and perform

11



all calculations in 2D. The restriction to one space dimension as well as the extension to three space
dimensions is straightforward. For ease of presentation, we assume that our grid has the same mesh-
size h in both space directions. In particular, the computational domain will be Ω = [0, 1]2, and by xi,j
we denote (ih, jh)T ∈ [0, 1]2 where we choose h = 1

K
for some K ∈ N. For a generic field f we

denote our approximation of f(xi,j) by fi,j.

4.1 The fully discrete scheme

To avoid too many indexes we decompose v = (u,w)T and introduce the following operators which
we define for some generic grid function (fi,j)i,j or (grid) vector field (fi,j)i,j with fi,j = (f 1

i,j, f
2
i,j)

T :

(∇hf)i,j :=
1

2h
(fi+1,j − fi−1,j, fi,j+1 − fi,j−1)T , (4.1)

(∇̃hf)i,j :=
1

h
(fi+1,j − fi,j, fi,j+1 − fi,j)T , (4.2)

(divhf)i,j :=
1

2h
(f 1
i+1,j − f 1

i−1,j + f 2
i,j+1 − f 2

i,j−1), (4.3)

(Dhf)i,j :=
1

h

(
f 1
i+1,j − f 1

i,j f 1
i,j+1 − f 1

i,j

f 2
i+1,j − f 2

i,j f 2
i,j+1 − f 2

i,j

)
, (4.4)

(∆hf)i,j :=
1

h2
(fi+1,j + fi−1,j + fi,j+1 + fi,j−1 − 4fi,j). (4.5)

The domain of definition of the functions obtained in this way depends on the domain of definition
of f and f , e.g., if fi,j is defined for (i, j) ∈ {0, . . . , K}2 then (∇hf)i,j is defined for (i, j) ∈
{1, . . . , K − 1}2. Let us note for later use that for any f = (fi,j)(i,j)∈{0,...,K}2 the discrete Jacobian
Dh fulfils the following inverse inequality

K−1∑
i,j=0

|(Dhf)i,j|2 ≤
8

h2

K∑
i,j=0

|fi,j|2. (4.6)

In addition, we use a rather specialised operator to discretise div(ρv ⊗ v), i.e.,

(d̃ivh(ρv ⊗ v))i,j

=
1

4h

(
(vi,j + vi+1,j)(ρi,jui,j + ρi+1,jui+1,j)− (vi,j + vi−1,j)(ρi,jui,j + ρi−1,jui−1,j)

+ (vi,j + vi,j+1)(ρi,jwi,j + ρi,j+1wi,j+1)− (vi,j + vi,j−1)(ρi,jwi,j + ρi,j−1wi,j−1)
)
. (4.7)

We will study the following fully discrete scheme

ρn+1
i,j − ρni,j + τndivh(ρ

n+1vn+1)i,j = 0, (4.8)

ρn+1
i,j vn+1

i,j − ρni,jvni,j + τnd̃ivh(ρ
nvn ⊗ vn)i,j + ρni,j

τn
M2

(∇hΛ
n+1)i,j − µhτn(∆hv

n)i,j = 0, (4.9)
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Λn+1
i,j − U ′(ρn+1

i,j ) + V ′(ρni,j) + γ(∆hρ
n+1)i,j = 0, (4.10)

for (i, j) ∈ {0, . . . , K}2. We implement the boundary conditions for ρ via a ghost cell approach

ρn+1
−1,j = ρn+1

0,j , ρn+1
K+1,j = ρn+1

K,j , ρn+1
i,−1 = ρn+1

i,0 , ρn+1
i,K+1 = ρn+1

i,K , (4.11)

for (i, j) ∈ {0, . . . , K}2 and analogous for Λ. We weakly enforce the boundary conditions on v by
setting

vn+1
−1,j = −vn+1

0,j , vn+1
K+1,j = −vn+1

K,j , vn+1
i,−1 = −vn+1

i,0 , vn+1
i,K+1 = −vn+1

i,K , (4.12)

as in [16]. Let us note that extending ρn,vn,Λn by these boundary conditions makes equations (4.8)
– (4.10) well–defined.

Remark 4.1 (Choice of discretisation).

1 The time discretisation in (4.8) - (4.10) is the same as in §3.

2 The advection term div(ρv ⊗ v) is discretised such that the compatibility property in Lemma
4.6 holds.

3 The pressure gradient is discretised nonconservatively, see [10, 15].

4 The remaining spatial derivatives are discretised by central differences.

Remark 4.2 (Conservation properties). The scheme (4.8) – (4.12) is mass conserving. In fact, it is an
easy consequence of (4.8),(4.11) and (4.12) that

K∑
i,j=0

ρn+1
i,j =

K∑
i,j=0

ρni,j for all n ∈ {0, . . . , N − 1}. (4.13)

We discretised the pressure gradient as ρn∇Λn+1 which is nonconservative, thus, the scheme does
not conserve momentum. Still, we like to stress that this is the only nonconservative term. In particular,
d̃iv(ρv ⊗ v) is conservative.

For later use, let us define the following sets

∂Ω :=
{

(i, j) ∈ {0, . . . , K}2 : i ∈ {0, K} or j ∈ {0, K}
}
,

∂̄Ω :=
{

(i, j) ∈ {−1, . . . , K + 1}2 : i ∈ {−1, K + 1} or j ∈ {−1, K + 1}
}
.

(4.14)

4.2 Well–posedness of the scheme

The well-posedness of the scheme results from its decomposition into an implicit equation for ρn+1 and
an explicit equation for vn+1. To this end, we insert the expression for ρn+1

i,j vn+1
i,j from (4.9) into (4.8)

and we obtain

ρn+1
i,j −

τ 2
n

M2
divh

(
ρn(∇hΛ

n+1)
)
i,j

= ρni,j − τndivh(Φ
n)i,j (4.15)
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where Φn
i,j depends on quantities known at time n only, i.e.,

Φn
i,j := ρni,jv

n
i,j − τnd̃ivh(ρ

nvn ⊗ vn)i,j + µhτn(∆hv
n)i,j

for (i, j) ∈ {0, . . . , K}2 and ρn(∇hΛ
n+1) and Φn are extended to (i, j) ∈ ∂̄Ω using (4.12).

We will show that (4.15), (4.10) is uniquely solvable. To do this, we need some definitions: By V we
denote the space of all real valued tuples (ki,j)(i,j)∈{0,...,K}2 , i.e., V = R(K+1)2 and by U the subspace
of V such that ki,j is identical for all i, j. The orthogonal complement of U in V with respect to the
canonical scalar product is denoted by Vm. For any tuple (qi,j)(i,j)∈{0,...,K}2 with qi,j > 0 for all i, j
the bilinear form

Bh
q : (Vm)2 → R, (li,j, ki,j) 7→

K∑
i,j=0

qi,j(∇hl)i,j · (∇hk)i,j (4.16)

is continuous and coercive, when k, l are extended by (4.11), in view of (4.1). Thus, it exists a linear,
invertible operator

Gh
q : Vm → Vm, with −Bh

q (Gh
q (v), χ) =

K∑
i,j=0

vi,jχi,j for all χ ∈ Vm. (4.17)

Because of the way Λn+1 enters in (4.9) it is sufficient to extract the Vm part of Λn+1 from (4.10).
Hence, we replace (4.10) by

Λn+1
i,j + P(−U ′(ρn+1) + V ′(ρn) + γ(∆hρ

n+1))i,j = 0, (4.18)

where P : V→ Vm is the orthogonal projection. From (4.13) we know ρn+1 − ρn ∈ Vm. Now we are
in position to formulate our Lemma concerning existence and uniqueness of ρn+1,Λn+1.

Lemma 4.3 (Well-posedness). Let ρni,j > 0 for all (i, j) ∈ {0, . . . , K}2 then there exists a unique
solution (ρn+1,Λn+1) ∈ (ρn + Vm)× Vm of (4.15), (4.18).

Remark 4.4 (Time step size). It is important to note that Lemma 4.3 does not require a timestep
restriction. This is due to our splitting of W. Apart from that the proof is similar to the well-posedness
proof of the scheme in [2].

Proof of Lemma 4.3. As pointed out before ρn(∇hΛ
n+1) (which replaces momentum in the mass con-

servation equation) is extended to ∂̄Ω by (4.12) and let ψ ∈ Vm be extended to ∂̄Ω by (4.11). Then, it
holds

K∑
i,j=0

(divh(ρ
n∇hΛ

n+1))i,jψi,j = −
K∑

i,j=0

ρni,j(∇hΛ
n+1)i,j(∇hψ)i,j =

K∑
i,j=0

((Gh
ρn)−1(Λn+1))i,jψi,j.

Thus, we may equivalently pose (4.15) as

K∑
i,j=0

(
ρn+1
i,j −

τ 2
n

M2
((Gh

ρn)−1(Λn+1))i,j − (ρni,j − τndivh(Φ
n)i,j)

)
ψi,j = 0 for all ψ ∈ Vm. (4.19)
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As ρn+1 − τ2
n

M2 ((Gh
ρn)−1Λn+1) − ρn + τndivh(Φ

n) ∈ Vm is uniquely determined by (4.19) we can
apply Gh

ρn to (4.19) and due to (4.18)

M2

τ 2
n

(Gh
ρn(ρn+1 −Ψn))i,j = P(U ′(ρn+1)− V ′(ρn)− γ(∆hρ

n+1))i,j, (4.20)

where we used Ψn := ρn− τndivh(Φ
n) for brevity. When we extend functions in Vm by the boundary

conditions (4.11), equation (4.20) is the Euler–Lagrange equation to the following minimisation problem:

min
ψ∈ρn+Vm

K∑
i,j=0

[
U(ψi,j) +

γ

2
|(∇̃hψ)i,j|2−V ′(ρni,j)ψi,j +

M2

2τ 2
n

ρni,j|(∇h(G
h
ρn(ψ−Ψn)))i,j|2

]
(4.21)

where it is to be understood that ψ and Gh
ρn(ψ − Ψn) are extended by (4.11) to ∂̄Ω. This formulation

as a minimisation problem is possible because for any ϕ ∈ Vm extended by (4.11)

1

2

d

dε

K∑
i,j=0

ρni,j|(∇hG
h
ρn(ρn+1 + εϕ−Ψn))i,j|2

∣∣∣
ε=0

=
K∑

i,j=0

ρni,j
(
(∇hG

h
ρn(ρn+1 −Ψn))i,j

)
·
(
(∇hG

h
ρn(ϕ))i,j

)
= −

K∑
i,j=0

(Gh
ρn(ρn+1 −Ψn))i,jϕi,j.

(4.22)

The existence of ρn+1, and thereby Λn+1, follows from the reformulation of (4.15) as (4.21). To show
uniqueness let us assume there were two solutions ρn+1, ρ̄n+1 ∈ ρn + Vm of (4.15) and thereby of
(4.20). Due to (4.11) we do not get any boundary terms when performing summation by parts such that

0 =
K∑

i,j=0

[(
U ′(ρn+1

i,j )− U ′(ρ̄n+1
i,j )− M2

τ 2
n

(Gh
ρn(ρn+1 − ρ̄n+1))i,j

)
ϕi,j

+ γ(∇̃h(ρ
n+1 − ρ̄n+1))i,j · (∇̃hϕ)i,j

]
(4.23)

for all ϕ ∈ Vm. We choose ϕ = ρn+1 − ρ̄n+1 and obtain

0 =
K∑

i,j=0

[
(U ′(ρn+1

i,j )− U ′(ρ̄n+1
i,j ))(ρn+1

i,j − ρ̄n+1
i,j )

+ γ|(∇̃h(ρ
n+1 − ρ̄n+1))i,j|2 +

M2

τ 2
n

ρni,j|(∇hG
h
ρn(ρn+1 − ρ̄n+1))i,j|2

]
(4.24)

by using the second line of (4.22). From (4.24) we infer

0 ≥
K∑

i,j=0

|(∇̃h(ρ
n+1 − ρ̄n+1))i,j|2, (4.25)

which implies ρn+1 − ρ̄n+1 ∈ Vm ∩ U = {0}.

15



Once ρn+1,Λn+1 are determined from (4.15), (4.18) equation (4.9) explicitly gives vn+1. Thus, the
scheme (4.8) - (4.12) is in fact well-posed.

4.3 Asymptotic consistency of the scheme

As in the semi-discrete case we commence our study of the properties of the scheme with the low Mach
case. To this end, we assume the following expansions

ρni,j = ρn0,i,j +M2ρn1,i,j + o(M2), vni,j = vn0,i,j + o(1), Λn
i,j = Λn

0,i,j +M2Λn
1,i,j + o(M2). (4.26)

We also assume a fully discrete analogue of (Hsd), i.e.,

W ′(ρ0
0,i,j)− (∆hρ

0
0)i,j = const, (divh(ρ

0
0v

0
0))i,j = 0, ρ0

0,i,j > 0, (Hfd)

for all (i, j) ∈ {0, . . . , K}2.

Lemma 4.5 (AP property). Provided (Hfd) holds, the solution of (4.8) - (4.12) satisfies

ρn0 = ρ0
0 and divh(ρ

n
0v

n
0 ) = 0 for all n ∈ {0, . . . , N}.

Proof. The proof goes along the same lines as that of Lemma 3.2. It is based on induction and for
n = 0 the assertion coincides with (Hfd). For the induction step we infer from the leading order of (4.9)
and (4.11) that Λn+1

0 ∈ U such that because of (4.11)

K∑
i,j=0

(
(U ′(ρn+1

0,i,j)− V ′(ρn0,i,j))ψi,j + γ(∇̃hρ
n+1
0 )i,j · (∇̃hψ)i,j

)
= 0

for all ψ ∈ Vm. By induction hypothesis this gives

K∑
i,j=0

(
(U ′(ρn+1

0,i,j)− U ′(ρn0,i,j))ψi,j + γ(∇̃h(ρ
n+1
0 − ρn0 ))i,j · (∇̃hψ)i,j

)
= 0.

Choosing ψ = ρn+1
0 − ρn0 we obtain because of the convexity of U

K∑
i,j=0

|(∇̃h(ρ
n+1
0 − ρn0 ))i,j|2 ≤ 0. (4.27)

Combining (4.27) and (4.13) we find ρn+1
0 − ρn0 ∈ U ∩ Vm = {0}. This proves the first claim of the

lemma. From the leading order of (4.8) we obtain

divh(ρ
n+1
0 vn+1

0 ) = 0, (4.28)

which is the inductive step for the second assertion of the lemma.

Thus, the scheme approximates the correct equations in the low Mach limit. In particular, as Λn+1
0 ∈ U,

we have the following equation for vn+1
0

ρ0
0,i,j(v

n+1
0,i,j −vn0,i,j) + τnd̃ivh(ρ

0
0v

n
0 ⊗vn0 )i,j + τnρ

0
0,i,j(∇hΛ

n+1
1 )i,j − µhτn(∆hv

n
0 )i,j = 0. (4.29)
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4.4 Stability in the low Mach limit

Before we turn to the stability properties of the scheme let us consider the way we discretised div(ρv⊗
v) in (4.9). The operator d̃ivh is deliberately constructed in such a way that the following lemma can
be exploited.

Lemma 4.6 (Compatibility). For any (ρi,j)(i,j)∈{0,...,K}2 , (vi,j)(i,j)∈{0,...,K}2 extended according to the
boundary conditions (4.11), (4.12) the following identity is satisfied

K∑
i,j=0

(d̃ivh(ρv ⊗ v))i,j · vi,j =
K∑

i,j=0

1

2
|vi,j|2(divh(ρv))i,j.

Proof. A straightforward calculation shows

(d̃ivh(ρv ⊗ v))i,j · vi,j =
1

2
|vi,j|2(divh(ρv))i,j +

1

4h

(
ci,j − ci−1,j + c̃i,j − c̃i,j−1

)
(4.30)

with

ci,j = vi+1,j · vi,j(ρi,jui,j + ρi+1,jui+1,j), c̃i,j = vi,j+1 · vi,j(ρi,jwi,j + ρi,j+1wi,j+1).

Summing over i, j = 0, . . . , K completes the proof, because of (4.11) and (4.12).

We are in position to prove the stability of the low Mach limit of the fully discrete scheme.

Lemma 4.7 (Kinetic energy estimate). Provided the timestep satisfies

τn <
h

‖vn0‖∞
ρmin

0

9‖ρ0
0‖2
∞ + 8

with ρmin
0 := min

(i,j)∈{0,...,K}2
ρ0

0,i,j, (4.31)

the scheme (4.8) - (4.12) with µh := h‖vn0‖∞ fulfils the following stability estimate

K∑
i,j=0

ρ0
0,i,j|vn+1

0,i,j |2 ≤
K∑

i,j=0

ρ0
0,i,j|vn0,i,j|2

+
µhτn
h2

∑
(i,j)∈∂Ω

|vn+1
0,i,j − vn0,i,j|2 + 4

µhτn
h2

∑
(i,j)∈∂Ω

vn0,i,j(v
n
0,i,j − vn+1

0,i,j ). (4.32)

Remark 4.8 (Boundary conditions). The boundary terms in (4.32) could be avoided if we enforced
vi,j = 0 for (i, j) ∈ ∂Ω ∪ ∂̄Ω. However, this would lead to ρ0,0, ρ0,K , ρK,0, ρK,K being (exactly)
constant in time, which would be a very crude numerical artefact. In any case the possible increase in
energy is expected to be of order O(τ 2), as the boundary has codimension 1 and |vn0,i,j − vn+1

0,i,j | is
expected to be of orderO(τn).
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Proof of Lemma 4.7. Let us note the following consequences of the boundary conditions (4.11), (4.12)
and Lemmas 4.5 and 4.6:

K∑
i,j=0

(d̃ivh(ρ
0
0v

n
0 ⊗ vn0 ))i,j · vn0,i,j = 0 (4.33)

K∑
i,j=0

ρ0
0,i,jv

n
0,i,j · (∇hΛ

m
1 )i,j = 0 (4.34)

for all m,n ∈ {0, . . . , N}. We multiply (4.29) by (vn+1
0,i,j + vn0,i,j) and sum over i, j = 0, . . . , K such

that we obtain using (4.33) and (4.34):

K∑
i,j=0

ρ0
0,i,j(|vn+1

0,i,j |2 − |vn0,i,j|2) + τn(d̃ivh(ρ
0
0v

n
0 ⊗ vn0 ))i,j · (vn+1

0,i,j − vn0,i,j)

− µhτn(∆hv
n
0 )i,j · (vn+1

0,i,j + vn0,i,j) = 0. (4.35)

Due to the boundary conditions (4.12) we have the following summation by parts results

−
K∑

i,j=0

(∆hv
n
0 )i,j · vn0,i,j =

K−1∑
i,j=0

|(Dhv
n
0 )i,j|2 +

2

h2

∑
(i,j)∈∂Ω

|vn0,i,j|2

−
K∑

i,j=0

(∆hv
n
0 )i,j · vn+1

0,i,j =
K−1∑
i,j=0

(Dhv
n
0 )i,j : (Dhv

n+1
0 )i,j +

2

h2

∑
(i,j)∈∂Ω

vn0,i,j · vn+1
0,i,j

≥
K−1∑
i,j=0

(Dhv
n
0 )i,j : (Dhv

n+1
0 )i,j −

1

h2

∑
(i,j)∈∂Ω

|vn0,i,j − vn+1
0,i,j |2.

(4.36)

Inserting (4.36) into (4.35) we obtain

K∑
i,j=0

ρ0
0,i,j(|vn+1

0,i,j |2 − |vn0,i,j|2) + τn(d̃ivh(ρ
0
0v

n
0 ⊗ vn0 ))i,j · (vn+1

0,i,j − vn0,i,j)

+
K−1∑
i,j=0

2µhτn|(Dhv
n
0 )i,j|2 − µhτn(Dhv

n
0 )i,j : (Dh(v

n
0 − vn+1

0 ))i,j

≤ µhτn
h2

∑
(i,j)∈∂Ω

|vn0,i,j − vn+1
0,i,j |2. (4.37)

To estimate the terms involving vn+1
0 −vn0 we test (4.29) by vn+1

0 −vn0 . We find using (4.34) and (4.36)

K∑
i,j=0

ρ0
0,i,j|vn+1

0,i,j − vn0,i,j|2 + τn(d̃ivh(ρ
0
0v

n
0 ⊗ vn0 ))i,j · (vn+1

0,i,j − vn0,i,j)

+
K−1∑
i,j=0

τnµh(Dhv
n
0 )i,j : (Dh(v

n+1
0 − vn0 ))i,j ≤ 2

µhτn
h2

∑
(i,j)∈∂Ω

vn0,i,j · (vn0,i,j − vn+1
0,i,j ). (4.38)
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Due to Lemma 4.5 we have

4h(d̃ivh(ρ
0
0v

n
0 ⊗ vn0 ))i,j = 4h(d̃ivh(ρ

0
0v

n
0 ⊗ vn0 ))i,j − 4hvn0,i,j(divh(ρ

0
0v

n
0 ))i,j =

(vn0,i+1,j − vn0,i,j)(ρ
0
0,i,ju

n
0,i,j + ρ0

0,i+1,ju
n
0,i+1,j)− (vn0,i−1,j − vn0,i,j)(ρ

0
0,i,ju

n
0,i,j + ρ0

0,i−1,ju
n
0,i−1,j)

+(vn0,i,j+1−vn0,i,j)(ρ
0
0,i,jw

n
0,i,j+ρ

0
0,i,j+1w

n
0,i,j+1)−(vn0,i,j−1−vn0,i,j)(ρ

0
0,i,jw

n
0,i,j+ρ

0
0,i,j−1w

n
0,i,j−1)

(4.39)

for all (i, j) ∈ {0, . . . , K}2 and a straightforward calculation shows

K∑
i,j=0

((d̃ivh(ρ
0
0v

n
0 ⊗ vn0 ))i,j)

2 ≤ 9

2
‖ρ0

0‖2
∞‖vn0‖2

∞

K−1∑
i,j=0

|(Dhv
n
0 )i,j|2. (4.40)

Employing (4.40) in (4.38) we obtain for arbitrary ε > 0

K∑
i,j=0

(
ρ0

0,i,j|vn+1
0,i,j − vn0,i,j|2 − τn

ε

2
‖ρ0

0‖∞|vn+1
0,i,j − vn0,i,j|2

)
−

K−1∑
i,j=0

τn

( 9

4ε
‖ρ0

0‖∞‖vn0‖2
∞|(Dhv

n
0 )i,j|2 +

µh
2
|(Dhv

n
0 )i,j|2 +

µh
2
|(Dh(v

n+1
0 − vn0 ))i,j|2

)
≤ 2

µhτn
h2

∑
(i,j)∈∂Ω

vn0,i,j · (vn0,i,j − vn+1
0,i,j ). (4.41)

By the inverse inequality (4.6) we find

K∑
i,j=0

ρ0
0,i,j|vn+1

0,i,j − vn0,i,j|2 ≤ τn

(
ε

2
‖ρ0

0‖∞ +
4µh
h2

) K∑
i,j=0

|vn+1
0,i,j − vn0,i,j|2

+ τn

(
9

4ε
‖ρ0

0‖∞‖vn0‖2
∞ +

µh
2

) K−1∑
i,j=0

|(Dhv
n
0 )i,j|2 + 2

µhτn
h2

∑
(i,j)∈∂Ω

vn0,i,j · (vn0,i,j − vn+1
0,i,j ).

(4.42)

Let us choose ε = 9
h
‖ρ0

0‖∞‖vn0‖∞. Then, because of (4.31) we have

τn

(ε
2
‖ρ0

0‖∞ +
4µh
h2

)
≤ ρmin

0

2

such that (4.42) implies

ρmin
0

K∑
i,j=0

|vn+1
0,i,j − vn0,i,j|2

≤ τn

(h
2
‖vn0‖∞ + µh

) K−1∑
i,j=0

|(Dhv
n
0 )i,j|2 + 4

µhτn
h2

∑
(i,j)∈∂Ω

vn0,i,j · (vn0,i,j − vn+1
0,i,j ). (4.43)
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Returning to (4.37) we find upon using (4.40) that for any ε̄ > 0

K∑
i,j=0

ρ0
0,i,j|vn+1

0,i,j |2 −
N∑

i,j=0

ρ0
0,i,j|vn0,i,j|2

≤
K∑

i,j=0

(
τn
ε̄

2
|d̃ivh(ρ

0
0v

n
0 ⊗ vn0 )i,j|2 +

τn
2ε̄
|vn+1

0,i,j − vn0,i,j|2
)

+
µhτn
h2

∑
(i,j)∈∂Ω

|vn0,i,j − vn+1
0,i,j |2

−
K−1∑
i,j=0

(
2τnµh|(Dhv

n
0 )i,j|2 − τnµh|(Dhv

n
0 )i,j|2 −

τnµh
4
|(Dh(v

n+1
0 − vn0 ))i,j|2

)
= −

(
τnµh −

9τnε̄

4
‖ρ0

0‖2
∞‖vn0‖2

∞

) K−1∑
i,j=0

|(Dhv
n
0 )i,j|2

+

(
τn
2ε̄

+
2τnµh
h2

) K∑
i,j=0

|vn+1
0,i,j − vn0,i,j|2 +

µhτn
h2

∑
(i,j)∈∂Ω

|vn0,i,j − vn+1
0,i,j |2.

(4.44)

Inserting (4.43) into (4.44) we get because of µh = ‖vn0‖∞h

K∑
i,j=0

(
ρ0

0,i,j|vn+1
0,i,j |2 − ρ0

0,i,j|vn0,i,j|2
)

≤ −τn
(
µh −

9ε̄

4
‖ρ0

0‖2
∞‖vn0‖2

∞ −
(
τn
2ε̄

+
2τnµh
h2

)
3h

2ρmin
0

‖vn0‖∞
) K−1∑
i,j=0

|(Dhv
n
0 )i,j|2

+
µhτn
h2

∑
(i,j)∈∂Ω

|vn0,i,j − vn+1
0,i,j |2 +

( 2τn
ε̄ρmin

0

+
8τnµh
h2ρmin

0

)µhτn
h2

∑
(i,j)∈∂Ω

vn0,i,j · (vn0,i,j − vn+1
0,i,j ). (4.45)

Let us choose ε̄ := 2h
9‖ρ00‖2∞‖vn

0 ‖∞
. Then, (4.45) and (4.31) imply

K∑
i,j=0

(
ρ0

0,i,j|vn+1
0,i,j |2 − ρ0

0,i,j|vn0,i,j|2
)

≤ −τn‖vn0‖∞
h

2

(
1− 3

(9‖ρ0
0‖2
∞

4h
+

2

h

) τn
ρmin

0

‖vn0‖∞
) K−1∑
i,j=0

|(Dhv
n
0 )i,j|2

+
µhτn
h2

∑
(i,j)∈∂Ω

|vn0,i,j − vn+1
0,i,j |2 + 2

µhτn
h2

∑
(i,j)∈∂Ω

vn0,i,j · (vn0,i,j − vn+1
0,i,j ). (4.46)

Therefore, the assertion of the Lemma follows upon applying our assumption on τn, i.e., (4.31) again.
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4.5 Stability for generic Mach numbers

In this section we investigate the stability of the fully discrete scheme for generic Mach numbers. As
in the semi–discrete case the scheme does not necessarily diminish energy over time but the energy
increase per timestep is O(τ 2). Therefore, for any given time interval the increase in energy over this
interval goes to zero for τ going to zero.

Lemma 4.9 (Fully discrete energy estimate). For

τn <
h‖vn‖∞ρnmin

8(2‖ρn+1‖2
∞(‖vn‖∞ + ‖vn+1‖∞)2 + ‖vn‖2

∞)
and µh = ‖vn‖∞h,

with ρnmin := mini,j=0,...,K ρ
n
i,j, the solution (ρn+1

i,j ,vn+1
i,j ) of (4.8)–(4.12) satisfies

K∑
i,j=0

( 1

M2

(
W (ρn+1

i,j ) +
γ

2
|(∇̃hρ

n+1)i,j|2
)

+
1

2
ρn+1
i,j |vn+1

i,j |2
)

−
K∑

i,j=0

( 1

M2

(
W (ρni,j) +

γ

2
|(∇̃hρ

n)i,j|2
)

+
1

2
ρni,j|vni,j|2

)
≤8τ 2

n

K∑
i,j=0

(divh(ρ
n+1vn+1)i,j)

2 +
τ 2
n

2κVM2
‖vn+1‖2

∞

K∑
i,j=0

|(∇hΛ
n+1)i,j|2

+
τn
h
‖vn‖∞

∑
(i,j)∈∂Ω

|vni,j − vn+1
i,j |2.

(4.47)

Remark 4.10 (Time step restriction). As we discretised the advection term in the momentum balance
explicitly, a timestep restriction proportional to h

‖v‖∞ is to be expected. Concerning the possible in-

crease in energy we have seen in §4.4 that for small Mach numbers ∇hΛ
n+1 ∼ M2 such that the

1
M2 |(∇hΛ

n+1)i,j|2 term is well behaved provided the initial data satisfy the compatibility condition.

Let us stress that the timestep restriction is independent of the Mach number M.

Proof of Lemma 4.9. This proof has the same structure as the proof of Lemma 3.5. We multiply (4.8)
by 1

M2 Λn+1
i,j − 1

2
|vn+1
i,j |2 and (4.9) by vn+1

i,j . Adding both equations and summing i, j = 0, . . . , K we
find

0 =
K∑

i,j=0

(
(ρn+1
i,j − ρni,j)

( 1

M2

(
U ′(ρn+1

i,j )− γ(∆hρ
n+1)i,j − V ′(ρni,j)

)
− 1

2
|vn+1
i,j |2

)
+ τndivh(ρ

n+1vn+1)i,j(
1

M2
Λn+1
i,j −

1

2
|vn+1
i,j |2) + ρn+1

i,j |vn+1
i,j |2 − ρni,jvni,j · vn+1

i,j

+ τnd̃ivh(ρ
n+1vn+1 ⊗ vn+1)i,j · vn+1

i,j + ρni,jv
n+1
i,j

τn
M2

(∇hΛ
n+1)i,j − µhτn(∆hv

n)i,j · vn+1
i,j

)
.

(4.48)
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As U, V are convex we have for (i, j) ∈ {0, . . . , K}2

(ρn+1
i,j − ρni,j)U ′(ρn+1

i,j ) ≥ U(ρn+1
i,j )− U(ρni,j),

− (ρn+1
i,j − ρni,j)V ′(ρni,j) ≥ −

(
V (ρn+1

i,j )− V (ρni,j)−
κV
2

(ρn+1
i,j − ρni,j)2

)
,

(ρn+1
i,j − ρni,j)(−

1

2
|vn+1
i,j |2) + ρn+1

i,j |vn+1
i,j |2 − ρni,jvni,j · vn+1

i,j

=
1

2
ρn+1
i,j |vn+1

i,j |2 −
1

2
ρni,j|vni,j|2 +

1

2
ρni,j|vn+1

i,j − vni,j|2

(4.49)

and because of (4.11)

− γ
K∑

i,j=0

(ρn+1
i,j − ρni,j)(∆hρ

n+1)i,j = γ
K∑

i,j=0

|(∇̃hρ
n+1)i,j|2 − (∇̃hρ

n)i,j · (∇̃hρ
n+1)i,j

≥ γ

2

K∑
i,j=0

|(∇̃hρ
n+1)i,j|2 − |(∇̃hρ

n)i,j|2. (4.50)

In addition, we find using the boundary data (4.11), (4.12)∣∣∣ τn
M2

K∑
i,j=0

divh(ρ
n+1vn+1)i,jΛ

n+1
i,j + ρni,jv

n+1
i,j · (∇hΛ

n+1)i,j

∣∣∣
=
∣∣∣ τn
M2

K∑
i,j=0

(ρni,j − ρn+1
i,j )vn+1

i,j · (∇hΛ
n+1)i,j

∣∣∣
≤ κV

2M2

K∑
i,j=0

(ρni,j − ρn+1
i,j )2 +

τ 2
n

2κVM2
‖vn+1‖2

∞

K∑
i,j=0

|(∇hΛ
n+1)i,j|2.

(4.51)

To estimate the energy production by discretisation errors in the advection terms we use Lemma 4.6
and obtain

K∑
i,j=0

divh(ρ
n+1vn+1)i,j(−

1

2
|vn+1
i,j |2) + d̃ivh(ρ

nvn ⊗ vn)i,j · vn+1
i,j

= −
K∑

i,j=0

(
d̃ivh(ρ

n+1vn+1 ⊗ vn+1)i,j − d̃ivh(ρ
nvn ⊗ vn)i,j

)
· vn+1

i,j

=
−1

4h

K∑
i,j=0

(an+1
i,j − an+1

i−1,j − ani,j + ani−1,j) · vn+1
i,j + (bn+1

i,j − bn+1
i,j−1 − bni,j + bni,j−1) · vn+1

i,j

(4.52)

where

ani,j = (vni,j + vni+1,j)(ρ
n
i,ju

n
i,j + ρni+1,ju

n
i+1,j), bni,j = (vni,j + vni,j+1)(ρni,jw

n
i,j + ρni,j+1w

n
i,j+1).
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Thus, we obtain using (4.12)∣∣∣∣∣
K∑

i,j=0

divh(ρ
n+1vn+1)i,j(−

1

2
|vn+1
i,j |2) + d̃ivh(ρ

nvn ⊗ vn)i,j · vn+1
i,j

∣∣∣∣∣
≤ 1

4h

K−1∑
i,j=0

|an+1
i,j − ani,j| · |vn+1

i+1,j − vn+1
i,j |+ |bn+1

i,j − bni,j| · |vn+1
i,j+1 − vn+1

i,j |

=
1

8µh

K−1∑
i,j=0

(
|an+1
i,j − ani,j|2 + |bn+1

i,j − bni,j|2
)

+
µh
2

K−1∑
i,j=0

|(Dhv
n+1)i,j|2,

(4.53)

A straightforward calculation gives

K−1∑
i,j=0

|an+1
i,j − ani,j|2 ≤ 32‖ρn+1‖2

∞(‖vn+1‖∞ + ‖vn‖∞)2

K∑
i,j=0

|vn+1
i,j − vni,j|2

+ 32
K∑

i,j=0

‖vn‖2
∞(ρn+1

i,j − ρni,j)2 (4.54)

and an analogous estimate for
∑K−1

i,j=0 |b
n+1
i,j − bni,j|2. Inserting (4.54) into (4.53) we find∣∣∣∣∣

K∑
i,j=0

divh(ρ
n+1vn+1)i,j(−

1

2
|vn+1
i,j |2) + d̃ivh(ρ

nvn ⊗ vn)i,j · vn+1
i,j

∣∣∣∣∣
≤ 8

µh
‖ρn+1‖2

∞(‖vn+1‖∞ + ‖vn‖∞)2

K∑
i,j=0

|vn+1
i,j − vni,j|2

+
8

µh

K∑
i,j=0

‖vn‖2
∞(ρn+1

i,j − ρni,j)2 +
µh
2

K−1∑
i,j=0

|(Dhv
n+1)i,j|2.

(4.55)

Let us finally consider the artificial dissipation. We find using (4.36)

−
K−1∑
i,j=0

(∆hv
n)i,j · vn+1

i,j

≥
K−1∑
i,j=0

(Dhv
n+1)i,j : (Dhv

n)i,j −
1

h2

∑
(i,j)∈∂Ω

|vni,j − vn+1
i,j |2

=
K−1∑
i,j=0

(
|(Dhv

n+1)i,j|2 − (Dhv
n+1)i,j : (Dh(v

n+1 − vn))i,j

)
− 1

h2

∑
(i,j)∈∂Ω

|vni,j − vn+1
i,j |2

≥ 1

2

K−1∑
i,j=0

|(Dhv
n+1)i,j|2 −

4

h2

K∑
i,j=0

|vn+1
i,j − vni,j|2 −

1

h2

∑
(i,j)∈∂Ω

|vni,j − vn+1
i,j |2

(4.56)
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due to the inverse inequality (4.6). Inserting (4.49) – (4.56) into (4.48) we find

0 ≥
K∑

i,j=0

1

M2

(
W (ρn+1

i,j )−W (ρni,j) +
γ

2
|(∇̃hρ

n+1)i,j|2 −
γ

2
|(∇̃hρ

n)i,j|2
)

+
1

2
ρn+1
i,j |vn+1

i,j |2 −
1

2
ρni,j|vni,j|2

− 8τn
h
‖vn‖∞

K∑
i,j=0

(ρn+1
i,j − ρni,j)2 − τ 2

n

2κVM2
‖vn+1‖2

∞

K∑
i,j=0

|(∇hΛ
n+1)i,j|2

+
(ρnmin

2
− 8τn

‖ρn+1‖2
∞(‖vn‖∞ + ‖vn+1‖∞)2

h‖vn‖∞
− 4τn

‖vn‖∞
h

) K∑
i,j=0

|vn+1
i,j − vni,j|2

− µhτn
h2

∑
(i,j)∈∂Ω

|vni,j − vn+1
i,j |2.

(4.57)

The assertion of the lemma follows from (4.57) because of the assumption on τn and (4.8).

5 Numerical experiments

In this section we present numerical experiments validating the desirable properties of the scheme
described above. In particular, we investigate the stability for generic and low Mach numbers and we
compute the experimental order of convergence (EOC) for some examples. The scheme was imple-
mented in 1D and 2D using Matlab. The nonlinear systems were solved using the ’fsolve’ command
with default precision 10−7, if not stated otherwise.

5.1 Stability for order 1 Mach numbers

We consider the scheme (4.8)-(4.12) on the unit square [0, 1]2 and choose

W (ρ) = (ρ− 1)2(ρ− 2)2 = (ρ4 + 13ρ2 + 4)− (6ρ3 + 12ρ) =: U(ρ)− V (ρ).

We consider the following initial datum

ρ0
i,j =


3 : | i

K
− 1

4
|+ | j

K
− 1

4
| ≤ 1

4

2 : | i
K
− 3

4
|+ | j

K
− 3

4
| ≤ 1

4

1 : else
, v0

i,j = 0,

which is not near equilibrium. The parameters areM = 1, γ = 9 ·10−4, h = 2.5 ·10−2, τ = 5 ·10−4,
i.e., we use a uniform timestep. We show total energy and mass over time in Figure 2. The energy
decreases (non-monotonically) and mass is conserved up to errors in the nonlinear solver. Snapshots
of the solution are displayed in Figure 3.
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Figure 2: Energy and mass over time for the example in §5.1.

5.2 Stability for small Mach numbers

In this section we study a sequence of Mach numbers and initial densities approaching equilibrium for
M → 0. We consider Mach numbers M ∈ {10−1, 10−2, 10−3} and initial data

ρ0
i,j =

3

2
−
(1

2
+ 4M

)
· tanh

(√2

γ

(√( i
N
− 1

2

)2

+
( j
N
− 1

2

)2

− 1

4

))
v0
i,j = 0

(5.1)

depending on the Mach number. The other parameters are as in §5.1. We display the behaviour of
(total) energy and kinetic energy over time in Figure 4. The (total) energies are normalised by setting
the energy at time zero to be one. This is done due to the fact that the initial energies differ and we
are not interested in absolute values of the energy but in its change in time. The (total) energy is non-
monotone in all three regimes. Still, its changes are rather small such that the schemes can be viewed
as being stable. Note that there is strong dissipation in case M = .1 while the energy increases above
its initial value for the other two choices of M. Initially the kinetic energy increases strongly (from zero)
in all three regimes. After the first at most 30 timesteps the kinetic energy decreases monotonically for
all three choices of M. In all three plots the lines for M = 10−2 and M = 10−3 are nearly identical.
In agreement with our analytic results we have better control of the kinetic energy for smaller Mach
numbers.

5.3 Convergence for order 1 Mach numbers

In this section we study the convergence properties of the scheme in 1D in a situation which is far away
from equilibrium. We consider the interval [−1, 1] as our computational domain and choose

ρ̄(x) = 1.5 + tanh(
2
√
γ
x), v̄(x) = 0 (5.2)

with γ = 10−3,M = 1 and τ = h/100.

As can be seen from Figure 5 the dispersive nature of the problem and the fact that we are far away from
equilibrium lead to small oscillations near the interface, while the energy of the system decreases over
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(a) t = 0 (b) t = 0.05

(c) t = 0.25 (d) t = 1

Figure 3: Example described in §5.1. Snapshots of density (above) and horizontal velocity (below) at
different times. Red indicates high, green medium and blue low values.

time due to our discretisation. This oscillatory behaviour of the solution leads to suboptimal convergence
rates, see Table 1. There we show the relativeL2 errors of density erel

ρ and velocity erel
v at time t = .0125

for a given number of cells K as well as the corresponding experimental order of convergence (EOC).
The errors are computed by comparison to a numerical solution on a mesh with 2560 cells.

5.4 Convergence for small Mach numbers

In this section we consider M = .05 and compare numerical solutions to a nearly exact stationary
solution which is given by

ρ(x, t) =
3

2
+

1

2
tanh

( x√
2γ

)
, v(x, t) = 0. (5.3)

It solves the PDE exactly and the error in the boundary conditions is negligible. Initial conditions for the
simulation are given by a pointwise evaluation of (5.3). We choose the timestep size as τ = h

5
and the

error tolerance of the nonlinear solver is set to 10−11.
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Figure 4: Left: Normalised total energy for different Mach numbers for the example described in §5.2.
Middle: Kinetic energy for different Mach numbers for the example described in §5.2. Right:
Kinetic energy for the first 30 timesteps for different Mach numbers for the example described
in §5.2.

Figure 5: Test from §5.3 with K = 320: Left: Initial density and velocity. Middle: Density and velocity
after 400 timesteps. Right: Energy over time.

The absolute L2 errors at time t = .25 of density eabs
ρ and velocity eabs

v are displayed in Table 2. As
the exact velocity is zero, it is not meaningful to consider relative errors here. We observe that the
density error converges very well, with a rather uniform convergence rate of 1. For the velocity error we
observe good convergence except for two fine meshes where errors from the linear solver are amplified
and lead to an increase in overall error – which is still rather small. For larger error tolerance of the
nonlinear solver the velocity error already starts increasing at larger meshwidth.

5.5 Linearised equation in timestep

In this last test we change the algorithm, in that we replace U ′(ρn+1) in the equation for ρn+1 (4.8) by
U ′(ρn) + U ′′(ρn)(ρn+1 − ρn), i.e., we replace (4.10) by

Λn+1
i,j − U ′(ρni,j)− U ′′(ρni,j)(ρn+1

i,j − ρni,j) + V ′(ρni,j) + γ(∆hρ
n+1)i,j = 0. (5.4)

Thus, we only need to solve a linear problem in every timestep in order to determine ρn+1. While our
analysis does not cover this modified algorithm, it leads to a considerable speedup in the computations.
We use the same data as in §5.3.

The relative L2 errors of density erel
ρ and velocity erel

v at time t = .0125 for a given number of cells
K as well as the corresponding experimental orders of convergence (EOC) are shown in Table 3. The
errors are computed by comparison to a numerical solution on a mesh with 2560 cells. Qualitatively the
convergence properties look similar as but are less good than those in §5.3. This can be attributed to
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Table 1: Relative errors and EOCs for the test described in §5.3. The dispersive structure of the problem
leads to suboptimal convergence rates.

K erel
ρ EOC erel

v EOC
40 5.545 · 10−2 – 3.167 · 10−1 –
80 2.806 · 10−2 .98 4.877 · 10−1 .15
160 1.120 · 10−2 1.3 4.380 · 10−1 .48
320 5.602 · 10−3 1.0 2.046 · 10−1 .62
640 2.713 · 10−3 1.0 1.096 · 10−1 .90
1280 1.121 · 10−3 1.3 4.336 · 10−2 1.3

Table 2: Absolute errors and EOCs for the test described in §5.4. Round off errors in the nonlinear
solver lead to negative convergence rates for the velocity for fine meshes.

K eabs
ρ EOC eabs

v EOC
40 4.314 · 10−2 – 3.403 · 10−3 –
80 1.997 · 10−2 1.1 3.850 · 10−5 6.5
160 9.864 · 10−3 1.0 2.753 · 10−6 3.8
320 4.891 · 10−3 1.0 1.397 · 10−6 1.0
640 2.385 · 10−3 1.0 2.567 · 10−6 −0.89
1280 1.067 · 10−3 1.2 2.714 · 10−6 −0.80
2560 2.516 · 10−5 5.4 1.851 · 10−6 0.55

additional errors introduced by the linearisation. In Figure 6 we display snapshots of the solution after
200 and 400 timesteps and plot total energy over time, both for the case K = 320. We note that due
to the linearisation of the convex part of the energy the energy of the numerical solutions is no longer
decreasing. However, the observed increase in energy is rather small.

Table 3: Relative errors and EOCs for the test described in §5.5. The dispersive structure of the prob-
lems leads to suboptimal convergence rates.

K erel
ρ EOC erel

v EOC
40 6.066 · 10−2 – 6.901 · 10−1 –
80 2.575 · 10−2 1.2 5.800 · 10−1 .25
160 1.580 · 10−2 .70 4.820 · 10−1 .27
320 1.056 · 10−2 .58 3.667 · 10−1 .39
640 6.049 · 10−3 .80 2.296 · 10−1 .68
1280 2.601 · 10−3 1.2 1.046 · 10−1 1.1
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Figure 6: Test from §5.5 with K = 320: Left: Density and velocity after 200 timesteps. Middle: Density
and velocity after 400 timesteps. Right: Energy over time.
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