© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of 3,3-bis(*tert*-butyl-cyclopentadienyl)bicyclo[3.1.0]hex-3-zircona-1(5)-ene-6-nickela-6,6bis(triphenylphosphine), (C₉H₁₃)₂(ZrC₄H₄)Ni(C₁₈H₁₅P)₂

Anke Spannenberg*, Marc A. Bach, Torsten Beweries and Uwe Rosenthal

Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

Received March 1, 2007, accepted and available on-line August 29, 2007; CCDC no. 1267/1992

Abstract

C₅₈H₆₀NiP₂Zr, monoclinic, $P12_1/n1$ (no. 14), a = 12.378(3) Å, b = 10.353(2) Å, c = 38.031(8) Å, $\beta = 95.74(3)^\circ$, V = 4849.2 Å³, Z = 4, $R_{gt}(F) = 0.023$, $wR_{ref}(F^2) = 0.054$, T = 200 K.

Source of material

The complex (*t*-Bu-C₅H₄)₂Zr(η^4 -H₂C₄H₂) (0.38 g, 0.98 mmol) was dissolved in THF (15 ml) and a dark yellow solution of (C₂H₄)Ni(PPh₃)₂ (0.6 g, 0.98 mmol) in THF (10 ml) was added. The reaction mixture was stirred at 323 K for 48 hours. After that time all volatiles were removed in vacuum and the remaining yellow powder was washed three times with cold (253 K) *n*-hexane (2 ml). The *n*-hexane containing powder was dried in vacuum and

dissolved in hot THF (5 ml). The dark yellow solution was allowed to cool down to room temperature during 24 hours in a dewar, initially filled with hot water, to yield yellow crystals.

Experimental details

The H atoms (except the H atoms attached to C1 and C4) are added geometrically and refined using the riding model.

Discussion

We recently reported that unsubstituted 1-zirconacyclopent-3-yne Cp₂Zr(η^4 -H₂C₄H₂) reacts with equimolar amounts of the nickel(0) complexes $L_2 \text{Ni}(\eta^2 - \text{C}_2\text{H}_4)$ (L = PPh₃ or PCy₃) in THF at room temperature to give the binuclear complexes $Cp_2Zr[\mu(\eta^4-H_2C_4H_2)]NiL_2$ [1]. Additionally, the complex $Me_2Si(\eta^5-C_5H_4)_2Zr[\mu(\eta^4-H_2C_4H_2)]Ni(PPh_3)_2$ was investigated [2]. These molecules are not planar with regard to the moiety $ZrC_{\alpha}C_{\beta}C_{\beta'}C_{\alpha'}Ni$. In contrast to that the structure of the here presented complex was calculated (B3LYP/LANL2DZ) to be planar due to the sterical influence of the tert-butyl groups [3]. To prove the DFT predictions we performed the X-ray crystal structure analysis of the title compound which shows a high steric demand. The molecular structure of $(t-Bu-C_5H_4)_2$ Zr[$\mu(\eta^4-C_4H_4)$]Ni(PPh₃)₂ is almost similar to that of the unsubstituted compound. The complex displays beside a bent zirconocene an additional butyne-1,4diyl ligand, which coordinates with its triple bond a Ni(0) center. The bonding distance C2—C3 is 1.308(2) Å and in the range of a double bond. The coordination environment at the Ni(0) center is slightly distorted trigonal planar. The angle between the planes defined by Ni1, C2, C3 and Ni1, P1, P2 is 4.9°. The part of the molecule $ZrC_{\alpha}C_{\beta}C_{\beta'}C_{\alpha'}Ni$ is not planar. Angles between the planes defined by $ZrC_{\alpha}C_{\alpha'}$ and $C_{\alpha}C_{\beta}C_{\beta'}C_{\alpha'}$ of 15.6° and between the latter plane and $C_{\beta}C_{\beta'}Ni$ of 13.2° were obtained. The deviation from the calculated data may be due to packing effects.

Table 1. Data collection and handling.

Crystal:	yellow prism, size $0.25 \times 0.35 \times 0.40$ mm
Wavelength:	Mo K_{α} radiation (0.71073 Å)
ι:	7.06 cm^{-1}
Diffractometer, scan mode:	Stoe IPDS II, ω/φ
$2\theta_{\max}$:	49.18°
N(hkl) _{measured} , N(hkl) _{unique} :	55594, 8125
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 6710$
N(param) _{refined} :	575
Programs:	SHELXS-97 [4], SHELXL-97 [5]

^{*} Correspondence author (e-mail: anke.spannenberg@catalysis.de)

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Table 2. Continued.

Atom	Site	x	у	z	$U_{ m iso}$	Atom	Site	x	у	z	$U_{ m iso}$
H(5)	4 <i>e</i>	0.7690	1.1985	0.1186	0.036	H(28)	4 <i>e</i>	0.6862	0.7572	0.1901	0.038
H(6)	4e	0.9554	1.2207	0.0989	0.041	H(30)	4e	0.8364	0.9772	0.2542	0.043
H(7)	4e	0.9351	1.2632	0.0332	0.041	H(31)	4e	0.9091	1.0018	0.3128	0.050
H(8)	4e	0.7355	1.2719	0.0130	0.035	H(32)	4e	1.0803	0.9220	0.3314	0.047
H(11A)	4e	0.4508	1.1435	0.0770	0.069	H(33)	4 <i>e</i>	1.1807	0.8182	0.2914	0.044
H(11B)	4e	0.5599	1.0968	0.0995	0.069	H(34)	4 <i>e</i>	1.1101	0.7935	0.2326	0.038
H(11C)	4e	0.5393	1.0625	0.0584	0.069	H(36)	4e	0.8886	0.6411	0.2414	0.038
H(12A)	4e	0.4903	1.3673	0.0976	0.076	H(37)	4e	0.8618	0.4192	0.2352	0.048
H(12B)	4e	0.6019	1.4359	0.0905	0.076	H(38)	4e	0.8409	0.3259	0.1796	0.053
H(12C)	4e	0.6018	1.3227	0.1191	0.076	H(39)	4e	0.8497	0.4527	0.1295	0.061
H(13A)	4e	0.4537	1.3155	0.0334	0.073	H(40)	4e	0.8833	0.6736	0.1355	0.048
H(13B)	4e	0.5434	1.2428	0.0133	0.073	H(42)	4e	1.2745	1.0811	0.2084	0.038
H(13C)	4e	0.5642	1.3877	0.0269	0.073	H(43)	4e	1.3821	1.0202	0.2595	0.046
H(14)	4e	0.9110	0.8801	-0.0083	0.032	H(44)	4e	1.4275	0.8046	0.2696	0.048
H(15)	4e	0.7926	1.0721	-0.0252	0.034	H(45)	4e	1.3621	0.6474	0.2291	0.044
H(16)	4e	0.6149	1.0416	0.0011	0.035	H(46)	4e	1.2548	0.7066	0.1779	0.039
H(17)	4e	0.6243	0.8316	0.0345	0.032	H(48)	4e	1.3862	0.9373	0.1281	0.044
H(20A)	4e	0.8195	0.5001	-0.0020	0.065	H(49)	4e	1.4817	0.8155	0.0903	0.058
H(20B)	4e	0.8461	0.6264	-0.0238	0.065	H(50)	4e	1.3944	0.6519	0.0561	0.061
H(20C)	4e	0.7234	0.5949	-0.0168	0.065	H(51)	4e	1.2104	0.6144	0.0587	0.053
H(21A)	4e	0.9443	0.7034	0.0650	0.072	H(52)	4e	1.1129	0.7385	0.0959	0.039
H(21B)	4e	0.9800	0.6885	0.0259	0.072	H(54)	4e	1.2677	1.0998	0.0960	0.043
H(21C)	4e	0.9491	0.5633	0.0475	0.072	H(55)	4e	1.2715	1.3222	0.0857	0.056
H(22A)	4e	0.7500	0.6577	0.0758	0.078	H(56)	4e	1.1883	1.4643	0.1220	0.057
H(22B)	4e	0.7633	0.5189	0.0582	0.078	H(57)	4e	1.0984	1.3854	0.1682	0.049
H(22C)	4e	0.6660	0.6120	0.0435	0.078	H(58)	4e	1.0928	1.1645	0.1786	0.038
H(24)	4e	0.8285	1.1079	0.1891	0.036	H(1A)	4e	1.053(2)	1.043(2)	0.0662(5)	0.023(5)
H(25)	4e	0.6586	1.2063	0.1853	0.044	H(1B)	4e	1.021(2)	0.908(2)	0.0462(5)	0.036(5)
H(26)	4e	0.5020	1.0804	0.1824	0.049	H(4A)	4 <i>e</i>	0.713(2)	0.964(2)	0.1201(5)	0.031(5)
H(27)	4 <i>e</i>	0.5160	0.8563	0.1847	0.049	H(4B)	4e	0.712(2)	0.843(2)	0.0950(5)	0.037(6)

Table 3. Atomic coordinates and displacement parameters (in \AA^2).

Atom	Site	x	у	z	U_{11}	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
C(1)	4 <i>e</i>	0.9978(1)	0.9772(2)	0.06195(4)	0.0242(9)	0.030(1)	0.0194(8)	-0.0032(8)	0.0046(7)	0.0026(8)
C(2)	4e	0.9557(1)	0.9334(2)	0.09418(4)	0.0238(9)	0.0224(9)	0.0203(8)	-0.0006(7)	-0.0002(7)	0.0001(7)
C(3)	4e	0.8659(1)	0.9139(2)	0.10880(4)	0.0274(9)	0.0214(9)	0.0163(8)	-0.0030(7)	0.0030(7)	0.0019(7)
C(4)	4e	0.7482(1)	0.9226(2)	0.10162(4)	0.0212(9)	0.030(1)	0.0190(8)	-0.0046(8)	0.0019(7)	-0.0008(7)
C(5)	4e	0.7849(2)	1.2164(2)	0.09513(5)	0.039(1)	0.022(1)	0.0273(9)	-0.0007(8)	-0.0008(8)	-0.0083(7)
C(6)	4e	0.8889(2)	1.2279(2)	0.08419(5)	0.030(1)	0.023(1)	0.048(1)	-0.0041(8)	-0.0050(8)	-0.0106(9)
C(7)	4e	0.8777(2)	1.2521(2)	0.04772(5)	0.033(1)	0.0180(9)	0.053(1)	-0.0055(8)	0.0146(9)	0.0020(8)
C(8)	4e	0.7662(2)	1.2569(2)	0.03655(5)	0.039(1)	0.0183(9)	0.0299(9)	-0.0012(8)	0.0047(8)	0.0022(7)
C(9)	4e	0.7069(1)	1.2358(2)	0.06573(5)	0.0293(9)	0.0170(9)	0.0311(9)	-0.0024(7)	0.0025(7)	-0.0030(7)
C(10)	4e	0.5847(2)	1.2532(2)	0.06731(5)	0.028(1)	0.031(1)	0.043(1)	0.0005(8)	0.0043(8)	-0.0035(9)
C(11)	4e	0.5286(2)	1.1278(2)	0.07635(7)	0.030(1)	0.041(1)	0.068(2)	-0.0051(9)	0.014(1)	0.001(1)
C(12)	4e	0.5682(2)	1.3540(2)	0.09628(6)	0.042(1)	0.047(1)	0.065(2)	0.006(1)	0.017(1)	-0.013(1)
C(13)	4e	0.5318(2)	1.3044(2)	0.03208(6)	0.034(1)	0.048(1)	0.062(1)	0.006(1)	-0.007(1)	0.002(1)
C(14)	4e	0.8396(2)	0.8934(2)	-0.00187(4)	0.037(1)	0.028(1)	0.0159(8)	-0.0014(8)	0.0032(7)	-0.0031(7)
C(15)	4e	0.7738(2)	1.0008(2)	-0.01136(4)	0.043(1)	0.026(1)	0.0161(8)	-0.0018(8)	-0.0004(7)	0.0016(7)
C(16)	4e	0.6748(2)	0.9838(2)	0.00336(4)	0.034(1)	0.030(1)	0.0221(8)	0.0017(8)	-0.0075(7)	-0.0041(8)
C(17)	4e	0.6802(2)	0.8663(2)	0.02189(4)	0.0304(9)	0.029(1)	0.0202(8)	-0.0097(8)	-0.0020(7)	-0.0038(7)
C(18)	4e	0.7824(2)	0.8080(2)	0.01881(4)	0.036(1)	0.0234(9)	0.0174(8)	-0.0030(8)	-0.0012(7)	-0.0032(7)
C(19)	4e	0.8143(2)	0.6682(2)	0.02764(5)	0.045(1)	0.024(1)	0.0236(9)	-0.0028(8)	0.0002(8)	-0.0037(8)
C(20)	4e	0.7995(2)	0.5904(2)	-0.00687(5)	0.065(2)	0.030(1)	0.033(1)	0.004(1)	-0.004(1)	-0.0085(9)
C(21)	4e	0.9325(2)	0.6546(2)	0.04287(6)	0.058(1)	0.027(1)	0.057(1)	0.007(1)	-0.015(1)	-0.001(1)
C(22)	4e	0.7419(2)	0.6089(2)	0.05361(6)	0.087(2)	0.024(1)	0.048(1)	-0.003(1)	0.021(1)	0.0036(9)
C(23)	4e	0.7750(1)	0.9220(2)	0.19003(4)	0.0267(9)	0.029(1)	0.0138(8)	0.0000(8)	0.0036(6)	0.0001(7)
C(24)	4e	0.7650(2)	1.0560(2)	0.18844(5)	0.033(1)	0.029(1)	0.0286(9)	-0.0006(8)	0.0043(8)	-0.0006(8)
C(25)	4 <i>e</i>	0.6640(2)	1.1148(2)	0.18593(5)	0.043(1)	0.036(1)	0.031(1)	0.0129(9)	0.0068(8)	0.0000(8)
C(26)	4e	0.5714(2)	1.0404(2)	0.18441(5)	0.033(1)	0.056(2)	0.033(1)	0.014(1)	0.0076(8)	0.003(1)
C(27)	4e	0.5798(2)	0.9077(2)	0.18581(5)	0.026(1)	0.059(2)	0.038(1)	-0.004(1)	0.0034(8)	0.005(1)
C(28)	4e	0.6813(1)	0.8487(2)	0.18884(5)	0.030(1)	0.037(1)	0.0281(9)	-0.0045(8)	0.0056(8)	0.0026(8)
C(29)	4e	0.9650(1)	0.8817(2)	0.23715(4)	0.0270(9)	0.0241(9)	0.0224(8)	-0.0042(7)	0.0038(7)	0.0009(7)
C(30)	4e	0.9067(2)	0.9442(2)	0.26153(5)	0.033(1)	0.046(1)	0.027(1)	0.0043(9)	0.0016(8)	-0.0050(9)
C(31)	4e	0.9500(2)	0.9589(2)	0.29647(5)	0.048(1)	0.055(1)	0.0227(9)	0.003(1)	0.0036(8)	-0.0096(9)
C(32)	4e	1.0512(2)	0.9121(2)	0.30749(5)	0.047(1)	0.048(1)	0.0222(9)	-0.008(1)	-0.0049(8)	0.0012(9)
C(33)	4 <i>e</i>	1.1104(2)	0.8506(2)	0.28377(5)	0.035(1)	0.043(1)	0.031(1)	-0.0015(9)	-0.0061(8)	0.0068(9)

Table 3. Continued.

Atom	Site	x	у	z	U_{11}	U ₂₂	U ₃₃	<i>U</i> ₁₂	U ₁₃	<i>U</i> ₂₃
C(34)	4 <i>e</i>	1.0682(2)	0.8356(2)	0.24877(5)	0.032(1)	0.038(1)	0.0255(9)	0.0032(9)	0.0042(7)	0.0015(8)
C(35)	4 <i>e</i>	0.8890(1)	0.6807(2)	0.18908(4)	0.0254(9)	0.0228(9)	0.0262(9)	-0.0003(7)	0.0039(7)	0.0017(7)
C(36)	4 <i>e</i>	0.8819(2)	0.6034(2)	0.21855(5)	0.035(1)	0.033(1)	0.029(1)	-0.0028(8)	0.0041(8)	0.0055(8)
C(37)	4e	0.8651(2)	0.4716(2)	0.21481(6)	0.036(1)	0.033(1)	0.051(1)	-0.0034(9)	0.0038(9)	0.019(1)
C(38)	4e	0.8531(2)	0.4162(2)	0.18194(6)	0.048(1)	0.022(1)	0.063(2)	-0.0042(9)	0.001(1)	0.004(1)
C(39)	4e	0.8588(2)	0.4909(2)	0.15231(6)	0.082(2)	0.027(1)	0.043(1)	-0.005(1)	0.001(1)	-0.0065(9)
C(40)	4e	0.8778(2)	0.6224(2)	0.15593(5)	0.068(2)	0.024(1)	0.029(1)	-0.005(1)	0.0044(9)	0.0003(8)
C(41)	4e	1.2535(1)	0.9005(2)	0.18754(4)	0.0218(9)	0.030(1)	0.0227(8)	-0.0031(8)	0.0039(7)	0.0005(7)
C(42)	4e	1.2922(2)	0.9926(2)	0.21232(5)	0.033(1)	0.030(1)	0.030(1)	-0.0021(8)	-0.0011(8)	0.0003(8)
C(43)	4e	1.3563(2)	0.9564(2)	0.24276(5)	0.040(1)	0.047(1)	0.028(1)	-0.007(1)	-0.0049(8)	-0.0032(9)
C(44)	4e	1.3829(2)	0.8287(2)	0.24885(5)	0.035(1)	0.055(1)	0.029(1)	0.002(1)	-0.0009(8)	0.010(1)
C(45)	4e	1.3446(2)	0.7358(2)	0.22480(5)	0.038(1)	0.038(1)	0.036(1)	0.0059(9)	0.0056(8)	0.0097(9)
C(46)	4e	1.2807(2)	0.7712(2)	0.19442(5)	0.034(1)	0.032(1)	0.032(1)	-0.0009(8)	0.0043(8)	-0.0001(8)
C(47)	4e	1.2390(1)	0.8508(2)	0.11570(4)	0.0295(9)	0.028(1)	0.0202(8)	0.0021(8)	0.0023(7)	0.0017(7)
C(48)	4e	1.3498(2)	0.8721(2)	0.11389(5)	0.033(1)	0.041(1)	0.037(1)	-0.0006(9)	0.0085(8)	-0.0035(9)
C(49)	4e	1.4067(2)	0.7993(2)	0.09164(6)	0.039(1)	0.058(2)	0.050(1)	0.010(1)	0.019(1)	0.002(1)
C(50)	4e	1.3548(2)	0.7026(2)	0.07115(6)	0.064(2)	0.051(1)	0.041(1)	0.021(1)	0.022(1)	-0.002(1)
C(51)	4e	1.2461(2)	0.6804(2)	0.07276(5)	0.063(2)	0.036(1)	0.032(1)	0.008(1)	0.003(1)	-0.0079(9)
C(52)	4e	1.1881(2)	0.7544(2)	0.09497(5)	0.038(1)	0.031(1)	0.0270(9)	0.0022(9)	0.0008(8)	-0.0008(8)
C(53)	4e	1.1817(1)	1.1087(2)	0.13899(4)	0.0223(9)	0.029(1)	0.0234(8)	-0.0043(7)	-0.0020(7)	0.0009(7)
C(54)	4e	1.2336(2)	1.1572(2)	0.11095(5)	0.034(1)	0.039(1)	0.035(1)	-0.0042(9)	0.0062(8)	0.0056(9)
C(55)	4e	1.2356(2)	1.2896(2)	0.10482(6)	0.048(1)	0.045(1)	0.047(1)	-0.011(1)	0.006(1)	0.019(1)
C(56)	4e	1.1859(2)	1.3740(2)	0.12622(6)	0.056(1)	0.031(1)	0.052(1)	-0.006(1)	-0.010(1)	0.011(1)
C(57)	4e	1.1331(2)	1.3275(2)	0.15357(5)	0.050(1)	0.029(1)	0.041(1)	0.002(1)	-0.0047(9)	-0.0032(9)
C(58)	4e	1.1304(2)	1.1961(2)	0.15981(5)	0.037(1)	0.031(1)	0.0266(9)	-0.0024(8)	0.0015(8)	-0.0005(8)
Ni(1)	4e	0.98895(2)	0.90941(2)	0.143986(5)	0.0208(1)	0.0228(1)	0.0168(1)	-0.00277(9)	0.00240(8)	0.00078(9)
P(1)	4e	0.91224(3)	0.85534(4)	0.19056(1)	0.0237(2)	0.0217(2)	0.0171(2)	-0.0018(2)	0.0032(2)	0.0002(2)
P(2)	4 <i>e</i>	1.16207(3)	0.93617(4)	0.14750(1)	0.0221(2)	0.0255(2)	0.0196(2)	-0.0028(2)	0.0025(2)	-0.0017(2)
Zr(1)	4 <i>e</i>	0.81440(1)	1.02635(2)	0.054350(4)	0.02285(9)	0.01891(9)	0.01703(8)	-0.00294(7)	0.00150(6)	-0.00008(6)

References

- Bach, M. A.; Burlakov, V. V.; Arndt, P.; Baumann, W.; Spannenberg, A.; Rosenthal, U.: Nickel(0) Complexes of a 1-Zirconacyclopent-3-yne. Organometallics 24 (2005) 3047-3052.
- Beweries, Τ.; Bach, M. A.; Burlakov, V. V.; Arndt, P.; Baumann, W.; Spannenberg, A.; Rosenthal, U.: Synthesis of *ansa*-Dimethylsilanediyldicyclopentadienyl-zirconacyclopent-3-yne, Me₂Si(η⁵-C₅H₄)₂Zr(η⁴-H₂C₄H₂), and Its Reactions with Ni(0) and B(C₆F₅)₃. Organometallics **26** (2007) 241-244.
- Bach, M. A.: Praktische und theoretische Studien zur Chemie von ungewöhnlichen Titana- und Zirconacyclen. PhD Thesis, Rostock 2007.
- 4. Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997.
- Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.