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Abstract

We consider a Fokker-Planck equation on a compact interval where, as a con-
straint, the first moment is a prescribed function of time. Eliminating the associated
Lagrange multiplier one obtains nonlinear and nonlocal terms. After establishing
suitable local existence results, we use the relative entropy as an energy functional.
However, the time-dependent constraint leads to a source term such that a delicate
analysis is needed to show that the dissipation terms are strong enough to control
the work done by the constraint. We obtain global existence of solutions as long
as the prescribed first moment stays in the interior of an interval. If the prescribed
moment converges to a constant value inside the interior of the interval, then the
solution stabilises to the unique steady state.

1 Introduction

In this paper we discuss a model that was developed for a many-particle system relevant
for lithium-ion batteries, see [DJ*10, DGHO6|. Here the variable x € Q = ]0, 1] relates to
the relative loading state of particles and u(z, t) is the time-dependent probability density,
i.e. fQ u(x,t)dz =1 for all t. The model takes the form

Tu(z,t) = <1/2ux(x,t) + ¢ (x)u(z,t) — A(t)u(x,t)) forz € Q, t >0,

xT

vViug(x, t) + ' (z)u(z,t) — A(t)u(z,t) =0 for x € 0Q, t >0, (1.1)
C(u(t)) == [,z u(z,t)de = ((t) for t >0,
u(z, O) = ug(x) for x € Q.

The potential ¢) can be taken general but has to satisfy certain smoothness, namely it is
a general potential satisfying

Y € HY([0,1)). (1.2)

The Lagrange multiplier A(t) is associated with the constraint C(u(t)) = £(t), where
¢:]0,00[ — 0, 1] is a given datum. In fact, A can easily be determined as

A(t) = /Q Viug(z,t) + ' (x)u(z, t) de + 7E(t).

After inserting A into (1.1) we arrive at a nonlinear Fokker-Planck equation, where the
nonlinearity is quadratic and arises only through the nonlocal term A(t).

In Section 2.1 the origins of this model and its physical relevance are discussed in more
detail. In Section 3 we provide a local existence theory for the above system. After some



preparation we use the semilinear structure of the problem to derive existence on small
time intervals. Positivity and parabolic regularity are obtained. The quadratic nature of
the problem is nontrivial and may lead to blow-up. Note that (1.1) after elimination of
A takes the form

ru(z,t) = (Vzux(x,t) +u(z, t) [¢'(x) ~L(u(t)) — Tp(t)])m forz € Q, t >0,
V2 (z, t) + ulz, t) [w/(z) ~ L(u(t)) - Tp(t)] ) for z € 99, t > 0,
(1.3)
where p(t) plays the role of £(t) and for any v € C(2), L(v) is defined as

L(v) == v* (v(1) — v(0)) + /Qw’(x)v(x) dz. (1.4)

We show that for this system blow-up occurs for suitable choices of p and initial conditions
Ug-

To obtain global existence, one needs to remember p = ¢ and that 0(0) is given by the
initial condition. Hence

E(t):/Qatu(a:,O)dij/otp(t)dt.

Global existence will depend on the additional assumption £(t) € ]0,1[ for all ¢ > 0.
Obviously, there does not exist a smooth probability density on ]0, 1] with £ =0 or 1. To
use this information we introduce the energy functional

Au) = /Quzu(x) Inu(z) + ¢(r)u(x) de,

which is in fact the relative entropy with respect to the equilibrium solution u(z) =
ce™¥@/Y* n Section 2.2, equation (1.1) is formally rewritten as the abstract constraint
gradient flow

Tu = —K(u) (DA(u) — A(t)DC(u)), Clu(t)) = £(t),

where K (u) is the semi-definite, selfadjoint linear operator defined via
K(u)f = _(ugx)x>

which is the inverse of the Wasserstein metric tensor, see [JKO98, Ott01].

The crucial consequence of this structure is the energy-dissipation relation

d . . (V2ux+'l//'l£)2
ZA(u(t)) = =D(ut), £(t)) with D(u, p) = / (Vuat'u)?

i ” dr — L(u)? — pL(u).

While it is easy to show via the Cauchy-Schwarz estimate that the sum of the first two
terms in D is nonnegative, the third term, which arises through the work of the constraint,
may have an arbitrary sign. A major task is to find good lower bounds for D, which will be



done in Section 4.1 in several steps. The main point is that D(u, p) needs to be estimated
from below on the set

M) :=={ue LYQ) : u>0, /Qu(x)dle, /qu(x)dxzﬁ}.

Theorem 4.3 shows that for each § € ]0,1/2[ and ¢» € H'(Q) there is a constant C? such
that ¢ € [0, 1—4] implies

D(u,p) > —C¥|p| for all u € M(¢) and p € -1, 1.

Thus we can conclude that A(u(t)) cannot blow-up along a solution. Employing the L-
log L variant of [BHN94| of the Gagliardo-Nirenberg interpolation for the embedding of
L>(Q) in H'(Q2) (see Lemma A.2) it is then possible to find an apriori estimate for the
L? norm and global existence can be obtained for all £ € W,:2°([0, oo[) with £(t) € ]0, 1]
for all ¢ > 0.

Finally, in Section 5 we show that the solutions converge to a steady state if £(t) — £, €
10, 1[ in such a way that £ € L'(]0, oo[) N L*°(]0, co). For this we exploit that for each ¢,
there is exactly one steady state Uy, that is characterised by the fact that it is the unique
minimiser of A on the set M(£,). As a final result we show that u(t) — Up, in L*(2) for
t — o0.

The theory in Sections 4 and 5 share many similarities with the global existence and
convergence theory for electro-reaction-diffusion systems studied in [GIH97|. This includes
the usage of the L-log L variant [BHNO94| of the Gagliardo-Nirenberg interpolation, the
energy estimate via the energy-dissipation relation, and the introduction of the auxiliary
variable v = (U/Ug)1/2, where Uy is the relevant equilibrium, see the proofs of Theorem 4.3
and Proposition 4.4. Our analysis is simpler in the respect that we only deal with a single
scalar equation, however we treat the case of a driven system, where the time-dependent
constraint leads to several subtle difficulties.

Starting from Section 2.2 we will set the parameters 7 and v equal to 1. We do this without
loss of generality as explained at the end of Section 2.1.

2 Modelling and mathematical structures

2.1 Motivation: Modelling of many-particle storage systems

Here we explain how the above model is capable to describe the behaviour of ensembles of
interconnected storage particles. Modern many-particle electrodes of rechargeable lithium-
ion batteries belong to that class of storage systems. The electrode consists of a powder of
10'° - 10'" nano-particles that serve to reversibly store and release lithium atoms during

the process of charging and discharging respectively. For more details of the functionality
of the battery, see |[DJ*10] and [DGHO06|.



The probability density to find a particle of the ensemble at time ¢ in the loading state x
is represented by the function u : [0, 7] x  — [0, oo[. Thus it satisfies

/u(:v,t) de=1 fordl tel0,7T]. (2.1)

The voltage of the battery linearly depends on the expectation value [, pu(x)u(z,t)dz,
where the chemical potential p(x) is non-monotone. Finally, the capacity of the battery,
i.e. the total loading state of the ensemble, is proportional to 1 — £(t) with

() = Clut)) == /Q vu(z,t)dz | (2.2)

In the charging experiment the function ¢ € C*([0,77) is prescribed for all ¢ € [0, T]. Thus
(2.2) introduces a constraint on the probability density. Due to € =0, 1] we have

0</lt)y<1 fordl te[0,7]. (2.3)

Figure 1 shows the typical behaviour of the battery. The voltage-capacity diagram reveals
two crucial phenomena. We observe hysteretic behaviour and horizontal branches, indi-
cating a phase transition in the many-particle system during charging and discharging
respectively.
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Figure 1: Voltage versus capacity of a battery with FePO, storage particles, see [DJ*10].

The time for full charging is 20 hours and hence very large with respect to the diffusional
relaxation time 7 of a single storage particle, which is about 1 second. Our mathematical
model appropriately describes the charging-discharging process in that special case where
the time to approach equilibrium of a single storage particle is much smaller than the
time for full charging of the ensemble.

The evolution of the probability density u(x,t) is described by the Fokker-Planck equation
Tug = (uT)  with T = —A(t) + p(z) + uz(log(u))x for ze€Q. (2.4)

The equation contains a Lagrange multiplier A, which is associated with the constraint
(2.2) and there appear two constant parameters 7 > 0 and v? > 0.



The evolution starts from smooth and non-negative initial data and we have homogenous
no-flux boundary conditions, namely

u(x,0) = ug(x) with / u(z,t)de =1, T =0 for z€0Q2={0,1}. (2.5)
0

By multiplying the first equation by x and integration over €2, we see that A can be
eliminated via

A(t) = 76(t) + v (u(1)—u(0)) + / p(x)u(x,t)de . (2.6)

Q

It is now easy to see that (2.4) gives exactly (1.1), and with the use of (2.6) we get
(1.3).

We note that the observed hysteretic behaviour from Figure 1 is implied by the model
in the parameter regime 7 < 1, v?> < 1. Details of numerical simulations for various 7,
v? regimes are to be found in |[DGHO6|, that also contains a careful description of the
modelling. Another way of deriving macroscopic hysteresis in a many-particle system is
discussed in [MiT10], where instead of the entropic diffusion term 12

fluctuations are used.

In particular, in [DGHO06]| it is shown that the Fokker-Planck equation (2.4) identically
satisfies the 2™ law of thermodynamics, which reads for the considered open system

Uz, spatial random

%A(u(t)) —A(t) U(t) <0, (2.7)

where the total free energy of the system A(u) is given by

Au) = /Q(l/%(a:) log u(z) + ¢ (x)u(z)) dz . (2.8)

The newly introduced free energy of a single storage particle is related to the chemical
potential by pu =1'.

From now on we set the constants 7 and v equal to 1. We can do so without loss of
generality, since dividing (1.3) by v? yields the equivalent PDE

%ut(az,t) - (um(x, t) + f—;(x)u(x,t) — Lo(u(t)) — %p(t))m ,
Lo(ult) = 25 = (o)~ v(0) + [ o)

This shows, that we can eliminate all occurrences of 7 and v on the right hand side by
transforming the data to p(t) = 7p(t)/v? and ¢/(x) = '(z)/v?. Another time transfor-
mation then easily lets the factor 7/v2 in front of the time derivative on the left hand side
disappear.



2.2 Gradient systems driven by a constraint

As was observed in [JKO98], in the unconstraint case, i.e. without a condition as (2.2),
the Fokker-Planck equation
up = (ux + w/(x)u> (2.9)

can be written as the gradient system
up = —K(u)DA(u), where K(u)i) = —(uhy),. (2.10)

Note that K(u) is a selfadjoint, positive semidefinite operator, which can be inverted on
(the tangent bundle of) function spaces satisfying the constraint (2.1) and being positive.
Denoting the inverse by G(u) equation (2.9) takes formally the form of a standard
gradient system G(u)u; = —D.A(u), where G denotes the metric tensor.

Moreover, (2.9) is also a transport equation (conservation law) of the form u, = {ud}_
with
0= (DA(u)) = (¢ +logu) ="+ ug/u

One of the main consequence of the gradient structure is a natural a priori estimate, called
energy-dissipation estimate in terms of the functional A and the dissipation operator K.
For the system (2.9) in the form u; = —K(u)D.A(u) it reads

%(A(Mﬂ)) = _<DA(U),K(u)DA(u)> _ _/ (ug +¢P'u)?

Q u

dx <O0.

This shows that A decreases along trajectories and that the only equilibria are those
where u, +¢'u = 0.

In the present case we have a constraint gradient system, u; = {uv}x, but now v is given
by (2.4).

Finally, we return to the full problem (2.4) and (2.5), which we identify as a constraint
gradient system in the form

we = — K (u) <DA(u) - ADC(u)), Clu) = €(t), (2.11)

where the operator K is given as in  (2.10).

Testing with 1 and using the definition of K we immediately find that fQ udx is constant
along solutions. Moreover, taking the derivative of the constraint we immediately find the
correct relation for ¢, namely

/= (DC(u),u;) = {x, <u((log u+l) + 1 — Aa:)x> )

——(u(+ - a) =- [ x

um—i-i//udx—i-A/udx.
0

0
Using [, udz =1 we find the adequate definition (2.6) for the Lagrange multiplier A.

Finally, we may take the derivative of A(u(t)) to obtain the following crucial energy-
dissipation estimate in terms of the data £.



Lemma 2.1. Every sufficiently smooth solution u of (1.1) satisfies

d .
E,A(u(t)) = —D(u,l) where

. /N2 . (2.12)
D(u,l) = / de — </ ux+¢’uda:> —E/ U+ udr.
Q u Q Q
Proof. Taking the derivative of A along a solution we find
d
%A(u(t)) = (DA(u),us) = (((log u+1) + 1, <u((log u+1) + 1 — Ax)m)m>
1,,\2
= —/ dejtj\/ux—l—w/udx.
Q U Q
Inserting formula (2.6) for A the assertion is established. O

A crucial step in our global existence result will be a suitable lower estimate for the
dissipation functional D, which is not automatically nonnegative for ¢ = 0, because of the
work done by the changing constraint C(u(t)) = £(t).

3 Local existence of classical solutions

In this section we will inspect the solvability of the PDE  (1.3). In this PDE the constraint
C(u(t)) = £(t) is resolved and as a consequence the PDE is influenced only by the derivative
p = (. Also the datum function ¢ which comes from the energy A, see (2.6), has
only influence through its derivative p := ¢)'. Thus the results in this section are stated
independently, only for Problem (1.3) with given data p and p. The relation of solutions
to ¢ and A are used in the later sections where we return to the investigation of the

equivalent Problem (1.1).

In the sequel, L?(Q2) denotes the usual complex Lebesgue space, with norm || - ||z« . For a
function u(x,t) depending on two variables, we write u(t) for the function {x — u(z,t)}.
This makes notation shorter, such that ||u(t)||z« is shorthand for [Ju(-,t)]| L.

3.1 The semilinear equation: local existence and uniqueness

Our approach towards local existence of solutions basically follows a standard procedure
for semilinear parabolic PDE’s. We carry out the proofs, in order to incorporate two aims.
We want that only some spatial L?(Q2) norm of a solution with any ¢ > 1 needs to be
controlled near ¢t = T in order to extend the solution beyond time 7. Furthermore we
want our theory to hold for choices of 1 which are only in some L9(2) but not necessarily
bounded, as the choice of u in the model in [DGHO06| has logarithmic singularities at the
boundary.



We are looking for a solution of (1.3). By a solution we mean a function
u e CH]0,To[, L)) N C(]0, To[, WH4(Q)) N C([0,Tp[, LI(K2)) such that for all ¢ €

C>(€2) and t € ]0, Tpy[ there holds

/Q sz, t)p(x) dar = — /Q <um(aj,t) +u(z, t) [,u(x) ~ Lu(t)) — p(t)])%(x) de.  (3.1)

Theorem 3.1. Suppose that p € C9 ([0,00]), p € LI(Q), and that uy € LI(Q) for
some q > 1 and 6 > 1/2. Then there exists a mazimal time Ty € ]0,00] and a uniquely
determined solution of (1.3) (in the sense of (3.1)). Moreover we have the following

alternative:

Either Ty = oo, or ||u(t)||pe — 00 ast /Ty for some ¢ > 1. (3.2)

Proof. Existence and Uniqueness. ~ We define L as in  (1.4), M := fol uo(z) dz, and
wo(x) := [ ug(z) dz — Mx. First we prove the existence of a solution to the problem

)
w(0,t) = w(1,t) =0, (3.3)
)

The fact, that then the function u := w, + M is a solution to the original problem (1.3)
follows as a regularity result. For 7' <1, ¢ > 1 and 8 € |1 + 1/q, 2] we consider the space

X = C([0, 7], Wy (€2)) N G, (10, TT, W™ (€2)),

[vllx == sup [[v(®)[lyra + sup t7[Jo(t)]|ys.a,
te[0,T] 0 t€]0,T 0

where v is specified below. The choice of § gives the compact injection W54(Q) < CH(Q).
Thus a constant ¢, depending on ||| e exists such that for all v € W%(Q) there holds

IL(v,)] < c]L||v||W€,1 and IL(v, + M)| < CL(HUHWgJ + M).

Let A denote the Dirichlet Laplacian on Q. For a suitable v € ]0,1/2[ and R > 0 we now
show that F', defined as,

t
Fo(t) == ey, +/ e VAN (v(s)) ds, ves, tel0,T],
0

Vot = = (L) 4 M) = ) 40 ) - (o) + M),
is a contractive selfmapping on the closed set
S = {v € X :0(0) = wp and ||z x < B+ 2|wollyro = R} :

and thus has a unique fixed point. A fixed point v of F' would be a mild solution to the
above PDE. In the sequel we deduce restrictions for the choice of v, depending on ¢ and

3.



First we show that for 7" small enough, F' is a selfmapping on S. We define Ry, := R+ M
and examine

IF@Olge < lolhgge + [ ¢~ 77310 = p(6) (66) + M)l s
[ 0= 9 I (o) + M) () + M) s s
< ulhwge + [ (6= 7720 060) = o) o) + M0
b [ 9 )+ D) (o) g+ M) s,
< ol + [ 0= )57 (o) on + ) Ror + R3] s,
< ol + #4770 [ (1= o)t ao

Note that the integral exists by the choice of v and the constant ¢y depends on upper
bounds for M, R, ||p||ze, ||i|lze and ||wo||wr.e. Thus diminishing 7" if necessary, we have

R
sup [|F(0)(1) e < 5 -
te[0,7

As a second step we estimate

—1

|wwwmwﬂsv%wwmy+AE—Q%me—mm@u$+Mmmm
+ /Ot(t — s)_§||1L(vm(s) + M) (va(s) + M)| e ds,
sv”mmmy+4%—$ffﬁwwwmﬁwmmﬂw+qﬂmda
<5 [l yro + 1 F e /01<1 — o) 20 do.

Again the integral over ¢ exists by the choice of v and 3. Thus requiring § < 1 + 2, we
get for sufficiently small T’

R
sup t7||F(v)(t)||Wg,q < 5
t€]0,T

which gives that F' is a selfmapping on S.



Next we check, that F' is a contraction on S. For vy, v9 € S we can estimate
t
[F(v1)(t) = F(02) (1) [lyypa < / (t —s)72 ]| (u(x) — p(s)) (v1a(s) — v2:(8))] Lo ds
0

+ /0 (t — s)_% L (viz(s) — vou(s)) (via(s) + M)
- L(U2m(s> + M) (U2x(8) - Ulm(8)> HL‘I dS,

< [ (=9 H ()l + Il ln(s) = (o) g ds
rou [ (=5 Hlon(s) = wa(s) g d

t
+ CL/ (t — s)_%RMs_'YHvl(s) — UQ(S)”Wé,q ds,
0

N

1
<t _701/ (1—0) 2077 dol|vy(s) — va(s)]|x-
0

As before the constant ¢; depends on bounds for the given date. For small T" this gives

sup [|F(v1)(t) = F(02)(0)llygpr <

1
llon(s) = va(s)llx.
te[0,T

In a similar way we estimate
[ (01) (#) = F(v2) ()l ypa < /0 (t = )75 (u(x) = p(5)) (v12(5) = v20(5)) | £ s
+ /0 (t — 5)_§ IL(v12(s) — va5(s)) (v1s(s) + M)

- L(U%c(s) + M) (U2x(s> - Ulac(S)) ||L‘1 dS,

1
< tl—v—é’@/ (1—0) 2077 do|vi(s) — va(s)| x.
0
The constant again depends on bounds for the given date. For small T this gives

JSup, ENE (i) () = F(o2) (1)l yyge < iHvl(S) — 0a(s)]|x-

Thus F'is a 1/2 contraction on S provided, that T is sufficiently small. Hence it has a
unique fixed point.

Let us discuss the interrelation of the occurring parameters. Remember that by assumption
there holds ¢ > 1. Then all our requirements for 3, v and ¢ which we needed, namely

1 1
1+-< <2 0<1+4+2y and O<7<§.
q

are satisfied by choosing ~y close to 1/2.

10



The length of the existence time 7" depends on bounds for ||u||z«, M, ||p|/z=, the choice
of R and the Wé’q(Q) norm of the initial value wq. Thus by successively repeating the
above reasoning we get an alternative provided that we have a uniform bound on |p(t)].
The maximal existence time Ty is then either oo or if Ty < oo then there must hold for
every g > 1, that ||'UJ(t>||W(1),q — 00 as t — Tp.

Regularity. By construction of the space X we know for every ¢ > 0, that ||w(t)||w€,q <
¢, for all t > ¢ Inserting this in the right hand side of the above PDE gives a linear
parabolic equation with in L?(2) bounded right hand side N(w(t)) on the time interval
[e, T]. According to known regularity theory for parabolic PDE’s, see |[Lun95, Prop.4.2.1],
this results in the solution being even Holder continuous in time. We have for all n € [0, 1]

that the solution w to the above PDE is of quality
w e C2 ([e, T], Wg(Q)).

Now we use the assumption that p is Hélder continuous with the Holder exponent 6 > 0.
The right hand side N (w(t)) is then Hélder continuous in time on any interval [¢, T]. Thus
again using known regularity theory, see |[Lun95, Prop.4.3.4|, we have that w is a classical
solution to (3.3). Using this we can iteratively improve the Holder continuity of w to get
by the assumption § > 1/2, that there exists a small & > 0 such that

w e Cl+5([€,T], Lq(g)) N C5([5’T],ngq(ﬂ)) C Cl+5([€,T]7Wé’q(Q)).

Finally we have that the time derivative w’ is spatially weakly differentiable for positive

times ¢ and vanishes at the boundary. Thus we see that u := w, — M is a solution to
(1.3) in the sense of (3.1), since for any ¢ € C*(Q2) we have

[ wtastyole) do -
Q

wy(x, t)p,(x) dz,

(Wea (2, ) + (wa(x,t) + M) [,u(x) — L(w,(t)+ M) — p(t)] )a(x) dz,

||
:o\{o\{o\

(us(z, ) [u(a:) —L(u) — p(t)} )u(z) da.

O

Remark 3.2. Better reqularity of the data p results in better spatial reqularity of the
solution.

Lemma 3.3. Let the Assumptions of Theorem 3.1 with ¢ = 2 hold. If the initial value
ug € L*(Q) is nonnegative, then the solution u to (1.3) is also nonnegative on Q x [0, T].

Proof. We first show the nonnegativity if x4 is a bounded function: since ¢ = 2 we can
apply the negative part u~(¢) as a test function in  (3.1) to get

sl Olze < =llug (D7 + /Qu;(l’,t)u_(:v,t) (1= L(u(®)) - p(1)) dz,

1 _
< JUlellzm + Ragt™ + ol ) u™ ()17

11



Using Gronwall’s lemma and |Jug ||z2 = 0, we deduce [[u™(¢)||z2 = 0 for all ¢ € [0,T]. If 4
is unbounded, we define for any & > 0 the cut-off function py, := min(k, max(—k, )). By
uy we call the solution of (3.1), if u is there replaced by p. We consider the functions
wy(x,t) = [, ur(y,t) dy — Mz, being the solution to (3.3) when there p is replaced by
- Since ||pgl/z2 < ||pe|lz2 one can find a common 7" > 0 such that each of the mappings

Fo(t) == e Yy + /Ot e DA [ — L(vg(s) + M) — p(s)] (ve(s) + M)ds, forveS.
(3.4)

is a contraction on X with contraction constant % Let wy, denote the corresponding fixed
point for Fj and w the fixed point for the mapping F' from above. One easily calculates

1
|w—wi|lx < [[Fw—Fowllx < ||[Frw—Fowg||x+[|Fu—Faw|x < §||w—wk!|x+||Fw—kaHXa

what leads to |jw —wi||x < 2||Fw — Fpw||x. Let us show that ||[Fw — Fyw||x approaches
0; one has

t
IFule) = Feo®lln < [ e w(s), + M) - ) dslin,
0
1
< |lp— uk||th%_7/ (1-— 0)_%U_VRM do.
0

Since jp — p in L*(Q), we get, uniformly in ¢, ||[Fw(t) — Fyw(t)||gn — 0. Similarly we
get t||Fw(t) — Fyw(t)||zs — 0 uniformly for all ¢ € [0,T]. This gives for all ¢t € [0, 7]
that wy(t) — w(t) in HY(Q), and thus ug(t) — u(t) in L?(Q). Hence, u(t) must also
be a nonnegative function because each wuy(t) corresponding to the bounded coefficient
function pg— is.

O

In the model derived in [DGHO6|, x is not only in L?*(2), but inside of it is a smooth
function. This helps us to deduce strict positivity of the solution for positive times.

Lemma 3.4. Let the Assumptions of Theorem 3.1 hold. Furthermore assume that for
all e > 0 we have p € C'([e,1—¢]) and 0 # uy € L*(Q) is nonnegative. Then the solution
is strictly positive inside 2 for all positive times.

Proof. Let u be the solution to problem (1.3). We define Q. :=Je, 1 — ¢[ and

P(a,1) = p(x) = Lu(t) — p(t).

Consider the function w.(z,t) := u(z,t)e* with s, := —sup,cq_ |pt2(x)| > 0. This function
then solves inside Q. X ]e, T

Wer (2,8) = ey (2, 1) — W (2, )0 (2, 1) = u(, )e™ (2, 1) (1a(x) + 52)- (3-5)
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The coefficients and initial as well as boundary values are spatially continuous and in time
even Holder continuous. This allows us to apply classical parabolic theory. We know from
Theorem 3.1 that the initial and boundary values to this PDE are nonnegative. Due to
conservation of mass, the initial function w.o(x) = u(x,€)e® is positive inside €. for ¢
small enough. Even the right hand side of the PDE (3.5) is nonnegative. Hence using
classical maximum principles, see for example [Eva98, Chapter 7.1 Theorem 9|, we get
w > 0in . X |e,T] and thus u is also strictly positive. This means by the arbitrariness
of €, that u is positive everywhere inside €2 for all positive times ¢. O

Lemma 3.5. Assume that the solution w exists on a time interval [to, T.] and p €

L>(Q). Let ¢y denote the constant max (|| p||ze, [Pl zoo(ito,2]), and let us put a = 36::8,

b:= 44(”7“>2.

i) Then the L?>-norm of u admits the following estimate:

1
lu(t)|72 < :
2a(to—t) 1 b1 _ b
\/e "N, el —a

as long as the expression under the square root is positive.

(3.6)

ii) Consequently, the L* norm does not explode on any interval [ty, T] as long as

1

T <ty+ — log —_—
e 8 G Tt

+1).
Proof. We test the equation (1.3) with u and obtain for every t € ]to, Ti[
1 t 1
§||U(t)||%2 —I—/ / |ux(x,s)|2d:vds < (3.7)
1
< S llulto)llz: + ||M||L°<> |u ,8)||ua(, )| do ds+
/ Ip(s) / w(z)u(z, s)de + u(0,s) —u(l,s)| / |u(z, s)| |ug(x, s)| dx ds.
0
Exploiting [, udz =1 and thus | [, pudz| < ¢o, we obtain

Ip(s) +/0 p(x)u(z, s)dz| < 2c,

while (A.4) from Lemma A.1 gives

(0, 5) — u(l,s)| < 2v2 D ()12 a2

13



Additionally estimating fol |u(z, s)| |ug(x, s)|dz on the right hand side of (3.7) by
lw(s)||z2]|wz(s)] 22, we derive from (3.7) the inequality

1 1 t t
§||U(t)||ia < §||U(to)||%z —/ lua(s) |72 d5+300/ [u(s)l| 2l ua(s)] 22 ds+
to to

! 1 3/2
+/ 2V ) [ (9)] | s (3.8)
(3.8), equivalently written, reads as,
t
lu(®)IlZ: < —/ 2 (8)II72 ds + [luto) 172+ (3.9)
to
' m+1 3/2 3/2
[ oealluto) ez + 42 a3 ds
to
We estimate by Young’s inequality
36¢3 5
6colu(s)llzz lue(s)llz < = ulo)lZ + 7 lua(o)l72 (3.10)
and
T+1 3/2 3/2 T+ 1\2 3
V2| = )2 e ()2 < 4 (=) )5 + 5 e ) 2. (3.11)
Applying this to (3.9), we get
"36¢5 T4 1\2
s < lutto)le + [ 222 uls +4 () ) ds. (3.12)
to

Putting g : [0,00[ 3 s — as + bs® = s(a + bs?) and y(s) := [Ju(s)||3., (3.12) can be read
as the following integral inequality for y:

v < vt + [ () ds, ¢ Elto, T

to

By straight forward computation one identifies the primitive of é by

1
G:r— —log + R, (3.13)

,
a \/1+§r2

for arbitrary choice of . Thus the inverse function G~ is
1

e—2a(t—k)

G 't

b

a

T

According to the Bihari-Lemma (|Bih56|, see also |[BeB61, Ch. 4.5]) we get

_ 1
V1) < G G(t)) + 1~ ) = e (314)
Ve
as long as the expression under the square root is positive.
ii) follows straightforward from i). O
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3.2 Blow-up results

The identity (4.2b) for the time evolution of the first moments of solutions easily leads
to the following blow-up criterion.

Lemma 3.6. Suppose that there exists T > 0 such that either

/OTp(t) dt < —/quo(x) dx (3.15)
: /OTp(t) dt >1— /Q:cuo(a:) dz. (5.16)

Then the solution u of (1.3) blows up before or at time T.
Proof. Assuming that the maximal existence time Tj of u exceeds T', we recall (4.2b) to

see that .
/ p(t)dt = / zu(z,T)dx — / zug(z) dz.
0 Q Q

This is compatible neither with (3.15) nor with (3.16), because the properties u > 0
and [, udz =1 entail that

0< / zu(z,t)dr < 1 for all ¢ € ]0, To|. (3.17)
Q

Thus, v must cease to exist before time T'. O

As a particular consequence, we see that if p is sufficiently large then all solutions blow-up.

Corollary 3.7. Suppose that there exists T' > 0 such that

)/OTp(t) dt) > 1, (3.18)

Then for all nonnegative ugy fulfilling fQ ugdx = 1, the solution of (1.3) blows up in
finite time.

Proof. In view of (3.17), the assumption (3.18) shows that any such u, satisfies either
(3.15) or (3.16), so that the solution emanating from ug will blow-up before time 7. O

Secondly, if merely p #Z 0 then at least some initial data lead to non-global solutions.

Corollary 3.8. Suppose that p # 0. Then there ezists a nonnegative uy € CF(§2) with
fQ uodz =1 such that the corresponding solution u of  (1.3) blows up in finite time.

15



Proof. Let P(t) := fotp(s) ds for t > 0. Since P’ = p on |0, 00[, our assumption p # 0
ensures that for some 7' > 0 we have P(T") # 0, which enables us to choose some ¢ € }0, % [
such that ¢ < |P(T)|. We now fix any nonnegative ¢ € C3°(R) such that supp ¢ C |1,2]

and [ ¢(€)d¢ = 1.
Assuming first that P(7T") < 0, we then let

o) 1= - «(9).  wepu

Then wg belongs to C*(§2) and has its support contained in ]e,2¢[ C 2, and we easily
compute fQ ugdx = 1. Moreover, its first moment satisfies

/QZEUO(ZB) de = /626 zug(z)de < e - /Quo(:v) de =e < —P(T),

which entails that (3.15) is fulfilled, so that Lemma 3.6 asserts finite-time blow-up of
the corresponding solution.
In the case P(T') > 0 we proceed similarly by defining

uo () :z%-((lggj), z € [0,1],

and showing that then (3.16) holds. O

4 Global existence for general /

We now return to the situation where ¢ is a given datum such that ¢(¢) € |0, 1] for all

time. For the local existence results in the previous section we only used p(t) = ¢(t) and
hence the additional constraint ¢(¢) > 0 and £(t) < 1 where only implicit.

We first make sure that the local solutions constructed above satisfies the constraint as
expected and therefore turn out to be solutions to (1.1). For this we recall the general
assumption

¢ € CH[0,00]) and 0 < {(t) <1 forallt>D0. (4.1)

The expected result is the following.

Lemma 4.1. Let (4.1) and (1.2) hold. Suppose that u is a classical solution of  (1.3)
in Q x 10, T[ for some T €10, 00] satisfying [, u(x,0)dz =1 and C(u(0)) = £(0). Then

/u(m,t) de=1  forallt€]0,T| (4.24)
Q

and

C(u(t)) = /qu(x, t)dx = £(t) for all t €10, T7. (4.2b)

Proof. The first identity easily results by using ¢ = 1 as a test function for (1.3), whereas
(4.2b) follows upon choosing ¢(x,t) := x and using [, zu(z,0) dz = £(0). O
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Remark 4.2. As a simple consequence of Lemma 4.1 together with Lemma 3.6 we get
a sufficient explosion condition. For { € W'(]0, 00]), with £(0) € 10,1[, let t. be the
first time such that £(t.) = 1 or £(t,) = 0. Then t. must be an explosion time for the
solution to (1.1), if the solution does not cease to exist before time t,. The rest of this
section is devoted to the fact, that this condition is also necessary. Thus if { stays inside of
10, 1[, then the solution exists globally and does not explode. The solution then even stays
bounded in L>®°(2) on all bounded time intervals.

4.1 Dissipation and energy control

The next result provides the fundamental estimate for the dissipation functional. We recall
the energy dissipation function from Lemma 2.1, namely

%A(u(t)):—l)( (t), 0) with D(u, {) = /—dx— /Qde)z_g/Qde;,

where W = u,+1'u, as we have set v = 1. To obtain global existence we want to estimate
A from above and hence D from below. As such our strategy is similar to those in [GIH97]
for more complicated electro-reaction-diffusion systems. However, in our case the time-
dependent constraint C(u(t)) = £(t) complicates the matter a lot. In particular, the lower
estimates for D are much more difficult.

When estimating D from below we can of course take advantage of the constraints (4.2).
Nevertheless, the difficulty is here that we cannot control fQ W dx easily. The first two
terms in D form a nonnegative contribution, namely

/—dx— /QWdZL’ /—dz—/\/ﬂldz
/—dz—/udx/—dx—()

where we used the Cauchy-Schwarz estimate and fQ udz = 1. However, there is no hope

to obtain a better lower estimate that allows to estimate the third term ﬁfﬂ W dx. The
reason is that the Cauchy-Schwarz estimate is an equality whenever W = (u for some
B € R. Thus, the functions u = ug : v — ce?*=¥() lead to a vanishing contribution in
the first two terms but may generate to an arbitrary large contribution in the third term.
However, the additional constraint C(u) = ¢ € ]0, 1] selects a unique [, see Section 5.1.
Hence, there one can expect to find a suitable lower bound when using both constraints.

The following result shows that these considerations can be made quantitative. We will
estimate the deviation of a general u from a suitable chosen U,.

Theorem 4.3. Assume v € WHL([0,1]). Then, for each § € 10,1/2[ there exists a
constant C';p > 0 such that for all ¢ € [6,1=0] and all X € [—1/5,1/d] the following

estimate holds:

D(u,\) > —CY|\|  for all u € HY(Q) with / u(z)dr =1 and C(u) = L. (4.3)
Q
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Proof. There are two crucial steps in this proof. First we replace u by v = y/u, which
transforms the integral [, W?/udz into the quadratic form [, (2v,+¢'v)*dz and gives
the new constraints for all £ in the existence interval

/ v(x,t)*dz =1 and / vv(z,t)*dz = £(t). (4.4)

Secondly we will decompose v into V,, +n, where V,, is a function satisfying the first of the
above constraints and making the first two terms of D vanish, i.e. the Cauchy-Schwarz
estimate is sharp.

To be more precise we introduce the notations

V) ={veHY(Q) : v>0, and (4.4) holds },

D(v,)\):D(v2,>\):/Qw2dx— (/vwdx)z—)\/ngdx,

w=2v, +Y'v, v=|w|re, andp:/vwdx.
Q

Using ||u||z = 1 and the Cauchy-Schwarz estimate we have p? < 2.

The case p = 0 is trivial, because it gives D(v, A) > 0. Hence, we assume p > 0 from now
on. This implies v > 0, and we first decompose v in the form

v="Lwt¢ with /gwdx:o,
Y Q

which is a simple orthogonal projection. Hence, we find

2 P’ 2 2 P
L= lollze = T3+ ligllze - = lillze = 1= 5.
Recalling the definition of w in terms of v leads to 2v, +¢¥'v = w = % (v—f). Solving this
ODE with [|v||z2 = 1 gives the formula

1
v =03V, + Ky where K &(z) = /0 K. (z,y)¢(y) dy.

Here V(1) = c,e(®®¥@)/2 with ¢, > 0 chosen such that ||V, ;> = 1. The constant 3 is
chosen such that ||v||z2 = 1. The kernel K, is defined via

gg;g;; fora>0and0<z<y<l,
Ko(z,y) = —‘;Xz((;ﬂ)) fora<Oand 0 <y <z <1,
0 otherwise.

Using ¢ € WH1(Q), which implies ¢ € C(Q), the kernel can be estimated via
Cit | fe-lle-i/2
OgKa(z,y)§7|a|e Y% for aw #£ 0 and z,y € [0, 1],
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where C’}l} depends only on % but not on «. Using this we can estimate E = K208
via [£(z)] < C’Iw{% fol e~ loll==v/2|£(y)| dy. Then using Young’s inequality for convolutions
§ = ¢ x £ in the form ||]|22) = [|9]| 1 ®) €] L2(r), We have the uniform estimate

”’CaHLin(LQ(Q),L%Q)) S C}é for all « 7§ 0.
Now we write the final decomposition in the form
v = V:Yz/P —+ n Wlth n= (/B—l)VVz/p + /C,Yz/pg.
It is now essential to estimate 7 in terms of p/v. We do this in terms of E = K28,

which satisfies ||§A||Lz < C%(1—p%/~4?)"/2. Recalling Va2l 2 = ||v]|22 = 1, we always have

IIn||z2 < 2. For the case ||§||Lz < 1 we improve this estimate with the relation
12> €12 = llo = BVie I, = 1 — 28 / oV + B2
Q

Using [, vV2/,dz > 0 we conclude § > 0. Hence,

18] < [1-5%] = [IvlL, = 18V5e L, | = \/Q(v—ﬁVw/p)(vﬂLﬁVw/p) dz|
< | [ E2o+d) ] < 2+l
Combing this with the definition of 7 we find
Inllzz < 1811+ €]l 2 < B+CRICE(1=p*/7%) " it |[E]le2 < 1. (4.5)

Now we are ready to estimate D(v,A) from below on the admissible set V(¢). By our
definitions of p and ~ the functional D takes the form

D(v,\) =% = p* = Xp,

where v and p depend on v € V({). To estimate D we choose 045 € |0, 1] such that

1/2

(3+CR)Cy(1—02)" < 6/2 < 1/4.

and distinguish two cases p? < y?0% and p?/~% € [02,1].
Case I, |p| < yos: We easily find
2.2 2

Ao o
D(U, )\) = 72 - p2 - )\P > 72 - ’}/20-(? - |)\|70’5 = _4(1_;5.?) — _45(1i0-§)

Al

where 0 is from the statement of the theorem such that |[A| < 1/4.
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Case II, p*/7* € [0%,1]: Recalling 1122 < CY(1—p%/4?)"/? we have 1€]l2 < 6/6 <1 and
can use estimate (4.5) for n, namely ||n|/,2 < §/2. Since v = V2, + 7 lies in V ({) we
obtain

= [ Vo) da] = [ 2(o@)=Viapp(@) de| < [ fonta)|ao < ol < 572

We consider the function
m(a) = / 2V, (z)? dz.
Q

It is easy to see that m : R — ]0,1[ is differentiable, strictly increasing and satisfies
m(a) — 0 for « — —oo and m(a) — 1 for a — oo. Thus, for each § € |0,1/2[ there is a
constant as such that m(a) € [0/2,1—0/2] implies o € [—as, as).

Using the assumption ¢ € [0,1—6] we have shown that the decomposition v = V,2,, + 17
implies m(y%/p) € [6/2,1—3/2]. Thus, we conclude the estimate as > |y?/p| > |7/, because
0 < |p| <. Thus, we obtain the lower bound

D(v,\) = 7" = p* = Ap > —as|A|.

Combining the two cases we have established the desired estimate (4.3) with CY =
max{as, o7 /(46(1—c2))}. O

Analysing the dependence of o5 and as on 9 in the above proof, it can be shown that Cg’
can be estimated by 1/§%. However, it is possible that the estimates can be improved.

The above dissipation estimate is fundamental to control the growth of the energy A.
Under our main assumption (4.1) for ¢ we find for each 7" > 0 a constant 6 > 0 such
that £(t) € [6,1—6] and |£(t)] < 1/6 for all t € [0,T]. Hence we conclude the main energy
estimate

| Au(ts)) — Alu(t)| < Cs / § 0(s)|ds < C2(ta—t;) for0<t, <t, <T.  (4.6)

In particular, A(u(t)) cannot blow-up, if it is bounded initially.

For later use in the convergence theory in Section 5, we provide an improved energy-
dissipation estimate, where the dissipation is not only bounded from below and even
coercive but can also be bounded from below by an arbitrary positive multiple of the
energy itself. The proof is a slight variant of the one above.

Proposition 4.4. Assume ¢ € HY(Q). Then, for each k > 0 and each 6 €]0,1/2[ there
exists a constant K:f’(; such that for all ¢ € [6,1=6] and all X\ € [—1/6,1/0] the following

estimate holds:
D(u, \) > kl|ugllp2 — K5 and D(u,\) > rA(u) — K (4.7)

for all w € H(Q) with w >0, [,udz =1, and C(u) = /.
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Proof. We proceed exactly as in the proof of Theorem 4.3 and use the same notations.
Step 1: We first estimate

D, (v,) = D(v, ) — v, |35,
Because of v = [|2v,4¢'v| 2 and vz = 1 we have [|vg| 2 < v+ 1+ 3[¢/[|3. and find
Di(v,A) >~ = p* = Ap— wy*? = C

where C' depends on ¢ and k. This can be estimated from below via the two cases as
before.

Case I, |p| < yos: We obtain
D.(v,\) > (1—03)y* — %057 — w2 = C,
which is certainly bounded from below by a constant depending only on s and oy.
Case II, p*/v* € [02,1]: As in the previous proof we find |p| < v < ag, giving
Dp(v,X) > 7" = p* = %lp| = k7** = C
is trivially bounded from below.

Combining the two cases gives Dy(v, \) > k‘ié as desired.

Step 2: We now need to undo the substitution v = v? in D(u,\) = D(y/u,\). With
u, = 2vv, we find

luallZe = 4llvvslZ> = 4llvlTllvallZe < C1+[lvallz2),

where we have used [|v||2e < C|lv|2(||v|lz2+vellzz) = C(1+|vs||z2), see Lemma A.1.
Using v = y/u we deduce
D(u, \) — kel > D(w, ) = ernl|va|35 — 2 = Deyulv,X) — o > kY, 5 —c2 =0 K5

Cc1k,0

Thus, the first estimate in  (4.7) is established.

Step 3: The second estimate in  (4.7) is obtained by estimating A(u) from above. We
have

A(u) = / ulnu+yudr < max{Inu+y} / wdz <In|ju| =~ + max ) < C(14+]u.l]).
Q Q

Inserting this into the first estimate of (4.7), the second follows immediately. O

4.2 Improved a priori estimates

Based on the above energy bounds we derive new a priori estimates in L*(Q) as well as in
L>(Q2). To exploit the energy bound we can employ a variant of the “L log L” improved
version of the classical Gagliardo-Nirenberg interpolation inequality:

Ve>03C.Vwe H(Q): |wllie < ellwy]Fe]|wn|w|| g + Ce(1+|w]31)- (4.8)
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The proof will be provided in Lemma A.2. We refer to [GIH97, GIM04] for similar uses of
this inequality in reaction-diffusion systems.

From this, we are now able to derive an a-priori estimate for the L?-norm, thus showing
that blow-up is impossible under the assumption (4.1) for ¢.

Proposition 4.5. Assume that ¢ and € satisfy (1.2) and (4.1), respectively. Then
for all K >0 and Ty there exists C(K,Ty) > 0 such that the following holds. If for some
to € [0, To[ the solution u of (1.1) satisfies

A(u(ty)) = / u(z, to) (Inu(z, to) + ¥(z))de < K and |u(to) 2 < K, (4.9)
Q
then the following a priori estimate in L*(Q2) holds:
||U(t)HL2 < C(K,Tg) fO’f’ all t e]to,To[ (410}

Proof. First we test (1.3) with u to obtain

1d .
—|JullZ2 + ||ull7e = </uxdx+€+/w’udx> -/uumdx—/qb’uumdx (4.11)
2dt Q Q Q Q

for all ¢ € Jto, T[. The integrals [, u*'u, dz = 1 (u(1)*—u(0)¥) we estimate by 2||ul|}~,
while the last term admits the estimate

1
- [vndr <7 [ dos [ omids < Qe+ R @12)
With | [, ¢'udz| < |[¢||11||ul e, estimate (4.11) leads to
1d 9 3 . / n2 1
52 + ol < Co(L+lult) with Gy = 4+ [Bed,  (413)

where § > 0 is such that [{(¢)| < 1/ for t € [0, Tp].
Next we employ the energy estimate (4.6) and the initial condition (4.9) giving

Alu(t)) = /Q u(z,t)(Inu(z,t) + (@) de < Cy(Ka) = Ka = K + Tp/d. (4.14)

Together with [, ¢ude > [, min(¢)udr = miney and the lower inequality |{In¢| <
2 4+ ¢In¢, valid for all ¢ > 0, we find

2
Hu(t) IDU(T,)HLl(Q) < CQ(KA) = g + Cl(K_A) — Il’llIllp for all ¢t € ]to, T()[ .

An application of  (4.8) with e(K,) := ;5 shows that
1d 1 ,
5 77 1Oz + Sllua Bz < Cs(Ka) - for all ¢ € Jio, To[ (4.15)
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Since u(t) has mean value one there exist two positive constants Cy and Cj such that
Cullu(@®)||32 — C5 < |luz(t)]|2. . Using this in  (4.15) results in the differential inequality

d
@Iz < =Cullu(®)72 + G5+ 2C5(Ka),

which gives for C5(K 4) := (C5 + 2C3(K4))/Cy,
lu(®)]|Z> < C(K, Tp) = max {[Ju(to)[|72, C5(K4) } - (4.16)

Where the dependence on Tj in the constant C'(K,Tp) stems from K4 in  (4.14). O

4.3 Global existence and boundedness properties

To obtain global existence for ¢t € [0, 00[ we use a slightly weakened version of our basic
assumption (4.1) on £. We do no longer ask for continuous differentiability of ¢, but use
only £ € WL>([0, 00[). Additionally, we need to have £(t) € ]0,1[. Thus, we impose that
¢ stays away from the boundary which implies that

VT >0, 36 €]0,1/2[: £(t) € [6,1—0] and |¢(t)| < 1/5  for almost all ¢ € [0, T].
(4.17)
To obtain boundedness we have to impose this condition uniformly on [0, ool.

Theorem 4.6. Suppose that { € W, >°([0,00|) satisfies (4.17). Then (1.1) admits a
global classical solution .

Proof. We let Tj € ]0, 0o] denote the maximal existence time of the local-in-time solution
wof (1.1). Assume Ty < oo, then on the one hand Theorem 3.1 implies ||u(t)|/2 —
oo as t " Ty (use (3.2) with ¢ = 2). On the other hand, Proposition 4.5 shows
limsup, 7, lu(t)|z2 < oo (see (4.10)): From this contradiction we conclude Ty = oo

0

To obtain boundedness of the solution on the whole time interval ]0, co[ we need to show
that A remains bounded. For this we use the uniform version of (4.17) and the improved
energy dissipation estimate (4.7) provided in Proposition 4.4.

Theorem 4.7. Assume that there exists § € |0,1/2[ such that £ € WH*°([0, oo[) satisfies
((t) € [0,1=0] for all t € [0,00[. Then the global solution uw of (1.1) with uy € L*(Q),
which was obtained in Theorem 4.6, satisfies

u e L2([0, 00], LA()).

Proof. For this we use the dissipation estimate (4.7) and obtain a differential inequality.
For any positive Kk we obtain

%A(u(t)) < D(u(t), (1) < —rA(u(t) + K25,
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where, if necessary, the constant § > 0 from the assumption is made smaller to have
|0(t)] < 1/6 for a.a. t > 0 as well. From this estimate we easily obtain A(u(t)) < K4 :=
max{.A(u(0)), K:f’(;}. We can use the estimates provided in the proof of Proposition 4.5.
Note that (4.16) implies

[u(®)]|z2 < max{[jugl| 2, Cs(K.a) 7,

which is independent of ¢, because here K 4 is bounded independently of any time interval.

O

Remark 4.8. The reasoning in Theorem 4.7 is still correct if the condition (4.17)
holds only up to a finite time T,. Then the assertion in Theorem 4.7 holds up to this
time. Thus the condition that ((t) touches the boundary of |0,1[ at time t. is not only
sufficient, as seen in Remark 4.2, but also necessary for t, to be an explosion time. Hence
for 0. € W 2°([0,t,]) the solution exists on the time interval [0,t,] if and only if €(t) € ]0,1]

loc

for all't € [0,t.[.

5 Convergence to the steady state if /(t) — ¢, €]0,1]

In this section we show that the global solutions constructed in the previous section
converge to the unique steady state if the constraint £(¢) converges in a suitable way.
In Section 5.1 we first characterise the steady states as functions of the constraint £. In
particular, we show that they are the unique minimisers of A subject to the constraint
C(u) = ¢. In Section 5.2 we will then use properties of the dissipation functional D to
show convergence of the solutions under the additional assumption that ¢ € L]0, oal).

5.1 Characterisation of the steady states

The following lemma describes the structure of the set of equilibria of (1.1) satisfying
(4.2a). In fact, all these steady states are explicitly known as setting u; = 0 leads to an
ODE for u that can be solved explicitly. For 8 € R we define the functions ug € L*(Q)

via
1
ug(z) = — P @ with ¢5 = / @) g, (5.1)
Q

s
By definition we have ug > 0 and fQ ugdx = 1. It remains to study the first moment for
which we set

M) :/xug(x) dz.
Q
The following result shows that M is strictly increasing with M(5) — 0 and ug = 6

)
(6-distribution at x = 0) for 8 — —oo and M(3) — 1 and ug — & (J-distribution at
z=1) for f — 0.
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Lemma 5.1. The functions ug satisfy

{ in Cioc(]0,1])  as B — —o0,
usg — 0

in Cie([0,1]) as § — +oo. (5:2)

Moreover, M 1is strictly increasing with

0 as [ — —o0,

5.8
1 as 3 — 400. (5:3)

M(3) = [ zunfa)do - §
Q
Consequently, for each € €10, 1] there exists a unique [ with { = M(3), which we denote

by 6= B({). Then,
Ug = UB(g) (54)

is the unique steady state u of (1.1) with [yudx =1 and [, zu(z)dz = L.

Proof. In order to derive (5.2), let us fix xy € ]0,1] and assume that there exist Cy > 0
and a sequence of numbers (3, — —oo such that ug, (z9) > Cp for all k. Since ¢ € HY(Q)
we have C; > 0 such that [[1)][c < C; and so ||e*")|c < Cy. Then for 3 < 0 we can
estimate ug on |0, xo/2[ by

M < |eﬁ(xo—x)| |e¢(x)—¢(xo)| < |e§960| 022 — 0, as 3 — —oo, for all © € }Q’ *o [
|ug(x)] 2

Thus we can fix fy < 0 such that for all z € ]0, %[ we have ug(z) > ﬁ?jﬂ(ﬂfo) > xio
whenever 3 < [y, which implies that for all sufficiently large k

zo
2
1:/Uﬁk2/ Uﬁk22
Q 0

Which is a contradiction to the construction (5.1). This proves the pointwise convergence

to zero on |0, 1]. By the same reasoning we can fix 5, < 0 for any z, € |0, 1], such that for

all z € |12 1] we have ug(x) < Csug(zo) whenever 3 < B;. This implies the uniform

convergence on every subset } H%, 1] and thus the first claim in  (5.2), whereas the second

can be seen in a similar way.

Along with the property fQ ugdz = 1, this also entails (5.3): Indeed, given ¢ > 0, by
(5.2) we can fix §, < 0 such that ug < ¢ in ]%, 1[ for all g < (3,, whence

Jozus(z)dz <
<

Jrug(e)de + [l a-ede
2
‘14e-1 forall B <,

N[O N[O

and the limit behaviour as § — +o0o can be proven similarly. Finally, to see that M is
strictly increasing we use (5.1) to compute

( [, a2ee—v@) dx) : < [, efr=v@ dx) _ < [y wePr=i@) dx>2

( [, efz=v(a) dx)2

d
@/ﬂl’ﬂ;ﬁ(l’) dz =
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for 3 € R. Since p(z) := zez®¥@) and py(z) = e2@*¥@) 5 € Q, are linearly
independent, the Cauchy-Schwarz inequality says that

2
(/Plp2d$> < </pfdx> : </p§dx>
Q Q Q
and thus ensures that % Jo zug(x) de > 0 for each § € R. O

The next result characterises the above equilibria in terms of the energy functional A and
the constraint C.

Proposition 5.2. The functional u — A(u) attains its minimum on the set

M) = {u e L}Q) : u>0, /Qu(x)dle, /qu(x)dx:e}

on exactly one point, namely U, defined in  (5.4).

Proof. Note that M({) is a strongly closed and convex subset of L'(£2). Moreover, the
functional A is strictly convex. Hence, there is at most one minimiser.

We directly show that U, is the desired minimiser. The convexity of u +— uInu gives
ulnu > ulnu + (Inu+1)(u—u) for u >0 and u > 0.

Thus, for all w € M(¢) we obtain
A(u) = / ulnu+yYudr > / UlnU, + (InUp+1)(u—Uy) + Yude
Q Q

O AW, + / (B(0)z—ncp)@-Uy) dz 2 AU,
Q
where in (i) we used a cancellation of all terms involving ¢ while in (i) we use u, U, €

M(0). 0

The following simple consequence will be useful to establish convergence to equilibria.
Corollary 5.3. Assume that the sequence (uy)ren Satisfies
up — u, in L2(Q),  Clug) — 4. €]0,1[,  A(u) — A(U,).
Then, u, = Uy, and uy, — Uy, in L*(Q) strongly.
Proof. On the one hand, the strong continuity and convexity of A imply weak lower

semicontinuity of A. Hence, we have A(u,) < A(Up,).

On the other hand C is weakly continuous, which implies C(u,) = ¢,. Thus, Proposition
5.2 implies that wu, is equal to the unique minimiser Uy, .

Finally the strict convexity of A allows us to apply the Visintin’s argument [Vis84]. The
energy convergence A(uy) — A(U,,) turns the weak convergence u, — Uy, into the desired
strong convergence. O
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5.2 Vanishing dissipation and convergence

We now consider the case of global solutions for an ¢ € W'*(]0, 00]) satisfying the
following conditions

= L'(]0,00[) N L™=(]0,00[) and 36 €]0,1/2[ Vt>0: £(t) € [6,1-6]. (5.5)
A simple consequence of this condition is that the limit

l, = lim ((t)

t—o0

exists. Moreover, Theorem 4.7 implies a classical solution u € L*°(]0, oo, L*(£2)). Our aim
is now to show that u(t) — Uy, in L*(Q) for ¢ — oco. Our proof has two ingredients, both
of which are related to the energy dissipation relations derived in Section 4.1. In the first
step we will establish the convergence of A(u(t)) — A.. In the second and final step we
will exploit that the integral [ D(u(t), ((t)) dt is finite.

Lemma 5.4. Assume that ¢ € HY(Q) and that ( satisfies (5.5). Then, for every
solution the following limit exists:

A, = lim A(u(t)).

t—o0

Proof. We recall the energy-dissipation (2.12) giving

Alu(ts)) + /t : D(u(t), (1)) dt = A(u(t)))  for 0 <t < ta. (5.6)

1

The dissipation estimate (4.3) gives D(u(t), {(t)) > —C|£(t)| for a fixed constant C. Thus,
the function 7 — a(7) := A(u(r)) — C [/ |0(t)| dt is nonincreasing. By the assumption
¢ € L'(]0,00[) and the lower bound A(u) > —1/e + min4 we know that a is bounded as
well. Hence a(t) — a, for t — oo. Thus, A(u(t)) — a. + C [;7|€(t)]| dt =: A.. O

We still have to show that A, is related to ¢, = lim;_., £(t). If we can show that A, =
A(U,,), then Corollary 5.3 can be employed easily. To find the identity for A, it will
be enough to find one sequence t;, — oo such that D(u(t;),0) — 0 and to employ the
following result.

Proposition 5.5. Assume ¢ € H'(Q) and consider a sequence (ug)ren with uy € M)
such that

up — u, in L2(Q), 4, =C(ug) — £, €]0,1[, D(ux,0) — 0.
Then, uy, — Uy, in HY(Q) and A(uy) — A(Uy,).

Proof. By the coercivity (4.7) of D, we obtain that uy is even bounded in H*(2). Thus,
the weak convergence in L*(Q) implies uy — u, in H'(Q). From this we obtain uniform
convergence and conclude A(uy) — A(uy).
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We already now u, € M({,), and it remains to identify w, as U, . For this we use
D(ug,0) — 0. We introduce a new dependent variable z; via the formula

up(x) = @z (2)?  with zp(z) > 0 and pg(z) = Az — (z), (5.7)

where Ay := Luy = ug(l) — uk(0) + fQ Y'uy, dz. Doing some elementary calculations we
find

D(ug,0) = D(z) := 4/96%(90)(2]/6(37))2 dz,

124%@M:LW@@MYM,&:AWMMP%%WWMm%m

As uy converges to u, we have Ay — A, = Lu, and pp — p, : v — Az — ().

Using lA)(zk) — 0 we conclude z, — z, in H'(Q2) strongly, where 2/, = 0. From (5.7) we
now see that u, — ep*zf, lLe. u, = ep*zf. As z, is constant, we see that u, must be a
multiple of u,,. However, due to Lemma 5.1, there is only one such multiple in M(¢,),
namely Up,. Thus, u, = Uy, is established. Moreover u, — U, in H'(Q) as z;, — 2, in

HY(Q). O

We are now ready to present our final convergent result.

Theorem 5.6. Assume that v € HY(Q) and that { satisfies (5.5) with £, = lim; . £(t).
Then, for every solution u we have u(t) — U,, in L*(Q) for t — oo.

Proof. According to Lemma 5.4 we have A(u(t)) — A.. Hence we can let t; = 0 and
ty — 00 in the energy-dissipation relation (5.6) to obtain

AwDW@J®ﬁR:Am®»—A*

As by Theorem 4.3 there holds D(u(t), £(t)) > —C|{(t)| we conclude that ¢t — D(u(t), {(t))
lies in L'(]0, co[). Hence we can find a sequence t;, — oo such that D(u(t;), ((t)) — 0,
((ty) — 0. Thus Proposition 4.4 implies that [|u(ty)| is uniformly bounded for all k.
This implies for a subsequence (not relabelled) that u(t;) — w, in HY(Q) to some wu,.
Since this even implies D(u(tx),0) — 0, Proposition 5.5 is applicable, and we conclude

u(ty) — Up, and A, = A(U,,).

Now we consider a general sequence 7, — oo. Since u(7,) is bounded in L*(£2), see Theorem
4.7, we may assume u(7) — u, in L*(Q) for some u, € M(L,). From u(r,) € M(¢(m))
and 7, — 0o, we obtain u, € M(L,). Because of A(u(r,)) — A, = A(Uy,), Corollary 5.3
yields the desired result u(7,) — Uy, in L*(2) strongly. As the possible limit of bounded
sequences is unique, we have convergence of the whole family u(t). a

We expect that the methods in |GIH97, Sect.5.3] can be adapted to our case as well.
Thus, if £(t) converges exponentially to £, i.e. |[((t)—C,| < Coe ", then there should
exists A € |0, p] and C' > 0 such that the following exponential convergences hold:

[AQ(t) = AW < Ce™ and[Ju(t)=Up[|z2 < Ce ™2,

However, this is beyond of the aims of this paper.
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A Appendix: Some embedding and inequalities

Lemma A.1. i) Let a, (8 be integers satisfying 0 < o < 8 and let 1 < q,r < o0,
0 < p < 0. For the case q or r having the value oo, we define formally é = 0.
Then we define 6 as

Q

g .=

S =D =

-5

If 6 € [5, 1] then there exist constants co, c1 > 0 such that for all ¢ € HA"(Q)NLI(Q)
there holds

QIH»QI)—!

o9
H SOHLP CoHaﬁwHLerl "+l (A.1)

ii) For all 0 < q¢ < 00 and 0 < r < oo there exists ¢ > 0 such that for all ¢ €
HY(Q) N LYQ) N L™ (Q) there holds

lelleqo, (2 + 1)%leall 2ol 12 + Nl (A.2)
q , 2
and —@llo < (5 + D°(lellz2 + leall2)’ llell e’ with 6= pEE
(A.3)
iii) For all ¢ € HY(Q) it holds true
T+ 1
[9(1) = (0] < 2V2/ =l " e (A4)

Proof. i) This statement is taken from [Zhe04, Theorem 1.5.4].
i) We know that H(Q) € C(Q) such that we can define z,,z* € [0,1] as

(@) < W) < [¥(2™)]  Vzel0,1].
Then for all 3 > 1 there holds

z* 1
[l = (@) < | / (I01°), do| + (@) < 5 / 17 | + ()] d

< Bl Fz-2 s ()", (A.5)
Applying the bound [i)(x.)| < |||z and setting 8 = £ + 1 > 1, this proves (A.2). On
the other hand keeping the choice of 5 we can proceed from (A.5) with
[0l < Bl s lWellzz + [ @) (@] < Bl zasslltellzz + 1 (@) |2 9 (2)]] 2
< Bl -2 (11l z2 + l1eballz2).

This then proves (A.3).
iii) We first observe that we have to estimate a linear form on HY(Q) which vanishes on
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constant functions. Therefore it suffices to give an estimate only for those functions which
are orthogonal to the constants. (It is clear that a function 1 is orthogonal to the constants
if and only if [, dx =0.) We estimate by means of (A.3), with ¢ = 2,

[(0) = ()] < 2lllogoy < 2V20005 V19122 + 1w 22 (A.6)
Using the estimating ||¢||12 < Z||@g|lz2 which holds for all for all ¢ € H'(]0,1[) with
fol ¢dx =0, one obtains the assertion. ]

We provide a Gagliardo-Nirenberg type estimate involving norms in L log L(£2). The proof
consists of a modification of [BHN94, p. 1199].

Lemma A.2. Let G C R be a bounded interval. There exists C' > 0 with the property
that for all € > 0 one can find C. > 0 such that

lwlffee < ellwellZz - [lwlnwlf[zr + Ce + Cllwliz (A.7)

is valid for all w € HY(G).

Proof. Following the reasoning in [BHN94|, we first invoke the Gagliardo-Nirenberg in-
equality (A.1) to find ¢; > 0 such that

202 < ellzallze - 12l +edllzllze for all 2 € HY(G). (A.8)

We now choose N > 1 large fulfilling lic]l\/ < ¢ and introduce y € W}OSO(R) by defining

X(s) :=0 for s € [-N, N|, x(s) := [s| for |s|] > 2N and x(s) :=2(]s| = N) for N < |s| <
2N. Then given w € H'(G), we evidently have
Jw = x(w)| < 2N

and furthermore
1
[x(w)][zr < / lw|dz < — - [Jwln |w]]| .
{lwl>N} In N

Since (14+&)3 <2-(1+&3) for £ >0, (A.8) furthermore yields

2[x(w) 7 + 2llw — x(w)|[7-
261 [|(x(w))allZ2 - IX(w) |zt + 21X (w) (17, + 21N

% : ||w:v||%2 ~|lwn |wl||gr + 201||w||?il + 3*N3,

lwllZe

VARVANIVAN

because ||x/|| @) = 2 and |x(s)| < |s| for all s € R. In view of our definition of N, this
proves (A.7) with C := 2¢; and C. := 24 N3. O
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