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Abstra
tWe 
onsider a Fokker-Plan
k equation on a 
ompa
t interval where, as a 
on-straint, the �rst moment is a pres
ribed fun
tion of time. Eliminating the asso
iatedLagrange multiplier one obtains nonlinear and nonlo
al terms. After establishingsuitable lo
al existen
e results, we use the relative entropy as an energy fun
tional.However, the time-dependent 
onstraint leads to a sour
e term su
h that a deli
ateanalysis is needed to show that the dissipation terms are strong enough to 
ontrolthe work done by the 
onstraint. We obtain global existen
e of solutions as longas the pres
ribed �rst moment stays in the interior of an interval. If the pres
ribedmoment 
onverges to a 
onstant value inside the interior of the interval, then thesolution stabilises to the unique steady state.1 Introdu
tionIn this paper we dis
uss a model that was developed for a many-parti
le system relevantfor lithium-ion batteries, see [DJ∗10, DGH06℄. Here the variable x ∈ Ω = ]0, 1[ relates tothe relative loading state of parti
les and u(x, t) is the time-dependent probability density,i.e. ∫
Ω
u(x, t) dx = 1 for all t. The model takes the form






τut(x, t) =
(
ν2ux(x, t) + ψ′(x)u(x, t) − Λ(t)u(x, t)

)
x

for x ∈ Ω, t > 0,

ν2ux(x, t) + ψ′(x)u(x, t) − Λ(t)u(x, t) = 0 for x ∈ ∂Ω, t > 0,

C(u(t)) :=
∫
Ω
xu(x, t) dx = ℓ(t) for t ≥ 0,

u(x, 0) = u0(x) for x ∈ Ω.

(1.1)The potential ψ 
an be taken general but has to satisfy 
ertain smoothness, namely it isa general potential satisfying
ψ ∈ H1([0, 1]). (1.2)The Lagrange multiplier Λ(t) is asso
iated with the 
onstraint C(u(t)) = ℓ(t), where

ℓ : [0,∞[ → ]0, 1[ is a given datum. In fa
t, Λ 
an easily be determined as
Λ(t) =

∫

Ω

ν2ux(x, t) + ψ′(x)u(x, t) dx+ τ ℓ̇(t).After inserting Λ into (1.1) we arrive at a nonlinear Fokker-Plan
k equation, where thenonlinearity is quadrati
 and arises only through the nonlo
al term Λ(t).In Se
tion 2.1 the origins of this model and its physi
al relevan
e are dis
ussed in moredetail. In Se
tion 3 we provide a lo
al existen
e theory for the above system. After some
1



preparation we use the semilinear stru
ture of the problem to derive existen
e on smalltime intervals. Positivity and paraboli
 regularity are obtained. The quadrati
 nature ofthe problem is nontrivial and may lead to blow-up. Note that (1.1) after elimination of
Λ takes the form





τut(x, t) =
(
ν2ux(x, t) + u(x, t)

[
ψ′(x) − L(u(t)) − τp(t)

])

x
for x ∈ Ω, t > 0,

ν2ux(x, t) + u(x, t)
[
ψ′(x) − L(u(t)) − τp(t)

]
= 0 for x ∈ ∂Ω, t > 0,(1.3)where p(t) plays the role of ℓ̇(t) and for any v ∈ C(Ω̄), L(v) is de�ned as

L(v) := ν2 (v(1) − v(0)) +

∫

Ω

ψ′(x)v(x) dx. (1.4)We show that for this system blow-up o

urs for suitable 
hoi
es of p and initial 
onditions
u0.To obtain global existen
e, one needs to remember p = ℓ̇ and that ℓ(0) is given by theinitial 
ondition. Hen
e

ℓ(t) =

∫

Ω

xu(x, 0) dx+

∫ t

0

p(t) dt.Global existen
e will depend on the additional assumption ℓ(t) ∈ ]0, 1[ for all t ≥ 0.Obviously, there does not exist a smooth probability density on ]0, 1[ with ℓ = 0 or 1. Touse this information we introdu
e the energy fun
tional
A(u) =

∫

Ω

ν2u(x) ln u(x) + ψ(x)u(x) dx,whi
h is in fa
t the relative entropy with respe
t to the equilibrium solution û(x) =
ce−ψ(x)/ν2 . In Se
tion 2.2, equation (1.1) is formally rewritten as the abstra
t 
onstraintgradient �ow

τut = −K(u)
(
DA(u) − Λ(t)DC(u)

)
, C(u(t)) = ℓ(t),where K(u) is the semi-de�nite, selfadjoint linear operator de�ned via

K(u)ξ = −
(
u ξx

)
x
,whi
h is the inverse of the Wasserstein metri
 tensor, see [JKO98, Ott01℄.The 
ru
ial 
onsequen
e of this stru
ture is the energy-dissipation relation

d

dt
A(u(t)) = −D(u(t), ℓ̇(t)) with D(u, p) =

∫

Ω

(ν2ux+ψ
′u)2

u
dx− L(u)2 − pL(u).While it is easy to show via the Cau
hy-S
hwarz estimate that the sum of the �rst twoterms in D is nonnegative, the third term, whi
h arises through the work of the 
onstraint,may have an arbitrary sign. A major task is to �nd good lower bounds for D, whi
h will be
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done in Se
tion 4.1 in several steps. The main point is that D(u, p) needs to be estimatedfrom below on the set
M(ℓ) := { u ∈ L1(Ω) : u ≥ 0,

∫

Ω

u(x) dx = 1,

∫

Ω

xu(x) dx = ℓ }.Theorem 4.3 shows that for ea
h δ ∈ ]0, 1/2[ and ψ ∈ H1(Ω) there is a 
onstant Cψ
δ su
hthat ℓ ∈ [δ, 1−δ] implies

D(u, p) ≥ −Cψ
δ |p| for all u ∈ M(ℓ) and p ∈ [−1

δ
, 1
δ
].Thus we 
an 
on
lude that A(u(t)) 
annot blow-up along a solution. Employing the L-log L variant of [BHN94℄ of the Gagliardo-Nirenberg interpolation for the embedding of

L∞(Ω) in H1(Ω) (see Lemma A.2) it is then possible to �nd an apriori estimate for the
L2 norm and global existen
e 
an be obtained for all ℓ ∈ W1,∞lo
 ([0,∞[) with ℓ(t) ∈ ]0, 1[for all t ≥ 0.Finally, in Se
tion 5 we show that the solutions 
onverge to a steady state if ℓ(t) → ℓ∗ ∈
]0, 1[ in su
h a way that ℓ̇ ∈ L1(]0,∞[) ∩ L∞(]0,∞[). For this we exploit that for ea
h ℓ∗there is exa
tly one steady state Uℓ∗ that is 
hara
terised by the fa
t that it is the uniqueminimiser of A on the set M(ℓ∗). As a �nal result we show that u(t) → Uℓ∗ in L2(Ω) for
t→ ∞.The theory in Se
tions 4 and 5 share many similarities with the global existen
e and
onvergen
e theory for ele
tro-rea
tion-di�usion systems studied in [GlH97℄. This in
ludesthe usage of the L-log L variant [BHN94℄ of the Gagliardo-Nirenberg interpolation, theenergy estimate via the energy-dissipation relation, and the introdu
tion of the auxiliaryvariable v =

(
u/Uℓ)

1/2, where Uℓ is the relevant equilibrium, see the proofs of Theorem 4.3and Proposition 4.4. Our analysis is simpler in the respe
t that we only deal with a singles
alar equation, however we treat the 
ase of a driven system, where the time-dependent
onstraint leads to several subtle di�
ulties.Starting from Se
tion 2.2 we will set the parameters τ and ν equal to 1. We do this withoutloss of generality as explained at the end of Se
tion 2.1.2 Modelling and mathemati
al stru
tures2.1 Motivation: Modelling of many-parti
le storage systemsHere we explain how the above model is 
apable to des
ribe the behaviour of ensembles ofinter
onne
ted storage parti
les. Modern many-parti
le ele
trodes of re
hargeable lithium-ion batteries belong to that 
lass of storage systems. The ele
trode 
onsists of a powder of1010 - 1017 nano-parti
les that serve to reversibly store and release lithium atoms duringthe pro
ess of 
harging and dis
harging respe
tively. For more details of the fun
tionalityof the battery, see [DJ∗10℄ and [DGH06℄.
3



The probability density to �nd a parti
le of the ensemble at time t in the loading state xis represented by the fun
tion u : [0, T ] × Ω → [0,∞[. Thus it satis�es
∫

Ω

u(x, t) dx = 1 for all t ∈ [0, T ] . (2.1)The voltage of the battery linearly depends on the expe
tation value ∫
Ω
µ(x)u(x, t) dx,where the 
hemi
al potential µ(x) is non-monotone. Finally, the 
apa
ity of the battery,i.e. the total loading state of the ensemble, is proportional to 1 − ℓ(t) with

ℓ(t) = C(u(t)) :=

∫

Ω

xu(x, t) dx . (2.2)In the 
harging experiment the fun
tion ℓ ∈ C1([0, T ]) is pres
ribed for all t ∈ [0, T ]. Thus(2.2) introdu
es a 
onstraint on the probability density. Due to Ω = ]0, 1[ we have
0 < ℓ(t) < 1 for all t ∈ [0, T ] . (2.3)Figure 1 shows the typi
al behaviour of the battery. The voltage-
apa
ity diagram revealstwo 
ru
ial phenomena. We observe hystereti
 behaviour and horizontal bran
hes, indi-
ating a phase transition in the many-parti
le system during 
harging and dis
hargingrespe
tively.

Figure 1: Voltage versus capacity of a battery with FePO4 storage particles, see [DJ∗10].The time for full 
harging is 20 hours and hen
e very large with respe
t to the di�usionalrelaxation time τ of a single storage parti
le, whi
h is about 1 se
ond. Our mathemati
almodel appropriately des
ribes the 
harging-dis
harging pro
ess in that spe
ial 
ase wherethe time to approa
h equilibrium of a single storage parti
le is mu
h smaller than thetime for full 
harging of the ensemble.The evolution of the probability density u(x, t) is des
ribed by the Fokker-Plan
k equation
τut =

(
uΥ

)
x

with Υ = −Λ(t) + µ(x) + ν2
(
log(u)

)
x

for x ∈ Ω . (2.4)The equation 
ontains a Lagrange multiplier Λ, whi
h is asso
iated with the 
onstraint(2.2) and there appear two 
onstant parameters τ > 0 and ν2 > 0.
4



The evolution starts from smooth and non-negative initial data and we have homogenousno-�ux boundary 
onditions, namely
u(x, 0) = u0(x) with

∫

Ω

u(x, t) dx = 1, Υ = 0 for x ∈ ∂Ω = {0, 1} . (2.5)By multiplying the �rst equation by x and integration over Ω, we see that Λ 
an beeliminated via
Λ(t) = τ ℓ̇(t) + ν2(u(1)−u(0)) +

∫

Ω

µ(x)u(x, t) dx . (2.6)It is now easy to see that (2.4) gives exa
tly (1.1), and with the use of (2.6) we get(1.3).We note that the observed hystereti
 behaviour from Figure 1 is implied by the modelin the parameter regime τ ≪ 1, ν2 ≪ 1. Details of numeri
al simulations for various τ ,
ν2 regimes are to be found in [DGH06℄, that also 
ontains a 
areful des
ription of themodelling. Another way of deriving ma
ros
opi
 hysteresis in a many-parti
le system isdis
ussed in [MiT10℄, where instead of the entropi
 di�usion term ν2uxx spatial random�u
tuations are used.In parti
ular, in [DGH06℄ it is shown that the Fokker-Plan
k equation (2.4) identi
allysatis�es the 2nd law of thermodynami
s, whi
h reads for the 
onsidered open system

d

dt
A(u(t)) − Λ(t) ℓ̇(t) ≤ 0 , (2.7)where the total free energy of the system A(u) is given by

A(u) =

∫

Ω

(ν2u(x) log u(x) + ψ(x)u(x)) dx . (2.8)The newly introdu
ed free energy of a single storage parti
le is related to the 
hemi
alpotential by µ ≡ ψ′.From now on we set the 
onstants τ and ν equal to 1. We 
an do so without loss ofgenerality, sin
e dividing (1.3) by ν2 yields the equivalent PDE
τ

ν2
ut(x, t) =

(
ux(x, t) +

ψ′

ν2
(x)u(x, t) − L2(u(t)) −

τ

ν2
p(t)

)

x
,

L2(u(t)) =
L(v)

ν2
= (v(1) − v(0)) +

∫

Ω

ψ′(x)

ν2
v(x) dx.This shows, that we 
an eliminate all o

urren
es of τ and ν on the right hand side bytransforming the data to p̃(t) = τp(t)/ν2 and ψ̃′(x) = ψ′(x)/ν2. Another time transfor-mation then easily lets the fa
tor τ/ν2 in front of the time derivative on the left hand sidedisappear.
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2.2 Gradient systems driven by a 
onstraintAs was observed in [JKO98℄, in the un
onstraint 
ase, i.e. without a 
ondition as (2.2),the Fokker-Plan
k equation
ut =

(
ux + ψ′(x)u

)

x
(2.9)
an be written as the gradient system

ut = −K(u)DA(u), where K(u)ψ = −
(
uψx)x. (2.10)Note that K(u) is a selfadjoint, positive semide�nite operator, whi
h 
an be inverted on(the tangent bundle of) fun
tion spa
es satisfying the 
onstraint (2.1) and being positive.Denoting the inverse by G(u) equation (2.9) takes formally the form of a standardgradient system G(u)ut = −DA(u), where G denotes the metri
 tensor.Moreover, (2.9) is also a transport equation (
onservation law) of the form ut =

{
uṽ

}
xwith

ṽ =
(
DA(u)

)
x

=
(
ψ + log u

)
x

= ψ′ + ux/uOne of the main 
onsequen
e of the gradient stru
ture is a natural a priori estimate, 
alledenergy-dissipation estimate in terms of the fun
tional A and the dissipation operator K.For the system (2.9) in the form ut = −K(u)DA(u) it reads
d

dt

(
A(u(t))

)
= −

〈
DA(u), K(u)DA(u)

〉
= −

∫

Ω

(ux + ψ′u)2

u
dx ≤ 0.This shows that A de
reases along traje
tories and that the only equilibria are thosewhere ux + ψ′u ≡ 0.In the present 
ase we have a 
onstraint gradient system, ut =

{
uv

}
x
, but now v is givenby (2.4).Finally, we return to the full problem (2.4) and (2.5), whi
h we identify as a 
onstraintgradient system in the form

ut = −K(u)
(
DA(u)− ΛDC(u)

)
, C(u) = ℓ(t), (2.11)where the operator K is given as in (2.10).Testing with 1 and using the de�nition of K we immediately �nd that ∫

Ω
u dx is 
onstantalong solutions. Moreover, taking the derivative of the 
onstraint we immediately �nd the
orre
t relation for ℓ̇, namely

ℓ̇ = 〈DC(u), ut〉 = 〈x,
(
u
(
(log u+1) + ψ − Λx

)
x

)

x
〉

= −〈1, u
(
ux

u
+ ψ′ − Λ

)
〉 = −

∫

Ω

ux+ψ
′u dx+ Λ

∫

Ω

u dx.Using ∫
Ω
u dx ≡ 1 we �nd the adequate de�nition (2.6) for the Lagrange multiplier Λ.Finally, we may take the derivative of A(u(t)) to obtain the following 
ru
ial energy-dissipation estimate in terms of the data ℓ.
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Lemma 2.1. Every su�
iently smooth solution u of (1.1) satis�es
d

dt
A(u(t)) = −D(u, ℓ̇) where

D(u, ℓ̇) =

∫

Ω

(ux+ψ
′u)2

u
dx−

(∫

Ω

ux+ψ
′u dx

)2

− ℓ̇

∫

Ω

ux+ψ
′u dx.

(2.12 )Proof. Taking the derivative of A along a solution we �nd
d

dt
A(u(t)) = 〈DA(u), ut〉 = 〈

(
(log u+1) + ψ,

(
u
(
(log u+1) + ψ − Λx

)
x

)

x
〉

= −
∫

Ω

(ux + ψ′u)2

u
dx+ Λ

∫

Ω

ux + ψ′u dx.Inserting formula (2.6) for Λ the assertion is established.A 
ru
ial step in our global existen
e result will be a suitable lower estimate for thedissipation fun
tional D, whi
h is not automati
ally nonnegative for ℓ̇ 6= 0, be
ause of thework done by the 
hanging 
onstraint C(u(t)) = ℓ(t).3 Lo
al existen
e of 
lassi
al solutionsIn this se
tion we will inspe
t the solvability of the PDE (1.3). In this PDE the 
onstraint
C(u(t)) = ℓ(t) is resolved and as a 
onsequen
e the PDE is in�uen
ed only by the derivative
p := ℓ̇. Also the datum fun
tion ψ whi
h 
omes from the energy A, see (2.6), hasonly in�uen
e through its derivative µ := ψ′. Thus the results in this se
tion are statedindependently, only for Problem (1.3) with given data p and µ. The relation of solutionsto ℓ and A are used in the later se
tions where we return to the investigation of theequivalent Problem (1.1).In the sequel, Lq(Ω) denotes the usual 
omplex Lebesgue spa
e, with norm ‖ · ‖Lq . For afun
tion u(x, t) depending on two variables, we write u(t) for the fun
tion {x 7→ u(x, t)}.This makes notation shorter, su
h that ‖u(t)‖Lq is shorthand for ‖u(·, t)‖Lq .3.1 The semilinear equation: lo
al existen
e and uniquenessOur approa
h towards lo
al existen
e of solutions basi
ally follows a standard pro
edurefor semilinear paraboli
 PDE's. We 
arry out the proofs, in order to in
orporate two aims.We want that only some spatial Lq(Ω) norm of a solution with any q > 1 needs to be
ontrolled near t = T in order to extend the solution beyond time T . Furthermore wewant our theory to hold for 
hoi
es of µ whi
h are only in some Lq(Ω) but not ne
essarilybounded, as the 
hoi
e of µ in the model in [DGH06℄ has logarithmi
 singularities at theboundary.
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We are looking for a solution of (1.3). By a solution we mean a fun
tion
u ∈ C1

(
]0, T0[ , L

q(Ω)
)
∩ C

(
]0, T0[ ,W

1,q(Ω)
)
∩ C

(
[0, T0[ , L

q(Ω)
) su
h that for all ϕ ∈

C∞(Ω̄) and t ∈ ]0, T0[ there holds
∫

Ω

ut(x, t)ϕ(x) dx = −
∫

Ω

(
ux(x, t) + u(x, t)

[
µ(x) − L(u(t)) − p(t)

])
ϕx(x) dx. (3.1)Theorem 3.1. Suppose that p ∈ Cδ

loc([0,∞[), µ ∈ Lq(Ω), and that u0 ∈ Lq(Ω) forsome q > 1 and δ > 1/2. Then there exists a maximal time T0 ∈ ]0,∞] and a uniquelydetermined solution of (1.3) (in the sense of (3.1)). Moreover we have the followingalternative:Either T0 = ∞, or ‖u(t)‖Lq → ∞ as tր T0 for some q > 1. (3.2 )Proof. Existen
e and Uniqueness. We de�ne L as in (1.4), M :=
∫ 1

0
u0(x) dx, and

w0(x) :=
∫ x

0
u0(z) dz −Mx. First we prove the existen
e of a solution to the problem

wt(x, t) − wxx(x, t) =
[
µ(x) − p(t) − L (wx(t) +M)

]
(wx(x, t) +M),

w(0, t) = w(1, t) = 0,

w(x, 0) = w0(x).

(3.3)The fa
t, that then the fun
tion u := wx +M is a solution to the original problem (1.3)follows as a regularity result. For T ≤ 1, q > 1 and β ∈ ]1 + 1/q, 2[ we 
onsider the spa
e
X := C([0, T ],W1,q

0 (Ω)) ∩ Cγ(]0, T ] ,Wβ,q
0 (Ω)),

‖v‖X := sup
t∈[0,T ]

‖v(t)‖W1,q
0

+ sup
t∈]0,T ]

tγ‖v(t)‖Wβ,q
0

,where γ is spe
i�ed below. The 
hoi
e of β gives the 
ompa
t inje
tion Wβ,q
0 (Ω) →֒ C1(Ω̄).Thus a 
onstant cL depending on ‖µ‖Lq exists su
h that for all v ∈ W1,q

0 (Ω) there holds
|L(vx)| ≤ cL‖v‖Wβ,1

0

and |L(vx +M)| ≤ cL(‖v‖Wβ,1
0

+M) .Let A denote the Diri
hlet Lapla
ian on Ω. For a suitable γ ∈ ]0, 1/2[ and R̃ > 0 we nowshow that F , de�ned as,
Fv(t) := e−tAw0 +

∫ t

0

e−(t−s)AN(v(s)) ds, v ∈ S, t ∈ [0, T ],

Nv(x, t) := −
(

L(vx(t) +M) − µ(x) + p(t)

)
· (vx(x, t) +M),is a 
ontra
tive selfmapping on the 
losed set

S :=
{
v ∈ X : v(0) = w0 and ‖x‖X ≤ R̃+ 2‖w0‖W1,q

0

:= R
}
,and thus has a unique �xed point. A �xed point ṽ of F would be a mild solution to theabove PDE. In the sequel we dedu
e restri
tions for the 
hoi
e of γ, depending on q and

β.
8



First we show that for T small enough, F is a selfmapping on S. We de�ne RM := R+Mand examine
‖F (v)(t)‖W1,q

0

≤ ‖w0‖W1,q
0

+

∫ t

0

(t− s)−
1

2‖
(
µ(x) − p(s)

)(
vx(s) +M

)
‖Lq ds

+

∫ t

0

(t− s)−
1

2‖L
(
vx(s) +M

)(
vx(s) +M

)
‖Lq ds,

≤ ‖w0‖W1,q
0

+

∫ t

0

(t− s)−
1

2‖
(
µ(x) − p(s)

)
‖Lq(‖v(s)‖Wβ,q

0

+M) ds

+

∫ t

0

(t− s)−
1

2 |L
(
vx(s) +M

)
| (‖v(s)‖W1,q

0

+M) ds,

≤ ‖w0‖W1,q
0

+

∫ t

0

(t− s)−
1

2 s−γ
[(
‖µ(x)‖Lq + ‖p‖L∞

)
RM + cLR

2
M

]
ds,

≤ ‖w0‖W1,q
0

+ t
1

2
−γc0

∫ 1

0

(1 − σ)−
1

2σ−γ dσ.Note that the integral exists by the 
hoi
e of γ and the 
onstant c0 depends on upperbounds for M , R̃, ‖p‖L∞ , ‖µ‖Lq and ‖w0‖W1,q . Thus diminishing T if ne
essary, we have
sup
t∈[0,T ]

‖F (v)(t)‖W1,q
0

≤ R

2
.As a se
ond step we estimate

‖F (v)(t)‖Wβ,q
0

≤ t−
β−1

2 ‖w0‖W1,q
0

+

∫ t

0

(t− s)−
β
2 ‖

(
µ(x) − p(s)

)(
vx(s) +M

)
‖Lq ds

+

∫ t

0

(t− s)−
β
2 ‖L

(
vx(s) +M

)(
vx(s) +M

)
‖Lq ds,

≤ t−
β−1

2 ‖w0‖W1,q
0

+

∫ t

0

(t− s)−
β
2 s−γ

[(
‖µ(x)‖Lq + ‖p‖L∞

)
RM + cLR

2
M

]
ds,

≤ t−
β−1

2 ‖w0‖W1,q
0

+ t1−γ−
β
2 c0

∫ 1

0

(1 − σ)−
β
2 σ−γ dσ.Again the integral over σ exists by the 
hoi
e of γ and β. Thus requiring β < 1 + 2γ, weget for su�
iently small T

sup
t∈]0,T ]

tγ‖F (v)(t)‖Wβ,q
0

≤ R

2
.whi
h gives that F is a selfmapping on S.
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Next we 
he
k, that F is a 
ontra
tion on S. For v1, v2 ∈ S we 
an estimate
‖F (v1)(t) − F (v2)(t)‖W1,q

0

≤
∫ t

0

(t− s)−
1

2‖
(
µ(x) − p(s)

)(
v1x(s) − v2x(s)

)
‖Lq ds

+

∫ t

0

(t− s)−
1

2‖L
(
v1x(s) − v2x(s)

)(
v1x(s) +M

)

− L
(
v2x(s) +M

)(
v2x(s) − v1x(s)

)
‖Lq ds,

≤
∫ t

0

(t− s)−
1

2

(
‖µ(x)‖Lq + ‖p‖L∞

)
‖v1(s) − v2(s)‖Wβ,q

0

ds

+ cL

∫ t

0

(t− s)−
1

2‖v1(s) − v2(s)‖Wβ,q
0

RM ds

+ cL

∫ t

0

(t− s)−
1

2RMs
−γ‖v1(s) − v2(s)‖W1,q

0

ds,

≤ t
1

2
−γc1

∫ 1

0

(1 − σ)−
1

2σ−γ dσ‖v1(s) − v2(s)‖X .As before the 
onstant c1 depends on bounds for the given date. For small T this gives
sup
t∈[0,T ]

‖F (v1)(t) − F (v2)(t)‖W1,q
0

≤ 1

4
‖v1(s) − v2(s)‖X .In a similar way we estimate

‖F (v1)(t) − F (v2)(t)‖Wβ,q
0

≤
∫ t

0

(t− s)−
β
2 ‖

(
µ(x) − p(s)

)(
v1x(s) − v2x(s)

)
‖Lq ds

+

∫ t

0

(t− s)−
β
2 ‖L

(
v1x(s) − v2x(s)

)(
v1x(s) +M

)

− L
(
v2x(s) +M

)(
v2x(s) − v1x(s)

)
‖Lq ds,

≤ t1−γ−
β
2 c2

∫ 1

0

(1 − σ)−
β
2 σ−γ dσ‖v1(s) − v2(s)‖X .The 
onstant again depends on bounds for the given date. For small T this gives

sup
t∈]0,T ]

tγ‖F (v1)(t) − F (v2)(t)‖Wβ,q
0

≤ 1

4
‖v1(s) − v2(s)‖X .Thus F is a 1/2 
ontra
tion on S provided, that T is su�
iently small. Hen
e it has aunique �xed point.Let us dis
uss the interrelation of the o

urring parameters. Remember that by assumptionthere holds q > 1. Then all our requirements for β, γ and q whi
h we needed, namely

1 +
1

q
< β < 2, β < 1 + 2γ and 0 < γ <

1

2
.are satis�ed by 
hoosing γ 
lose to 1/2.
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The length of the existen
e time T depends on bounds for ‖µ‖Lq , M , ‖p‖L∞ , the 
hoi
eof R̃ and the W1,q
0 (Ω) norm of the initial value w0. Thus by su

essively repeating theabove reasoning we get an alternative provided that we have a uniform bound on |p(t)|.The maximal existen
e time T0 is then either ∞ or if T0 < ∞ then there must hold forevery q > 1, that ‖w(t)‖W1,q

0

→ ∞ as t→ T0.Regularity. By 
onstru
tion of the spa
e X we know for every ε > 0, that ‖w(t)‖Wβ,q
0

≤
cε, for all t > ε Inserting this in the right hand side of the above PDE gives a linearparaboli
 equation with in Lq(Ω) bounded right hand side N(w(t)) on the time interval
[ε, T ]. A

ording to known regularity theory for paraboli
 PDE's, see [Lun95, Prop.4.2.1℄,this results in the solution being even Hölder 
ontinuous in time. We have for all η ∈ [0, 1[that the solution w to the above PDE is of quality

w ∈ C1− η
2

(
[ε, T ],Wη,q

0 (Ω)
)
.Now we use the assumption that p is Hölder 
ontinuous with the Hölder exponent δ > 0.The right hand side N(w(t)) is then Hölder 
ontinuous in time on any interval [ε, T ]. Thusagain using known regularity theory, see [Lun95, Prop.4.3.4℄, we have that w is a 
lassi
alsolution to (3.3). Using this we 
an iteratively improve the Hölder 
ontinuity of w to getby the assumption δ > 1/2, that there exists a small δ̃ > 0 su
h that

w ∈ C1+δ
(
[ε, T ], Lq(Ω)

)
∩ Cδ

(
[ε, T ],W2,q

0 (Ω)
)
⊂ C1+δ̃

(
[ε, T ],W1,q

0 (Ω)
)
.Finally we have that the time derivative w′ is spatially weakly di�erentiable for positivetimes t and vanishes at the boundary. Thus we see that u := wx −M is a solution to(1.3) in the sense of (3.1), sin
e for any ϕ ∈ C∞(Ω̄) we have

∫

Ω

ut(x, t)ϕ(x) dx = −
∫

Ω

wt(x, t)ϕx(x) dx,

= −
∫

Ω

(
wxx(x, t) + (wx(x, t) +M)

[
µ(x) − L(wx(t) +M) − p(t)

])
ϕx(x) dx,

= −
∫

Ω

(
ux(x, t) + u

[
µ(x) − L(u) − p(t)

])
ϕx(x) dx.Remark 3.2. Better regularity of the data µ results in better spatial regularity of thesolution.Lemma 3.3. Let the Assumptions of Theorem 3.1 with q = 2 hold. If the initial value

u0 ∈ L2(Ω) is nonnegative, then the solution u to (1.3) is also nonnegative on Ω× [0, T ].Proof. We �rst show the nonnegativity if µ is a bounded fun
tion: sin
e q = 2 we 
anapply the negative part u−(t) as a test fun
tion in (3.1) to get
1

2

ddt‖u−(t)‖2
L2 ≤ −‖u−x (t)‖2

L2 +

∫

Ω

u−x (x, t)u−(x, t)
(
µ− L

(
u(t)

)
− p(t)

)
dx,

≤ 1

4
(‖µ‖L∞ +RM t

−γ + ‖p‖L∞)2‖u−(t)‖2
L2 .
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Using Gronwall's lemma and ‖u−0 ‖L2 = 0, we dedu
e ‖u−(t)‖L2 = 0 for all t ∈ [0, T ]. If µis unbounded, we de�ne for any k > 0 the 
ut-o� fun
tion µk := min(k,max(−k, µ)). By
uk we 
all the solution of (3.1), if µ is there repla
ed by µk. We 
onsider the fun
tions
wk(x, t) :=

∫ x

0
uk(y, t) dy −Mx, being the solution to (3.3) when there µ is repla
ed by

µk. Sin
e ‖µk‖L2 ≤ ‖µ‖L2 one 
an �nd a 
ommon T > 0 su
h that ea
h of the mappings
Fkv(t) := e−tAw0 +

∫ t

0

e−(t−s)A [µk − L(vx(s) +M) − p(s)] (vx(s) +M) ds, for v ∈ S.(3.4)is a 
ontra
tion on X with 
ontra
tion 
onstant 1
2
. Let wk denote the 
orresponding �xedpoint for Fk and w the �xed point for the mapping F from above. One easily 
al
ulates

‖w−wk‖X ≤ ‖Fw−Fkwk‖X ≤ ‖Fkw−Fkwk‖X+‖Fw−Fkw‖X ≤ 1

2
‖w−wk‖X+‖Fw−Fkw‖X,what leads to ‖w−wk‖X ≤ 2‖Fw− Fkw‖X . Let us show that ‖Fw− Fkw‖X approa
hes

0; one has
‖Fw(t) − Fkw(t)‖H1 ≤ ‖

∫ t

0

e−(t−s)A(w(s)x +M)
(
µ− µk

)
ds‖H1 ,

≤ ‖µ− µk‖L2t
1

2
−γ

∫ 1

0

(1 − σ)−
1

2σ−γRM dσ.Sin
e µk → µ in L2(Ω), we get, uniformly in t, ‖Fw(t) − Fkw(t)‖H1 → 0. Similarly weget tγ‖Fw(t) − Fkw(t)‖Hβ → 0 uniformly for all t ∈ [0, T ]. This gives for all t ∈ [0, T ]that wk(t) → w(t) in H1(Ω), and thus uk(t) → u(t) in L2(Ω). Hen
e, u(t) must alsobe a nonnegative fun
tion be
ause ea
h uk(t) � 
orresponding to the bounded 
oe�
ientfun
tion µk� is.In the model derived in [DGH06℄, µ is not only in L2(Ω), but inside of Ω it is a smoothfun
tion. This helps us to dedu
e stri
t positivity of the solution for positive times.Lemma 3.4. Let the Assumptions of Theorem 3.1 hold. Furthermore assume that forall ε > 0 we have µ ∈ C1([ε, 1− ε]) and 0 6= u0 ∈ L2(Ω) is nonnegative. Then the solutionis stri
tly positive inside Ω for all positive times.Proof. Let u be the solution to problem (1.3). We de�ne Ωε := ]ε, 1 − ε[ and
ψ(x, t) := µ(x) − L(u(t)) − p(t).Consider the fun
tion wε(x, t) := u(x, t)est with sε := − supx∈Ωε

|µx(x)| ≥ 0. This fun
tionthen solves inside Ωε × ]ε, T ]

wεt(x, t) − wεxx(x, t) − wεx(x, t)ψ(x, t) = u(x, t)est(x, t)(µx(x) + sε). (3.5)
12



The 
oe�
ients and initial as well as boundary values are spatially 
ontinuous and in timeeven Hölder 
ontinuous. This allows us to apply 
lassi
al paraboli
 theory. We know fromTheorem 3.1 that the initial and boundary values to this PDE are nonnegative. Due to
onservation of mass, the initial fun
tion wε0(x) := u(x, ε)eεs is positive inside Ωε for εsmall enough. Even the right hand side of the PDE (3.5) is nonnegative. Hen
e using
lassi
al maximum prin
iples, see for example [Eva98, Chapter 7.1 Theorem 9℄, we get
w > 0 in Ωε × ]ε, T ] and thus u is also stri
tly positive. This means by the arbitrarinessof ε, that u is positive everywhere inside Ω for all positive times t.Lemma 3.5. Assume that the solution u exists on a time interval [t0, T∗[ and µ ∈
L∞(Ω). Let c0 denote the 
onstant max

(
‖µ‖L∞, ‖p‖L∞([t0,T∗[

), and let us put a :=
36c2

0

5
,

b := 44
(
π+1
π

)2.i) Then the L2-norm of u admits the following estimate:
‖u(t)‖2

L2 ≤ 1√
e2a(t0−t)[ 1

‖u(t0)‖4

L2

+ b
a
] − b

a

, (3.6 )as long as the expression under the square root is positive.ii) Consequently, the L2 norm does not explode on any interval [t0, T ] as long as
T < t0 +

1

2a
log

(a
b

1

‖u(t0)‖4
L2

+ 1
)
.Proof. We test the equation (1.3) with u and obtain for every t ∈ ]t0, T∗[

1

2
‖u(t)‖2

L2 +

∫ t

t0

∫ 1

0

|ux(x, s)|2 dx ds ≤ (3.7)
≤ 1

2
‖u(t0)‖2

L2 +

∫ t

t0

‖µ‖L∞

∫ 1

0

|u(x, s)||ux(x, s)| dx ds+

+

∫ t

t0

|p(s) +

∫ 1

0

µ(x)u(x, s) dx+ u(0, s) − u(1, s)|
∫ 1

0

|u(x, s)| |ux(x, s)| dx ds.Exploiting ∫
Ω
u dx = 1 and thus | ∫

Ω
µu dx| ≤ c0, we obtain

|p(s) +

∫ 1

0

µ(x)u(x, s) dx| ≤ 2c0,while (A.4) from Lemma A.1 gives
|u(0, s)− u(1, s)| ≤ 2

√
2

√
π + 1

π
‖u(s)‖1/2

L2 ‖ux(s)‖1/2
L2 .
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Additionally estimating ∫ 1

0
|u(x, s)| |ux(x, s)| dx on the right hand side of (3.7) by

‖u(s)‖L2‖ux(s)‖L2 , we derive from (3.7) the inequality
1

2
‖u(t)‖2

L2 ≤ 1

2
‖u(t0)‖2

L2 −
∫ t

t0

‖ux(s)‖2
L2 ds + 3c0

∫ t

t0

‖u(s)‖L2‖ux(s)‖L2 ds+

+

∫ t

t0

2
√

2

√
π + 1

π
‖u(s)‖3/2

L2

∥∥∥ux(s)
∥∥∥

3/2

L2

ds. (3.8)(3.8), equivalently written, reads as,
‖u(t)‖2

L2 ≤ −
∫ t

t0

2‖ux(s)‖2
L2 ds+ ‖u(t0)‖2

L2+ (3.9)
∫ t

t0

6c0‖u(s)‖L2‖ux(s)‖L2 + 4
√

2

√
π + 1

π
‖u(s)‖3/2

L2 ‖ux(s)‖3/2
L2 ds.We estimate by Young's inequality

6c0‖u(s)‖L2‖ux(s)‖L2 ≤ 36c20
5

‖u(s)‖2
L2 +

5

4
‖ux(s)‖2

L2 (3.10)and
4
√

2

√
π + 1

π
‖u(s)‖3/2

L2 ‖ux(s)‖3/2

L2 ≤ 44
(π + 1

π

)2

‖u(s)‖6
L2 +

3

4
‖ux(s)‖2

L2. (3.11)Applying this to (3.9), we get
‖u(t)‖2

L2 ≤ ‖u(t0)‖2
L2 +

∫ t

t0

36c20
5

‖u(s)‖2
L2 + 44

(π + 1

π

)2

‖u(s)‖6
L2 ds. (3.12)Putting g : [0,∞[ ∋ s 7→ as + bs3 = s(a + bs2) and y(s) := ‖u(s)‖2

L2, (3.12) 
an be readas the following integral inequality for y:
y(t) ≤ y(t0) +

∫ t

t0

g(y(s)) ds, t ∈]t0, T∗[.By straight forward 
omputation one identi�es the primitive of 1
g
by

G : r 7→ 1

a
log

r√
1 + b

a
r2

+ κ, (3.13)for arbitrary 
hoi
e of κ. Thus the inverse fun
tion G−1 is
G−1 : t 7→ 1√

e−2a(t−κ) − b
a

.A

ording to the Bihari-Lemma ([Bih56℄, see also [BeB61, Ch. 4.5℄) we get
y(t) ≤ G−1(G(y(t0)) + t− t0) =

1√
e2a(t0−t)[ 1

y(t0)2
+ b

a
] − b

a

, (3.14)as long as the expression under the square root is positive.ii) follows straightforward from i).
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3.2 Blow-up resultsThe identity (4.2b) for the time evolution of the �rst moments of solutions easily leadsto the following blow-up 
riterion.Lemma 3.6. Suppose that there exists T > 0 su
h that either
∫ T

0

p(t) dt < −
∫

Ω

xu0(x) dx (3.15 )or ∫ T

0

p(t) dt > 1 −
∫

Ω

xu0(x) dx. (3.16 )Then the solution u of (1.3) blows up before or at time T .Proof. Assuming that the maximal existen
e time T0 of u ex
eeds T , we re
all (4.2b) tosee that ∫ T

0

p(t) dt =

∫

Ω

xu(x, T ) dx−
∫

Ω

xu0(x) dx.This is 
ompatible neither with (3.15) nor with (3.16), be
ause the properties u ≥ 0and ∫
Ω
u dx ≡ 1 entail that

0 <

∫

Ω

xu(x, t) dx < 1 for all t ∈ ]0, T0[ . (3.17)Thus, u must 
ease to exist before time T .As a parti
ular 
onsequen
e, we see that if p is su�
iently large then all solutions blow-up.Corollary 3.7. Suppose that there exists T > 0 su
h that
∣∣∣
∫ T

0

p(t) dt
∣∣∣ ≥ 1. (3.18 )Then for all nonnegative u0 ful�lling ∫

Ω
u0 dx = 1, the solution of (1.3) blows up in�nite time.Proof. In view of (3.17), the assumption (3.18) shows that any su
h u0 satis�es either(3.15) or (3.16), so that the solution emanating from u0 will blow-up before time T .Se
ondly, if merely p 6≡ 0 then at least some initial data lead to non-global solutions.Corollary 3.8. Suppose that p 6≡ 0. Then there exists a nonnegative u0 ∈ C∞

0 (Ω) with∫
Ω
u0 dx = 1 su
h that the 
orresponding solution u of (1.3) blows up in �nite time.
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Proof. Let P (t) :=
∫ t

0
p(s) ds for t ≥ 0. Sin
e P ′ = p on ]0,∞[, our assumption p 6≡ 0ensures that for some T > 0 we have P (T ) 6= 0, whi
h enables us to 
hoose some ε ∈ ]

0, 1
2

[su
h that ε < |P (T )|. We now �x any nonnegative ζ ∈ C∞
0 (R) su
h that supp ζ ⊂ ]1, 2[and ∫ 2

1
ζ(ξ) dξ = 1.Assuming �rst that P (T ) < 0, we then let

u0(x) :=
1

ε
· ζ

(x
ε

)
, x ∈ [0, 1].Then u0 belongs to C∞(Ω̄) and has its support 
ontained in ]ε, 2ε[ ⊂ Ω, and we easily
ompute ∫

Ω
u0 dx = 1. Moreover, its �rst moment satis�es
∫

Ω

xu0(x) dx =

∫ 2ε

ε

xu0(x) dx ≤ ε ·
∫

Ω

u0(x) dx = ε < −P (T ),whi
h entails that (3.15) is ful�lled, so that Lemma 3.6 asserts �nite-time blow-up ofthe 
orresponding solution.In the 
ase P (T ) > 0 we pro
eed similarly by de�ning
u0(x) :=

1

ε
· ζ

(1 − x

ε

)
, x ∈ [0, 1],and showing that then (3.16) holds.4 Global existen
e for general ℓWe now return to the situation where ℓ is a given datum su
h that ℓ(t) ∈ ]0, 1[ for alltime. For the lo
al existen
e results in the previous se
tion we only used p(t) = ℓ̇(t) andhen
e the additional 
onstraint ℓ(t) > 0 and ℓ(t) < 1 where only impli
it.We �rst make sure that the lo
al solutions 
onstru
ted above satis�es the 
onstraint asexpe
ted and therefore turn out to be solutions to (1.1). For this we re
all the generalassumption

ℓ ∈ C1([0,∞[) and 0 < ℓ(t) < 1 for all t ≥ 0. (4.1)The expe
ted result is the following.Lemma 4.1. Let (4.1) and (1.2) hold. Suppose that u is a 
lassi
al solution of (1.3)in Ω × ]0, T [ for some T ∈ ]0,∞] satisfying ∫
Ω
u(x, 0) dx = 1 and C(u(0)) = ℓ(0). Then

∫

Ω

u(x, t) dx = 1 for all t ∈ ]0, T [ (4.2a)and
C(u(t)) =

∫

Ω

xu(x, t) dx = ℓ(t) for all t ∈ ]0, T [ . (4.2b)Proof. The �rst identity easily results by using ϕ ≡ 1 as a test fun
tion for (1.3), whereas(4.2b) follows upon 
hoosing ϕ(x, t) := x and using ∫
Ω
xu(x, 0) dx = ℓ(0).
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Remark 4.2. As a simple 
onsequen
e of Lemma 4.1 together with Lemma 3.6 we geta su�
ient explosion 
ondition. For ℓ ∈ W1,∞(]0,∞[), with ℓ(0) ∈ ]0, 1[, let t∗ be the�rst time su
h that ℓ(t∗) = 1 or ℓ(t∗) = 0. Then t∗ must be an explosion time for thesolution to (1.1), if the solution does not 
ease to exist before time t∗. The rest of thisse
tion is devoted to the fa
t, that this 
ondition is also ne
essary. Thus if ℓ stays inside of
]0, 1[, then the solution exists globally and does not explode. The solution then even staysbounded in L∞(Ω) on all bounded time intervals.4.1 Dissipation and energy 
ontrolThe next result provides the fundamental estimate for the dissipation fun
tional. We re
allthe energy dissipation fun
tion from Lemma 2.1, namely

d

dt
A(u(t)) = −D(u(t), ℓ̇) with D(u, ℓ̇) =

∫

Ω

W 2

u
dx−

(∫

Ω

W dx
)2

− ℓ̇

∫

Ω

W dx,where W = ux+ψ
′u, as we have set ν = 1. To obtain global existen
e we want to estimate

A from above and hen
e D from below. As su
h our strategy is similar to those in [GlH97℄for more 
ompli
ated ele
tro-rea
tion-di�usion systems. However, in our 
ase the time-dependent 
onstraint C(u(t)) = ℓ(t) 
ompli
ates the matter a lot. In parti
ular, the lowerestimates for D are mu
h more di�
ult.When estimating D from below we 
an of 
ourse take advantage of the 
onstraints (4.2).Nevertheless, the di�
ulty is here that we 
annot 
ontrol ∫
Ω
W dx easily. The �rst twoterms in D form a nonnegative 
ontribution, namely

∫

Ω

W 2

u
dx−

(∫

Ω

W dx
)2

=

∫

Ω

W 2

u
dx−

∫

Ω

√
u
W√
u

dx

≥
∫

Ω

W 2

u
dx−

∫

Ω

u dx

∫

Ω

W 2

u
dx = 0,where we used the Cau
hy-S
hwarz estimate and ∫

Ω
u dx = 1. However, there is no hopeto obtain a better lower estimate that allows to estimate the third term ℓ̇

∫
Ω
W dx. Thereason is that the Cau
hy-S
hwarz estimate is an equality whenever W = βu for some

β ∈ R. Thus, the fun
tions u = uβ : x 7→ c eβx−ψ(x) lead to a vanishing 
ontribution inthe �rst two terms but may generate to an arbitrary large 
ontribution in the third term.However, the additional 
onstraint C(u) = ℓ ∈ ]0, 1[ sele
ts a unique β, see Se
tion 5.1.Hen
e, there one 
an expe
t to �nd a suitable lower bound when using both 
onstraints.The following result shows that these 
onsiderations 
an be made quantitative. We willestimate the deviation of a general u from a suitable 
hosen Uλ.Theorem 4.3. Assume ψ ∈ W1,1([0, 1]). Then, for ea
h δ ∈ ]0, 1/2[ there exists a
onstant Cψ
δ ≥ 0 su
h that for all ℓ ∈ [δ, 1−δ] and all λ ∈ [−1/δ, 1/δ] the followingestimate holds:

D(u, λ) ≥ −Cψ
δ |λ| for all u ∈ H1(Ω) with ∫

Ω

u(x) dx = 1 and C(u) = ℓ. (4.3 )
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Proof. There are two 
ru
ial steps in this proof. First we repla
e u by v =
√
u, whi
htransforms the integral ∫

Ω
W 2/u dx into the quadrati
 form ∫

Ω
(2vx+ψ

′v)2 dx and givesthe new 
onstraints for all t in the existen
e interval
∫

Ω

v(x, t)2 dx = 1 and ∫

Ω

xv(x, t)2 dx = ℓ(t). (4.4)Se
ondly we will de
ompose v into Vα+η, where Vα is a fun
tion satisfying the �rst of theabove 
onstraints and making the �rst two terms of D vanish, i.e. the Cau
hy-S
hwarzestimate is sharp.To be more pre
ise we introdu
e the notations
V(ℓ) = { v ∈ H1(Ω) : v ≥ 0, and (4.4) holds },
D(v, λ) = D(v2, λ) =

∫

Ω

w2 dx−
(∫

vw dx
)2

− λ

∫

Ω

vw dx,

w = 2vx + ψ′v, γ = ‖w‖L2, and ρ =

∫

Ω

vw dx.Using ‖u‖L2 = 1 and the Cau
hy-S
hwarz estimate we have ρ2 ≤ γ2.The 
ase ρ = 0 is trivial, be
ause it gives D(v, λ) ≥ 0. Hen
e, we assume ρ > 0 from nowon. This implies γ > 0, and we �rst de
ompose v in the form
v =

ρ

γ2
w + ξ with ∫

Ω

ξ w dx = 0,whi
h is a simple orthogonal proje
tion. Hen
e, we �nd
1 = ‖v‖2

L2 =
ρ2

γ2
+ ‖ξ‖2

L2 ⇒ ‖ξ‖2
L2 = 1 − ρ2

γ2
.Re
alling the de�nition of w in terms of v leads to 2vx+ψ′v = w = γ2

ρ

(
v−ξ

). Solving thisODE with ‖v‖L2 = 1 gives the formula
v = βVγ2/ρ + Kγ2/ρξ where Kαξ(x) =

∫ 1

0

Kα(x, y)ξ(y) dy.Here Vα(x) = cαe
(αx−ψ(x))/2 with cα > 0 
hosen su
h that ‖Vα‖L2 = 1. The 
onstant β is
hosen su
h that ‖v‖L2 = 1. The kernel Kα is de�ned via
Kα(x, y) =





αVα(x)
2Vα(y)

for α > 0 and 0 < x < y < 1,

−αVα(x)
2Vα(y)

for α < 0 and 0 < y < x < 1,

0 otherwise.Using ψ ∈ W1,1(Ω), whi
h implies ψ ∈ C(Ω̄), the kernel 
an be estimated via
0 ≤ Kα(x, y) ≤

Cψ
K

2
|α|e−|α||x−y|/2 for α 6= 0 and x, y ∈ [0, 1],

18



where Cψ
K depends only on ψ but not on α. Using this we 
an estimate ξ̂ := Kγ2/ρξvia |ξ̂(x)| ≤ Cψ

K
α
2

∫ 1

0
e−|α||x−y|/2|ξ(y)| dy. Then using Young's inequality for 
onvolutions

ξ̂ = φ ∗ ξ in the form ‖ξ̂‖L2(R) = ‖φ‖L1(R)‖ξ‖L2(R), we have the uniform estimate
‖Kα‖Lin(L2(Ω),L2(Ω)) ≤ Cψ

K for all α 6= 0.Now we write the �nal de
omposition in the form
v = Vγ2/ρ + η with η = (β−1)Vγ2/ρ + Kγ2/ρξ.It is now essential to estimate η in terms of ρ/γ. We do this in terms of ξ̂ = Kγ2/ρξ,whi
h satis�es ‖ξ̂‖L2 ≤ Cψ

K(1−ρ2/γ2)1/2. Re
alling ‖Vγ2/ρ‖L2 = ‖v‖L2 = 1, we always have
‖η‖L2 ≤ 2. For the 
ase ‖ξ̂‖L2 ≤ 1 we improve this estimate with the relation

1 ≥ ‖ξ̂‖2
L2 = ‖v − βVγ2/ρ‖2

L2
= 1 − 2β

∫

Ω

vVγ2/ρ dx+ β2.Using ∫
Ω
vVγ2/ρ dx > 0 we 
on
lude β ≥ 0. Hen
e,
|1−β| ≤ |1−β2| =

∣∣‖v‖2
L2

− ‖βVγ2/ρ‖2
L2

∣∣ =
∣∣
∫

Ω

(v−βVγ2/ρ)(v+βVγ2/ρ) dx
∣∣

≤
∣∣
∫

Ω

ξ̂(2v+ξ̂) dx
∣∣ ≤ (2+Cψ

K)‖ξ̂‖L2
.Combing this with the de�nition of η we �nd

‖η‖L2 ≤ |β−1| + ‖ξ̂‖L2 ≤ (3+Cψ
K)Cψ

K

(
1−ρ2/γ2

)1/2 if ‖ξ̂‖L2 ≤ 1. (4.5)Now we are ready to estimate D(v, λ) from below on the admissible set V(ℓ). By ourde�nitions of ρ and γ the fun
tional D takes the form
D(v, λ) = γ2 − ρ2 − λρ,where γ and ρ depend on v ∈ V(ℓ). To estimate D we 
hoose σδ ∈ ]0, 1[ su
h that

(3+Cψ
K)Cψ

K

(
1−σ2

δ

)1/2 ≤ δ/2 < 1/4.and distinguish two 
ases ρ2 ≤ γ2σ2
δ and ρ2/γ2 ∈ [σ2

δ , 1].Case I, |ρ| ≤ γσδ: We easily �nd
D(v, λ) = γ2 − ρ2 − λρ ≥ γ2 − γ2σ2

δ − |λ|γσδ ≥ − λ2σ2
δ

4(1−σ2
δ )

≥ − σ2
δ

4δ(1−σ2
δ )

|λ| ,where δ is from the statement of the theorem su
h that |λ| ≤ 1/δ.
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Case II, ρ2/γ2 ∈ [σ2
δ , 1]: Re
alling ‖ξ̂‖L2 ≤ Cψ

K(1−ρ2/γ2)1/2 we have ‖ξ̂‖L2 ≤ δ/6 ≤ 1 and
an use estimate (4.5) for η, namely ‖η‖L2 ≤ δ/2. Sin
e v = Vγ2/ρ + η lies in V (ℓ) weobtain
∣∣∣ℓ−

∫

Ω

xVρ2/γ(x) dx
∣∣∣ =

∣∣∣
∫

Ω

x
(
v(x)−Vρ2/γ(x)

)
dx

∣∣∣ ≤
∫

Ω

∣∣xη(x)
∣∣ dx ≤ ‖η‖L2 ≤ δ/2.We 
onsider the fun
tion

m(α) :=

∫

Ω

xVα(x)
2 dx.It is easy to see that m : R → ]0, 1[ is di�erentiable, stri
tly in
reasing and satis�es

m(α) → 0 for α → −∞ and m(α) → 1 for α → ∞. Thus, for ea
h δ ∈ ]0, 1/2[ there is a
onstant aδ su
h that m(α) ∈ [δ/2, 1−δ/2] implies α ∈ [−aδ, aδ].Using the assumption ℓ ∈ [δ, 1−δ] we have shown that the de
omposition v = Vρ2/γ + ηimpliesm(γ2/ρ) ∈ [δ/2, 1−δ/2]. Thus, we 
on
lude the estimate aδ ≥ |γ2/ρ| ≥ |γ|, be
ause
0 < |ρ| ≤ γ. Thus, we obtain the lower bound

D(v, λ) = γ2 − ρ2 − λρ ≥ −aδ|λ|.Combining the two 
ases we have established the desired estimate (4.3) with Cψ
δ =

max{aδ, σ2
δ/(4δ(1−σ2

δ ))}.Analysing the dependen
e of σδ and aδ on δ in the above proof, it 
an be shown that Cψ
δ
an be estimated by 1/δ3. However, it is possible that the estimates 
an be improved.The above dissipation estimate is fundamental to 
ontrol the growth of the energy A.Under our main assumption (4.1) for ℓ we �nd for ea
h T > 0 a 
onstant δ > 0 su
hthat ℓ(t) ∈ [δ, 1−δ] and |ℓ̇(t)| ≤ 1/δ for all t ∈ [0, T ]. Hen
e we 
on
lude the main energyestimate

∣∣A(u(t2)) −A(u(t1))
∣∣ ≤ Cδ

∫ t2

t1

|ℓ̇(s)| ds ≤ C2
δ (t2−t1) for 0 ≤ t1 < t2 ≤ T. (4.6)In parti
ular, A(u(t)) 
annot blow-up, if it is bounded initially.For later use in the 
onvergen
e theory in Se
tion 5, we provide an improved energy-dissipation estimate, where the dissipation is not only bounded from below and even
oer
ive but 
an also be bounded from below by an arbitrary positive multiple of theenergy itself. The proof is a slight variant of the one above.Proposition 4.4. Assume ψ ∈ H1(Ω). Then, for ea
h κ > 0 and ea
h δ ∈ ]0, 1/2[ thereexists a 
onstant Kψ

κ,δ su
h that for all ℓ ∈ [δ, 1−δ] and all λ ∈ [−1/δ, 1/δ] the followingestimate holds:
D(u, λ) ≥ κ‖ux‖L2 −Kψ

κ,δ and D(u, λ) ≥ κA(u) −Kψ
κ,δ (4.7 )for all u ∈ H1(Ω) with u ≥ 0, ∫

Ω
u dx = 1, and C(u) = ℓ.
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Proof. We pro
eed exa
tly as in the proof of Theorem 4.3 and use the same notations.Step 1: We �rst estimate
Dκ(v, λ) = D(v, λ) − κ‖vx‖3/2

L2 .Be
ause of γ = ‖2vx+ψ′v‖L2 and ‖v‖L2 = 1 we have ‖vx‖L2 ≤ γ + 1 + 1
2
‖ψ′‖2

L2 and �nd
Dκ(v, λ) ≥ γ2 − ρ2 − λρ− κγ3/2 − Cwhere C depends on ψ and κ. This 
an be estimated from below via the two 
ases asbefore.Case I, |ρ| ≤ γσδ: We obtain

Dκ(v, λ) ≥ (1−σ2
δ )γ

2 − 1
δ
σδγ − κγ3/2 − C,whi
h is 
ertainly bounded from below by a 
onstant depending only on κ and σδ.Case II, ρ2/γ2 ∈ [σ2

δ , 1]: As in the previous proof we �nd |ρ| ≤ γ ≤ aδ, giving
Dκ(v, λ) ≥ γ2 − ρ2 − 1

δ
|ρ| − κγ3/2 − Cis trivially bounded from below.Combining the two 
ases gives Dκ(v, λ) ≥ kψκ,δ as desired.Step 2: We now need to undo the substitution u = v2 in D(u, λ) = D(

√
u, λ). With

ux = 2vvx we �nd
‖ux‖2

L2 = 4‖vvx‖2
L2 = 4‖v‖2

L∞‖vx‖2
L2 ≤ C(1 + ‖vx‖3

L2),where we have used ‖v‖2
L∞ ≤ C‖v‖L2(‖v‖L2+‖vx‖L2) = C(1+‖vx‖L2), see Lemma A.1.Using v =

√
u we dedu
e

D(u, λ) − κ‖ux‖L2 ≥ D(v, λ) − c1κ‖vx‖3/2
L2 − c2 = Dc1κ(v, λ) − c2 ≥ kψc1κ,δ − c2 =: Kψ

κ,δ.Thus, the �rst estimate in (4.7) is established.Step 3: The se
ond estimate in (4.7) is obtained by estimating A(u) from above. Wehave
A(u) =

∫

Ω

u lnu+ψu dx ≤ max{ln u+ψ}
∫

Ω

u dx ≤ ln ‖u‖L∞ + maxψ ≤ C(1+‖ux‖).Inserting this into the �rst estimate of (4.7), the se
ond follows immediately.4.2 Improved a priori estimatesBased on the above energy bounds we derive new a priori estimates in L2(Ω) as well as in
L∞(Ω). To exploit the energy bound we 
an employ a variant of the �L log L� improvedversion of the 
lassi
al Gagliardo-Nirenberg interpolation inequality:

∀ ε > 0 ∃Cε ∀w ∈ H1(Ω) : ‖w‖3
L∞ ≤ ε‖wx‖2

L2‖w ln |w|‖L1 + Cε
(
1+‖w‖3

L1

)
. (4.8)
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The proof will be provided in Lemma A.2. We refer to [GlH97, GlM04℄ for similar uses ofthis inequality in rea
tion-di�usion systems.From this, we are now able to derive an a-priori estimate for the L2-norm, thus showingthat blow-up is impossible under the assumption (4.1) for ℓ.Proposition 4.5. Assume that ψ and ℓ satisfy (1.2) and (4.1), respe
tively. Thenfor all K > 0 and T0 there exists C(K, T0) > 0 su
h that the following holds. If for some
t0 ∈ [0, T0[ the solution u of (1.1) satis�es

A(u(t0)) =

∫

Ω

u(x, t0)
(
ln u(x, t0) + ψ(x)

)
dx ≤ K and ‖u(t0)‖L2 ≤ K, (4.9 )then the following a priori estimate in L2(Ω) holds:

‖u(t)‖L2 ≤ C(K, T0) for all t ∈ ]t0, T0[ . (4.10 )Proof. First we test (1.3) with u to obtain
1

2

d

dt
‖u‖2

L2 + ‖ux‖2
L2 =

(∫

Ω

ux dx+ ℓ̇+

∫

Ω

ψ′u dx
)
·
∫

Ω

uux dx−
∫

Ω

ψ′uux dx (4.11)for all t ∈ ]t0, T [. The integrals ∫
Ω
uk−1ux dx = 1

k
(u(1)k−u(0)k) we estimate by 2

k
‖u‖kL∞,while the last term admits the estimate

−
∫

Ω

ψ′uux dx ≤ 1

4

∫

Ω

u2
x dx+

∫

Ω

ψ′2u2 dx ≤ 1

4
‖ux‖2

L2 + ‖ψ′‖2
L2‖u‖2

L∞. (4.12)With |
∫
Ω
ψ′u dx| ≤ ‖ψ′‖L1‖u‖L∞, estimate (4.11) leads to

1

2

d

dt
‖u‖2

L2 +
3

4
‖ux‖2

L2 ≤ C0

(
1+‖u‖3

L∞

) with C0 = 3+‖ψ′‖L1+‖ψ′‖2
L2+1

δ
, (4.13)where δ > 0 is su
h that |ℓ̇(t)| ≤ 1/δ for t ∈ [0, T0].Next we employ the energy estimate (4.6) and the initial 
ondition (4.9) giving

A(u(t)) =

∫

Ω

u(x, t)
(
lnu(x, t) + ψ(x)

)
dx ≤ C1(KA) = KA := K + T0/δ. (4.14)Together with ∫

Ω
ψu dx ≥

∫
Ω

min(ψ)u dx = minψ and the lower inequality |ξ ln ξ| ≤
2
e

+ ξ ln ξ, valid for all ξ > 0, we �nd
‖u(t) lnu(t)‖L1(Ω) ≤ C2(KA) =

2

e
+ C1(KA) − minψ for all t ∈ ]t0, T0[ .An appli
ation of (4.8) with ε(KA) := 1

4C0C2

shows that
1

2

d

dt
‖u(t)‖2

L2 +
1

2
‖ux(t)‖2

L2 ≤ C3(KA) for all t ∈ ]t0, T0[ . (4.15)
22



Sin
e u(t) has mean value one there exist two positive 
onstants C4 and C5 su
h that
C4‖u(t)‖2

L2 − C5 ≤ ‖ux(t)‖2
L2 . Using this in (4.15) results in the di�erential inequality

d

dt
‖u(t)‖2

L2 ≤ −C4‖u(t)‖2
L2 + C5 + 2C3(KA),whi
h gives for C5(KA) := (C5 + 2C3(KA))/C4,

‖u(t)‖2
L2 ≤ C(K, T0) := max

{
‖u(t0)‖2

L2, C5(KA)
}
. (4.16)Where the dependen
e on T0 in the 
onstant C(K, T0) stems from KA in (4.14).4.3 Global existen
e and boundedness propertiesTo obtain global existen
e for t ∈ [0,∞[ we use a slightly weakened version of our basi
assumption (4.1) on ℓ. We do no longer ask for 
ontinuous di�erentiability of ℓ, but useonly ℓ ∈ W1,∞lo
 ([0,∞[). Additionally, we need to have ℓ(t) ∈ ]0, 1[. Thus, we impose that

ℓ stays away from the boundary whi
h implies that
∀T > 0, ∃ δ ∈ ]0, 1/2[ : ℓ(t) ∈ [δ, 1−δ] and |ℓ̇(t)| ≤ 1/δ for almost all t ∈ [0, T ].(4.17)To obtain boundedness we have to impose this 
ondition uniformly on [0,∞[.Theorem 4.6. Suppose that ℓ ∈ W1,∞lo
 ([0,∞[) satis�es (4.17). Then (1.1) admits aglobal 
lassi
al solution u.Proof. We let T0 ∈ ]0,∞] denote the maximal existen
e time of the lo
al-in-time solution

u of (1.1). Assume T0 < ∞, then on the one hand Theorem 3.1 implies ‖u(t)‖L2 →
∞ as t ր T0 (use (3.2) with q = 2). On the other hand, Proposition 4.5 shows
lim suptրT0

‖u(t)‖L2 < ∞ (see (4.10)): From this 
ontradi
tion we 
on
lude T0 = ∞.To obtain boundedness of the solution on the whole time interval ]0,∞[ we need to showthat A remains bounded. For this we use the uniform version of (4.17) and the improvedenergy dissipation estimate (4.7) provided in Proposition 4.4.Theorem 4.7. Assume that there exists δ ∈ ]0, 1/2[ su
h that ℓ ∈ W1,∞([0,∞[) satis�es
ℓ(t) ∈ [δ, 1−δ] for all t ∈ [0,∞[. Then the global solution u of (1.1) with u0 ∈ L2(Ω),whi
h was obtained in Theorem 4.6, satis�es

u ∈ L∞([0,∞[ , L2(Ω)).Proof. For this we use the dissipation estimate (4.7) and obtain a di�erential inequality.For any positive κ we obtain
d

dt
A(u(t)) ≤ D(u(t), ℓ̇(t)) ≤ −κA(u(t)) +Kψ

κ,δ,
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where, if ne
essary, the 
onstant δ > 0 from the assumption is made smaller to have
|ℓ̇(t)| ≤ 1/δ for a.a. t ≥ 0 as well. From this estimate we easily obtain A(u(t)) ≤ KA :=
max{A(u(0)), Kψ

κ,δ}. We 
an use the estimates provided in the proof of Proposition 4.5.Note that (4.16) implies
‖u(t)‖L2 ≤ max{‖u0‖L2 , C5(KA)},whi
h is independent of t, be
ause here KA is bounded independently of any time interval.Remark 4.8. The reasoning in Theorem 4.7 is still 
orre
t if the 
ondition (4.17)holds only up to a �nite time T∗. Then the assertion in Theorem 4.7 holds up to thistime. Thus the 
ondition that ℓ(t) tou
hes the boundary of ]0, 1[ at time t∗ is not onlysu�
ient, as seen in Remark 4.2, but also ne
essary for t∗ to be an explosion time. Hen
efor ℓ ∈ W1,∞

loc ([0, t∗[) the solution exists on the time interval [0, t∗[ if and only if ℓ(t) ∈ ]0, 1[for all t ∈ [0, t∗[.5 Convergen
e to the steady state if ℓ(t) → ℓ∗ ∈ ]0, 1[In this se
tion we show that the global solutions 
onstru
ted in the previous se
tion
onverge to the unique steady state if the 
onstraint ℓ(t) 
onverges in a suitable way.In Se
tion 5.1 we �rst 
hara
terise the steady states as fun
tions of the 
onstraint ℓ. Inparti
ular, we show that they are the unique minimisers of A subje
t to the 
onstraint
C(u) = ℓ. In Se
tion 5.2 we will then use properties of the dissipation fun
tional D toshow 
onvergen
e of the solutions under the additional assumption that ℓ̇ ∈ L1(]0,∞[).5.1 Chara
terisation of the steady statesThe following lemma des
ribes the stru
ture of the set of equilibria of (1.1) satisfying(4.2a). In fa
t, all these steady states are expli
itly known as setting ut ≡ 0 leads to anODE for u that 
an be solved expli
itly. For β ∈ R we de�ne the fun
tions uβ ∈ L2(Ω)via

uβ(x) =
1

cβ
eβx−ψ(x) with cβ =

∫

Ω

eβx−ψ(x) dx. (5.1)By de�nition we have uβ > 0 and ∫
Ω
uβ dx = 1. It remains to study the �rst moment forwhi
h we set

M(β) =

∫

Ω

xuβ(x) dx.The following result shows that M is stri
tly in
reasing with M(β) → 0 and uβ
∗
⇀ δ0(δ-distribution at x = 0) for β → −∞ and M(β) → 1 and uβ

∗
⇀ δ1 (δ-distribution at

x = 1) for β → ∞.
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Lemma 5.1. The fun
tions uβ satisfy
uβ → 0

{ in Clo
(]0, 1]) as β → −∞,in Clo
([0, 1[) as β → +∞.
(5.2 )Moreover, M is stri
tly in
reasing with

M(β) =

∫

Ω

xuβ(x) dx→
{

0 as β → −∞,

1 as β → +∞.
(5.3 )Consequently, for ea
h ℓ ∈ ]0, 1[ there exists a unique β with ℓ = M(β), whi
h we denoteby β = B(ℓ). Then,

Uℓ := uB(ℓ) (5.4 )is the unique steady state u of (1.1) with ∫
Ω
u dx = 1 and ∫

Ω
xu(x) dx = ℓ.Proof. In order to derive (5.2), let us �x x0 ∈ ]0, 1] and assume that there exist C0 > 0and a sequen
e of numbers βk → −∞ su
h that uβk

(x0) ≥ C0 for all k. Sin
e ψ ∈ H1(Ω)we have C1 > 0 su
h that ‖ψ‖C < C1 and so ‖eψ(·)‖C ≤ C2. Then for β < 0 we 
anestimate uβ on ]0, x0/2[ by
|uβ(x0)|
|uβ(x)|

≤ |eβ(x0−x)| |eψ(x)−ψ(x0)| ≤ |eβ
2
x0 | C2

2 → 0, as β → −∞, for all x ∈
]
0,
x0

2

[
.Thus we 
an �x β0 < 0 su
h that for all x ∈

]
0, x0

2

[ we have uβ(x) ≥ 4
C0x0

uβ(x0) ≥ 4
x0whenever β < β0, whi
h implies that for all su�
iently large k

1 =

∫

Ω

uβk
≥

∫ x0

2

0

uβk
≥ 2 .Whi
h is a 
ontradi
tion to the 
onstru
tion (5.1). This proves the pointwise 
onvergen
eto zero on ]0, 1]. By the same reasoning we 
an �x β1 < 0 for any x0 ∈ ]0, 1[, su
h that forall x ∈

]
1+x0

2
, 1

] we have uβ(x) ≤ C3uβ(x0) whenever β < β1. This implies the uniform
onvergen
e on every subset ]
1+x0

2
, 1

] and thus the �rst 
laim in (5.2), whereas the se
ond
an be seen in a similar way.Along with the property ∫
Ω
uβ dx = 1, this also entails (5.3): Indeed, given ε > 0, by(5.2) we 
an �x β⋆ < 0 su
h that uβ < ε in ]

ε
2
, 1

[ for all β < β⋆, when
e
∫
Ω
xuβ(x) dx ≤ ε

2

∫ ε
2

0
uβ(x) dx+

∫ 1
ε
2

x · ε dx

< ε
2
· 1 + ε · 1

2
for all β < β⋆,and the limit behaviour as β → +∞ 
an be proven similarly. Finally, to see that M isstri
tly in
reasing we use (5.1) to 
ompute

d

dβ

∫

Ω

xuβ(x) dx =

( ∫
Ω
x2eβx−ψ(x) dx

)
·
( ∫

Ω
eβx−ψ(x) dx

)
−

( ∫
Ω
xeβx−ψ(x) dx

)2

( ∫
Ω

eβx−ψ(x) dx
)2
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for β ∈ R. Sin
e ρ1(x) := xe
1

2
(βx−ψ(x)) and ρ2(x) := e

1

2
(βx−ψ(x)), x ∈ Ω̄, are linearlyindependent, the Cau
hy-S
hwarz inequality says that

(∫

Ω

ρ1ρ2 dx
)2

<
(∫

Ω

ρ2
1 dx

)
·
( ∫

Ω

ρ2
2 dx

)and thus ensures that d
dβ

∫
Ω
xuβ(x) dx > 0 for ea
h β ∈ R.The next result 
hara
terises the above equilibria in terms of the energy fun
tional A andthe 
onstraint C.Proposition 5.2. The fun
tional u 7→ A(u) attains its minimum on the set

M(ℓ) := { u ∈ L1(Ω) : u ≥ 0,

∫

Ω

u(x) dx = 1,

∫

Ω

xu(x) dx = ℓ }on exa
tly one point, namely Uℓ de�ned in (5.4).Proof. Note that M(ℓ) is a strongly 
losed and 
onvex subset of L1(Ω). Moreover, thefun
tional A is stri
tly 
onvex. Hen
e, there is at most one minimiser.We dire
tly show that Uℓ is the desired minimiser. The 
onvexity of u 7→ u lnu gives
ũ ln ũ ≥ u lnu+ (lnu+1)(ũ−u) for u > 0 and ũ ≥ 0.Thus, for all ũ ∈ M(ℓ) we obtain

A(ũ) =

∫

Ω

ũ ln ũ+ ψũ dx ≥
∫

Ω

Uℓ lnUℓ + (lnUℓ+1)(ũ−Uℓ) + ψũ dx

(i)
= A(Uℓ) +

∫

Ω

(
B(ℓ)x− ln cB(ℓ)

)
(ũ−Uℓ) dx

(ii)
= A(Uℓ),where in (i) we used a 
an
ellation of all terms involving ψ while in (ii) we use ũ, Uℓ ∈

M(ℓ).The following simple 
onsequen
e will be useful to establish 
onvergen
e to equilibria.Corollary 5.3. Assume that the sequen
e (uk)k∈N satis�es
uk ⇀ u∗ in L2(Ω), C(uk) → ℓ∗ ∈ ]0, 1[ , A(uk) → A(Uℓ∗).Then, u∗ = Uℓ∗ and uk → Uℓ∗ in L2(Ω) strongly.Proof. On the one hand, the strong 
ontinuity and 
onvexity of A imply weak lowersemi
ontinuity of A. Hen
e, we have A(u∗) ≤ A(Uℓ∗).On the other hand C is weakly 
ontinuous, whi
h implies C(u∗) = ℓ∗. Thus, Proposition5.2 implies that u∗ is equal to the unique minimiser Uℓ∗ .Finally the stri
t 
onvexity of A allows us to apply the Visintin's argument [Vis84℄. Theenergy 
onvergen
e A(uk) → A(Uℓ∗) turns the weak 
onvergen
e uk ⇀ Uℓ∗ into the desiredstrong 
onvergen
e.
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5.2 Vanishing dissipation and 
onvergen
eWe now 
onsider the 
ase of global solutions for an ℓ ∈ W1,∞(]0,∞[) satisfying thefollowing 
onditions
ℓ̇ ∈ L1(]0,∞[) ∩ L∞(]0,∞[) and ∃ δ ∈ ]0, 1/2[ ∀ t ≥ 0 : ℓ(t) ∈ [δ, 1−δ]. (5.5)A simple 
onsequen
e of this 
ondition is that the limit

ℓ∗ := lim
t→∞

ℓ(t)exists. Moreover, Theorem 4.7 implies a 
lassi
al solution u ∈ L∞(]0,∞[ , L2(Ω)). Our aimis now to show that u(t) → Uℓ∗ in L2(Ω) for t→ ∞. Our proof has two ingredients, bothof whi
h are related to the energy dissipation relations derived in Se
tion 4.1. In the �rststep we will establish the 
onvergen
e of A(u(t)) → A∗. In the se
ond and �nal step wewill exploit that the integral ∫ ∞

0
D(u(t), ℓ̇(t)) dt is �nite.Lemma 5.4. Assume that ψ ∈ H1(Ω) and that ℓ satis�es (5.5). Then, for everysolution the following limit exists:
A∗ := lim

t→∞
A(u(t)).Proof. We re
all the energy-dissipation (2.12) giving

A(u(t2)) +

∫ t2

t1

D(u(t), ℓ̇(t)) dt = A(u(t1)) for 0 ≤ t1 < t2. (5.6)The dissipation estimate (4.3) givesD(u(t), ℓ̇(t)) ≥ −C|ℓ̇(t)| for a �xed 
onstant C. Thus,the fun
tion τ 7→ a(τ) := A(u(τ)) − C
∫ τ

0
|ℓ̇(t)| dt is nonin
reasing. By the assumption

ℓ̇ ∈ L1(]0,∞[) and the lower bound A(u) ≥ −1/e + minψ we know that a is bounded aswell. Hen
e a(t) → a∗ for t→ ∞. Thus, A(u(t)) → a∗ + C
∫ ∞

0
|ℓ̇(t)| dt =: A∗.We still have to show that A∗ is related to ℓ∗ = limt→∞ ℓ(t). If we 
an show that A∗ =

A(Uℓ∗), then Corollary 5.3 
an be employed easily. To �nd the identity for A∗ it willbe enough to �nd one sequen
e tk → ∞ su
h that D(u(tk), 0) → 0 and to employ thefollowing result.Proposition 5.5. Assume ψ ∈ H1(Ω) and 
onsider a sequen
e (uk)k∈N with uk ∈ M(ℓk)su
h that
uk ⇀ u∗ in L2(Ω), ℓk = C(uk) → ℓ∗ ∈ ]0, 1[ , D(uk, 0) → 0.Then, uk → Uℓ∗ in H1(Ω) and A(uk) → A(Uℓ∗).Proof. By the 
oer
ivity (4.7) of D, we obtain that uk is even bounded in H1(Ω). Thus,the weak 
onvergen
e in L2(Ω) implies uk ⇀ u∗ in H1(Ω). From this we obtain uniform
onvergen
e and 
on
lude A(uk) → A(u∗).
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We already now u∗ ∈ M(ℓ∗), and it remains to identify u∗ as Uℓ∗ . For this we use
D(uk, 0) → 0. We introdu
e a new dependent variable zk via the formula

uk(x) = eρk(x)zk(x)
2 with zk(x) ≥ 0 and ρk(x) = Λkx− ψ(x), (5.7)where Λk := Luk = uk(1) − uk(0) +

∫
Ω
ψ′uk dx. Doing some elementary 
al
ulations we�nd

D(uk, 0) = D̂(zk) := 4

∫

Ω

eρk(x)(z′k(x))
2 dx,

1 =

∫

Ω

uk(x) dx =

∫

Ω

eρk(x)
(
zk(x)

)2
dx, ℓk =

∫

Ω

xuk(x) dx =

∫

Ω

xeρk(x)
(
zk(x)

)2
dx.As uk 
onverges to u∗ we have Λk → Λ∗ = Lu∗ and ρk → ρ∗ : x 7→ Λ∗x− ψ(x).Using D̂(zk) → 0 we 
on
lude zk → z∗ in H1(Ω) strongly, where z′∗ ≡ 0. From (5.7) wenow see that uk → eρ∗z2

∗ , i.e. u∗ = eρ∗z2
∗ . As z∗ is 
onstant, we see that u∗ must be amultiple of uΛ∗

. However, due to Lemma 5.1, there is only one su
h multiple in M(ℓ∗),namely Uℓ∗ . Thus, u∗ = Uℓ∗ is established. Moreover uk → Uℓ∗ in H1(Ω) as zk → z∗ in
H1(Ω).We are now ready to present our �nal 
onvergent result.Theorem 5.6. Assume that ψ ∈ H1(Ω) and that ℓ satis�es (5.5) with ℓ∗ = limt→∞ ℓ(t).Then, for every solution u we have u(t) → Uℓ∗ in L2(Ω) for t→ ∞.Proof. A

ording to Lemma 5.4 we have A(u(t)) → A∗. Hen
e we 
an let t1 = 0 and
t2 → ∞ in the energy-dissipation relation (5.6) to obtain

∫ ∞

0

D(u(t), ℓ̇(t)) dt = A(u(0)) − A∗.As by Theorem 4.3 there holds D(u(t), ℓ̇(t)) ≥ −C|ℓ̇(t)| we 
on
lude that t 7→ D(u(t), ℓ̇(t))lies in L1(]0,∞[). Hen
e we 
an �nd a sequen
e tk → ∞ su
h that D(u(tk), ℓ̇(tk)) → 0,
ℓ̇(tk) → 0. Thus Proposition 4.4 implies that ‖u(tk)‖H1 is uniformly bounded for all k.This implies for a subsequen
e (not relabelled) that u(tk) ⇀ u∗ in H1(Ω) to some u∗.Sin
e this even implies D(u(tk), 0) → 0, Proposition 5.5 is appli
able, and we 
on
lude
u(tk) → Uℓ∗ and A∗ = A(Uℓ∗).Now we 
onsider a general sequen
e τk → ∞. Sin
e u(τk) is bounded in L2(Ω), see Theorem4.7, we may assume u(τk) ⇀ u∗ in L2(Ω) for some u∗ ∈ M(ℓ∗). From u(τk) ∈ M(ℓ(τk))and τk → ∞, we obtain u∗ ∈ M(ℓ∗). Be
ause of A(u(τk)) → A∗ = A(Uℓ∗), Corollary 5.3yields the desired result u(τk) → Uℓ∗ in L2(Ω) strongly. As the possible limit of boundedsequen
es is unique, we have 
onvergen
e of the whole family u(t).We expe
t that the methods in [GlH97, Se
t. 5.3℄ 
an be adapted to our 
ase as well.Thus, if ℓ(t) 
onverges exponentially to ℓ∗, i.e. |ℓ(t)−ℓ∗| ≤ C0e

−ρt, then there shouldexists λ ∈ ]0, ρ] and C > 0 su
h that the following exponential 
onvergen
es hold:
|A(u(t)) −A(Uℓ)| ≤ C e−λt and ‖u(t)−Uℓ∗‖L2 ≤ C e−λt/2.However, this is beyond of the aims of this paper.
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A Appendix: Some embedding and inequalitiesLemma A.1. i) Let α, β be integers satisfying 0 ≤ α < β and let 1 ≤ q, r ≤ ∞,
0 ≤ p < ∞. For the 
ase q or r having the value ∞, we de�ne formally 1

∞
= 0.Then we de�ne θ as

θ :=

1
p
− 1

q
− α

1
r
− 1

q
− β

.If θ ∈ [α
β
, 1] then there exist 
onstants c0, c1 ≥ 0 su
h that for all ϕ ∈ Hβ,r(Ω)∩Lq(Ω)there holds

‖ ∂
α

∂xα
ϕ‖Lp ≤ c0‖

∂β

∂xβ
ϕ‖θLr‖ϕ‖1−θ

Lq + c1‖ϕ‖Lq . (A.1 )ii) For all 0 < q < ∞ and 0 < r ≤ ∞ there exists c > 0 su
h that for all ϕ ∈
H1(Ω) ∩ Lq(Ω) ∩ Lr(Ω) there holds

‖ϕ‖C([0,1]) ≤ (
q

2
+ 1)θ‖ϕx‖θL2‖ϕ‖1−θ

Lq + ‖ϕ‖Lr , (A.2 )and ‖ϕ‖C([0,1]) ≤ (
q

2
+ 1)θ(‖ϕ‖L2 + ‖ϕx‖L2)θ‖ϕ‖1−θ

Lq , with θ =
2

q + 2
.(A.3 )iii) For all ψ ∈ H1(Ω) it holds true

|ψ(1) − ψ(0)| ≤ 2
√

2

√
π + 1

π
‖ψ‖1/2

L2 ‖ψx‖1/2

L2 . (A.4 )Proof. i) This statement is taken from [Zhe04, Theorem 1.3.4℄.ii) We know that H1(Ω) ⊂ C(Ω̄) su
h that we 
an de�ne x∗, x∗ ∈ [0, 1] as
|ψ(x∗)| ≤ |ψ(x)| ≤ |ψ(x∗)| ∀x ∈ [0, 1].Then for all β > 1 there holds

‖ψ‖βL∞ = |ψ(x∗)|β ≤
∣∣∣
∫ x∗

x∗

(
|ψ|β

)
x

dx
∣∣∣ + |ψ(x∗)|β ≤ β

∫ 1

0

|ψ|β−1|ψx| + |ψ(x∗)|β dx

≤ β‖ψ‖β−1
L2β−2‖ψx‖L2 + |ψ(x∗)|β. (A.5 )Applying the bound |ψ(x∗)| ≤ ‖ψ‖Lr and setting β = q

2
+ 1 > 1, this proves (A.2). Onthe other hand keeping the 
hoi
e of β we 
an pro
eed from (A.5) with

‖ψ‖βL∞ ≤ β‖ψ‖β−1
L2β−2‖ψx‖L2 + |ψ(x∗)|β−1|ψ(x∗)| ≤ β‖ψ‖β−1

L2β−2‖ψx‖L2 + ‖ψ(x)‖β−1
L2β−2‖ψ(x)‖L2

≤ β‖ψ‖β−1
L2β−2(‖ψ‖L2 + ‖ψx‖L2).This then proves (A.3).iii) We �rst observe that we have to estimate a linear form on H1(Ω) whi
h vanishes on
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onstant fun
tions. Therefore it su�
es to give an estimate only for those fun
tions whi
hare orthogonal to the 
onstants. (It is 
lear that a fun
tion ψ is orthogonal to the 
onstantsif and only if ∫
Ω
ψ dx = 0.) We estimate by means of (A.3), with q = 2,

|ψ(0) − ψ(1)| ≤ 2‖ψ‖C([0,1]) ≤ 2
√

2‖ψ‖1/2

L2

√
‖ψ‖L2 + ‖ψx‖L2. (A.6 )Using the estimating ‖φ‖L2 ≤ 1

π
‖φx‖L2 whi
h holds for all for all φ ∈ H1(]0, 1[) with∫ 1

0
φ dx = 0, one obtains the assertion.We provide a Gagliardo-Nirenberg type estimate involving norms in L logL(Ω). The proof
onsists of a modi�
ation of [BHN94, p. 1199℄.Lemma A.2. Let G ⊂ R be a bounded interval. There exists C > 0 with the propertythat for all ε > 0 one 
an �nd Cε > 0 su
h that

‖w‖3
L∞ ≤ ε‖wx‖2

L2 · ‖w ln |w|‖L1 + Cε + C‖w‖3
L1 (A.7 )is valid for all w ∈ H1(G).Proof. Following the reasoning in [BHN94℄, we �rst invoke the Gagliardo-Nirenberg in-equality (A.1) to �nd c1 > 0 su
h that

‖z‖3
L∞ ≤ c1‖zx‖2

L2 · ‖z‖L1 + c1‖z‖3
L1 for all z ∈ H1(G). (A.8)We now 
hoose N > 1 large ful�lling 8c1

lnN
≤ ε and introdu
e χ ∈ W1,∞

loc (R) by de�ning
χ(s) := 0 for s ∈ [−N,N ], χ(s) := |s| for |s| ≥ 2N and χ(s) := 2(|s| − N) for N < |s| <
2N . Then given w ∈ H1(G), we evidently have

‖w − χ(w)‖L∞ ≤ 2Nand furthermore
‖χ(w)‖L1 ≤

∫

{|w|>N}

|w| dx ≤ 1

lnN
· ‖w ln |w|‖L1.Sin
e (1 + ξ)3 ≤ 2 · (1 + ξ3) for ξ ≥ 0, (A.8) furthermore yields

‖w‖3
L∞ ≤ 2‖χ(w)‖3

L∞ + 2‖w − χ(w)‖3
L∞

≤ 2c1‖(χ(w))x‖2
L2 · ‖χ(w)‖L1 + 2c1‖χ(w)‖3

L1 + 24N3

≤ 8c1
lnN

· ‖wx‖2
L2 · ‖w ln |w|‖L1 + 2c1‖w‖3

L1 + 34N3,be
ause ‖χ′‖L∞(R) = 2 and |χ(s)| ≤ |s| for all s ∈ R. In view of our de�nition of N , thisproves (A.7) with C := 2c1 and Cε := 24N3.A
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