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Anisothermal chemical reactions: Onsager–Machlup and
macroscopic fluctuation theory

D. R. Michiel Renger

1. INTRODUCTION

1.1. Historic overview. Recent decades have seen a great progress in non-equilibrium thermody-
namics. In a sense, the discovery of Wasserstein gradient flows [JKO98] for Fokker-Planck equations
meant a strengthening of the second law: not only does the free energy decrease along the dynamics,
but the decrease of free energy fully determines the dynamics. Many other evolution equation have
since been shown to be gradient flows driven by free energy functionals, see for example [AGS08].
We mention in particular the works [Maa11, Mie13, CHLZ12] for gradient flows on discrete spaces and
gradient flows for the chemical reaction-rate equation [LM13, MM20].

As often in thermodynamics, many of these structures are actually related to the statistics of micro-
scopic particle systems, which adds to their physical validity. In this respect, the Wasserstein metric
tensor and its corresponding optimal transport formulation were already derived from large deviations
of Brownian particles in [DG87] and [Léo07] respectively. More recent works show that gradient flow
structures can be uniquely derived from pathwise large deviations via what may be called a modern
version of Onsager-Machlup theory. Whereas Onsager’s original paper [Ons31] already deals with
gradient flow structures for the chemical reaction-rate equation, his later work with Machlup [OM53]
makes the connection to fluctuations of a microscopic particle system via the pathwise large devia-
tions. More modern and precise relations of this type were made for exclusion processes and Brownian
particles in [BDSG+04, ADPZ11, ADPZ13, DLR13, EMR15]. Pursuing a similar program for particles
on discrete spaces required generalised gradient flows, allowing for nonlinear response theory. Al-
though such structures were already explored in the classic [Mar15], its relation to large deviations
was discovered in [MPR14], and worked out for chemical reactions in [MPPR17]. Notably, it turns
out that the above-mentioned (linear) gradient structures for the chemical reaction-rate equation cor-
respond to white noise fluctuations, whereas the nonlinear structure from [MPPR17] corresponds to
more physical fluctuations due to reactions on the molecular scale.

As prescribed by Onsager’s reciprocity relations, this connection between gradient flows and large
deviations can only be carried out for microscopic systems in detailed balance, which loosely corre-
sponds to thermodynamically closed systems on the macro scale. Hence, for systems that are driven
out of equilibrium by an external force, one looks for thermodynamically consistent couplings of gra-
dient flows with Hamiltonian systems or other ‘rotational’ motions. In connection with large deviation
there are two main directions in the literature. First, the work [KLMP20] studies how large deviations
are related to GENERIC [GÖ97]. This allows for microscopic particle systems that are in detailed
balance with an additional drift that is approximately deterministic. In the context of chemical reac-
tions, such drifts can be obtained by chemical reactions of lower-order concentrations on a faster
time scale [Ren18b]. The second approach is Macroscopic Fluctuation Theory (MFT), based on the
orthogonal decomposition of thermodynamics forces [BDSG+15]. As for the setting of gradient flows
described above, the connection with large deviations required a generalisation to nonlinear response
relations, which was carried out in [PRS21]. The same paper shows how this program can be applied
to reacting particle systems in case of complex balance (which is more general than detailed balance).

So far, most literature on this topic is restricted to constant temperature. In this paper we describe and
explain how the above program can be applied to temperature-dependent chemical reactions. We con-
sider a finite isolated box with a well-mixed solute, so that we may ignore spatiality. The solute contains
reactants undergoing a set of reactions, and as temperature-dependent reactions take place, heat is
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D.R.M. Renger 2

being exchanged with the solute. Hence there is a coupling between the evolution of concentrations
and temperature. This phenomenon can be modelled on two different levels.

1.2. Macroscopic model. The solute contains reactants of species x ∈ X undergoing reactions r ∈
R. A reaction r = (α → α′) takes α ∈ NX0 molecules and produces α′ ∈ NX0 molecules. We shall
assume that the reaction network is ‘reversible’, meaning that (α→ α′) ∈ R =⇒ (α′ → α) ∈ R,
see for example [ACK10, Def. 2.2]. This allows to decompose the set of reactions into forward and
backward reactionsR = Rfw ∪Rbw. For a reaction r = (α→ α′) we define its backward reaction
bw(r) := (α′ → α), and we write α(r) := α and αbw(r) = α′.

Further, we assume that the reaction rates kr for reaction r, depending on concentrations ρ ∈
[0,∞)X of species and temperature θ ∈ [0,∞) of the solute, obey the law of mass action:

kr(ρ, θ) := κrAr(θ)Br(ρ), with Br(ρ) := ρα
(r)

:=
∏
x∈X

ρα
(r)
x
x ,(1.1)

and κr are given constants.

The temperature-dependent factors Ar(θ) obey the (modified) Arrhenius or Eyring law as follows.
Each species x ∈ X corresponds to an energy level ex ≥ 0, so that a complex α stores a total
amount e · α =

∑
x∈X exαx of chemical energy. A reaction r needs to go through a transitional state

with chemical energy ar, and so the activation energy or energy barrier of the reaction is ar − e ·α(r),
see Figure 1 for a schematic representation with a one-dimensional reaction coordinate. From this
perspective it is logical to assume that abw(r) = ar. According to the Arrhenius or Eyring law,

(1.2) Ar(θ) := θq exp
(
− ar − e · α(r)

kBθ

)
,

for some q ∈ (−1, 1], where kB is the Boltzmann constant.

energy level

reaction coordinate

e · α(r)

α(r)

e · αbw(r)

αbw(r)

ar

activation energy

energy release

FIGURE 1. Energy levels corresponding to a reaction r.

The effect of a reaction r occurring with some rate jr ≥ 0 is twofold. First, reactants α(r) are anni-
hilated and the products αbw(r) are created, causing a change in concentrations with rate (αbw(r) −
α(r))jr. To simplify notation one encodes this principle in the stoichiometric matrix:

Γ := [γ(r)]r∈Rfw
∈ RX×Rfw , γ(r) := αbw(r) − α(r)(1.3)

The second effect of a reaction r is a change in energy levels such that heat−e · γ(r) is transferred to
(or extracted from) the solute. Assuming a homogeneous and well-mixed solute with specific heat cH ,
this causes the solute temperature to change with rate −c−1

H e · γ(r)jr.
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Anisothermal chemical reactions 3

Concluding, the evolution of the concentrations and temperature can now be written as:

ρ̇(t) = ΓJ0
(
ρ(t), θ(t)

)
,(1.4)

θ̇(t) = − 1

cH
e · ΓJ0

(
ρ(t), θ(t)

)
with given initial conditions ρ(0) = ρ0, θ(0) = θ0. Here we used the abbreviation

J0
r (ρ, θ) := kr(ρ, θ)− kbw(r)(ρ, θ) = κrAr(θ)Br(ρ)− κbw(r)Abw(r)(θ)Bbw(r)(ρ),

which is more than just notationally convenient: Jr(ρ, θ) describes the instantaneous net reaction flux
through reaction channel r (sometimes also called the traffic in the literature). These fluxes are an
essential ingredient to understand non-dissipative effects in MFT, as we shall see in Section 5.

Note that (1.4) clearly conserves the total energy

(1.5) E0 := e · ρ0 + cHθ
0 ≡ e · ρ(t) + cHθ(t),

so with fixed ρ0 and θ0, the temperature is really a function of concentration. To shorten notation we

can therefore omit dependencies on θ, e.g. by a slight abuse kr(ρ) := kr
(
ρ,
E0 − e · ρ

cH

)
.

1.3. Microscopic model. To reflect molecular fluctuations, the same phenomenon as above can be
described by the usual microscopic model [Kur72, ACK10], with a small adaptation to account for
temperature effects. The order of the total particle number in the system is controlled by the parameter
V . This may physically be interpreted as the volume ratio of the system size with respect to particle
size (although these sizes will play no further role). Concentrations are defined as particle numbers,
normalised by V . Initially we fix the temperature Θ(V )(0) ≡ θ0 ∈ [0,∞) and the concentrations
ρ(V )(0) = ρ(V )0 ∈ (N0/V )X such that the initial concentrations converge to some limit:

ρ(V )0 → ρ0 as V →∞.

A reaction r occurs randomly with jump rate

V k(V )

r (ρ, θ) := V κrA
(V )

r (θ)B(V )

r (ρ),(1.6)

A(V )

r (θ) := Ar(θ)1{V cHθ≥e·γ(r)},

B(V )

r (ρ) :=
1

V |α(r)|1

(V ρ)!

(V ρ− α(r))!
1{V ρ≥α(r)},

denoting α! :=
∏

x∈X αx!. The expression forB(V )
r is standard, based on combinatinorial arguments,

and known to approximate the mass-action factorBr [ACK10]. The two indicators – where the inequal-
ities are meant coordinatewise – ensure that reactions leading to negative temperature respectively
negative concentrations do not take place. However, zero temperatures or zero concentrations are not
forbidden; this will

The effect of a microscopic reaction r is a small change V −1γ(r) in concentrations and the release (or
extraction) of a heat package of size −V −1e · γ(r). The pair (ρ(V )(t),Θ(V )(t)) is then a Markov jump
process in RX × R with generator:

(Q̂(V )F )(ρ, θ) = V
∑
r∈R

κrA
(V )

r (θ)B(V )

r (ρ)
[
F
(
ρ+ 1

V
γ(r), θ − 1

V cH
e · γ(r)

)
− F (ρ, θ)

]
.(1.7)

Just as for the macroscopic scale, the total energy is almost surely conserved:

(1.8) E(V )0 := e · ρ(V )0 + cHθ
0 ≡ e · ρ(V )(t) + cHΘ(V )(t),

and so we may omit temperature dependencies.
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D.R.M. Renger 4

By the classical Kurtz limit, the random process (ρ(V ), θ(V )) converges (weakly in Skorohod space)
to the macroscopic trajectory (ρ, θ) solving (1.4), (1.5). In this sense, the microscopic model shows
vanishing random fluctuations around the macroscopic evolution.

Naturally it is desirable to include spatiality in our model. However, there are not many physically
reasonable models in the literature that describe microscopic heat transport in liquids or gases. The
classic KMP model [KMP82] and BEP models [PRV14] are specifically for crystals. The recent ki-
netic exclusion process [GAH19] seems more suitable for solutes, but a detailed knowledge of the
fluctuations is still unknown.

1.4. Results and overview. This paper contains three main contributions.

I. In Section 3, we study the invariant measure Π(V ) for the microscopic system, which can be con-
structed explicitly for a very simple example A 
 B. For this example as well as in a more general
setting we show that Π(V ) satisfies a large-deviation principle as V →∞, formally written as (omitting
temperature-dependencies):

(1.9) Π(V )
(
ρ(V ) ≈ ρ

)
∼ exp

(
− V V(ρ)

)
where ρ is now a dummy variable, the quasipotential is given by

V(ρ) :=S(ρ | π)− cH
kB

log θ + const., θ :=
E0 − e · ρ

cH
,(1.10)

S(ρ | π) :=
∑
x∈X

s(ρx | πx),

s(a | b) :=


a log a

b
− a+ b, a, b > 0,

b, a = 0,

∞, b = 0, a > 0 or a <∞,
(1.11)

and π ∈ RX is the steady state concentration of the isothermal ODE, i.e. (1.4) withAr ≡ 1. This result
only holds under the assumption of isothermal detailed balance, or under the assumption of isothermal
complex balance with negligible or constant transition energy levels ar. Physically, S(ρ | π) encodes
the entropic contribution and − cH

kB
log θ the thermal one.

II. In Section 3, we study a pathwise large-deviations principle and in Section 4 we show that, under
the assumption of detailed balance, it satisfies an Onsager-Machlup principle, following [MPR14]:

Prob
(
ρ(V ) ≈ ρ

)
∼ exp

(
− V×[∫ T

0
Ψ̂
(
ρ(t), ρ̇(t)

)
dt+

∫ T
0

Ψ̂∗
(
ρ(t),−1

2
∇V(ρ(t))

)
dt+ 1

2
V
(
ρ(T )

)
− 1

2
V
(
ρ(0)

) ])
,(1.12)

where V is the quasipotential from (1.10), Ψ̂ is a non-negative dissipation potential, and Ψ̂∗ is its
convex dual with respect to the second variable. These microscopic fluctuations contain additional
information about the macroscopic dynamics, for which the whole exponent of (1.12) is 0. Hence
along solutions of (1.4) (always taking the gradient of Ψ̂∗ with respect to the second entry):

(1.13) ρ̇(t) = ∇Ψ̂∗
(
ρ(t),−1

2
∇V(ρ(t))

)
.

The pair Ψ̂, Ψ̂∗ generalises dual squared norms 1
2
‖·‖2, 1

2
‖·‖2
∗. We refer to Section 4 for the details, but

already mention that Ψ̂ will indeed not be quadratic. Hence (1.13) is a nonlinear relation between the
force −1

2
∇V and velocities ρ̇, θ̇, which is also interpreted as a nonlinear generalisation of a gradient

flow, driven by the quasipotential V , and this gradient flow is uniquely defined by the Onsager-Machlup
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Anisothermal chemical reactions 5

decomposition (1.12). For the expected path (1.4) the exponent in (1.12) sums up to 0, yielding a
balance between free energy loss and dissipation.

III. We then look beyond detailed balance, but in order to identify the quasipotential V we need to as-
sume isothermal complex balance and constant ar. Since a breaking of detailed balance can and will
result in the occurrence of divergence-free fluxes, a force or energy balance can only be found when
taking reaction fluxes into account. In this context, a reaction flux J (V )

r (t) counts the net number of re-
actions through channel r taking place at time t. Looking at large deviation of fluxes we enter the field
of Macroscopic Fluctuation Theory (MFT) [BDSG+15]. We first derive the pathwise large deviations
of the fluxes in Section 2. Following [RZ21, PRS21], one distinguishes between the symmetric force
F sym = −1

2
ΓT∇V corresponding to the gradient flow part of the dynamics and the antisymmetric

force F asym. Note that F sym is indeed similar to the force −1
2
∇V from (1.13), but now with ΓT which

appears because the force acts on fluxes rather than velocities. In Section 5 we first decompose the
flux large deviations as:

(1.14) Prob
(
(ρ(V ), J (V )) ≈ (ρ, j)

)
∼ exp

(
− V

∫ T

0

[
Ψ
(
ρ(t), j(t)

)
+ Ψ∗

(
ρ(t), F sym(ρ(t)) + F asym(ρ(t))

)
− F sym

(
ρ(t)

)
· j(t)− F asym

(
ρ(t)

)
· j(t)

]
dt

)
,

where Ψ,Ψ∗ are again non-quadratic dissipation potentials. Note that−
∫ T

0
F sym · j dt = 1

2

∫ T
0
∇V ·

Γj dt = 1
2

∫ T
0
∇V·ρ̇ dt = 1

2
V(ρ(T ))− 1

2
V(ρ(0)) as in (1.12). By contrast, the term−

∫ T
0
F asym ·j dt

representing the work done by the antisymmetric force is path-dependent.

Next we use the notion of generalised orthogonality developed in [KJZ18, RZ21, PRS21] to further
decompose

Ψ∗
(
ρ, F sym(ρ) + F asym(ρ)

)
= Ψ∗

(
ρ, F sym(ρ)

)
+ Λasym

sym (ρ)

= Ψ∗
(
ρ, F asym(ρ)

)
+ Λsym

asym(ρ).

The two non-negative terms Λasym
sym and Λsym

asym are interpreted as generalisations of Fisher informa-
tions. Together with (1.14) the flux large deviations split into terms for the symmetric (gradient flow)
dynamics and terms for the antisymmetric dynamics, and since Ψ∗ is not quadratic, there are two
different ways to do so.

These decompositions are helpful to obtain estimates on the two work terms
∫ T

0
F sym · j dt and∫ T

0
F asym · j dt and to extract compactness of paths and fluxes. The exact expressions, interpretation

and applications will be given in Section 5.

1.5. Three mathematical subtleties. Although we mostly apply existing mathematical techniques to
a new setting, we encounter a number of mathematical subtleties that can not be disregarded as mere
technicalities.

1 First of all, we are only able to construct the invariant measure Π(V ) for the very simple system
of reactions A 
 B. We believe that a similar formula should hold for more general reaction
networks, but the exact expression is not clear at this stage. For the more general setting we
derive the quasipotential V ; this corresponds to the large-deviation principle (1.9) of the invari-
ant measure without actually knowing the invariant measure. Since the quasipotential (1.10)
decomposes into chemical and thermal factors, this suggests that (at least approximately) the
invariant measure Π(V ) factorises into chemical and thermal factors, which is indeed confirmed
for the simple example.
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2 In usual reaction network theory one can impose macroscopic detailed or complex balance of
a steady state in order to derive the invariant measure [ACK10]. This would be problematic
when coupled to temperature, since the steady state does not have an explicit form; see the
calculation at the end of Subsection 3.3. Instead we assume macroscopic detailed and complex
balance for the reaction network without a temperature coupling. In addition to (isothermal)
complex balance we need to assume that ar is constant in r, for example corresponding to
“barrierless” reactions. It should be said that the proof of our Proposition 3.3 shows that for
isothermal complex balanced reactions with non-constant ar, the quasipotential is generally not
of the form (1.10).

3 Although rigorous proofs of pathwise large deviations tend to be quite technical, the rate func-
tional can usually be derived formally by a simple calculation. The setting of our paper is an
example where such naive calculation may fail. The reason is that once a path ρ(t) reaches
the zero temperature state, it can no longer escape that state with finite large-deviation cost,
see [AAPR21] and Subsection 2.2. This phenomenon can be interpreted as a different type of
cold death (different from the notion of cold death of the universe when it reaches maximal en-
tropy). To circumvent this phenomenon we shall assume sufficient initial total energy, so that by
energy conservation the zero-temperature state can never be reached.

2. LARGE DEVIATIONS AND THE COLD DEATH

We first recall the pathwise large deviations for the process ρ(V )(t), then comment on the cold death
phenomenon, and finally introduce the pathwise large deviations for the fluxes.

2.1. Pathwise large deviations. The pathwise large deviations for the concentrations quantify the
exponential rate of convergence of the trajectories, formally written as1

(2.1) Prob
(
ρ(V ) ≈ ρ

)
∼ e−V I[0,T ](ρ) as V →∞,

where ρ = (ρ(t))t∈[0,T ] is now an arbitrary trajectory. The functional I[0,T ] is called the rate functional;
it is always non-negative, and 0 for the macroscopic trajectory ρ solving (1.4). Physically, it quantifies
the total free energy needed to deviate from the expected trajectory.

The large-deviation principle can be formally calculated via standard procedures, see for example [KL99],
[FK06] and the application to chemical reactions in [MPPR17]. There is a large body of literature ded-
icated to making this statement rigorous 2, where finally a sharp condition was found in [AAPR21]. As
mentioned in Subsection 1.5, this condition is very relevant to our setting, and we need an additional
assumption to prevent cold death. We first state the precise result and dedicate the next subsection to
the discussion of the assumption.

Let

(2.2) S :=
{
ρ = ρ0 + Γw : w ∈ RRfw such that ρ ∈ [0,∞)X and θ =

E0 − e · ρ
cH

≥ 0
}

be all non-negative concentrations that are attainable from the initial condition (ρ0, θ0) through reac-
tions inR. Similarly, let

θ− := inf
{
E0 − e · ρ

cH
: ρ ∈ S

}
, θ+ := sup

{
E0 − e · ρ

cH
: ρ ∈ S

}
(2.3)

be the minimal and maximal attainable temperatures. The large-deviation result is the following.

1For the sake of brevity we omit the rigorous definition, see for example [AAPR21, Th. 1].
2See for example [PR19] and [AAPR21] and the cited papers therein.
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Theorem 2.1 ([AAPR21]). Assume θ0, ρ0 andR are such that S is bounded and θ− > 0. Then ρ(V )

satisfies a large-deviation principle in D(0, T ; RX ) with rate functional

I[0,T ](ρ) :=

{∫ T
0
L̂
(
ρ(t), ρ̇(t)

)
dt, ρ ∈ W 1,1(0, T ; RX ), ρ(0) = ρ0,

∞, otherwise,

where

(2.4) L̂(ρ, u) := inf
j∈RR:

u=
∑
r∈R jrγ

(r)

S
(
j | k(ρ)

)
,

and S
(
j | k(ρ, θ)

)
:=
∑

r∈R s
(
jr | kr(ρ)

)
, recalling (1.11).

Here and throughout the paper, a hat (^) will be used to distinguish functions that depend on concentra-
tions ρ (and its time derivative) from functions that also depend on fluxes, introduced in Subsection 2.3.

2.2. Boundary escape and the cold death. The required boundedness of S in Theorem 2.1 implies
that the rates kr are uniformly bounded from above. Therefore the jump rates k(V ) are also bounded
and so there are almost surely a finite number of jumps and the process does not explode. However,
the crucial challenge of [AAPR21] and previous works on this large-deviation principle is that the
rates kr are generally not lower-bounded away from zero. The condition θ− > 0 assures that zero
temperature, where the Arrhenius factors vanish Ar(0) = 0, can never be reached. By contrast,
concentrations for which Br(ρ) = 0 are not problematic in this respect, since the mass-action factors
Br(ρ) vanish sufficiently slow. We explain this through two simple examples.

Example. 2.2 (nonreversible cell division). In this case X := {A},R := {1A → 21A} and
eA := 0 so that the temperature is kept constant and the condition θ− > 0 is superfluous. Starting
from ρ0

A := 0, θ0 := 1, the solution to the macroscopic equation (1.4) will simply be ρA(t) ≡ 0.
However, the macroscopic initial condition ρ0

A = 0 would be consistent with the microscopic
condition ρ(V )0

A = 1/V , meaning that initially there is one particle, which is not observed on the
macroscopic scale V → ∞. Although not the expected behaviour, there is a small probability
that this one particle causes a chain reaction, resulting in the emergence – within finite time – of
a concentration O(ρ(V )

A (1)) = 1 of macroscopic order. Since Br(ρ) grows polynomially, it turns
out that this probability has finite large-deviation cost [AAPR21, Sec. 3]: there exists a path ρA(t)
with ρA(0) = ρ0

A = 0 and ρA(T ) > 0 such that I[0,T ](ρ) < ∞. Physically, this means that the
process can ‘escape’ the boundary ρA = 0 if a sufficient amount of free energy is injected in the
system.

Example. 2.3 (heating the room). We consider again one species X := {A}, but now R :=
{1A → 0} and eA > 0. Initially we set ρ0

A = ρ(V )

A (0) := 1, θ0 := 0 and Θ(V )(0) = θ(V )0 := a/V
for some a > 0 arbitrarily large but of order 1. Similar to the previous example, the solution to the
macroscopic equation (1.4) is constant (ρA(t), θ(t)) ≡ (0, 0), but there is some heat available
to start the reaction, increase the temperature and thereby accelerate the process (at least as
long as there is enough mass available). However, in this case it can be calculated explicitly that
the probability of a sufficiently strong chain reaction corresponds to an infinite large-deviation
cost: for any path (ρA, θ(t)) with (ρA(0), θ(0)) = (ρ0

A, θ
0) = (1, 0) and θ(T ) > 0 there holds

I[0,T ](ρ) < ∞ [AAPR21, Sec. 5]. Physically, this simple model shows that a room at 0 Kelvin
can not be heated with fire, since there not enough heat to start the fire, even when injecting free
energy in the system. More precisely, the enormous amount of free energy that would need to be
injected in to start the fire is of a higher scale.

Why can the system of the first example escape the crucial boundary with finite large-deviation cost,
but the second system cannot? The necessary and sufficient condition to escape a boundary point
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with large-deviation cost is that [AAPR21]:

(2.5) lim
τ→0
−
∫ τ

0

log kr(ρ
bd + τ̃ g) dτ̃ = 0,

where ρbd is a boundary point of {ρ ∈ S : kr(ρ) > 0} and g is an inward-pointing vector.

For the first example, ρbd
A := 0, and we can simply take g := 1A. Focussing on the crucial factor Br

of the reaction rate kr, we see that indeed:

−
∫ τ

0

logBr(ρ
bd + τ̃ g) dτ̃ = −

∫ τ

0

log(τ̃) dτ̃ = −τ log τ + τ → 0,

For the second example ρbd
A := E0/eA and for an inward pointing vector we can take g := −cH/eA1A.

Then, again focussing on the crucial factor Ar of kr:

−
∫ τ

0

logAr(ρ
bd + τ̃ g) dτ̃ =

cH(a− eA)

kBeA

∫ τ

0

1

τ̃
dτ̃ ≡ ±∞,

and so the reaction rate vanishes too fast near the boundary in order to escape with finite cost. It is
interesting to note that in this respect the Arrhenius law is exactly a border case which does not allow
escaping the boundary θ = 0.

In order to circumvent this issue we assume θ− > 0 in Theorem 2.1.

2.3. Flux large deviations. In order to generalise the physical structure beyond detailed balance, we
also study large deviations of fluxes. At this stage we require reversibility of the reaction network (each
forward reaction corresponds to a backward reaction), permitting the use of net fluxes. To be more
precise, let

W (V )

r (t) :=
1

V
#
{

reactions r occurred in (0, t]
}

− 1

V
#
{

reactions bw(r) occurred in (0, t]
}
, r ∈ Rfw.

be the cumulative net reaction flux.

As mentioned in Subsection 2.2, there are almost surely a finite number of jumps. Therefore, the paths
W (V ) are almost surely of bounded variation, and we may define the time derivative J (V ) := Ẇ (V ),
which is the flux from Subsection 1.4. This flux is however a singular measure in time, so for now it is
more convenient to work with the cumulative net flux W (V )(t), which is a Markov process in RR with
initial condition W (V )(0) ≡ 0 and generator:

(Q(V )F )(w) = V
∑
r∈Rfw

[
κrAr(θ)B

(V )

r (ρ)
[
F (w + 1

V
1r)− F (w)

]
+ κbw(r)Abw(r)(θ)B

(V )

bw(r)(ρ)
[
F (w − 1

V
1r)− F (w)

]]
,

where the cumulative net flux w determines the concentration through the continuity equation ρ :=
ρ(V )0 + Γw (recall the definition of Γ from (1.3)), and again θ := (E(V )0 − e · ρ)/cH . On an abstract
level one then sees that the condition (2.5) is the same as for the process ρ(V ), yielding the flux
large-deviation principle:

Theorem 2.4 ([PR19, AAPR21]). Assume θ0, ρ0 and R are such that S is bounded and θ− > 0.
Then the process W (V ) satisfies a large-deviation principle in D(0, T ; RX ) with rate functional

J[0,T ](w) :=


∫ T

0
L
(
ρ(t), ẇ(t)

)
dt, w ∈ W 1,1(0, T ; RRfw), w(0) = 0,

ρ := ρ0 + Γw,

∞, otherwise,

(2.6)
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where

L
(
ρ, j) := inf

̃∈[0,∞)R:
∀r∈Rfw jr=̃r−̃bw(r)

S
(
̃ | k(ρ, θ)

)
.(2.7)

The infimum in (2.7) appears by a “contraction principle” since we work with net rather then one-way
fluxes. By the same principle, (2.4) is related to (2.7) through

(2.8) L̂(ρ, u) = inf
j∈Rfw:u=Γj

L(ρ, j).

3. INVARIANT MEASURE AND QUASIPOTENTIAL

This section is dedicated to the invariant measure Π(V ) of the microscopic process, and its large-
deviation rate V , also called the quasipotential3. For a simple unimolecular reaction network A 
 B
the invariant measure will be explicitly constructed in Subsection 3.1, and its large-deviation rate is
calculated in Subsection 3.2. For more general networks, the invariant measure remains unknown,
but the quasipotential can still be derived indirectly via a Hamilton-Jacobi-Bellman equation; this will
be the content of Subsection 3.3.

3.1. The invariant measure for the unimolecular case. In this subsection we explicitly construct
the invariant measure for the simple settingX := {A,B} andR := {fw, bw} := {1A → 1B,1B →
1A}, in chemical notation: A 
 B. To simplify notation we write a := afw = abw and without
loss of generality we assume that V is the total number of particles in the system (conserved by the
dynamics). It will be helpful to rewrite all variables in terms of the number i of A-particles (for fixed V):

ρ[i] :=

[
1
V
i

1− 1
V
i

]
, θ[i] :=

E(V )0 − e · ρ[i]

cH
=
E(V )0 − eB

cH
+

eB − eA
cHV

i,

recalling the total energy defined in (1.8). Define i− := min{i = 0, . . . , V : θ[i] ∈ [θ−, θ+]}
and similarly i+ as the maximum. Then the process (ρ(V ),Θ(V )) can be interpreted as a birth-death
process on the state space {i−, . . . , i+}.
For a birth-death process the invariant measure Π(V ) can be explicitly constructed using detailed
balance as Ansatz:

Π(V )(ρ[i]) = Π(V )(ρ[i− 1])
k(V )

bw (ρ[i− 1], θ[i− 1])

k(V )

fw (ρ[i], θ[i])

= Π(V )(ρ[i−])

∏i−1
l=i− κbwAbw(θ[l])Bbw(ρ[l])∏i
l=i−+1 κfwAfw(θ[l])Bfw(ρ[l])

.(3.1)

From this we see that the measure factorises into chemical and thermal factors, so we can set

Π(V )(ρ[i]) =:
F (V )(θ[i])G(V )(ρ[i])

Z(V )
, Z(V ) :=

i+∑
i=i−

F (V )(θ[i])G(V )(ρ[i]),(3.2)

for someF (V ), G(V ) that can be studied separately. Note that Π(V )(ρ[i−]) and possible other constants
that we encounter can be absorbed in the normalisation factor Z(V ).

3Actually, the most common notion of quasipotential as used in [FW12] is slightly different. There are known cases
where that notion does not coincide with the large-deviation rate of the invariant measure, even if the macroscopic dynamics
has a unique basin of attraction [YS21].
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The chemical factor has the Poisson-product form that is the invariant measure for the isothermal
reaction network (see for example [ACK10]):∏i−1

l=i− κbwBbw(ρ[l])∏i
l=i−+1 κfwBfw(ρ[l])

=

∏i−1
l=i− κbw(v − l)∏i
l=i−+1 κfwl

=
(κbw
κfw

)i−i− (V − i−)!/(V − i)!
i!/i−!

= constant×
∏
x=A,B

(V πx)
V ρx[i]

(V ρx[i])!
e−V πx︸ ︷︷ ︸

=:G(V )(ρ[i])

.

setting π := (κbw, κfw)/|(κbw, κfw)|2.

For the thermal factor, we obtain:∏i−1
l=i− Abw(θ[l])∏i
l=i−+1Afw(θ[l])

=
Abw(θ[i−])

Afw(θ[i])

i−1∏
l=i−+1

Abw(θ[l])

Afw(θ[l])

= exp
(
− a− eB
kBθ[i−]

)
exp

(a− eA
kBθ[i]

)
exp

( i−1∑
l=i−+1

eB − eA
kBθ[l]

)
=: F (V )(θ[i]).

By construction (3.2) satisfies the Ansatz (3.1) and hence the process is in detailed balance with
respect to the invariant measure Π(V ).

Motivated by the results in Subsection 3.3, we expect a similar formula for the invariant measure to
hold more generally when the isothermal reaction network is in detailed balance, or if it is in complex
balance and a is constant.

3.2. The quasipotential for the unimolecular case. Still restricting to the simple setting A 
 B we
derive the quasipotential V as the large-deviation rate function corresponding to the invariant measure
Π(V ) constructed in the previous subsection. As explained in [MPPR17, Sec. 2] it corresponds to the
(nondimensionalised) physical free energy per unit volume. Moreover, the function V will generally
be a Lyapunov function for the macroscopic dynamics, and – in case the Onsager-Machlup principle
holds – also the driving energy, see Sections 4 and 5.

Since the large-deviation principle (1.9) is a finite-dimensional problem we present a formal but direct
calculation and skip the minor technicalities required to make this into a rigorous statement. Pick a
concentration-temperature pair (ρ, θ) ∈ [0,∞)X×[0,∞) and a sequence (i(V ))V >0 in {i−, . . . , i+}
so that (ρ[i(V )], θ[i(V )])→ (ρ, θ) as V →∞, adopting the notation of the previous subsection. Then

− 1

V
log Π(V )

(
ρ[i(V )], θ[i(V )]

) (3.2)
=

− 1

V
logF (V )

(
θ[i(V )]

)
− 1

V
logG(V )

(
ρ[i(V )]

)
+

1

V
logZ(V ).

It is well known and easily seen by Stirling’s formula that

lim
V→∞

− 1

V
logG(V )

(
ρ[i(V )]

)
= S(ρ | π).
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For the thermal contribution note that i− and θ[·] defined in the previous subsection depend on V and
that θ[i−]→ θ− as V →∞. By a Riemann integral approximation:

lim
V→∞

− 1

V
logF (V )

(
θ[i(V )]

)
= lim

V→∞
− 1

V

i−1∑
l=i−+1

eB − eA
kBθ[l]

= lim
V→∞

− 1

V

i−1∑
l=i−+1

eB − eA

kB
(
E0−eB
cH

+ eB−eA
cH

ρ[l]
)

= −eB − eA
kB

∫ ρ

limV→∞ ρ[i−]

1
E0−eB
cH

+ eB−eA
cH

ρ̃
dρ̃

= −cH
kB

log
θ

θ−
.

Putting all parts together indeed yields the claimed quasipotential (1.10).

3.3. The quasipotential for the general case. For the more general case as the simple unimolecular
example, it still remains unknown what the exact expression of the invariant measure is, and therefore
the direct calculation of its large-deviation rate functional as in the previous subsection cannot be
used. However, we can still derive the quasipotential indirectly, without knowing the invariant measure.
The key observation is that the invariant measure Π(V ) is related to the generator Q(V ), and so the
corresponding large-deviation rate V must be related to the large-deviation cost function L̂. We recall
the exact relation without proof.

Lemma 3.1 ([PRS21, Th. 3.6]). If the invariant measure Π(V ) satisfies a large-deviation principle (1.10)
with rate function V , then

Ĥ
(
ρ,∇V(ρ)

)
= 0, inf V = 0,(3.3)

where Ĥ is the convex dual of L̂:

(3.4) Ĥ
(
ρ, ξ) := sup

u∈RX
ξ · u− L̂

(
ρ, u) =

∑
r∈R

kr(ρ)
(
eξ·γ

(r) − 1
)
.

From now on we focus on equation (3.3), which is exactly what is needed for the use in Onsager-
Machlup and Macroscopic Fluctuation Theory. In order to solve it, we will need to make assumptions
about the isothermal setting, where Ar(θ) ≡ 1. For that setting, the stoichiometric simplex captures
all concentrations that can be reached through reactions inR:

Siso :=
{
ρ = ρ0 + Γw : w ∈ RRfw and ρ ∈ [0,∞)X

}
.

Note that S ⊂ Siso since some concentrations in Siso could correspond to negative temperatures.
Either one of the following two assumptions are needed:

Isothermal Detailed Balance (IDB): There exists a unique state π ∈ Siso such that for
each forward reaction r ∈ Rfw:

κrBr(π) = κbw(r)Bbw(r)(π).

Isothermal Complex Balance (ICB): There exists a unique state π ∈ Siso such that for
each complex α ∈ {α(r) : r ∈ R}:∑

r∈R:α(r)=α

κrBr(π) =
∑

r∈R:αbw(r)=α

κrBr(π).
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Naturally for both assumptions π is the steady state for the macroscopic isothermal equation ρ̇(t) =
Γj(t), jr(t) = κrBr(ρ(t))− κbw(r)Bbw(r)(ρ(t)).

A direct calculation shows that (ICB) is equivalent to [ACK10, Sec. 3.2],

(3.5)
∑
r∈Rfw

(
κrBr(π)− κbw(r)Bbw(r)(π)

)(
ψαbw(r) − ψα(r)

)
= 0

for all test functions ψ mapping complexes α ∈ {α(r) : r ∈ R} to the reals. This will be useful in the
next proof.

Remark 3.2. Both conditions (IDB) and (ICB) are macroscopic in nature. However, since our network
is assumed to be reversible, (IDB) is equivalent to detailed balance of the isothermal microscopic
system, in the sense of reversibility of the Markov process [ACK10, Th. 4.5].

We now come to our first main result.

Proposition 3.3. Assume that either (IDB) holds, or that (ICB) holds and ar is constant in r ∈ R, and
let π ∈ [0,∞)X be the corresponding steady state of the isothermal equation. Then at all points of
differentiability of V , the Hamilton-Jacobi-Bellman equation (3.3) holds with

V(ρ) := S(ρ | π)− cH
kB

log θ − C, θ :=
E0 − e · ρ

cH
,(3.6)

where

(3.7) C = inf
ρ∈S,

θ:=(E0−e·ρ)/cH

S(ρ | π)− cH
kB

log θ.

Proof. We first focus on the gradient of V and comment on the constant C at the end. Under (IDB) or
(ICB), the steady state π is coordinate-wise positive [ACK10, Th. 3.2]. Thus, abbreviating log(ρ/π) :=
(log(ρx/πx))x∈X ,

∇V(ρ) = log
ρ

π
+

e

kBθ
, θ :=

E0 − e · ρ
cH

,(3.8)

at all points of differentiability {ρ > 0 : e · ρ < E0}. Plugging this gradient into Ĥ:

Ĥ
(
ρ,∇V(ρ)

)
= θq

∑
r∈R

κre
− ar−e·α(r)

kBθ ρα
(r)
[
e

(log ρ
π

+ e
kBθ

)·γ(r) − 1
]

= θq
∑
r∈Rfw

(
κrπ

α(r) − κbw(r)π
αbw(r))

×
((

ρ
π

)αbw(r)

e
− ar−e·αbw(r)

kBθ −
(
ρ
π

)α(r)

e
− ar−e·α(r)

kBθ

)
.

If (IDB) holds, then clearly the first bracket is zero for all r ∈ Rfw.

If ar = 0, then all variables in the second expression depend on the complex only. Thus

Ĥ
(
ρ, θ,∇V(ρ)

)
= θq

∑
r∈Rfw

(
κrπ

α(r) − κbw(r)π
αbw(r))(

ψαbw(r) − ψα(r)

)
,

where the test function ψ : {α(r) : r ∈ R} → R is defined as ψα := (ρ/π)α exp(e ·α/(kBθ)). This
expression is zero under the assumption (ICB) because of (3.5).

It remains to show that inf V = 0, which is clearly true whenever C is finite. This is easily seen by
recalling that

(3.9) e · ρ+ cHθ = e · ρ0 + cHθ
0 =: E0,
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and so one can bound from below:

(3.10) S(ρ | π)− cH
kB

log θ ≥ cH
kB

(1− θ) =
cH
kB

(1− E0 − e · ρ
cH

) ≥ cH − E0

kB
.

�

Remark 3.4. The proof shows that the factor θq plays no role whatsoever since it is independent of
the reaction r. Moreover, the proof will generally break down if (ICB) holds but ar is not constant in r.

Now that the quasipotential for the anisothermal dynamics is known and is a strictly convex Lyaponuv
functional for the macroscopic dynamics (1.4), the steady state (ρ∞, θ∞) can be found as the min-
imiser in the minimisation problem (3.7). Since V is a strictly convex function on a finite-dimensional
space that is bounded from below by (3.10) and S is convex, the minimiser exists and is unique. Let
P be the projection from RX onto Ran Γ:

Pxy :=
∑
r∈Rfw

α(r)
x α

(r)
y

|α(r)|22
.

Differentiating V yields that the minimiser satisfies

ρ∞x = πxe
− ex
kBθ
∞+((I−P )λ)x , e · ρ∞ + cHθ

∞ = E0,

where the Lagrange multiplier λ ∈ RX is chosen such that (P − I)(ρ∞ − ρ0) = 0. It is difficult to
obtain a more explicit expression, even without the constraint ρ ∈ ρ0 + Ran Γ.

Remark 3.5. The quasipotential can now also be written as:

V(ρ) = S(ρ | π)− S(ρ | ρ∞)− cH
kB

log
θ

θ∞
.

4. ONSAGER-MACHLUP THEORY

In [MPR14] we showed a modern version of the Onsager-Machlup principle. Translated to the setting of
this paper, this means that if the Markov process ρ(V )(t) is in (stochastic) detailed balance with respect
to its invariant measure Π(V ) that has large-deviation rate V , then there exist a unique dissipation
potential Ψ̂ : [0,∞)X × [0,∞)× RX × R so that

(4.1) L̂
(
ρ, u
)

= Ψ̂
(
ρ, u
)

+ Ψ̂∗
(
ρ,−1

2
∇V(ρ)

)
+ 1

2
∇V(ρ) · u

for all u ∈ RX and all points of differentiability ρ ∈ [0,∞)X of V . By definition, Ψ̂ : [0,∞)X ×RX →
[0,∞) being a dissipation potential means that Ψ̂(ρ, u) is convex in u and Ψ̂(ρ, 0) ≡ 0, which
reflects the physical principle that there is no dissipation at zero velocities. Of course, (4.1) is the local
version of (1.12).

It is difficult to check whether ρ(V )(t) is in detailed balance if the invariant measure is not known. Luck-
ily, detailed balance only needs to hold in the large-deviation regime. On the stochastic microscopic
level, detailed balance with respect to an invariant measure Π(V ) means that:

Prob
(
ρ(V ) ∈ dρ

)
= Prob

(←−ρ (V ) ∈ dρ
)
, ←−ρ (V )(t) := ρ(V )(T − t),

whenever ρ(V )(0) is distributed according to Π(V ). Taking the large deviations on both sides V(ρ(0))+∫ T
0
L̂(ρ(t), ρ̇(t)) dt = V(ρ(T )) +

∫ T
0
L̂(ρ(t),−ρ̇(t)) dt, and since this holds for all T , one finds the

following time-reversal symmetry on the large-deviations scale (see [MPR14]):

(4.2) L̂(ρ, u) = L̂(ρ,−u) +∇V(ρ) · u
for all points of differentiability ρ of V and all u ∈ RX .
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Proposition 4.1. Assume (IDB), so that by Proposition 3.3 the quasipotential V is given by (3.6).
Then the time-reversal symmetry (4.2) holds.

Proof. Taking the convex dual on both sides shows that (4.2) is equivalent to the symmetry ofH(ρ, ξ+
1
2
∇V(ρ)) in ξ. We thus calculate, abbreviating θ = (E0 − e · ρ)/cH and using (3.8):

H
(
ρ, ξ + 1

2
∇V(ρ)

)
−H

(
ρ,−ξ + 1

2
∇V(ρ)

)
=
∑
r∈R

κrAr(θ)Br(ρ)
(
e

( 1
2

log ρ
π

+ 1
2

e
kBθ

+ξ)·γ(r) − e( 1
2

log ρ
π

+ 1
2

e
kBθ
−ξ)·γ(r)

)
=
∑
r∈R

κrπ
− 1

2
γ(r)e

− ar−e·(α(r)+αbw(r))/2
kBθ ρ

1
2

(α(r)+αbw(r))
(
eξ·γ

(r) − e−ξ·γ(r)
)

=
∑
r∈R

(
κrπ

− 1
2
γ(r) − κbw(r)π

1
2
γ(r)
)
e
− ar−e·(α(r)+αbw(r))/2

kBθ ρ
1
2

(α(r)+αbw(r))eξ·γ
(r)

.

The last line follows from e−ξ·γ
(r)

= eξ·γ
bw(r)

and changing the index. The first factor is zero due to
(IDB):

κrπ
− 1

2
γ(r) − κbw(r)π

1
2
γ(r) = π−

1
2

(α(r)+αbw(r))
(
κrπ

α(r) − κbw(r)π
αbw(r))

= 0.

�

Under the (IDB) assumption, as an immediate consequence of the time-reversal symmetry (4.2) and
[MPR14, Th. 2.1], the Onsager-Machlup decomposition (4.1) holds, with the uniquely given dissipation
potentials:

Ψ̂∗(ρ, ξ) = 2
∑
r∈Rfw

√
kr(ρ)kbw(r)

(
cosh(ξ · γr)− 1

)
,

Ψ̂(ρ, u) = sup
ξ∈RX

ξ · u− Ψ̂∗(ρ, ξ).

This result can be seen as an extension of [MPPR17] to include temperature effects. In that paper it
is explained how Ψ̂ can be written as an infimal convolution, which also applies to our anisothermal
setting.

Remark 4.2. In general Ψ̂ does not have a clean explicit formulation (apart from the infimal convolu-
tion). However, it does have the dual formulation:

(4.3) Ψ̂(ρ, u) = inf
j∈RRfw :
u=Γj

∑
r∈Rfw

2
√
kr(ρ)kbw(r)(ρ)

(
cosh∗

( jr
2ηr(ρ)

)
+ 1
)
.

The appearance of the constrained infimum is no coincidence: Ψ̂ is related to the dissipation potential
for the MFT setting in the same way as (2.8), as was shown in [Ren18b].

5. MACROSCOPIC FLUCTUATION THEORY

In this section we move away from (isothermal) detailed balance (IDB) to more general dynamics.
Physically, this means that we look beyond thermodynamically closed systems, allowing for interac-
tions with the environment. However, since we will need the explicit expression of the quasipotential
V , we need to assume (ICB) and that ar is constant in r.

We first derive the first decomposition (1.14) and introduce the symmetric and asymmetric forces.
Then the rate functional is further decomposed using generalised orthogonality, and we end with an
interpretation of the resulting MFT decomposition.
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5.1. Thermodynamic force and dissipation. One of the aims of MFT is to uniquely distinguish be-
tween internal mechanisms, that would be present if the system was thermodynamically closed, and
mechanisms that should be regarded as interactions with the environment. Naively one could look
for a decomposition of the type (4.1), where the force −1

2
∇V is replaced by a more general, non-

conservative force. However, it is not clear whether such force indeed exists; this is one mathematical
motivation to switch to the flux setting. Another, more physical motivation is the observation that sys-
tems that are driven out of equilibrium by external forces can potentially give rise to divergence-free
cycles4, and since (4.1) is in essence an energy balance, one should not expect such a balance if
cycles are not taken in account. The starting point of MFT is therefore to consider the flux large-
deviations (2.7) and decompose it as follows, see for example [BDSG+15, Ren18a, MN08, PRS21]:

(5.1) L(ρ, j) = Ψ(ρ, j) + Ψ∗
(
ρ, F (ρ)

)
− F (ρ) · j,

For all j ∈ RRfw and all ρ for which the force F (ρ) is well defined. The dissipation potentials and force
are uniquely given by [RZ21, Th. 3.2] (see also Remark 4.2):

Fr(ρ) :=
1

2
log

kr(ρ)

kbw(r)(ρ)
,

Ψ∗(ρ, ζ) := 2
∑
r∈Rfw

√
kr(ρ)kbw(r)

(
cosh(ζr)− 1

)
,

Ψ(ρ, j) := 2
∑
r∈Rfw

√
kr(ρ)kbw(r)

(
cosh∗

( j2

2
√
kr(ρ)kbw(r)

)
+ 1
)
.

Recall from (1.1) that the temperature-dependencies are implicit in the reaction rates kr, kbw(r). From
the form of the force it becomes clear that (5.1) is only valid on the interior of S, where all reaction
rates are positive.

In case the process ρ(V )(t) is in (stochastic) detailed balance, then similar to (4.1), we would have
F (ρ) = −1

2
ΓT∇V(ρ) [RZ21, Rem. 3.3], where the ΓT appears since the forces now act on fluxes.

We thus decompose the force F (ρ) = F sym(ρ) + F asym(ρ) into

F sym
r (ρ) := −1

2
ΓT∇V(ρ), and

F asym
r (ρ) := F (ρ)− F sym(ρ) =

1

2
log

κrπ
α(r)

κbw(r)πα
bw(r)

,

where F asym ≡ 0 if (IDB) holds. Together with Theorem 2.4 and (5.1), this provides the first decom-
position (1.14).

The two forces F sym, F asym are symmetric respectively antisymmetric with respect to time-reversal of
the microscopic process; we refer to [BDSG+15, RZ21, PRS21] for the details. Observe that F asym ≡
0 precisely when (IDB) holds. Moreover, the antisymmetric force is constant in ρ, which was also
observed in all applications in [BDSG+15, KJZ18, PRS21].

5.2. Generalised orthogonality. The first decomposition (1.14) still includes one term that involves
both forces: Ψ∗(ρ, F sym(ρ) + F asym(ρ)). This term can be further decomposed by the notion of
generalised orthogonality, first described in [KJZ18], extended to jump processes in [RZ21], and finally
described for arbitrary processes in [PRS21]. The idea is to generalise Hilbert orthogonality:

1

2
‖a+ b‖2 =

1

2
‖a‖2 + 〈a, b〉+

1

2
‖b‖2 =

1

2
‖a‖2 +

1

2
‖b‖2 whenever a ⊥ b.

4In this context, the operator Γ plays the role of a divergence, so divergence-free fluxes are fluxes in the kernel of Γ.
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A similar expansion can be written down for our dual dissipation potential Ψ∗, however since it is not
quadratic, the cross product 〈·, ·〉 becomes a non-bilear function ηρ(·, ·), one of the potentials need to
be “modified”, and there are two ways to do so:

Ψ∗
(
ρ, F sym(ρ) + F asym(ρ)

)
(5.2)

= Ψ∗
(
ρ, F sym(ρ)

)
+ ηρ

(
F asym(ρ), F sym(ρ)

)
+ Ψ∗F asym

(
ρ, F sym(ρ)

)
(5.3)

= Ψ∗
(
ρ, F asym(ρ)

)
+ ηρ

(
F sym(ρ), F asym(ρ)

)
+ Ψ∗F sym

(
ρ, F asym(ρ)

)
,(5.4)

It turns out that the ‘cross product’ ηρ(F sym(ρ), F asym(ρ)) is always zero, which can be interpreted
as a nonlinear version of F sym(ρ) ⊥ F asym(ρ). We abbreviate the two terms on the right as Λsym

asym(ρ)
and Λasym

sym (ρ) respectively.

Theorem 5.1. Assume (ICB) and that ar is constant in r ∈ R, so that by Proposition 3.3 the quasipo-
tential V is given by (3.6). Then for all ρ in the interior of S:

Ψ∗
(
ρ, F sym(ρ) + F asym(ρ)

)
= Ψ∗

(
ρ, F sym(ρ)

)
+ Λasym

sym (ρ)

= Ψ∗
(
ρ, F asym(ρ)

)
+ Λsym

asym(ρ),(5.5)

with

Λasym
sym (ρ) :=

1

2

∑
r∈R

e
− ar−e·α(r)

kBθ
( ρ
π

)α(r)
(√

κrπα
(r) −

√
κbw(r)πα

bw(r)
)2

,

Λsym
asym(ρ) :=

1

2

∑
r∈R

κrπ
α(r)

(√
e
− ar−e·α(r)

kBθ
( ρ
π

)α(r)

−
√
e
− ar−e·αbw(r)

kBθ
( ρ
π

)αbw(r)

)2

.

Proof. It was shown in [RZ21, Prop. 4.2] that indeed ηρ(F sym(ρ), F asym(ρ)) ≡ 0. The remaining
terms on the right in (5.4) have the explicit form [RZ21, Sec. 5]:

Λasym
sym (ρ) =

1

2

∑
r∈R

(√
kr(ρ)−

√←−
kr(ρ)

)2

,(5.6)

Λsym
asym(ρ) =

1

2

∑
r∈R

(√
kr(ρ)−

√←−
kbw(r)(ρ)

)2

.(5.7)

Here
←−
kr(ρ) and

←−
kbw(r)(ρ) are the reaction rates corresponding to the adjoint Markov process t 7→

ρ(V )(T − t) starting from its invariant measure Π(V ). These rates are related to the quasipotential V
via the relation [Ren18a, Eq. (42)]:

←−
kbw(r)(ρ) = kr(ρ)eγ

(r)·∇V(ρ).

Plugging these and the reaction rates (1.1) into (5.7) completes the proof. �

5.3. Interpretation. Combining the decompositions (5.1) and (5.5) and integrating over time yields,
using F sym(ρ(t)) · ẇ(t) = −1

2
∇V(ρ(t) · Γw(t) = −1

2
d
dt
V(ρ(t)) and F asym(ρ(t)) · ẇ(t) =
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F asym · ẇ(t) = d
dt

(F asym · w(t)):

J[0,T ](ρ, w) =

∫ T

0

L
(
ρ(t), ẇ(t)

)
dt

=

∫ T

0

[
Ψ
(
ρ(t), ẇ(t)

)
+ Ψ∗

(
ρ(t), F asym(ρ(t))

)
− F asym

(
ρ(t)

)
· ẇ(t)︸ ︷︷ ︸

=:LFasym (ρ(t),ẇ(t))

]
dt

+

∫ T

0

Λsym
asym

(
ρ(t)

)
dt+

1

2
V(ρ(T ))− 1

2
V(ρ(0))(5.8)

=

∫ T

0

[
Ψ
(
ρ(t), ẇ(t)

)
+ Ψ∗

(
ρ(t), F sym(ρ(t))

)
− F sym

(
ρ(t)

)
· ẇ(t)︸ ︷︷ ︸

=:LF sym (ρ(t),ẇ(t))

]
dt

+

∫ T

0

Λasym
sym

(
ρ(t)

)
dt− F asym · w(T ).(5.9)

A priori these decompositions only hold as long as ρ(t) remains in the interior of S, but since all
expressions are well-defined for any ρ ∈ S, an approximation argument yields the result for all paths
ρ(t) in S, see for example [RZ21, Prop. 5.3 & 5.4]. The two decompositions isolate dissipative and
non-dissipative effects in anisothermal reaction networks, and as far as we are aware, this is the first
result in this direction.

By convex duality the two expressions LF sym(ρ(t), ẇ(t)) and LF asym(ρ(t), ẇ(t)) are again non-
negative, and their integrals can be interpreted as a large-deviation rate of a modified microscopic
process. The modified process corresponding to LF sym is in detailed balance, and hence it is decom-
posed in a similar fashion as the Onsager-Machlup result (4.1) (but now on the level of fluxes). The
interpretation of LF asym is a bit more involved. It is shown in [PRS21] that for simpler examples the
path LF asym(ρ(t), w(t)) = 0 is a Hamiltonian system - although for (isothermal) reaction networks
this is still an open question.

What can one deduce from (5.8) and (5.9)? First of all, L(ρ(t), ẇ(t)) ≡ 0 along the expected
path (1.4), so one obtains estimates on the free energy loss and work:

1

2
V(ρ(T ))− 1

2
V(ρ(0)) = −

∫ T

0

LF asym

(
ρ(t), ẇ(t)

)
dt−

∫ T

0

Λsym
asym

(
ρ(t)

)
dt ≤ 0,

F asym · w(T ) = −
∫ T

0

LF sym

(
ρ(t), ẇ(t)

)
dt−

∫ T

0

Λasym
sym

(
ρ(t)

)
dt ≤ 0.

Naturally, the fact that the quasipotential V is Lyapunov along the expected macroscopic path is well-
known, see for example [FW12].

Second, away from the expected one obtains the estimates:

1

2
V(ρ(T )) +

∫ T

0

Λsym
asym

(
ρ(t)

)
dt ≤ 1

2
V(ρ(0)) +

∫ T

0

L
(
ρ(t), ẇ(t)

)
dt,

F asym · w(T ) +

∫ T

0

Λasym
sym

(
ρ(t)

)
dt ≤

∫ T

0

L
(
ρ(t), ẇ(t)

)
dt.

Hence a good control of the rate functional and initial condition implies good control of the Fisher
information and 1

2
V(ρ(T )), F asym ·w(T ). These estimates are very useful to obtain compactness for

paths of bounded rate functional, see for example [HPST20, PR21].
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