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Abstract. We address the analysis of an abstract system coupling a rate-independent process with a second
order (in time) nonlinear evolution equation. We propose suitable weak solution concepts and obtain existence
results by passing to the limit in carefully devised time-discretization schemes. Our arguments combine tech-
niques from the theory of gradient systems with the toolbox for rate-independent evolution, thus reflecting the
mixed character of the problem. Finally, we discuss applications to a class of rate-independent processes in
visco-elastic solids with inertia, and to a recently proposed model for damage with plasticity.

1. Introduction

The modeling of dissipative processes in mechanical systems via internal variables often leads to PDE systems
which have the following structure

DuE(t, u(t), z(t)) = 0 in V∗ for a.a. t ∈ (0, T ), (1.1a)

∂R(z′(t)) + DzE(t, u(t), z(t)) = 0 in Z∗ for a.a. t ∈ (0, T ). (1.1b)

Here, the (separable) Banach spaces V and Z are the state spaces for the (slow) variable u and the (fast)
internal variable z, with z′ its time derivative. A guiding example is the deformation of a body under the
influence of dissipative processes such as, e.g., damage, plasticity, phase transformations, or delamination.
Assuming small strains, the deformation of the body is described by its displacement field u, whereas, within
the theory of generalized standard materials [HN75] (see also [Fré02]), the changes of its elastic behavior due
to the evolving dissipative processes are modeled by an internal variable z. The evolution of the system results
from a trade-off between the two competing mechanisms of energy conservation and energy dissipation, caused
by time-dependent external loadings. Here and in what follows, the latter are included in the time-dependent
energy functional E : [0, T ]×V×Z → (−∞, +∞], (DuE and DzE denoting its Gâteaux derivatives with respect
to the variables u and z); dissipation in z is evaluated through a positive, lower semicontinuous, and convex
dissipation potential R : Z → [0, +∞], which we assume in addition to be positively 1-homogeneous. Thus
system (1.1) is invariant under rescalings of the time variable, i.e. it is rate-independent. We refer to [Mie05]
and [Mie11] for surveys on the analysis of such class of systems.

In this paper we want to analyze the case in which the variable u additionally evolves subject to viscous

dissipation (for example, according to Kelvin-Voigt rheology in the frame of material modeling). On top of
that we also allow for the presence of inertia. Thus, (1.1a) is replaced by the evolutionary equation

%u′′(t) + ∂V(u′(t)) + DuE(t, u(t), z(t)) 3 0 in V∗ for a.a. t ∈ (0, T ), (1.1c)

where % ≥ 0. The (lower semicontinuous, convex) dissipation potential V : V → [0, +∞) has superlinear growth
at infinity, namely lim‖v‖V↑+∞

V(v)
‖v‖V = +∞. The kinetic energy leading to the inertial term %u′′ in (1.1c) is of

the form

K(u′) =
%

2
‖u′‖2W with W a Hilbert space such that V ⊂ W continuously and densely. (1.2)

Observe that, for % = 0 system (1.1b, 1.1c) falls into the class of (generalized) gradient systems; in what follows,
we will refer to it with the symbol (V,Z, V, R, E). In the case with inertia (i.e., if % > 0), (1.1b, 1.1c) contains
a reversible term and thus ceases to be a pure gradient system. We shall refer to it as an evolutionary system

and denote it by (V,W,Z, V, R, E).

Despite its mixed rate-independent/rate-dependent character, (1.1b, 1.1c) retains all the difficulties attached
to the analysis of purely rate-independent systems. In particular, due to the linear growth at infinity of the
potential R, for the variable z as a function of time we only have BV-regularity, which does not guarantee the
existence of the pointwise derivative z′(t) and thus calls for weak solvability concepts for (1.1b, 1.1c).

This issue was first addressed in [Rou09], focusing on a class of processes with a mixed rate-independent/rate-
dependent character in generalized standard materials, modeled by a system of the type (1.1b,1.1c), with a
quadratic dissipation potential V. In the spirit of the concept of energetic solutions for rate-independent
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2 COUPLING RATE-INDEPENDENT AND RATE-DEPENDENT PROCESSES

systems, cf. [Mie05], an energetic-type weak solvability concept was proposed and analyzed in [Rou09]. This
has provided a sound mathematical basis for various subsequent extensions, in particular to systems coupling
rate-independent, rate-dependent, and thermal processes in thermo-visco-elastic materials, cf. [Rou10]. It has
also paved the way to the recent [RT14], where a broad class of models encompassing rate-independent and
rate-dependent processes coupled with temperature evolution and phase separation has been tackled.

In this paper, though, we will confine ourselves to the isothermal setting. We aim to revisit the analysis
carried out in [Rou09] from a more abstract and general perspective. This will allow us to extend the existence
results in [Rou09] to a much broader class of dissipation potentials V and energy functionals E. In particular,
let us mention that the energies considered in [Rou09] need not be differentiable w.r.t. the variable z, as the
energetic-type solution notion therein used does not involve the Gâteaux differential DzE, but they are taken
to be sufficiently smooth wr.t. u, and with suitable convexity properties. Here, instead, we focus on the case in
which the functional u 7→ E(t, u, z) is as nonconvex and nonsmooth as possible. Accordingly, we will replace the
Gâteaux differential DuE in (1.1c) by the Fréchet subdifferential of E with respect to u, namely the multivalued
operator ∂−u E : [0, T ]×V × Z ⇒ V∗ defined at a point (t, u, z) in the domain of E by

ξ ∈ ∂−u E(t, u, z) if and only if lim inf
v→u in V

E(t, v, z)− E(t, u, z)− 〈ξ, v − u〉U
‖v − u‖V

≥ 0. (1.3)

Indeed, ∂−u E may be understood as a localization of the subdifferential of E (w.r.t. u) in the sense of convex
analysis, and in fact it reduces to the latter object as soon as the functional u 7→ E(t, u, z) is convex, whereas
if u 7→ E(t, u, z) is Gâteaux-differentiable, then ∂−u E(t, u, z) reduces to the singleton {DuE(t, u, z)}. Therefore,
we will study the subdifferential inclusion

%u′′(t) + ∂V(u′(t)) + ∂−u E(t, u(t), z(t)) 3 0 in V∗ for a.a. t ∈ (0, T ), (1.4a)

coupled with the (formally written)

∂R(z′(t)) + DzE(t, u(t), z(t)) = 0 in Z∗ for a.a. t ∈ (0, T ). (1.4b)

1.1. Solution concepts for (1.4). As previously mentioned, already in the pure rate-independent context
the lack of time regularity of z due to the rate-independent character of the flow rule (1.4b) makes it necessary
to resort to a weak solvability concept. The one we are going to adopt in this coupled rate-independent/rate-
dependent framework is the natural generalization of the energetic notion proposed for the specific class of
systems in [Rou09], involving a quadratic dissipation V.

In order to motivate our notion(s) of solution, let us momentarily continue to argue with the formally written
system (1.4), observing that it can be rewritten as

− (%u′′(t)+ξ(t)) ∈ ∂V(u′(t)) with ξ(t) ∈ ∂−u E(t, u(t), z(t)) 3 0 in V∗ for a.a. t ∈ (0, T ),

−DzE(t, u(t), z(t)) ∈ ∂R(z′(t)) in Z∗ for a.a. t ∈ (0, T ).
(1.5)

Recall that, for a given convex and lower semicontinuous functional Φ one has ζ ∈ ∂Φ(w) if and only if there
holds Φ(w)+Φ∗(ζ) = 〈ζ, w〉, where the Fenchel-Moreau conjugate is defined by Φ∗(ζ) := supw{〈ζ, w〉−Φ(w)}.
Therefore, introducing the conjugates V∗ and R∗, (1.5) rewrites as

V(u′(t)) + V∗(−(%u′′(t)+ξ(t))) = − 〈(%u′′(t)+ξ(t)), u′(t)〉V for a.a. t ∈ (0, T ),

R(z′(t)) + R∗(−DzE(t, u(t), z(t))) = − 〈DzE(t, u(t), z(t)), z′(t)〉Z for a.a. t ∈ (0, T ).
(1.6)

Now, taking into account the definition and properties of V∗ and R∗, it is not difficult to see that the two
separate identities in (1.6) are equivalent to

V(u′(t)) + V∗(−(%u′′(t)+ξ(t))) + R(z′(t)) = − 〈(%u′′(t)+ξ(t)), u′(t)〉V− 〈DzE(t, u(t), z(t)), z′(t)〉Z

= − d
dt

E(t, u(t), z(t)) + ∂tE(t, u(t), z(t))−K(u′(t))
(1.7a)

for a.a. t ∈ (0, T ), obtained by adding them up, using the chain rules for E and for the kinetic energy K, and
the fact that, by the 1-homogeneity of R, its conjugate R∗ is the indicator functional of the set K∗ = ∂R(0) =
{η ∈ Z∗ : 〈η, ζ〉Z ≤ R(ζ) for all ζ}. Therefore, one has in fact to add to (1.7a) the constraint

−DzE(t, u(t), z(t)) ∈ ∂R(0) in Z∗ for a.a. t ∈ (0, T ) . (1.7b)
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We are now in the position to state our weak solvability notion for system (1.4): We call a pair (u, z) : [0, T ] →
V×Z an energetic solution to the gradient system (V,Z, V, R, E), resp. evolutionary system (V,W,Z, V, R, E)
for % > 0, if it fulfills

(1) the subdifferential inclusion (1.4a);
(2) the semistability condition

E(t, u(t), z(t)) ≤ E(t, u(t), z̃) + R(z̃−z(t)) for all z̃ ∈ Z for all t ∈ [0, T ]; (1.8a)

(3) the energy-dissipation inequality

%

2
‖u′(t)‖2W +

∫ t

0

V(u′(s)) + V∗(−ξ(s)−%u′′(s))ds + VarR(z, [0, t]) + E(t, u(t), z(t))

≤ %

2
‖u′(0)‖2W + E(0, u(0), z(0)) +

∫ t

0

∂tE(s, u(s), z(s))ds for all t ∈ [0, T ],
(1.8b)

with ξ(s) a selection in ∂−u E(s, u(s), z(s)) fulfilling (1.4a), i.e. %u′′(s) + ω(s) + ξ(s) = 0 with ω(s) ∈
∂V(u′(s)), for almost all s ∈ (0, T ).

First of all, let us remark that due to V(u′(t)) + V∗(−ξ(s)−%u′′(s)) = 〈∂V(u′(t)), u′(t)〉V by convexity, in
the case of a quadratic dissipation potential V the energetic solutions in the sense of (1.8) coincide with
the ones introduced in [Rou09, Def. 5.1]. Clearly, the energy-dissipation inequality (1.8b) is the integrated,
inequality version of (1.7a), whereas the semistability (1.8a) can be understood as a weak form of condition
(1.7b). This solution concept well reflects the mixed character of system (1.4). On the one hand, in the spirit
of the energetic formulation of (purely) rate-independent systems, it features an energy (in-)equality and a
(semi)stability condition in which the rate-dependent character of the variable u is tracked by the fact that
only the variable z is allowed to vary, whereas u is kept fixed. On the other hand, (1.8b) is reminiscent of the
energy identity (also often referred to as De Giorgi principle, cf. [Mie14])

∫ t

0

(V(u′(s)) + V∗(−DuE (s, u(s)))) ds + E (t, u(t)) = E (0, u(0)) +
∫ t

0

∂tE (s, u(s))ds . (1.9)

Its validity is equivalent, under suitable conditions on the energy functional E (not depending on the variable
z), to the fact that u is a solution to the (pure) gradient system

∂V(u′(t)) + DuE (t, u(t)) 3 0 in V∗ for a.a. t ∈ (0, T ), (1.10)

cf. [RMS08, MRS13b]. This principle has also been exploited for the Vlasov-Fokker-Planck equation in [DPZ13].

We will also work with a weaker solution notion, referred to as weak energetic solution, where the validity of
the subdifferential inclusion (1.4a) is no longer claimed and thus only the semistability (1.8a) and the energy-
dissipation inequality (1.8b) (with ξ(s) a selection of ∂−u E(s, u(s), z(s)) for a.e. s ∈ (0, T )) are required to hold,
similarly as for energetic solutions to (purely) rate-independent system. Due to its intrinsically variational

character, this concept will turn out to be particularly flexible for the Evolutionary Γ-convergence analysis for
gradient and evolutionary systems in the forthcoming [RT15], in the same spirit as in [MRS08, Mie14].

The argument guaranteeing the passage from weak energetic to energetic solutions is drawn from the vari-
ational theory for gradient systems in [MRS13b]. Therein it was proved that, if the energy satisfies a suitable
chain-rule inequality, then any curve fulfilling (1.9) a priori only in terms of an inequality “≤“, indeed complies
with the energy equality (1.9), and it is thus a solution to (1.10). Similarly, in the forthcoming Proposition 3.2
we are going to show that any weak energetic solution along which the (integral) chain-rule inequality

∫ t

0

〈DuE(s, u(s), z(s)), u′(s)〉V ds

≤ E(t, u(t), z(t))− E(0, u(0), z(0))−
∫ t

0

∂tE(s, u(s), z(s))ds + VarR(z, [0, t]) for all t ∈ [0, T ],
(1.11)

holds, is in fact an energetic solution (thus fulfilling the subdifferential inclusion (1.4a)), such that (1.8b)
holds as an energy-dissipation balance. In Theorem 3.6 we will also provide some sufficient conditions on E

guaranteeing the validity of (1.11) along weak energetic solutions. The proof of the latter result is in turn
based on the combination of the semistability condition (1.8a) with Riemann sum techniques, with arguments
typical of the theory of rate-independent systems, cf. [DMFT05, Mie05, MM05].
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1.2. Existence results. To obtain existence results, we will follow an approach akin to the one for gradient
flows and gradient systems in [Amb95, AGS08, RS06, RMS08, MRS13b], and for rate-independent evolution
in [MT04, Mie05, Mie11, MRS08]: Namely, we will enucleate a series of abstract conditions on the energy E

and on the dissipation potentials V and R, guaranteeing the existence (via limit passage in carefully devised
time-discretization schemes) of:

Theorem 1: energetic solutions to (V,Z, V, R, E) for V quadratic;
Theorem 2: weak energetic solutions to (V,Z, V, R, E) for general V with superlinear growth;
Theorem 3: weak energetic solutions to (V,W,Z, V, R, E) for general V with superlinear growth;
Theorem 4: energetic solutions to (V,W,Z, V, R, E) for V quadratic.

In accordance with the mixed rate-independent/rate-dependent character of the problem, our analysis for
(weak) energetic solutions to the gradient (evolutionary) system (V,Z, V, R, E) ((V,W,Z, V, R, E), resp.) will
combine tools for (pure) gradient systems with ideas from the theory of rate-independent processes. While
postponing to Sections 2, 4, and 5 a detailed analysis of all of our hypotheses, let us briefly highlight here their
most significant features, focusing on the case of the gradient system (V,Z, V, R, E).

First of all, as standard for gradient flows, we require coercivity, i.e. that there exists τo > 0 such that for
every (uo, zo) ∈ V × Z

the map (u, z) 7→ E(t, u, z) + τoV

(
u− uo

τo

)
+ R(z − zo) has sublevels bounded in U×X, (1.12)

where the spaces U ⊂ V and X ⊂ Z with continuous embeddings. In fact, (1.12) is the minimal coercivity
requirement to ensure that the alternate time-incremental minimization scheme

un
τ ∈ Argmin

u∈V

(
τV

(
u− un−1

τ

τ

)
+ E(tn, u, zn−1

τ )
)

,

zn
τ ∈ Argmin

z∈Z

(
τR

(
z − zn−1

τ

τ

)
+ E(tn, un

τ , z)
)

,

(1.13)

yielding discrete solutions to (1.4) in the case of a general dissipation potential V with superlinear growth, does
admit solutions. One then constructs approximate solutions to (1.4) by interpolating them suitably.

A crucial step in the existence proof is the derivation of a discrete energy-dissipation inequality satisfied by
the approximate solutions: all a priori estimates stem from it, and one has to pass to the limit in this discrete
inequality to obtain the time-continuous (1.8b). Again focusing on the case of gradient systems where % = 0,
we will exploit two methods of proof to obtain the discrete version of (1.8b).

(1) For the case of a general dissipation potential, we will resort to specific techniques from the theory
of Minimizing Movements for gradient flows employing the notion of variational interpolant of the
discrete solutions due to E. De Giorgi, cf. [Amb95, AGS08].

(2) For V quadratic, we will make use of a suitable condition on the Fréchet subdifferential ∂−u E, referred
to as uniform Fréchet subdifferentiability, namely

∃Λ ≥ 0 ∀ t ∈ [0, T ], ∀u, v ∈ V, ∀ z ∈ Z ∀ ξ ∈ ∂−u E(t, u, z) :

E(t, v, z)− E(t, u, z) ≥ 〈ξ, v − u〉V−Λ‖v − u‖2V
(1.14)

Essentially, (1.14) gives a global character to inequality (2.10) defining the Fréchet subdifferential. As
we will see, it is guaranteed if, e.g., u 7→ E(t, u, z) fulfills some λ-convexity property.

A key ingredient for passing to the limit in the discrete energy-dissipation inequality, and in the (discrete
version) of the subdifferential inclusion (1.4a), will be a suitable closedness/continuity condition on (∂uE−, E).
It ensures that the graph of the Fréchet subdifferential ∂uE is closed in the strong-weak topology of V ×V∗

along sequences with bounded energy, and in some qualified situations, leading to enhanced (weak) energetic
solutions, also that the energy functional is itself continuous along such sequences. While in the case of general
dissipation potentials we will have to impose this requirement additionally, in the analysis of the case with V

quadratic we will see that closedness/continuity can be in fact derived as a consequence of the uniform Fréchet
subdifferentiability condition, in combination with a further recovery sequence condition on E.

Finally, in order to prove the semistability (1.8a) we will exploit a version of the mutual recovery sequence
condition proposed in [MRS08] for the fully rate-independent setting. This condition allows us to pass to the
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limit in the discrete form of the semistability condition by requiring that, given a sequence (un, zn)n ⊂ V×Z
semistable at times tn and such that (tn, un, zn) → (t, u, z) in suitable topologies, for every z̃ ∈ Z there exists
a recovery sequence (z̃n)n ⊂ Z converging to z̃ and such that

lim sup
n→∞

(R(z̃n−zn) + E(tn, un, z̃n)− E(tn, un, zn)) ≤ R(z̃−z) + E(t, u, z̃)− E(t, u, z). (1.15)

In this way, semistability (i.e. positivity of the r.h.s. in (1.15) for any z̃ ∈ Z) is preserved in the limit passage.

1.3. Applications. To illustrate the outcome of our existence analysis for system (1.4), we have focused on
applications to

(1) the class of rate-independent processes in viscous solids tackled in [Rou09], revisiting and extending
the existence results proved therein;

(2) a coupled damage-plasticity model recently proposed in [AMV14], whose analysis falls outside the scope
of the results in [Rou09].

More precisely, in Section 6.1 we will consider systems pertaining to the class (1.4) and modeling the
rate-independent evolution of an internal variable z, describing the elastic behavior of a body also subject to
viscosity and inertia, at small strains. Thus, the displacement u of the body will play the role of the rate-
dependent variable u. Following [Rou09], we will confine the discussion to a quadratic dissipation potential on
the strain rate ε(u′) and instead address quite a broad family of energy functionals of the form E(t,u, z) :=∫
Ω

ϕ(ε(u), z,∇z)− f(t)·udx, with f a given external force. In [Rou09], the author proposed several classes of
conditions on the energy density ϕ ensuring the existence of an energetic solution to system (1.4). In Sec. 6.1
we will show that all the energies considered in [Rou09] fulfill the conditions of our abstract Thm. 1 (in the case
where inertial effects are neglected), and Thm. 4, and thus we will recover the existence results from [Rou09].
This seems to indicate that our abstract approach has a unifying and ultimately simplifying character.

It also paves the way to extensions of the analysis developed in [Rou09], tackled in Sec. 6.2. In particular,
therein we will deduce the existence of weak energetic solutions for rate-independent damage processes in
viscous solids driven by non-quadratic dissipation potential acting on ε(u′), and by energies encompassing a
BV, instead of a Sobolev, regularizing gradient term in the damage variable.

Finally, in Sec. 6.3 we will show the flexibility of our approach by tackling a different type of mixed system,
where both the rate-independent and the rate-dependent variables are internal variables. More specifically,
we will consider a (purely) elastic body subject to damage, encompassing in the model the development of
plasticity. While for the plastic tensor we will standardly assume a rate-independent evolution, we will take
the dissipation potential acting on the damage rate to be quadratic. The displacement will be governed by the
static balance of elastic energy. The resulting PDE system will be cast in the form (1.4) by introducing the
reduced energy obtained by minimizing out the displacements. Then, with careful calculations we will check
that Theorem 1 applies, yielding the existence of energetic solutions.

Plan of the paper. In Section 2 we set up the abstract functional analytic setting for (1.4) and fix the basic

conditions on the energy E and the dissipation potentials V and R that will be adopted throughout the paper.
Section 3 focuses on the notions of energetic and weak energetic solutions to (1.4), on their respective properties
and mutual relations; finally, in Sec. 3.3 we show that, under uniform convexity of the energy the temporal
regularity of the rate-independent variable z improves, thus extending to this mixed framework some of the
results well known in the rate-independent context.

In Section 4 we present our existence results, Theorems 1 & 2, for the gradient system (V,Z, V, R, E), in the
case V quadratic and general V with superlinear growth, respectively. We thoroughly discuss all of our abstract
conditions on E, V, R, and finally illustrate them on some examples in Sec. 4.3. The existence Thms. 3 and 4
for the evolutionary system (V,W,Z, V, R, E), for V general and V quadratic, resp., are stated in Section 5,
where we also develop some comparison with the existence and approximation results by E. Emmrich for
abstract second order nonlinear evolution equations. Section 6 is devoted to the applications.

The proofs of Thms. 1–4 are given throughout Section 7, also relying on some tools from the theory of
Young measures with values in Banach spaces, shortly recapped in Appendix A.
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2. Setup

In the following, we will denote by ‖ · ‖X the norm of a Banach space X, and by 〈·, ·〉X the duality pairing
between X∗ and X. If X is a Hilbert space, its inner product shall be denoted by (·, ·)X . With the symbol
B([0, T ]; X) we will denote the space of bounded, everywhere defined functions on [0, T ] with values in X.

Topological setup. The conditions on the map u 7→ E(t, u, z) will involve two

(separable) reflexive Banach spaces U ⊂ V with a continuous and dense embedding. (2.1a)

Furthermore, in the case inertial effects are included in system (1.4), there will come into play

a Hilbert space W, identified with its dual W∗, such that

{
U b W compactly,

V ⊂ W continuously and densely.
(2.1b)

Hence,
U ⊂ V ⊂ W = W∗ ⊂ V∗ ⊂ U∗ with continuous and dense embeddings (2.2)

and
〈w, u〉V = (w, u)W for all u ∈ V and w ∈ W. (2.3)

The assumptions on z 7→ E(t, u, z) will feature two Banach spaces

X ⊂ Z continuously, with X dual of a separable Banach space, (2.4a)

and X endowed with a topology σX such that

bounded sets in X are σX-sequentially compact, and

zn
σX→ z in X ⇒ zn ⇀ z in Z.

(2.4b)

Remark 2.1. Let us highlight that (2.4) encompasses the two following situations:

(1) the space X is reflexive: in this case, we take σX to be the weak topology on X;
(2) the space X embeds compactly in Z: in this case, σX is the strong topology on Z.

Our basic conditions on the functional E mimic the conditions on energy E = Et(u) -independent of z-,
proposed in [MRS13b].

Hypothesis 2.2 (Basic conditions on E). The functional E : [0, T ]×V× Z → (−∞, +∞] has proper domain

dom(E) = [0, T ]×Du ×Dz, with Du ⊂ U and Dz ⊂ X. Moreover,

∀ t ∈ [0, T ] the map (u, z) 7→ E(t, u, z) is weakly lower semicontinuous on V × Z, (2.5a)

and E is bounded from below, i.e.

∃C0 > 0 ∀ (t, u, z) ∈ [0, T ]×Du ×Dz : E(t, u, z) ≥ C0 ; (2.5b)

in fact, since E is bounded from below, up to a shift we may always assume that it is bounded by a strictly

positive constant. Furthermore, we require that

∀ (u, z) ∈ Du ×Dz the map t 7→ E(t, u, z) is differentiable, with derivative ∂tE(t, u, z) s.t.

∃C1, C2 > 0 ∀ (t, u, z) ∈ [0, T ]×Du ×Dz : |∂tE(t, u, z)| ≤ C1 (E(t, u, z) + C2) and fulfilling

for all sequences tn → t, un ⇀ u in V, zn ⇀ z in Z with sup
n

E(tn, un, zn) ≤ C

there holds lim sup
n→∞

∂tE(tn, un, zn) ≤ ∂tE(t, u, z).

(2.5c)

Let us set

G(u, z) := sup
t∈[0,T ]

E(t, u, z) for all (u, z) ∈ Du ×Dz and (2.6)

SE := {(u, z) ∈ Du ×Dz : G(u, z) ≤ E} for E > 0. (2.7)

As a consequence of the power estimate in (2.5c) and of Gronwall’s inequality there holds

∀ s, t ∈ [0, T ], ∀ (u, z) ∈ SE : E(t, u, z) + C2 ≤ exp(C1|t− s|) (E(s, u, z) + C2) , (2.8)

so that we in particular have the following estimate, which will play a crucial role in our analysis

∃K1, K2 > 0 ∀ (t, u, z) ∈ [0, T ]×Du ×Dz : G(u, z) ≤ K1E(t, u, z) + K2 . (2.9)



COUPLING RATE-INDEPENDENT AND RATE-DEPENDENT PROCESSES 7

Let us also recall that the Fréchet subdifferential ∂−u E : V ⇒ V∗ of E w.r.t. u is defined at (t, u, z) ∈
[0, T ]×Du ×Dz by

ξ ∈ ∂−u E(t, u, z) ⇔ E(t, v, z)− E(t, u, z) ≥ 〈ξ, v − u〉V +o(‖v − u‖V) as v → u in V. (2.10)

It is not difficult to check that for every (t, u, z) ∈ [0, T ]×Du ×Dz the set ∂−u E(t, u, z) is closed and convex.

For the dissipation potentials V and R we require:

Hypothesis 2.3 (Basic conditions on V and R). The functional V : V → [0, +∞) is lower semicontinuous,

convex, and fulfills

V(0) = 0, lim
‖v‖V↑+∞

V(v)
‖v‖V

= +∞. (2.11a)

The functional R : Z → [0, +∞], with domain dom(R), is lower semicontinuous, convex, 1-positively homoge-

neous, i.e.

R(λζ) = λR(ζ) for all ζ ∈ Z and λ ≥ 0, (2.11b)

and coercive

∃CR > 0 ∀ ζ ∈ Z R(ζ) ≥ CR‖ζ‖Z. (2.11c)

Recall that the lower semicontinuity of a functional together with convexity results in its weak lower semi-
continuity. Hereafter, we will denote by V∗ : V∗ → [0, +∞) the convex conjugate of V, defined by

V∗(ξ) := sup
v∈V

( 〈ξ, v〉V−V(v)) . (2.12)

It follows from the fact that dom(V) = V that V is continuous and that V∗ as well has superlinear growth at
infinity (cf. e.g. [ET74, Chap. 1, Cor. 2.5]), namely

lim
‖ξ‖V∗↑+∞

V∗(ξ)
‖ξ‖V∗

= +∞. (2.13)

We will denote by VarR the notion of total variation induced by R. Given a curve z : [0, T ] → Z and a
subinterval [s, t] ⊂ [0, T ], we set

VarR(z; [s, t]) := sup





N∑

j=1

R(z(rj)− z(rj−1)) : s = r0 < r1 < . . . < rN−1 < rN = t



 . (2.14)

Due to (2.11c), if VarR(z; [0, T ]) < +∞ then z ∈ BV([0, T ];Z) and the R-total variation estimates the total
variation induced by ‖ · ‖Z, viz.

VarR(z; [0, T ]) ≥ Var(z; [s, t]).

Remark 2.4 (State-dependent dissipation potentials). Most of the forthcoming results, and in particular the
existence Theorems 1–4, could be extended to the case that the dissipation potential V depends on the state
variable q = (u, z). More specifically, along the lines of [MRS13b] we could consider a family (Vq)q∈Du×Dz of
dissipation potentials such that

(1) for every q ∈ Du×Dz the functional Vq : V → [0, +∞) is convex and lower semicontinuous;
(2) the dissipation potentials (Vq)q∈Du×Dz and (V∗q)q∈Du×Dz have superlinear growth at infinity, uniformly

w.r.t. q in sublevels of the energy, i.e.

∀S > 0 :

{
lim‖v‖V→+∞ infG(q)≤S Vq(v) = +∞,

lim‖ξ‖V∗→+∞ infG(q)≤S V∗q(ξ) = +∞;
(2.15a)

(3) the dependence q 7→ Vq is continuous, on sublevels of the energy, in the sense of Mosco-convergence
(cf. e.g. [Att84]), i.e.

∀S > 0 : qn ⇀ q in V × Z, G(qn) ≤ S, vn ⇀ v in V ⇒ lim inf
n→∞

Vqn
(vn) ≥ Vq(v),

∀S > 0 : qn ⇀ q in V × Z, G(qn) ≤ S, v ∈ V ⇒
{
∃ vn → v in V,

limn→∞ Vqn
(vn) = Vq(v).

(2.15b)
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The extension of our results to a family (Rq) of 1-positively homogeneous potentials seems to be more
delicate, starting from the fact that it would not be completely clear how to define the total variation induced
by (Rq). That is why, we choose to overlook this issue in the fully general setting, whereas in Sec. 6.3 we
will briefly describe how one of our existence results, Thm. 1, could be adapted to encompass a very specific
dependence of R on the sole variable u.

For the limit passage in (approximate versions) of the semistability condition, a key role will be played
by the following recovery sequence condition, originally introduced in [MRS08], which is also termed mutual

because it involves the energy E and the dissipation R.

Hypothesis 2.5 (Mutual Recovery Sequence condition). Let (tn, un, zn)n ⊂ [0, T ] × Du × Dz fulfill for ev-

ery n ∈ N the semistability condition (1.8a), and suppose that tn → t, (un, zn) ⇀ (u, z) in V × Z with

supn∈N G(un, zn) ≤ C.

Then for every z̃ ∈ Z there exists z̃n ⇀ z̃ in Z such that

lim
n→∞

(R(z̃n−zn) + E(tn, un, z̃n)− E(tn, un, zn)) ≤ R(z̃−z) + E(t, u, z̃)− E(t, u, z). (2.16)

Remark 2.6. In certain cases (cf. Remark 4.9), it will be sufficient to require a weaker variant of Hypothesis
2.5, in which we suppose that for every z̃ ∈ Z it is possible to construct a recovery sequence (z̃n)n fulfilling
(2.16), whenever the sequence (tn, un, zn)n ⊂ [0, T ]× Du × Dz fulfills the conditions of Hypothesis 2.5 and, in
addition, we have the energy convergence

E(tn, un, zn) → E(t, u, z). (2.17)

We close this section stating the main coercivity assumption on the map E(t, ·, ·). Observe that, in the in
the spirit of the variational approach to gradient flows (cf. [AGS08, Chap. 2, Sec. 2.1]), we require a property
on the sublevels of the functional G added with V and R, in place of the sublevels of the sole G. In fact, this
is the minimal coercivity/compactness requirement on the energy to ensure the existence of solutions to the
time-incremental minimization scheme(s) we shall use to discretize (1.4), as well as the compactness for the
related family of approximate solutions to (1.4).

Hypothesis 2.7 (Coercivity). There exist τo > 0 such that for all uo ∈ V and zo ∈ Z

the map (u, z) 7→ G(u, z) + τoV

(
u− uo

τo

)
+ R(z − zo) has sublevels bounded in U×X. (2.18)

Observe that (2.18) guarantees the separate coercivity properties

∀ z̄ ∈ Dz the map u 7→ G(u, z̄) + τoV

(
u− uo

τo

)
has sublevels bounded in U, (2.19a)

∀ ū ∈ Du the map z 7→ G(ū, z) + R(z − zo) has sublevels bounded in X. (2.19b)

As a consequence of (2.19b) and of (2.4), a sequence (zn)n bounded in Z such that supn∈N G(ū, z̄n) ≤ C for
some C > 0 and ū ∈ Du admits a subsequence converging with respect to the σX-topology. Instead, with
(2.19a) we are requiring that E(t, ·, z) (added up with V) has bounded sublevels in U, which may or may not
be compactly embedded in V. In other words, we encompass in our analysis these two cases:

- the energy E(t, ·, z) and the dissipation potential V have sublevels bounded in the same space;
- the energy E(t, ·, z) has sublevels compact in the space V of the dissipation V.

The following examples are prototypes of these two situations. The different choices for the space V reflect
the different character of the equation ruling the evolution of the “viscous” variable u. To make this more
transparent, we drop the dependence on the variable z.

Example 2.8 (Linear visco-elasticity). Let Ω ⊂ Rd be a bounded Lipschitz domain. We take V = H1
0 (Ω; Rd),

the dissipation potential V(v) :=
∫
Ω

1
2ε(v) : D : ε(v) dx with D ∈ Rd×d×d×d positive definite and symmetric

(ε(v) = 1
2 (∇v+∇v>)∈Rd×d denoting the linearized strain tensor), and the energy functional E : [0, T ]×V → R

defined by

E(t,u) :=
∫

Ω

1
2ε(u) :C :ε(u)dx−

∫

Ω

f(t)·udx,
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with C ∈ Rd×d×d×d positive definite and symmetric, and f ∈ C1([0, T ]; H−1(Ω; Rd)) a given external loading.

In this case, E is coercive in the space U = V = H1
0 (Ω; Rd). Choosing W = L2(Ω; Rd), the viscous equation

(1.4a) yields classical linear visco-elasticity equation with inertia

%ü− div(D :ε(u̇) + C :ε(u)) = f in Ω× (0, T ),

with homogeneous Dirichlet boundary conditions on u.

Example 2.9 (L2-gradient flow). We take V = L2(Ω), the dissipation potential

V(v) :=
∫

Ω

1
2 |v|2 dx for every v ∈ L2(Ω),

and the energy functional E : [0, T ]×V → (−∞, +∞] defined by

E(t, u) :=

{∫
Ω

(
1
2 |∇u|2 + W (u)

)
dx−

∫
Ω

f(t)udx if u ∈ H1(Ω),

+∞ otherwise,
(2.20)

with W ∈ C1(R) possibly nonconvex, and fulfilling the growth condition (cf. also Example 4.15) c1|u|q − c2 ≤
W (u) ≤ c3|u|q + c4 for positive constants c1, . . . , c4, with the exponent q such that 2(q − 1) ≤ 2? = 2d

d−2 (to fix

ideas, if d = 3 we find the condition q ≤ 4, e.g. fulfilled by the double-well potential W (u) = 1
4 (u2 − 1)2). In

this case, E is coercive in the space

U = H1(Ω) b V = L2(Ω),

and, in the case % = 0, (1.4a) reduces to the gradient flow

u̇−∆u + W ′(u) = f in Ω× (0, T ).

3. Solution concepts and their properties

In Secs. 3.1 and 3.2 we give the two solvability notions for system (1.4) that will be studied throughout
the paper and thoroughly examine their properties, as well as their relation. Finally, in Sec. 3.3 we show
that, under suitable uniform convexity properties of the map z 7→ E(t, u, z), for any (enhanced) weak energetic
solution (u, z) the map t 7→ z(t) enjoys additional regularity properties.

3.1. Energetic solutions. The following notion extends the one proposed in [Rou09, Def. 5.1] for the case
of rate-independent processes in viscous solids, to the case of the abstract system (1.4), and to a general

dissipation potential V.

Definition 3.1 (Energetic solution). Let % ≥ 0. In the setting of Hypotheses 2.2 and 2.3, We call a pair

(u, z) : [0, T ] → V × Z an energetic solution to the gradient system (V,Z, V, R, E) (to the evolutionary system

(V,W,Z, V, R, E) in the case % > 0) if

u ∈ L∞(0, T ;U) ∩W 1,1(0, T ;V), %u′ ∈ L∞(0, T ;W), (3.1a)

z ∈ L∞(0, T ;X) ∩ BV([0, T ];Z) (3.1b)

fulfill the

- subdifferential inclusion for u

%u′′(t) + ∂V(u′(t)) + ∂−u E(t, u(t), z(t)) 3 0 in V∗ for a.a. t ∈ (0, T ), (3.2)

viz. %u′′(t)+ω(t)+ξ(t) = 0, with ξ(t) ∈ ∂−u E(t, u(t), z(t)) and ω(t) ∈ ∂V(u′(t)) for almost all t ∈ (0, T );
- semistability condition

E(t, u(t), z(t)) ≤ E(t, u(t), z̃) + R(z̃−z(t)) for all z̃ ∈ Z for all t ∈ [0, T ]; (3.3)

- energy-dissipation inequality

%

2
‖u′(t)‖2W +

∫ t

0

V(u′(s)) + V∗(−ξ(s)−%u′′(s))ds + VarR(z, [0, t]) + E(t, u(t), z(t))

≤ %

2
‖u′(0)‖2W + E(0, u(0), z(0)) +

∫ t

0

∂tE(s, u(s), z(s))ds for all t ∈ [0, T ],
(3.4)

with ξ(s) a selection in ∂−u E(s, u(s), z(s)) fulfilling (3.2) for almost all s ∈ (0, T ).
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Finally, we call an energetic solution (u, z) enhanced if it fulfills the energy-dissipation inequality (3.4) on

any interval (s, t), for all t ∈ (0, T ] and for almost all s ∈ (0, t).

Observe that, in the case V is a quadratic functional and independent of the state variable (cf. (4.1) later
on), the energy-dissipation inequality (3.4) becomes

%

2
‖u′(t)‖2W +

∫ t

0

2V(u′(s))ds + VarR(z, [0, t]) + E(t, u(t), z(t))

≤ %

2
‖u′(0)‖2W + E(0, u(0), z(0)) +

∫ t

0

∂tE(s, u(s), z(s))ds for all t ∈ [0, T ].
(3.5)

Our next result generalizes [Rou09, Prop. 5.2] (cf. also [Rou10, Prop. 3.2]) to the case of E(t, ·, z) pos-
sibly nonsmooth. It addresses the passage from energetic to pointwise solutions of system (1.4). To avoid
overburdening the paper, we will state it in the case of gradient systems (i.e. for % = 0), and leave to the
reader the straightforward generalization to the case with inertia. In Proposition 3.2, we have to assume that
E(t, u, ·) is of class C1, and that E fulfills a suitable chain-rule inequality featuring the Fréchet differential of
E(t, u, ·) and the Fréchet subdifferential of E(t, ·, z). Hence, we show that, under the additional information
that z ∈ AC([0, T ];Z), then any energetic solution solves system (1.4) pointwise a.e. in (0, T ). Observe that
the additional requirement that Z has the Radon-Nikodým property ensures that absolutely continuous curves
with values in Z are differentiable in time almost everywhere on (0, T ). We also have to exclude the case that
R takes the value +∞, because the resulting constraint for the test functions in the semistability condition
would not allow us to fully exploit it.

Proposition 3.2. Let Z comply with the Radon-Nikodým property and R take values in [0, +∞). We suppose

that E(t, u, ·) ∈ C1(Z) for every (t, u) ∈ [0, T ]×Du, and that the following chain-rule inequality holds:

for every curve (u, z) ∈ AC([0, T ];V × Z) and every ξ ∈ L1(0, T ;V∗) with

ξ(t) ∈ ∂−u E(t, u(t), z(t)) for a.a. t ∈ (0, T ) and such that

sup
t∈[0,T ]

G(u(t), z(t)) < +∞,

∫ T

0

V(u′(t)) + V∗(−ξ(t))dt < +∞,

then t 7→ E(t, u(t), z(t)) is absolutely continuous on [0, T ] and

d
dt

E(t, u(t), z(t)) ≥ ∂tE(t, u(t), z(t)) + 〈ξ(t), u′(t)〉V + 〈DzE(t, u(t), z(t)), z′(t)〉Z for a.a. t ∈ (0, T ).

(3.6)

Let (u, z) be an energetic solution to the gradient system (V,Z, V, R, E) such that, in addition, z ∈ AC([0, T ];Z).
Then, (u, z) complies with the flow rule (1.4b) pointwise a.e. in (0, T ).

Proof. Testing the semistability (3.3) with z̃ = z(t) + εζ, where ζ is an arbitrary element in Z and ε > 0 is
likewise arbitrary, and arguing in the very same way as in the proof of [Rou09, Prop. 5.2] leads to the inequality
〈−DzE(t, u(t), z(t)), ζ〉V ≤ R(ζ) for every ζ ∈ Z. In particular, we deduce

〈−DzE(t, u(t), z(t)), z′(t)〉Z ≤ R(z′(t)) for a.a. t ∈ (0, T ). (3.7)

Now, we consider the energy-dissipation inequality (3.4), written for % = 0, observing that, since z ∈ AC([0, T ];Z),
we have VarR(z, [0, t]) =

∫ t

0
R(z′(s)) ds. We continue (3.4) by applying the chain-rule inequality from (3.6).

Hence, we obtain the following chain of inequalities for every t ∈ [0, T ]
∫ t

0

V(u′(s)) + V∗(−ξ(s))ds +
∫ t

0

R(z′(s))ds ≤ E(0, u(0), z(0))− E(t, u(t), z(t)) +
∫ t

0

∂tE(s, u(s), z(s))ds

≤
∫ t

0

( 〈−ξ(s), u′(s)〉V + 〈−DzE(s, u(s), z(s)), z′(s)〉Z) ds

≤
∫ t

0

V(u′(s)) + V∗(−ξ(s))ds +
∫ t

0

R(z′(s))ds,

(3.8)
where the last inequality follows from the definition (2.12) of V∗, and from (3.7). Hence all inequalities hold as
equalities and moreover, rearranging terms we conclude that

∫ t

0
(V(u′(s)) + V∗(−ξ(s))− 〈−ξ(s), u′(s)〉V) ds =
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∫ t

0
( 〈−DzE(s, u(s), z(s)), z′(s)〉Z−R(z′(s))) ds. Since the integrand in the l.h.s.-integral is positive by the def-

inition (2.12) of V∗ and the integrand on the r.h.s. is negative by (3.7), we necessarily conclude that both
integrals (and in fact both integrands, pointwise) equal zero. Hence

〈−DzE(t, u(t), z(t)), z′(t)〉Z = R(z′(t)) for a.a. t ∈ (0, T ). (3.9)

Combining this with (3.7) we get that −DzE(t, u(t), z(t)) ∈ ∂R(z′(t)) for almost all t ∈ (0, T ). This concludes
the proof. �

Remark 3.3. A close perusal of the proof of Prop. 3.2 reveals that the validity of subdifferential inclusion
(3.2) has never been used. In fact, the very same argument as in the above lines allows us to prove that,
if a pair (u, z) fulfilling (3.1a)–(3.1b) with z ∈ AC([0, T ];Z) complies with the semistability (3.3) and with
the energy-dissipation inequality (3.4), and if the energy complies with the conditions from Prop. 3.2, then
(u, z) also fulfills the flow rule (1.4b) and the subdifferential inclusion (3.2) pointwise a.e. in (0, T ). This is in
accordance with the results from [MRS13b] for rate-dependent gradient systems.

3.2. Weak energetic solutions. Let us now introduce in the following definition a much weaker solvability
notion, where the pointwise subdifferential inclusion for u is dropped. In fact, this may be hardly considered a
solution concept for the gradient and evolutionary systems (V,Z, V, R, E), (V,W,Z, V, R, E). Still, it will be
useful to bring it into play, especially in connection with the evolutionary Γ-convergence analysis of the latter
systems which will be investigated in the forthcoming [RT15].

Definition 3.4 (Weak energetic solution). Let % ≥ 0. In the setting of Hypotheses 2.2 and 2.3, we say that

a pair (u, z) : [0, T ] → V × Z as in (3.1) is a weak energetic solution to the gradient system (V,Z, V, R, E)
(to the evolutionary system (V,W,Z, V, R, E) if % > 0) if for all t ∈ [0, T ] it complies with the semistability

condition (3.3) and with the energy-dissipation inequality (3.4), with ξ(s) a selection in ∂−u E(s, u(s), z(s)) for

a.a. s ∈ (0, T ).

We call a weak energetic solution (u, z) enhanced if it fulfills the energy-dissipation inequality (3.4) on any

interval (s, t), for all t ∈ (0, T ] and for almost all s ∈ (0, t).

Although the above concept is extremely weak, slightly adapting the proof of Proposition 3.2 (cf. Remark
3.3) it can be shown that, if the energy complies with the conditions from the latter result, then any weak
energetic solution such that in addition z ∈ AC([0, T ];Z) is also an energetic solution, as well as a pointwise
solution of system (3.2, 1.4b). In Proposition 3.5 and Theorem 3.6 ahead, we will provide a different set of
conditions on the energy, still allowing us to pass from weak energetic to energetic solutions, but without the
condition that z is absolutely continuous.

First of all, Prop. 3.5 guarantees that a weak energetic solution (u, z) is in fact an energetic solution,
provided that (u, z) complies with a suitable “chain-rule inequality” in integral form, cf. (3.12) below. Then,
in Thm. 3.6 we provide sufficient conditions on the energy E, guaranteeing that any weak energetic solution
to (V,Z, V, R, E) (to (V,W,Z, V, R, E) if % > 0) complies with (3.12). Let us point out that, although
the derivation of (3.12) is at the core of the proofs of [Rou09, Prop. 5.4] as well as [Rou10, Prop. 4.3], its
role in deriving the subdifferential inclusion (3.2) from the energy-dissipation inequality (3.4) has never been
highlighted in such a generality before.

Proposition 3.5. Assume Hypotheses 2.2 and 2.3 and, in addition, that for every (t, z) ∈ [0, T ]×Dz the map

u 7→ E(t, u, z) is Gâteaux-differentiable. In the case % > 0, also suppose that

∃CV , C ′
V > 0 ∀ (v, ξ) ∈ V ×V∗ V(v) + V∗(ξ) ≥ CV | 〈ξ, v〉V | − C ′

V . (3.10)

Let (u, z) be a weak energetic solution to the gradient system (V,Z, V, R, E) (to the evolutionary system

(V,W,Z, V, R, E) if % > 0) such that, for % > 0, u has the further regularity

u ∈ W 2,1(0, T ;V∗). (3.11)

If the map t 7→ DuE(t, u(t), z(t)) is in L∞(0, T ;V∗) and if (u, z) comply with the (integral) chain rule
∫ t

0

〈DuE(s, u(s), z(s)), u′(s)〉V ds

≤ E(t, u(t), z(t))− E(0, u(0), z(0))−
∫ t

0

∂tE(s, u(s), z(s))ds + VarR(z, [0, t]) for all t ∈ [0, T ],
(3.12)
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then

(1) the energy-dissipation inequality (3.4) turns into an identity, holding along any sub-interval [s, t];
(2) (u, z) comply with the subdifferential inclusion (3.2).

Hence, (u, z) is an energetic solution.

Proof. Since
∫ t

0
V(u′(s)) + V∗(−DuE(s, u(s), z(s))−%u′′(s)) ds ≤ C, from (3.10) we gather that the map t 7→

〈−DuE(t, u(t), z(t))−%u′′(t)), u′(t)〉V is in L1(0, T ). Since t 7→ DuE(t, u(t), z(t)) is in L∞(0, T ;V∗) we have
that t 7→ 〈−DuE(t, u(t), z(t)), u′(t)〉V is in L1(0, T ), hence we conclude in the case % > 0 that

t 7→ 〈u′′(t)), u′(t)〉V is in L1(0, T ). (3.13)

Combining (3.12) with the energy-dissipation inequality (3.4) we conclude the chain of inequalities
∫ t

0

V(u′(s)) + V∗(−DuE(s, u(s), z(s))−%u′′(s))ds

≤ %

2
‖u′(0)‖2W − %

2
‖u′(t)‖2W −

∫ t

0

〈DuE(s, u(s), z(s)), u′(s)〉V ds =
∫ t

0

〈−DuE(s, u(s), z(s))−%u′′(s), u′(s)〉V ds

for all t ∈ [0, T ], where we have used that

% 〈u′′(t), u′(t)〉V =
%

2
d
dt
‖u′‖2W(t) for a.a. t ∈ (0, T )

since (V,W,V∗) is a Hilbert (or Gelfand) triple, cf. (2.3), as well as (3.13). Therefore, we find
∫ t

0

(V(u′(s)) + V∗(−DuE(s, u(s), z(s))−%u′′(s))− 〈−DuE(s, u(s), z(s))−%u′′(s), u′(s)〉V) ds ≤ 0 . (3.14)

Now, it follows from the definition of the conjugate V∗ that also the opposite of inequality (3.14) holds. Thus,
we conclude that (3.14) holds as an equality a.e. in (0, T ). Hence,

−%u′′(s)−DuE(s, u(s), z(s)) ∈ ∂V(u′(s)) for a.a. s ∈ (0, T ),

whence (3.2). Furthermore, from the above arguments it follows that (3.4) holds as an equality on every interval
[0, t] ⊂ [0, T ]. This concludes the proof. �

In the proof of Thm. 3.6 below, we derive the chain-rule inequality (3.12) from the semistability condition
(3.3), mimicking the Riemann-sum procedure from the proof of [Rou09, Prop. 5.4], see also [Rou10, Prop. 4.3],
which in turn is based on the argument first developed in [DMFT05].

Theorem 3.6. Assume Hypotheses 2.2 and 2.3, that for every (t, z) ∈ [0, T ] × Dz the map u 7→ E(t, u, z) is

Gâteaux-differentiable, and that

∀M > 0 ∃S > 0 ∀ t ∈ [0, T ], ∀u, u1, u2 ∈ Du, z̄ ∈ Dz :
{

(u, z̄) ∈ SM ⇒ ‖DuE(t, u, z̄)‖V∗ ≤ S,

(u1, z̄), (u2, z̄) ∈ SM ⇒ ‖DuE(t, u1, z̄)−DuE(t, u2, z̄)‖V∗ ≤ S‖u1 − u2‖V,

(3.15a)

and that ∂tE satisfies analogous Lipschitz estimates, i.e.

∀ M̃ > 0 ∃ S̃ > 0 ∀ t1, t2 ∈ [0, T ], ∀u1, u2 ∈ Du, z̄ ∈ Dz :

(u1, z̄), (u2, z̄) ∈ S
M̃

⇒
{
|∂tE(t1, u1, z̄)− ∂tE(t2, u1, z̄)| ≤ S̃|t1 − t2|,
|∂tE(t1, u1, z̄)− ∂tE(t1, u2, z̄)| ≤ S̃‖u1 − u2‖V.

(3.15b)

Let (u, z) be a weak energetic solution to the gradient system (V,Z, V, R, E) (to the evolutionary system

(V,W,Z, V, R, E) if % > 0). Then, (u, z) complies with (3.12).

Proof. Preliminarily, we observe that along a weak energetic solution (u, z) there holds

sup
t∈[0,T ]

G(u(t), z(t)) ≤ C. (3.16)

This can be checked by arguing in the very same way as in the proof of the forthcoming Proposition 7.2, namely
starting from the energy-dissipation inequality (3.4) and exploiting estimate (2.9). Therefore, thanks to the
first of (3.15a), we have that the map t 7→ DuE(t, u(t), z(t)) is in L∞(0, T ;V∗).
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Now, let η > 0 be fixed, and let (ti)
Nη

i=1 be a partition of the interval [0, t], with 0 < ti − ti−1 ≤ η for all
i = 1, . . . , Nη. We test the semistability (3.3) at time t = ti−1 with z̃ = z(ti), obtaining

E(ti−1, u(ti−1), z(ti−1)) ≤ E(ti−1, u(ti−1), z(ti)) + R(z(ti)− z(ti−1)).

Using that

E(ti−1, u(ti−1), z(ti)) = E(ti, u(ti), z(ti)) + E(ti, u(ti−1), z(ti))− E(ti, u(ti), z(ti))

+ E(ti−1, u(ti−1), z(ti))− E(ti, u(ti−1), z(ti))

we deduce by the chain rule

E(ti−1, u(ti−1), z(ti−1)) ≤ E(ti, u(ti), z(ti)) + R(z(ti)− z(ti−1))

−
∫ ti

ti−1

〈DuE(ti, u(s), z(ti)), u′(s)〉V ds−
∫ ti

ti−1

∂tE(s, u(ti−1), z(ti))ds,

which we add up over the index i = 1, . . . , Nη. Taking into account that
∑Nη

i=1 R(z(ti)−z(ti−1)) ≤ VarR(z; [0, t]),
we arrive at

E(0, u(0), z(0)) ≤ E(t, u(t), z(t)) + VarR(z; [0, t])−
Nη∑

i=1

∫ ti

ti−1

〈DuE(ti, u(s), z(ti)), u′(s)〉V ds

−
Nη∑

i=1

∫ ti

ti−1

∂tE(s, u(ti−1), z(ti))ds.

We now deal with the two latter terms. Observe that
Nη∑

i=1

∫ ti

ti−1

〈DuE(ti, u(s), z(ti)), u′(s)〉V ds

=
Nη∑

i=1

∫ ti

ti−1

〈DuE(ti, u(ti), z(ti)), u′(ti)〉V ds +
Nη∑

i=1

∫ ti

ti−1

〈DuE(ti, u(s), z(ti))−DuE(ti, u(ti), z(ti)), u′(s)〉V ds

+
Nη∑

i=1

∫ ti

ti−1

〈DuE(ti, u(ti), z(ti)), u′(s)− u′(ti)〉V ds
.= Sη

1 + Sη
2 + Sη

3 .

(3.17)
Now, in view of estimate (3.15a) (which is applicable thanks to (3.16)), we have that

|Sη
2 | ≤ C

Nη∑

i=1

∫ ti

ti−1

‖u(s)− u(ti)‖V‖u′(s)‖V ds ≤ C‖u′‖L1(0,T ;V) max
i=1,...,Nη

max
s∈[ti−1,ti]

‖u(s)− u(ti)‖V. (3.18)

Since u ∈ W 1,1(0, T ;V), we have maxi=1,...,Nη
maxs∈[ti−1,ti] ‖u(s) − u(ti)‖V → 0 as η ↓ 0, hence Sη

2 → 0.
Moreover,

|Sη
3 | ≤ ‖DuE(·, u(·), z(·))‖L∞(0,T ;V∗)

Nη∑

i=1

∫ ti

ti−1

‖u′(s)− u′(ti)‖V ds (3.19)

where the latter estimate is again a consequence of (3.15a). We may choose the partition (ti)
Nη

i=1 in such a way
that

∑Nη

i=1

∫ ti
ti−1

‖u′(s)−u′(ti)‖V ds → 0 as η ↓ 0, hence also Sη
3 → 0, and such that Sη

1 →
∫ t

0
〈DuE(s, u(s), z(s)), u′(s)〉V ds,

to which, ultimately, the term on the left-hand side of (3.17) converges.

Analogously,
Nη∑

i=1

∫ ti

ti−1

∂tE(s, u(ti−1), z(ti))ds

=
Nη∑

i=1

∫ ti

ti−1

∂tE(ti, u(ti), z(ti))ds +
Nη∑

i=1

∫ ti

ti−1

(∂tE(s, u(ti), z(ti))− ∂tE(ti, u(ti), z(ti))) ds

+
Nη∑

i=1

∫ ti

ti−1

(∂tE(s, u(ti−1), z(ti))− ∂tE(s, u(ti), z(ti))) ds
.= Sη

4 + Sη
5 + Sη

6 .

With a suitable choice of the partition we have that Sη
4 →

∫ t

0
∂tE(s, u(s), z(s))ds, while exploiting (3.15b) and

arguing similarly as above we have that Sη
5 , Sη

6 → 0. Hence, (3.12) ensues. �
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3.3. Improved temporal regularity of energetic solutions by uniform convexity of E. Under stronger
convexity properties of the energy functional, it has been shown in [MT04, MR07, TM10] in the fully rate-
independent setting that energetic solutions enjoy better temporal regularity. In particular, uniform convexity
of the energy functional in the pair (u, z) implies temporal Hölder-, or even Lipschitz continuity, [TM10, Thm.
4.5]. In the coupled rate-independent/rate-dependent setting, however, the uniform convexity of the E(t, u(t), ·)
in general only ensures the continuity in time of the semistable variable z, and in some special cases its Hölder
continuity. To give a more precise outline, in what follows uniform convexity is only required with respect to
the z-variable and the condition is formulated with respect to an additional Banach space S ⊃ X, which may
or may not coincide with Z or X, i.e.,

∃α ≥ 2, C∗ > 0, ∀ z0, z1 ∈ X, ∀ θ ∈ [0, 1], zθ = θz1 + (1− θ)z0 :

E(t, u(t), zθ) + R(zθ − z0) + C∗θ(1− θ)‖z1 − z0‖α
S ≤ θE(t, u(t), z0) + (1− θ)E(t, u(t), z1) + R(z1 − z0) . (3.20)

The above convexity inequality (3.20) implies an improved semistability condition

E(t, u(t), z(t)) + C∗‖z(z)− z(s)‖α
S ≤ E(t, u(t), z(s)) + R(z(s)− z(t)) , (3.21)

and via the energy-dissipation inequality (3.4), under further continuity assumptions on the partial derivatives
∂tE and DuE one may therefrom obtain an estimate of the form ‖z(t) − z(s)‖α

S ≤ ω(t − s) with ω a modulus
of continuity also depending on u′ and u′′. To deduce this estimate, however, it is crucial that the energy-
dissipation inequality (3.4) is satisfied on every subinterval [s, t] ⊂ [0, T ], which of course is a defining property
of energetic solutions in the fully rate-independent setting, but a strengthening of the notion of energetic
solutions in the coupled setting. Moreover, it has to be stressed, that ultimately concluding the continuity
estimate for ‖z(t) − z(s)‖α

S requires the Gâteaux differentiability of E(t, ·, z), and, in the case with inertia
(ρ > 0) additionally that u ∈ W 2,1(0, T ;V∗).

Theorem 3.7 (Continuity of weak energetic solutions by uniform convexity). Let (u, z) : V × Z be a weak

energetic solution for the gradient system (V,Z, V, R, E), resp. the evolutionary system (V,W,Z, V, R, E),
which satisfies the energy-dissipation inequality (3.4) even on all subintervals [s, t] ⊂ [0, T ]. Assume that

E(t, ·, z) is Gâteaux-differentiable for every (t, z) ∈ [0, T ] × Dz and, if % > 0, that u ∈ W 2,1(0, T ;V∗) (cf.

(3.11)) and that t 7→ | 〈u′′(t), u′(t)〉V | ∈ L1(0, T ). Moreover, assume that the energy functional E satisfies the

following Hölder continuity conditions: There exists a Banach space S, with X ⊂ S continuously, and constants

c∗ > 0, βu, βz ∈ (0, 1] such that for all s, t ∈ [0, T ], for all (u0, z0), (u0, z1), (u1, z1) ∈ SE:

|E(t, u1, z1)− E(t, u0, z1)| ≤ c∗‖u1 − u0‖βu

V , (3.22)

|∂tE(t, u1, z1)− ∂tE(t, u0, z0)| ≤ c∗
(
‖z1 − z0‖βz

S + ‖u1 − u0‖βu

V

)
, (3.23)

and, furthermore, that E(t, u(t), ·) : Z → [0, +∞] is uniformly convex as in (3.20).

Then, z ∈ C0([0, T ];S), as it complies with the following estimate:

C∗‖z(t)− z(s)‖α
S ≤ C|t− s|+ %

2

∫ t

s

|〈u′′(ζ), u′(ζ)〉V| dζ + c∗
( ∫ t

s

‖u′(ζ)‖V dζ
)βu

. (3.24)

If % = 0 and if the dissipation V has p-growth for some p > 1, namely V(v) ≥ C1‖v‖p
V−C2 for some C1, C2 > 0,

then z ∈ C0,h([0, T ];S) with the Hölder-exponent h = βu/(p′α), where p′ = p/(p− 1).

Proof. The proof carries over the steps of [TM10, Thm. 4.5] to the present coupled setting. For this, we first
verify (3.21) by choosing θ ∈ (0, 1), z0 = z(t) and z1 = z(s), 0 ≤ s < t ≤ T fixed, in the uniform convexity
inequality (3.20). This yields

0 ≤E(t, u(t), zθ) + R(zθ − z(t))− E(t, u(t), z(t))

≤θ
(
E(t, u(t), z(s) + R(z(s)− z(t))− E(t, u(t), z(t)− C∗(1− θ)‖z(s)− z(t)‖α

S

)
.

(3.25)

Dividing by θ > 0 and letting θ → 1 results in the improved semistability inequality (3.21).
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Now, estimate (3.24) is deduced from the energy-dissipation inequality (3.4) in combination with the conti-
nuity conditions (3.23) and (3.22)

C∗‖z(t)− z(s)‖α
S ≤ E(s, u(s), z(t)) + R(z(t)− z(s))− E(s, u(s), z(s))

≤ E(t, u(t), z(t)) + VarR(z, [s, t])− E(s, u(s), z(s)) + E(s, u(s), z(t))− E(t, u(t), z(t))

≤ %
2

(
‖u′(s)‖2W − ‖u′(t)‖2W

)
−
∫ t

s

V(u′(r)) + V∗(−DuE(r, u(r), z(r))− ρu′′(r)) dr

+
∫ t

s

∂tE(r, u(r), z(r))− ∂tE(r, u(s), z(t)) dr + E(t, u(s), z(t))− E(t, u(t), z(t))

≤ %
2

∫ t

s

|〈u′′(r), u′(r)〉V| dr + c∗

∫ t

s

‖z(r)− z(t)‖βz

S + ‖u(r)− u(t)‖βu

V dr + c∗

(∫ t

s

‖u′(ζ)‖V dζ

)βu

≤ C|s− t|+ %
2

∫ t

s

|〈u′′(r), u′(r)〉V| dr + c∗

(∫ t

s

‖u′(r)‖V dr

)βu

.

Here, we have used that ‖z(r) − z(t)‖S ≤ 2C supt∈[0,T ] ‖z(t)‖X ≤ C̃ for some C̃ > 0, by the continuous
embedding X ⊂ S and the boundedness of energy-dissipation sublevels according to (2.18) in combination with
(3.4). In a similar way, we have that ‖u(r) − u(t)‖βu

V ≤ C̃. Moreover, we exploited that 0 <
∫ t

s
V(u′(r)) +

V∗(−DuE(r, u(r), z(r)) − ρu′′(r)) dr ≤ C by the energy-dissipation inequality (3.4), so that the negative of
this term can be dropped to find an estimate from above. Moreover, since 〈u′′(·), u′(·)〉V ∈ L1(0, T ), the first
integral term on the right-hand side is absolutely continuous, whereas the second one is continuous due to
u ∈ L1(0, T ;V). This proves estimate (3.24) and yields z ∈ C0([0, T ]; S).

To verify the Hölder continuity in the case that % = 0 and V is of p-growth, we apply Hölder’s inequality
with exponent p to the third term on the r.h.s. of (3.24) and find that C|s − t| + c∗

( ∫ t

s
‖u′(ζ)‖V dζ

)βu ≤
|s− t|βu/p′

(
C|s− t|1−βu/p′ + c∗‖u′‖βu

Lp(0,T ;V)

)
≤ C|s− t|βu/p′ . �

4. Existence results for the gradient system (V,Z, V, R, E)

Throughout this section, we will focus on the case % = 0.

In Section 4.1 we will first address the case in which the dissipation potential V is quadratic. In this context,
our main assumption on the energy E will be a sort of uniform Fréchet subdifferentiability condition, drawn
from [MRS13a]. Hence, in our first existence result, Theorem 1, we are going to show that the approximate
solutions constructed by a carefully devised time-discretization scheme converge to an energetic solution of the
gradient system (V,Z, V, R, E).

In Section 4.2 we will extend our analysis to a reasonably broad class of convex dissipation potentials V with
superlinear growth at infinity. For the limit passage from time-discrete to time-continuous, we will resort to
an approach, and to ideas, from the variational theory for gradient flows. In this context, we will not require
λ-convexity properties on the energy functional E. However, we will need to directly impose a closedness
condition on ∂−u E more stringent than the closedness property guaranteed by the uniform subdifferentiability
condition. Hence, we will give our second existence result, Theorem 2, stating that the approximate solutions
constructed by time discretization converge to a weak energetic solution to the gradient system (V,Z, V, R, E),
which clearly turns into an energetic one under the additional condition (3.15) on E.

In Section 4.3 we will compare the two sets of conditions on E in two examples. Furthermore, we will hint
at possible extensions of Theorems 1 and 2.

4.1. Case 1: V quadratic. Throughout this section, we will confine the discussion to quadratic dissipation
potentials for u, namely we will suppose that

V(v) =
1
2
a(v, v) with a : V ×V → R a continuous and coercive bilinear form, (4.1)

thus inducing on V a Hilbert space structure. Hence, for every v ∈ V

∂V(v) = {Av} with A : V → V∗ the linear operator associated with a.
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Still, throughout this section we will continue to use the notation ∂V, also to make the comparison with the
results of Sec. 4.2 more transparent. We now detail the time-discretization scheme which will give rise to the
approximate solutions for the gradient system (V,Z, V, R, E).

Time-discretization scheme. Let τ = T/Nτ > 0 be the time step, inducing a partition

Pτ = {0 = t0 < t1 < . . . < tNτ−1 < tNτ
= T}

of the interval [0, T ]. We shall denote by tτ and tτ the left-continuous and right-continuous piecewise constant
interpolants associated with the partition Pτ , namely

tτ (0) = tτ (0) := 0, tτ (t) := tn for t ∈ (tn−1, tn], tτ (t) := tn−1 for t ∈ [tn−1, tn). (4.2)

Of course, for every t ∈ [0, T ] we have tτ (t) ↓ t and tτ (t) ↑ t as τ ↓ 0.

Starting from the Cauchy data (u0, z0) ∈ Du × Dz (cf. (4.18) below), we construct discrete solutions
(un

τ , zn
τ )Nτ

n=1 by alternate time-incremental minimization. More precisely, we first find zn
τ by minimizing with

respect to z the sum of the energy and of the dissipation potential V, with un−1
τ and zn−1

τ given from the
previous step. Then, we construct un

τ by minimizing, now with respect to u, the sum of the energy and of the
dissipation, with zn

τ now given.

Problem 4.1. Let (u0
τ , z0

τ ) := (u0, z0) ∈ Du ×Dz, and for n = 1, . . . , Nτ , find

zn
τ ∈ Argmin

z∈Z

(
τR

(
z − zn−1

τ

τ

)
+ E(tn, un−1

τ , z)
)

, (4.3a)

un
τ ∈ Argmin

u∈V

(
τV

(
u− un−1

τ

τ

)
+ E(tn, u, zn

τ )
)

. (4.3b)

With the direct method in the Calculus of Variations, exploiting Hypotheses 2.2 and 2.7, it is not difficult to
check that for all 0 < τ < τo Problem 4.1 admits a solution (un

τ , zn
τ )Nτ

n=1. Then, we construct the approximate
solutions as the left-continuous and right-continuous interpolants of (un

τ , zn
τ )Nτ

n=1, defined by

uτ (t) := un
τ , zτ (t) := zn

τ for t ∈ (tn−1, tn], uτ (t) := un−1
τ , zτ (t) := zn−1

τ for t ∈ [tn−1, tn). (4.4)

We also consider he piecewise linear interpolants

uτ (t) :=
t− tn−1

τ
un

τ +
tn − t

τ
un−1

τ , zτ (t) :=
t− tn−1

τ
zn
τ +

tn − t

τ
zn−1
τ , for t ∈ [tn−1, tn). (4.5)

Uniform Fréchet subdifferentiability. For the derivation of all a priori estimates on the approximate
solutions, it will be crucial to obtain a discrete form of the energy-dissipation inequality (3.4), cf. (7.30).
Its proof will be based on a suitable condition on the Fréchet subdifferential ∂−u E : V ⇒ V∗, that can be
interpreted as a uniform Fréchet subdifferentiability of the energy u 7→ E(t, u, z) (in this connection, we refer
to the discussions in [MRS13b, Sec. 2] and [MRS13a, Sec. 3] where analogous properties were introduced and
exploited). We may understand it like this: While the inequality (2.10) defining the Fréchet subdifferential has
a local character, with (4.6) below we make it global, at the price of having a negative term on the right-hand
side. Observe that for our purposes it will be sufficient to require this property on energy sublevels.

Hypothesis 4.2 (Uniform Fréchet subdifferentiability). For all E > 0 there exists ΛE ≥ 0 such that

E(t, v, z)− E(t, u, z) ≥ 〈ξ, v − u〉V − ΛE‖v − u‖2V
for all t ∈ [0, T ], (u, z), (v, z) ∈ SE and for all ξ ∈ ∂−u E(t, u, z).

(4.6)

Remark 4.3. Observe that, the validity of (4.6) implies on its own that ξ ∈ ∂−u E(t, u, z), cf. (2.10).

Notice that, if (4.6) holds with a remainder term of the type ΛE‖v − u‖V‖v − u‖Y, and Y a space such
that V ⊂ Y with a continuous embedding, then (4.6) holds with the term Λ̃E‖v−u‖2V for some other Λ̃E > 0.
This can be checked by observing that there exists CV, Y > 0 ‖v − u‖Y ≤ CV, Y‖v − u‖V for every u, v ∈ SE .

A sufficient condition for (4.6) is provided by the λ-convexity of the energy u 7→ E(t, u, z), on energy sublevels,
namely
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Lemma 4.4. Let E : [0, T ]×V × Z → (−∞, +∞] fulfill Hypothesis 2.2 and

∀E > 0 ∃ΛE ≥ 0 ∀ t ∈ [0, T ], (u, z), (v, z) ∈ SE , ∀ θ ∈ (0, 1) :

E(t, (1− θ)u + θv, z) ≤ (1− θ)E(t, u, z) + θE(t, v, z) + ΛEθ(1− θ)‖v − u‖2V .
(4.7)

Then, E complies with Hypothesis 4.2.

The proof follows the very same lines as the one in [MRS13a, Lemma 3.26], hence it is omitted.

Example 4.5. Let φ : Rd×d → R, φ(e) := tr e|e| with tr e =
∑d

i=1 eii for any e = (eij)d
i,j=1 ∈ Rd×d, 1 < d ∈ N.

The function φ is not convex, as can be checked e.g. for d = 2, and the diagonal matrices e := diag(1/2, 1/2)

and ẽ = diag(−1, 1). For θ = 1/2, this choice gives 1
2

√
5
8 = φ(θe + (1 − θ)ẽ) > θφ(e) + (1 − θ)φ(ẽ) = 1

2

√
1
2 .

But φ is Λ-convex for any Λ >
√

d. To verify this statement, we calculate the derivatives

φ′(e)[ẽ] = tr ẽ|e|+ tr e e:ẽ
|e| ,

φ′′(e)[ẽ, ê] = tr ẽ e:ê
|e| + tr ê e:ẽ

|e| + tr e ê:ẽ
|e| − tr e (e:ẽ)(e:ê)

|e|3 ,

φ′′(e)[ẽ, ẽ] = 2 tr ẽ e:ẽ
|e| + + tr e |ẽ|

2

|e| − tr e
|e|
(

e:ẽ
|e|
)2

. (4.8)

For any choice of e, ẽ ∈ Rd×d we aim to show that

φ′′(e)[ẽ, ẽ] ≥ −2| tr ẽ||ẽ| . (4.9)

For this, we first assume that tr e, tr ẽ ≥ 0. Using that
(

e:ẽ
|e|
)2 ≤ |ẽ|2 for the third term in (4.8), we find (4.9) as

an estimate from below since the resulting term cancels out with the second term. With the same argument we

verify (4.9) both if tr e ≥ 0 & tr ẽ ≤ 0 and if tr e ≤ 0 & tr ẽ ≥ 0. Finally, if tr e ≤ 0 & tr ẽ ≤ 0, we equivalently

apply
(

e:ẽ
|e|
)2 ≤ |ẽ|2 to the second term in (4.8), so that the resulting term cancels out with the third term, and

again obtain (4.9). Now, we can further estimate the right-hand side of (4.9) from below using that

| tr e| ≤
d∑

i=1

|eii| ≤
√

d
( d∑

i=1

(e2
ii)
)1/2 ≤

√
d
( d∑

i,j=1

(e2
ij)
)1/2 =

√
d|e| .

Thus, in total we have obtained that φ′′(e)[ẽ, ẽ] ≥ −2
√

d|ẽ|2. In view of ∂2
e |e|[ẽ, ẽ] = 2|ẽ|2, this proves that φ

is Λ-convex for any Λ ≥
√

d. From this we conclude that the corresponding integral functional defined on a

domain Ω ⊂ Rd,

Φ : V → (−∞, +∞), Φ(u)=
∫

Ω

φ(ε(u)) dx with φ(ε(u)) := | tr ε(u)||ε(u)| (4.10)

satisfies Λ-convexity (4.7) on V = H1
0 (Ω; Rd) for any Λ >

√
d. We also refer to Sec. 4.3 for further examples.

As mentioned in the above lines, the primary role of condition (4.6) is in the derivation of a discrete energy-

dissipation inequality. Furthermore,

(1) In the case U b V, in combination with Hypothesis 4.6 below, condition (4.6) will guarantee a
closedness property of the graph of ∂−u E with respect to strong-weak topology, and a continuity property
of E (cf. Lemma 4.7 ahead), that will play a key role in the passage to the time-continuous limit.

(2) If only the continuous embedding U ⊂ V is assumed, it will be necessary to require, in addition to
Hypothesis 4.2, a version of the closedness property of ∂−u E in Bochner spaces, cf. Hypothesis 4.8 below.

Case 1: A recovery sequence condition for E(t, ·, z). In the case U b V, we impose the following

Hypothesis 4.6 (Recovery sequence condition for E(t, ·, z)). For all sequences (tn)n ⊂ [0, T ], (un)n ⊂ V, and

(zn)n ⊂ Z such that

tn → t, un → u in V, zn ⇀ z in Z, sup
n

G(un, zn) ≤ C

and for every ũ ∈ Du there exists ũn → ũ in V such that

lim sup
n→∞

(E(tn, ũn, zn)− E(tn, un, zn)) ≤ E(t, ũ, z)− E(t, u, z). (4.11)

We postpone the proof of the following result to Section 7.2.
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Lemma 4.7. Suppose that U b V and let E fulfill Hypotheses 2.2, 4.2 and 4.6. Then, for all sequences

(tn, un, zn, ξn) ⊂ [0, T ]×V × Z×V∗ there holds




tn → t,

un → u in V,

zn ⇀ z in Z,

supn G(un, zn) ≤ C,

ξn ⇀ ξ in V∗

ξn ∈ ∂−u E(tn, un, zn)





⇒ ξ ∈ ∂−u E(t, u, z) and E(tn, un, zn) → E(t, u, z). (4.12)

Case 2: A “Bochner-space” version of closedness à la Minty of ∂−u E. In the case U ⊂ V continuously,
it is no longer possible to deduce from Hypotheses 4.2 & 4.6 the closedness property (4.12). Therefore we
have to require a version of it. Observe that (4.12) has a “pointwise-in-time” character, in that it only involves
sequences converging in the spaces V, Z, and V∗, and it is in fact suited to the application of Young measure
arguments in the limit passage from time-discrete to time-continuous.

Instead, the forthcoming Hypothesis 4.8 considers sequences of time-dependent functions, converging in
Lebesgue/Sobolev-Bochner spaces. It will be directly used in the limit passage in the discrete version of the
equation for the rate-dependent variable u. Indeed, (4.14) below also features a lim sup condition, in the spirit
of Minty’s trick within the theory of maximal monotone operators (see e.g. [Att84]), that can be verified by
arguing on the discrete u-equation, checking that all terms apart from the one to identify either pass to the
limit, or can be handled by lower semicontinuity. For this, the quadratic character of V will play a crucial role.

Finally, in Hyp. 4.8 we will distinguish between a weak, and a strong form of the closedness property,
depending on whether we also obtain convergence of the energies.

Hypothesis 4.8 (Closedness of ∂−u E à la Minty). For all sequences tn : [0, T ] → [0, T ], (un)n ⊂ L∞(0, T ;U)∩
H1(0, T ;V), (zn)n ⊂ L∞(0, T ;X) ∩ BV([0, T ];Z), and (ξn)n ⊂ L2(0, T ;V∗) such that

∃C > 0 ∀n ∈ N ∀ t ∈ [0, T ] : G(un(t), zn(t)) ≤ C, (4.13)

and moreover 



tn → t pointwise a.e. in (0,T),

un
∗
⇀ u in L∞(0, T ;U) ∩H1(0, T ;V),

zn
∗
⇀ z in L∞(0, T ;X), zn(t) σX→ z(t) in X for all t ∈ [0, T ],

ξn ⇀ ξ in L2(0, T ;V∗),

ξn(t) ∈ ∂−u E(tn(t), un(t), zn(t)) for a.a. t ∈ (0, T ),

lim supn→∞
∫ T

0
〈ξn, un〉V dt ≤

∫ T

0
〈ξ, u〉V dt,





then there holds ξ(t) ∈ ∂−u E(t(t), u(t), z(t)) for a.a. t ∈ (0, T ).

(4.14)

We will also consider a stronger form of (4.14), namely for all sequences

(tn)n, (un)n, (zn)n, (ξn)n as in (4.14) there holds

ξ(t) ∈ ∂−u E(t(t), u(t), z(t)), and E(tn(t), un(t), zn(t)) → E(t(t), u(t), z(t)) for a.a. t ∈ (0, T ).
(4.15)

In Section 4.3 we will provide the example of an energy complying with Hypotheses 4.2, 4.6, and 4.8.

Statement of our first existence result. Under the basic conditions enucleated in Sec. 2, the uniform
Fréchet subdifferentiability from Hyp. 4.2, and (U b V &Hyp. 4.6) or, in alternative, Hyp. 4.8, Theorem 1
below states that, up to a subsequence, any family of approximate solutions constructed via time discretization
converge to an energetic solution (u, z) of the gradient system (V,Z, V, R, E) for V quadratic. We also detail
in which spaces the approximate solutions converge, distinguishing a first set of convergences which will hold
also in the case of V with general superlinear growth (cf. Theorem 2 ahead), from convergence (4.17), related
to the quadratic character of V. Under suitable conditions we will also obtain the energy convergence (4.20),
which will allow us to prove that the pair (u, z) is an enhanced energetic solution, cf. Def. 3.1.

Theorem 1 (Energetic solutions for (V,Z, V, R, E), V quadratic). Assume Hypotheses 2.2, 2.3, 2.5, and 2.7.

In addition, suppose that V is quadratic, cf. (4.1), that ∂−u E complies with Hyp. 4.2, and that
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(1) either U b V, Hyp. 4.2 holds, and in addition Hyp. 4.6 is valid;

(2) or, Hyp. 4.8 holds.

Let u0 ∈ Du and z0 ∈ Dz be fixed and let (uτ , uτ , uτ , zτ , zτ , zτ )τ be a family of approximate solutions constructed

via the time-discretization scheme in Problem 4.1.

Then, for every sequence τk ↓ 0 as k →∞ there exist a (not relabeled) subsequence, and functions (u, z) as

in (3.1) such that, in addition, u ∈ H1(0, T ;V) and the following convergences hold as k →∞

uτk
⇀ u in W 1,1(0, T ;V), (4.16a)

uτk
, uτk

, ũτk

∗
⇀ u in L∞(0, T ;U), (4.16b)

uτk
(t), uτk

(t), uτk
(t), ũτk

(t) ⇀ u(t) in U for all t ∈ [0, T ], (4.16c)

zτk
, zτk

∗
⇀ z in L∞(0, T ;X), (4.16d)

zτk
(t), zτk

(t) σX→ z(t) in X for all t ∈ [0, T ], (4.16e)
(
zτk

(t)−zτk
(t)
) σX→ 0 in X for almost all t ∈ (0, T ), (4.16f)

zτk
(t), zτk

(t) ⇀ z(t) in Z for all t ∈ [0, T ], (4.16g)

(while for (zτk
(t))k the analogues of (4.16e)–(4.16g) hold for almost all t ∈ (0, T )), and, moreover,

uτk
⇀ u in H1(0, T ;V). (4.17)

The pair (u, z) is an energetic solution to the gradient system (V,Z, V, R, E), satisfying the initial conditions

u(0) = u0, z(0) = z0. (4.18)

Furthermore,

(i) under the conditions in (1), we also have the additional convergences

uτk
(t), uτk

(t), uτk
(t) → u(t) in V for all t ∈ [0, T ], (4.19)

E(tτk
(t), uτk

(t), zτk
(t)) → E(t, u(t), z(t)) for a.a. t ∈ (0, T ), (4.20)

and the pair (u, z) is an enhanced energetic solution, complying with

∫ t

s

V(u′(r)) + V∗(−ξ(r))dr + VarR(z, [s, t]) + E(t, u(t), z(t))

≤ E(s, u(s), z(s)) +
∫ t

s

∂tE(r, u(r), z(r))dr for all t ∈ (0, T ] for s = 0, and a.a. s ∈ (0, t).
(4.21)

(ii) If Hyp. 4.8 holds in the stronger form (4.15), then (4.20) and (4.21) are valid and (u, z) is enhanced.

Remark 4.9. As it will be clear from the proof of Theorem 1, developed in Section 7.2, under the conditions
guaranteeing the energy convergence (4.20), indeed it would be sufficient to adopt the weaker variant of
Hypothesis 2.5 introduced in Remark 2.6.

4.2. Case 2: V with general superlinear growth. We now address the analysis of system (1.4) for a fairly
broad class of dissipation potentials V that fulfill, in addition to condition (2.11a), the following property

V∗(ξ1) = V∗(ξ2) for all ξ1, ξ2 ∈ ∂V(u) for all u ∈ V. (4.22)

This condition will have a technical role in the derivation of a discrete energy-dissipation inequality, different
from the one proved for V quadratic, for the approximate solutions arising from time discretization, cf. Lemma
7.1 ahead. The proof of such inequality, developed in [MRS13b], extends the variational techniques for gradient
flows from [Amb95, AGS08] to the case of systems driven by general dissipation potentials with superlinear
growth, complying with (4.22).

Time-discretization scheme. In the case of a general dissipation potential V, we construct the discrete
solutions by a scheme different from the one in Problem 4.1. In fact, first we solve a minimum problem for u,
with un−1

τ and zn−1
τ given from the previous step, and then we solve for z, with un

τ now given.
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Problem 4.10. Let (u0
τ , z0

τ ) := (u0, z0) ∈ Du ×Dz, and for n = 1, . . . , Nτ , find

un
τ ∈ Argmin

u∈V

(
τV

(
u− un−1

τ

τ

)
+ E(tn, u, zn−1

τ )
)

, (4.23a)

zn
τ ∈ Argmin

z∈Z

(
τR

(
z − zn−1

τ

τ

)
+ E(tn, un

τ , z)
)

. (4.23b)

With the direct method in the Calculus of Variations, exploiting Hypotheses 2.2 and 2.7, it is not difficult
to check that for all 0 < τ < τo Problem 4.10 admits a solution (un

τ , zn
τ )Nτ

n=1.

As in Section 4.1, we construct approximate solutions by taking the piecewise constant and linear interpolants
of the elements (un

τ , zn
τ )Nτ

n=1. Nonetheless, for the derivation of the approximate version of the energy-dissipation
inequality (3.4) in the forthcoming Lemma 7.1, it will be crucial to resort to yet another notion of interpolant of
(un

τ )Nτ
n=1, which was first introduced by E. De Giorgi within the Minimizing Movements theory (see [Amb95,

AGS08]). It is defined in the following way: the map t 7→ ũτ (t) is Lebesgue measurable in (0, T ) and satisfies




ũτ (0) = u0,

ũτ (t) ∈ Argminu∈V

{
rV
(

u−un−1
τ

r

)
+ E(t, u, zn−1

τ )
}

for t = tn−1 + r ∈ (tn−1, tn].
(4.24)

Hereafter, we will call ũτ variational interpolant. We refer to [RS06, Rmk. 4.4], [MRS13b, Sec. 4] for a thorough
discussion on the existence of the above measurable selection. Observe that when t = tn the minimum problems
(4.23a) and (4.24) coincide, hence we may assume uτ (tn) = uτ (tn) = uτ (tn) = ũτ (tn) for all n = 1, . . . , Nτ .

A closedness condition. In Section 7.1 we will see that the variational interpolant ũτ and the piecewise
constant one zτ comply with the discrete energy-dissipation inequality (7.8). The latter will be the starting
point in the derivation of all a priori estimates, and in it we will pass to the limit to conclude that any limit pair
(u, z) of the approximate solutions complies with the energy-dissipation inequality (3.4). Let us stress that,
the usage of the variational techniques from the theory of gradient flows enables us to obtain (7.8) without
assuming the uniform Fréchet subdifferentiability condition from Hypothesis 4.2.

However, in order to pass to the limit in (7.8) as τ ↓ 0, we will exploit in a key way a closedness property
of the graph of ∂−u E that has the same “pointwise-in-time” character as (4.12). Likewise, it will be exploited
in combination with a Young measure argument. Nonetheless, as we are no longer requiring U b V like in
Lemma 4.7, boundedness of the energies no longer turns the weak convergence in V into strong. Hence, the
sequence (un)n featuring in (4.25a) below is supposed to be weakly converging in V, only. As for Hyp. 4.8, we
will also set apart the case in which, in addition, energy convergence is guaranteed.

Hypothesis 4.11 (Closedness of ∂−u E, Continuity of E). For all sequences (tn, un, zn)n ⊂ [0, T ]×Du×Dz and

(ξn)n ⊂ V∗




tn → t, un ⇀ u in V, zn ⇀ z in Z, supn G(un, zn) ≤ C,

ξn ⇀ ξ in V∗,

ξn ∈ ∂−u E(tn, un, zn)





⇒ ξ ∈ ∂−u E(t, u, z). (4.25a)

We will also consider the following enhanced closedness/continuity condition:

for all sequences (tn, un, zn)n and (ξn)n in the conditions of (4.25a) there holds

ξ ∈ ∂−u E(t, u, z) and lim
n→∞

E(tn, un, zn) = E(t, u, z).
(4.25b)

Observe that, since E is lower semicontinuous, it is sufficient to have lim supn→∞ E(tn, un, zn) ≤ E(t, u, z)
for (4.25b) to hold.

Our second existence result. The proof of Theorem 2 will be developed in Sec. 7.1.

Theorem 2 (Weak energetic solutions for (V,Z, V, R, E), V general). Assume Hypotheses 2.2, 2.3, 2.5, and

2.7. In addition, suppose that V complies with (4.22), and that ∂−u E complies with (4.25a) from Hyp. 4.11. Let

(uτ , uτ , uτ , ũτ , zτ , zτ , zτ )τ be a family of approximate solutions constructed via the time-discretization scheme in

Problem 4.10, starting from data u0 ∈ Du and z0 ∈ Dz.
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Then, for every sequence τk ↓ 0 as k → ∞ there exist a (not relabeled) subsequence, and functions (u, z)
as in (3.1) such that convergences (4.16) hold and the pair (u, z) is a weak energetic solution to the gradient

system (V,Z, V, R, E), fulfilling the initial conditions u(0) = u0 and z(0) = z0.

Furthermore, if the closedness condition holds in the strongest form (4.25b), then (u, z) fulfills (4.21) and

is thus an enhanced weak energetic solution.

As observed in Remark 4.9, if the closedness condition holds in the form (4.25b), then it is sufficient to adopt
the weaker variant of Hypothesis 2.5 introduced in Remark 2.6: this will be clear from the proof.

Finally, the following result is a consequence of Prop. 3.5 and of Theorem 3.6.

Corollary 4.12. Under the assumptions of Theorem 2, if in addition E complies with (3.15), then (u, z) from

Thm. 2 is an energetic solution to the gradient system (V,Z, V, R, E).

4.3. Examples. In what follows, we illustrate Hypotheses 4.2, 4.6, 4.8, and 4.11 on a prototypical class of
energy functionals. Since the latter conditions essentially concern the dependence of E on the variable u,
to make the discussion more transparent we will consider a very simple (yet significant) dependence on the
variable z, postponing to Section 6 more complex examples.

Admissible energy functionals. Following the discussion in [MRS13a, Sec. 5], we consider energies E :
[0, T ]× L2(Ω)× L1(Ω) → (−∞, +∞] of the form

E(t, u, z) :=

{∫
Ω

g(z)β(∇u) + W (u)dx− 〈f(t), u〉W 1,p(Ω) if u ∈ D

+∞ if u ∈ L2(Ω) \D
(4.26)

for all t ∈ [0, T ] and z ∈ L1(Ω), where Ω ⊂ Rd is a bounded Lipschitz domain, the nonlinear functions g, β,
and W fulfill

g ∈ BC(R) and ∃ c0 > 0 ∀ z ∈ R : g(z) ≥ c0; (4.27a)

β : Rd → [0, +∞) is differentiable, convex and (4.27b)

∃ p > 1, ∃ c1, c2, c3 > 0 ∀A ∈ Rd : c1|A|p − c2 ≤ β(A) ≤ c3(|A|p + 1); (4.27c)

W : R → (−∞, +∞] is bounded from below and λ-convex for some λ ∈ R; (4.27d)

(in (4.27a) BC stands for bounded and continuous), while f ∈ C1([0, T ]; W 1,p(Ω)∗). To fix ideas we consider
zero Dirichlet boundary conditions and thus set

D := {u ∈ W 1,p
0 (Ω) : W (u) ∈ L1(Ω)} = Du. (4.28)

It can be easily verified that ∂tE(t, u, z) = − 〈f(t), u〉W 1,p(Ω) complies with (2.5c). Taking into account
that W is bounded from below and exploiting the Poincaré inequality it is also immediate to check that E

is itself bounded from below, and the sublevels of the functional G(u) := supt∈[0,T ] E(t, u) are bounded in
U := W 1,p(Ω). Thus, the choice of the ambient space V determines restrictions on p, namely

if V = L2(Ω), we have U b V for all p > 2d/(2 + d); (4.29a)

if V = H1(Ω), we have U ⊂ V for all p ≥ 2. (4.29b)

We now discuss the uniform Fréchet subdifferentiability condition in Hypothesis 4.2. In fact, the energy in
Example 4.13 below also complies with the Fréchet subdifferentiability condition in the forthcoming Hyp. 5.2.

Example 4.13. Since W is λ-convex (we may suppose λ < 0 without loss of generality), we have for every

u, v ∈ D and θ ∈ [0, 1]

E(t, (1− θ)u + θv, z) ≤ (1− θ)E(t, u, z) + θE(t, v, z)− λ

2
θ(1− θ)‖v − u‖2L2(Ω). (4.30)

Hence, (4.7) (and, a fortiori, (4.6)) holds.

Note that in the special case β(∇u) = 1
2 |∇u|2, arguing as in [MRS13a, Ex. 5.1], we can improve (4.30) by

the 1-convexity of β. Hence, in place of −λ
2 θ(1− θ)‖v − u‖2L2(Ω), on the r.h.s. of (4.30) we find

−1
2
θ(1− θ)(‖∇(v − u)‖2L2(Ω) + λ‖v − u‖2L2(Ω)) ≤

1
2
θ(1− θ)((−1− ρλ)‖∇(v − u)‖2L2(Ω) − λCρ‖v − u‖2L1(Ω))
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thanks to the Gagliardo-Nirenberg inequality ‖w‖L2(Ω) ≤ CGN‖w‖2/(d+2)
L1(Ω) ‖∇w‖d/(d+2)

L2(Ω) + ‖w‖L1(Ω) and to

Young’s inequality, with ρ > 0 arbitrary and Cρ > 0 accordingly determined. Therefore, choosing ρ ≤ 1/|λ|,
we conclude (4.7) (and, a fortiori, (4.6)) in a stronger form (cf. Remark 4.3), with the remainder term involving

the square norm of Y := L1(Ω), and ΛE = 1
2Cρ|λ|.

Let us now turn to Hypothesis 4.6, which is assumed if U b V. If V = L2(Ω) and Z = L1(Ω), for every
ũ ∈ Du ⊂ W 1,p(Ω), it is sufficient to take the recovery sequence ũn ≡ ũ. Then, for tn → t and zn → z in
L1(Ω) we have g(zn) → g(z) in Lq(Ω) for all q ∈ [1,∞), and by dominated convergence

∫
Ω

g(zn)β(∇ũ) dx →∫
Ω

g(z)β(∇ũ)dx. By the continuity of f , we have E(tn, ũ, zn) → E(t, ũ, z) and (4.11) ensues.

In the following example, for simplicity we particularize the discussion of Hypothesis 4.8 to the cases β(A) =
1
p |A|p and W (u) = (u2 − 1)2/4, but it could be extended to a uniformly convex β with p-growth, cf. condition
(6.4) in Sec. 6.1 ahead, and to a λ-convex potential W complying with suitable growth conditions. Since Hyp.
4.8 comes into play in the case the compact embedding U b V is no longer required, we will focus on the case
V = H1(Ω) and U ⊂ V continuously, but not compactly.

Example 4.14. We take V = H1(Ω) and, for p ≥ 2 (cf. (4.29b))

E(t, u, z) =
∫

Ω

(
g(z)
p
|∇u|p + 1

4 (u2 − 1)2
)

dx− 〈f(t), u〉W 1,p(Ω) if u ∈ D, cf. (4.28),

and +∞ otherwise. We omit other contributions to E that would only depend on the variable z as they do

not affect the Fréchet subdifferential of E w.r.t. u; nonetheless, in order to discuss Hyp. 4.8 let us implicitly

assume that such contributions contain a regularizing gradient term and that, therefore,

X = W 1,q(Ω) for some q > 1, while Z = L1(Ω). (4.31)

It can be checked that, for (t, u, z) ∈ [0, T ]×D× L1(Ω)

∂−u E(t, u, z) 6= Ø ⇔ −div(g(z)|∇u|p−2∇u) + u3 − u− f(t) ∈ H1(Ω)∗

and in that case ∂−u E(t, u, z) = {−div(g(z)|∇u|p−2∇u) + u3 − u− f(t)}.

Observe that, for a sequence un
∗
⇀ u in L∞(0, T ; W 1,p(Ω)) ∩ H1(0, T ; H1(Ω)), whence un → u strongly in

C0([0, T ]; W 1−ε,p(Ω)) for all ε ∈ (0, 1), there holds

u3
n − un → u3 − u in L2((0, T )× Ω). (4.32)

Furthermore, let (tn)n a sequence in the conditions of (4.14). From f ∈ C1([0, T ]; W 1,p(Ω)∗) it follows that

f(tn) → f(t) in L∞(0, T ; W 1,p(Ω)∗). (4.33)

Finally, for a sequence (zn)n converging to z as indicated in (4.14), by the compact embedding W 1,q(Ω) b Lq(Ω)
we have zn(t) → z(t) in Lq(Ω) for all t ∈ [0, T ] and hence, since g ∈ BC(R), we have g(zn) → g(z) in

Lσ((0, T )× Ω) for all 1 ≤ σ < ∞.

Now, let us consider the sequence ξn = −div(g(zn)|∇un|p−2∇un) + u3
n − un − f(tn), weakly converg-

ing to some ξ in L2(0, T ;V∗). In view of (4.32) and (4.33), −div(g(zn)|∇un|p−2∇un) weakly converges in

L2(0, T ; W 1,p(Ω)∗) to ζ := ξ −W ′(u) + f(t). We now aim to show that ζ = −div(g(z)|∇u|p−2∇u). For this,

we use the condition lim supn→∞
∫ T

0
〈ξn, un〉V dt ≤

∫ T

0
〈ξ, u〉V dt which, in view of (4.32) and of (4.33), in

particular implies that

lim sup
n→∞

∫ T

0

〈−div(g(zn)|∇un|p−2∇un), un〉W 1,p(Ω) dt ≤
∫ T

0

〈ζ, u〉W 1,p(Ω) dt. (4.34)

Taking into account that the functionals Fn(u) :=
∫ T

0

∫
Ω

g(zn)
p |∇u|p dx dt Mosco-converge (cf. [Att84]) in

Lp(0, TW 1,p(Ω) to F(u) :=
∫ T

0

∫
Ω

g(z)
p |∇u|p dx dt, thanks to the lim sup inequality in (4.34) it is sufficient to

conclude that ζ = −div(g(z)|∇u|p−2∇u) almost everywhere in (0, T ). Hence, ξ = −div(g(z)|∇u|p−2∇u)+u3−
u− f(t) a.e. in (0, T ), which concludes the proof of (4.14).

Furthermore, from (4.34) we also infer that
∫ T

0

∫
Ω

g(zn)
p |∇un|p dx dt →

∫ T

0

∫
Ω

g(z)
p |∇u|p dx dt, whence the

convergence of the energies in (4.15).

Finally, we illustrate the closedness Hypothesis 4.11 with the functional E from Example 4.14, but with a

quadratic leading term
∫
Ω

g(z)
2 |∇u|2 dx.
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Example 4.15. We take X and Z as in (4.31), V = L2(Ω), and E : [0, T ]× L2(Ω)× L1(Ω) → (−∞, +∞],

E(t, u, z) =
∫

Ω

(
g(z)
2
|∇u|2 + 1

4 (u2 − 1)2
)

dx− 〈f(t), u〉W 1,2(Ω) if u ∈ D, cf. (4.28),

and +∞ otherwise. It is not difficult to check that the Fréchet subdifferential of u 7→ E(t, u, z) w.r.t. the

L2(Ω)-topology has domain

dom(∂−u E) = {(t, u, z) ∈ [0, T ]×H1(Ω)× L1(Ω) : −div(g(z)∇u) + u3 − u− f(t) ∈ L2(Ω)} and

∂−u E(t, u, z) = {−div(g(z)∇u) + u3 − u− f(t)} for all (t, u, z) ∈ dom(∂−u E).
(4.35)

Let un ⇀ u in L2(Ω) with supn G(un, zn) ≤ C. Since E(t, u, z) ≥ c
∫
Ω
|∇u|2 dx − C for some c, C > 0, we

conclude un ⇀ u in H1(Ω), hence un → u in L2?−ε(Ω) for all ε ∈ (0, 2?−1]. Thus, u3
n−un ⇀ u3−u in L2(Ω). By

continuity of f , tn → t implies f(tn) → f(t) in L2(Ω). From ξn ⇀ ξ in L2(Ω) we infer that (−div(g(zn)∇un))n

is bounded in L2(Ω), hence it weakly converges to some ζ in L2(Ω). With the same arguments as in Example

4.14 we find ζ = −div(g(z)∇u), hence ξ = −∆u + W ′(u) − f(t), and
∫
Ω

g(zn)
2 |∇un|2 dx →

∫
Ω

g(z)
2 |∇u|2 dx,

whence un → u in H1(Ω) strongly. In fact the stronger property (4.25b) ensues.

Observe that in the above example, the linear character of the higher order term −∆u contributing to the
Fréchet subdifferential ∂−u E has played a major role.

5. Existence results for the evolutionary system (V,W,Z, V, R, E)

In this section we address the case with inertia, i.e. we allow for % 6= 0, and investigate the weak solvability
of the evolutionary system (V,W,Z, V, R, E), supplemented with the initial conditions

u(0) = u0, u′(0) = v0, z(0) = z0 (5.1)

with (u0, z0) ∈ Du×Dz and v0 ∈ W. Combining the assumptions and techniques from Sections 4.1 and 4.2, we
will obtain the existence of weak energetic solutions for a general convex V with superlinear growth, cf. Thm.
3, and of energetic solutions in the case of a quadratic dissipation potential V, cf. Thm. 4.

Time discretization. We construct our discrete solutions via the following scheme

Problem 5.1. Let (u0
τ , z0

τ ) := (u0, z0) ∈ Du ×Dz and set

u−1
τ := u0 − τv0, (5.2)

and for n = 1, . . . , Nτ , find

zn
τ ∈ Argmin

z∈Z

(
τR

(
z − zn−1

τ

τ

)
+ E(tn, un−1

τ , z)
)

, (5.3a)

un
τ ∈ Argmin

u∈V

(
%

τ2
‖u− 2un−1

τ + un−2
τ ‖2W + τV

(
u− un−1

τ

τ

)
+ E(tn, u, zn

τ )
)

. (5.3b)

Observe that Euler-Lagrange equation for the minimum problem (5.3b) now reads (taking into account that
W = W∗ ⊂ V∗, cf. the proof of Prop. 7.6 for more details)

%
un

τ − 2un−1
τ + un−2

τ

τ2
+ ∂V

(
u− un−1

τ

τ

)
+ ∂−u E(tn, un

τ , zn
τ ) 3 0 in V∗. (5.4)

We will denote by vτ the piecewise linear interpolant of the values ((un
τ − un−1

τ )/τ)Nτ
n=1, namely

vτ (t) =
t− tn−1

τ

un
τ − un−1

τ

τ
+

tn − t

τ

un−1
τ − un−2

τ

τ
for t ∈ (tn−1, tn]. (5.5)

Therefore, v′τ (t) = un
τ−un−1

τ

τ − un−1
τ −un−2

τ

τ = un
τ−2un−1

τ +un−2
τ

τ for all t ∈ (tn−1, tn], and (5.4) rephrases as

%v′τ (t) + ∂V(u′τ (t)) + ξτ (t) 3 0 with ξτ (t) ∈ ∂−u E(tτ (t), uτ (t), zτ (t)) for a.a. t ∈ (0, T ). (5.6)

We now introduce and motivate the two enhanced conditions on the Fréchet subdifferential of E that we will
have to impose in our existence results for (V,W,Z, V, R, E).
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Enhanced Fréchet subdifferentiability and subgradient estimate. In order to recover the discrete
version of the energy-dissipation inequality (3.4), we shall have to resort to a slightly stronger version of the
uniform Fréchet subdifferentiability property from Hypothesis 4.2, in which we require estimate (4.6) to hold
with a constant independent of the energy sublevel, and where we replace ‖ · ‖2V by ‖ · ‖WV(·)1/2. Observe
that, since V ⊂ W continuously, we are in fact strengthening (4.6), cf. Remark 4.3.

Hypothesis 5.2 (Enhanced Fréchet subdifferentiability). There exists a constant Λ > 0 such that

∀ t ∈ [0, T ], ∀ (u, z), (v, z) ∈ Du ×Dz ∀ ξ ∈ ∂−u E(t, u, z) :

E(t, v, z)− E(t, u, z) ≥ 〈ξ, v − u〉V−Λ‖v − u‖WV(v − u)1/2
(5.7)

In addition, observe that in (5.6) the inertial term makes it necessary to estimate the term ξτ ∈ ∂−u E(·, uτ , zτ )
independently, since no comparison estimate is possible. In this direction, the following condition requires that
the V∗-norm of the elements in the Fréchet subdifferential ∂−u E to be estimated by the energy itself. As we
will see later on, this condition e.g. holds for the energy functional in a model for adhesive contact in visco-
elastic materials. This will also determine the spatial regularity for u′′, with u the energetic solution to the
evolutionary system (V,W,Z, V, R, E) arising in the time-continuous limit of the time-discrete scheme (5.3).

Hypothesis 5.3 (Subgradient estimate). There exist constants C3, C4, C5 > 0 and σ ∈ [1,∞) such that

‖ξ‖σ
V∗ ≤ C3E(t, u, z) + C4‖u‖V + C5 for all ξ ∈ ∂−u E(t, u, z) and all (t, u, z) ∈ [0, T ]×Du ×Dz. (5.8)

We postpone to the end of this section a discussion of Hypothesis 5.3 in the context of two examples.

An existence result for general V. We now give our first result for the evolutionary system (V,W,Z, V, R, E),
stating the existence of weak energetic solutions. In addition to the basic conditions from Section 2 and to
Hypotheses 5.2 & 5.3, we will also need to enforce a suitable closedness condition of ∂−u E in order to pass to
the time-continuous limit and identify the elements in the Fréchet subdifferential ∂−u E. This will be done by

• either directly requiring Hypothesis 4.11;
• or by imposing U b V. Then, the desired closedness property for ∂−u E will derive from combining

Hypotheses 4.6 and the uniform Fréchet subdifferentiability 5.2. Indeed, the proof of Lemma 4.7 goes
through in this setting as well, guaranteeing the closedness (4.12).

Theorem 3 (Weak energetic solutions to (V,W,Z, V, R, E), V general). Assume Hypotheses 2.2, 2.3, 2.5, 2.7

and, in addition, Hypotheses 5.2 and 5.3. Moreover, assume

- either Hypothesis 4.11,

- or, U b V with Hypothesis 4.6.

Then, for every sequence τk ↓ 0 as k →∞ there exist a (not relabeled) subsequence, and functions (u, z) as

in (3.1) such that, in addition, u ∈ W 2,1(0, T ;V∗), and convergences (4.16) hold. Moreover,

u′τk

∗
⇀ u′ in L∞(0, T ;W), (5.9)

v′τk
⇀ u′′ in L1(0, T ;V∗), (5.10)

and the pair (u, z) is a weak energetic solution to the evolutionary system (V,W,Z, V, R, E), fulfilling the

Cauchy conditions (5.1).

Furthermore, if Hypothesis 4.11 holds with the additional continuity condition (4.25b), or under Hypothesis

4.6 in the case U b V, then (u, z) comply with the energy-dissipation inequality

%

2
‖u′(t)‖2W +

∫ t

s

V(u′(r)) + V∗(−ξ(r)−%u′′(r))dr + VarR(z, [s, t]) + E(t, u(t), z(t))

≤ %

2
‖u′(s)‖2W + E(s, u(s), z(s)) +

∫ t

s

∂tE(r, u(r), z(r))dr for all t ∈ (0, T ] for s = 0, and a.a. s ∈ (0, t),

(5.11)
with ξ(t) a selection in ∂−u E(t, u(t), z(t)), and thus (u, z) is an enhanced weak energetic solution.

We then have the analogue of Corollary 4.12.

Corollary 5.4. Under the assumptions of Theorem 3, if in addition E complies with the smoothness properties

(3.15), then (u, z) from Thm. 3 is an energetic solution.
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An existence result for V quadratic. In the case of a quadratic dissipation potential V, we will be able to
show the existence of energetic solutions to (V,W,Z, V, R, E) in the special setting that

V b W. (5.12)

This will guarantee sufficient compactness information for (the sequence approximating) u′ to allow for the
limit passage in the (discrete) viscous equation. Clearly, in view of the compact embedding U b W from
(2.1b), (5.12) is for example fulfilled in the case in which V = U, cf. Example 2.8. Therefore, to get the
closedness of ∂−u E we will resort to the closedness condition à la Minty from Hypothesis 4.8.

Theorem 4 (Energetic solutions for (V,W,Z, V, R, E), V quadratic). Assume Hypotheses 2.2, 2.3, 2.5, 2.7,

and let V be quadratic, cf. (4.1). In addition, assume Hypotheses 4.8, 5.2, 5.3, and (5.12).

Then, for every sequence τk ↓ 0 as k →∞ there exist a (not relabeled) subsequence, and functions (u, z) as

in (3.1) such that, in addition, u ∈ H1(0, T ;V) ∩H2(0, T ;V∗) and convergences (4.16) hold, as well as (5.9).
Moreover,

v′τk
⇀ u′′ in L2(0, T ;V∗), u′τk

→ u′ in Lp(0, T ;W) for all 1 ≤ p < ∞ (5.13)

and the pair (u, z) is an energetic solution to the evolutionary system (V,W,Z, V, R, E), fulfilling (5.1).

Finally, if Hyp. 4.8 holds in the stronger form (4.15), then the energy-dissipation inequality holds in the

form (5.11), with ξ(t) a selection in ∂−u E(t, u(t), z(t)) also fulfilling

%u′′(t) + ∂V(u′(t)) + ξ(t) = 0 for a.a. t ∈ (0, T ), (5.14)

and (u, z) is thus an enhanced energetic solution.

The proofs of Theorems 3 and 4 will be developed in Sec. 7.3. As in the previous sections, we will see that,
in both cases, under the conditions yielding (5.11), it is sufficient to resort to the weaker variant of the mutual
recovery sequence condition from Hypothesis 2.5, cf. Rmk. 2.6.

Remark 5.5. In Remark 7.7 we will check that for V quadratic it would indeed be possible to work under a
weaker version of the Fréchet subdifferentiability from Hypothesis 5.2, namely

∀ t ∈ [0, T ], ∀ (u, z), (v, z) ∈ Du ×Dz ∀ ξ ∈ ∂−u E(t, u, z) :

E(t, v, z)− E(t, u, z) ≥ 〈ξ, v − u〉V−Λ‖v − u‖2V,
(5.15)

i.e. the former (4.6), but with a constant independent of the energy sublevel.

Remark 5.6. In the case of V quadratic, it would be possible to weaken the subgradient estimate in Hyp.
5.3 by replacing ‖ξ‖V∗ with ‖ξ‖U∗ , with ξ an element in the Fréchet subdifferential ∂−,U

u E(t, u, z) of E in the
U − U∗ duality. Accordingly, taking into account that for every v ∈ V, ∂V(v) ⊂ V∗ ⊂ U∗, (3.2) could be
formulated in a weaker way as a subdifferential inclusion in U∗, and one would have u ∈ H2(0, T ;U∗).

The proof of this extension follows the same lines as the argument for Thm. 4, with suitable modifications
such as the closedness argument to be formulated in the U−U∗ duality.

Remark 5.7 (Comparison with the results by E. Emmrich & coworkers). In the papers [ET11, EŠ11, EŠ13],
E. Emmrich and coauthors have obtained a series of deep results on the existence of solutions (whose basics
were already established in the seminal paper [LS65]) and on the full discretization (in time and space) for this
class of second order nonlinear evolution equations

u′′ + Au′ + Bu = f in V ∗, a.e. in (0, T ). (5.16)

Here, V = VA ∩ VB and VA, VB are the separable reflexive Banach spaces on which the two operators A and
B are defined. The authors neither suppose VA ⊂ VB (continuously), nor do they require VB ⊂ VA, thus
allowing for a wide class of applications, although (5.16) is not coupled to the rate-independent evolution of
an additional internal variable z.

In [ET11, EŠ11] the following assumptions are made on the time-dependent operators A and B: It is required
that A : VA → V ∗

A has a main part d-monotone, hemicontinuous, (cf. e.g. [Rou05, Chap. 2, Definitions 2.1, 2.3])
and satisfying a certain growth condition, that is perturbed by a non-monotone but locally Hölder continuous
operator, with suitable growth. The main part of the operator B : VB → V ∗

B is linear, symmetric, and strongly
positive, and it is also perturbed by a locally Hölder continuous operator, with suitable growth. The analysis in
[ET11, EŠ11] can thus be compared to ours in the (particular) case in which the energy functional as a function
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of u is quadratic up to a lower order perturbation. Observe that, while we restrict to the subdifferential of a
possibly nonsmooth, but convex dissipation potential V, the operator A in (5.16) could be the differential of a
convex smooth potential with a nonconvex, but lower order, perturbation.

Recently, in [EŠ13], the authors instead consider the case in which B is the Gâteaux differential of an energy
bounded from below, with superlinear growth at infinity in the sense of (2.11a). It is assumed that B maps
bounded sets of VB into bounded sets of V ∗

B and that it is demicontinuous. However, in this case the analysis
is restricted to the case in which A is the linear operator associated with a bilinear form inducing an inner
product on VA and a norm ‖ · ‖A equivalent to ‖ · ‖VA

. This corresponds to our choice of a quadratic dissipation
potential V. It has to be noted that in [EŠ13] the operators A and B are required to satisfy a condition of
Andrews-Ball type, namely that there exists λ ≥ 0 such that the operator (B + λA) : V → V ∗ is monotone:

∃λ ≥ 0 ∀ v, w ∈ V 〈Bv −Bw, v − w〉V ≥ −λ‖v − w‖2A. (5.17)

This exactly corresponds to the uniform Fréchet subdifferentiability condition (5.15).

Examples for the subgradient estimate in Hypothesis 5.3. It is not difficult to verify that Hypothesis
5.3 is, e.g., satisfied by the energy in Example (4.15), with the space V = H1(Ω); observe that, in the latter
space the closedness from Hyp. 4.11 is also fulfilled. The following example has a structure similar to Ex. 4.15,
but it features a nonsmooth double-well term W , with a kink at |u| = 2. Again, to make calculations more
transparent we neglect the z-dependence.

Example 5.8. Let us consider W2 : R → R

W2(u) :=
{

a(1− u2)2 if |u| ≤ 2,

b(1− u2)2 + 9(a− b) if |u| > 2,
with constants 0 < a < b . (5.18)

It is a Λ-convex function for any Λ ≥ b, i.e., for all u, ũ ∈ Rd, for all θ ∈ [0, 1]

W2(θu + (1− θ)ũ) ≤ θW2(u) + (1− θ)W2(ũ) +
Λ
2

θ(1− θ)|u− ũ|2 . (5.19)

Its Fréchet subdifferential is given by

∂−W2(u) =





{−4au(1− u2)} if |u| < 2,{
− 4αu(1− u2), α ∈ [a, b]

}
if |u| = 2,

{−4bu(1− u2)} if |u| > 2.

and every ξ ∈ ∂−W2(u) satisfies

|ξ|4/3 ≤ (4α(|u|+ |u|3))4/3 ≤ 48α|u|4 ≤ 484/3α1/3

min{a,1} (W2(u) + 9(b− a) + 2bu2) ,

which leads to subdifferential estimate (5.8) for V = L4(Ω) defined on a bounded Lipschitz domain Ω ⊂ Rd.

Let W = L2(Ω) and let W2 : U → [0, +∞), W2(u) :=
∫
Ω

W2(u) dx. Hence, by convexity inequality (5.19) and

the continuous embedding ‖w‖W ≤ CUW‖w‖U we obtain the enhanced λ-convexity

W2(θu + (1− θ)ũ) ≤ θW2(u) + (1− θ)W2(ũ) +
Λ
2

CUWθ(1− θ)‖u− ũ‖W‖u− ũ‖1/2
V , (5.20)

which, in turn, implies the enhanced Fréchet subdifferentiability (5.7) upon choosing V(u) := 1
4

∫
Ω
|u|4 dx.

Observe that the corresponding energy augmented by a Dirichlet integral, i.e. E(t, u) :=
∫
Ω

1
2 |∇u|2+W2(u)dx

complies, in the context of the space V = H1
0 (Ω), with Hypotheses 5.2 and 5.3 and, in addition, with Hypotheses

2.2, 2.7, and with the closedness à la Minty from Hyp. 4.8.

We conclude with the example of an energy functional modeling rate-independent adhesive contact between
two visco-elastic bodies with inertia.

Example 5.9 (Adhesive contact between visco-elastic materials with inertia). We consider two visco-elastic

bodies Ω+ and Ω−, bonded along a prescribed contact surface ΓC, during a timespan [0, T ]. The adhesiveness

of the bonding is modeled by the delamination variable z : (0, T ) × ΓC → [0, 1], describing the fraction of

the effective molecular links between Ω+ and Ω−, so that z(t, x) = 1 (z(t, x) = 0, respectively), means fully

intact (broken) bonding at time t ∈ (0, T ) and at the material point x ∈ ΓC. We postulate a rate-independent
evolution for z. The other state variable is the displacement field u : (0, T ) × Ω → Rd (with Ω := Ω−∪Ω+),

subject to viscosity and inertia. We denote by [[u]] its jump across ΓC.
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Following [RR11], we model this phenomenon by the energy

E(t,u, z) :=
∫

Ω\ΓC

1
2ε(u) :C :ε(u)dx +

∫

ΓC

κz
∣∣[[u
]]∣∣2 dH d−1(x)

+
∫

ΓC

(
J(
[[
u
]]
) + I[0,1](z)− a0z

)
dH d−1(x)− 〈f(t),u〉H1(Ω;Rd),

(5.21)

where H d−1 is the (d−1)-dimensional Hausdorff measure, C ∈ Rd×d×d×d
sym the symmetric, positive definite

elasticity tensor, κ a fixed positive constant modulating the adhesive contact contribution, J : Rd → [0, +∞]
a convex functional, a0 ≥ 0 the specific energy stored by delamination, and f ∈ W 1,1(0, T ; H1(Ω\ΓC; Rd)∗) a

given external loading incorporating volume and surface forces acting on the Neumann part ΓN of the boundary

∂Ω (whereas on the Dirichlet part ΓD null displacement is imposed). The dissipation potentials are

V(v) :=
∫

Ω\ΓC

1
2ε(v) :D :ε(v)dx, R(ζ) :=

∫

ΓC

R(ζ)dH d−1(x)

where D ∈ Rd×d×d×d
sym is the symmetric, positive definite viscosity tensor. The density of the 1-positively

homogeneous potential R is given by R(ζ) = −a1ζ + I(−∞,0](ζ), with a1 ≥ 0 the specific energy dissipated by

delamination. Inertial effects are encompassed in the model through the kinetic energy K(w) :=
∫
Ω

%
2 |w|2 dx .

The existence of energetic solutions to the evolutionary system (V,W,Z, V, R, E), where the ambient spaces

are, naturally, V = H1
ΓD

(Ω\ΓD; Rd), W = L2(Ω; Rd), and Z = L1(ΓC), stems from the analysis in [RR11], also

encompassing the coupling with thermal processes. It is indeed possible to show that the evolutionary system

(V,W,Z, V, R, E) in fact complies with all of the assumptions of Theorem 4. Here we will just confine the

discussion to Hypothesis 5.3, highlighting a significant point in the analysis of contact systems with inertia.

The Fréchet subdifferential ∂−u E is given by ∂−u E(t,u, z) = {DuE(t,u, z)}, with

〈DuE(t,u, z),v〉H1(Ω;Rd) :=
∫

Ω\ΓC

ε(u) :C :ε(v)dx +
∫

ΓC

(
κz
[[
u
]][[

v
]]
+ζ
[[
v
]])

dH d−1(x)− 〈f(t),v〉H1(Ω;Rd)

for all v ∈ H1(Ω; Rd), where ζ ∈ L2(ΓC) fulfills ζ(x) ∈ ∂J([[u(x)]]) for a.a. x ∈ ΓC. Now, while the H1(Ω; Rd)∗-
norm of all the other contributions to DuE(t,u, z) is controlled by E in the sense of (5.8), for the validity

of Hyp. 5.3 the convex analysis subdifferential ∂J : Rd ⇒ Rd cannot be an unbounded operator. Therefore,

the choice J([[u]]) := I[0,+∞)([[u]] · ν) (ν denoting the unit normal to ΓC, oriented from Ω+ to Ω−), is not

admissible. Observe that such a choice would lead to a flow rule for the delamination variable encompassing

the Signorini contact conditions, and in fact the existence of solutions to the adhesive contact system with

Signorini conditions and inertia has been an open problem in the literature on contact problems for a long time,

cf. [RR11, Rmk. 5.3]. Instead, one can for instance take for J the Yosida approximation Jε(u) := − 1
ε ([[u]] ·ν)−,

with ε > 0, (·)− denoting the negative part. This corresponds to the so-called normal compliance conditions.

6. Applications

In this section we collect some examples of mechanical systems with a mixed rate-dependent/rate-independent
character, to which our existence Theorems 1–4 apply.

6.1. Energetic solutions to a class of rate-independent processes in visco-elastic solids. Here we
address a class of rate-independent systems in a visco-elastic body Ω ⊂ Rd, also subject to inertia, in the
frame of the theory of generalized standard solids, which was first analyzed in [Rou09]. The variable governed
by viscosity is the displacement u (in a small-strain regime, ε(u) := 1

2 (∇u +∇u>) denoting the small strain
tensor), while the internal variable z, in general taking values in Rm, describes some rate-independent process
such as, e.g., plasticity with hardening, damage, or phase transformations in a solid.

Energetics. The energy has the form

E(t,u, z) :=
∫

Ω

ϕ(ε(u), z,∇z)dx−
∫

Ω

f ·udx (6.1)

where f is a given external force and the energy density ϕ : Rd×d
sym ×Rm×Rm×d → [0, +∞) is generally assumed

smooth, although in [Rou09, Rmk. 3.3] it is hinted, without further details, that an extension to nonsmooth
energies could be possible.
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The “viscous” dissipation potential V is quadratic and has the form

V(v) :=
∫

Ω

1
2ε(v) :D :ε(v) with D ∈ Rd×d×d×d

sym positive definite, (6.2)

while the “rate-independent” potential R is

R(ζ) =
∫

Ω

R(ζ)dx with R : Rm → [0, +∞] convex, positively homogeneous of degree 1, and

∃ c > 0 ∀ ζ ∈ Rm : R(ζ) ≥ c|ζ|,
(6.3)

whereas the kinetic energy is K(v) = %
2

∫
Ω
|v|2 dx with % ≥ 0. Therefore, our own Hypothesis 2.3 is satisfied

with the spaces V = H1
ΓD

(Ω; Rd), with ΓD a portion of the boundary ∂Ω on which zero Dirichlet boundary
conditions are imposed, and Z = L1(Ω; Rm), while W = L2(Ω; Rd).

Properties of the energy. Concerning the energy density ϕ, Roubíček provides classes of sufficient con-
ditions ensuring the existence of energetic solutions. In fact, in [Rou09] other weak solvability notions are
proposed and related existence results are obtained. Nonetheless, in the next lines we will only focus on the
energetic concept and highlight the relations between Roubíček’s assumptions on ϕ for the existence result
[Rou09, Prop. 5.3], and the abstract conditions for our own existence Thms. 1 and 4 (for V quadratic).

First of all, it is required (cf. [Rou09, (12a)]) that ϕ(e, z, Z) ≥ c̃(|e|p + |Z|q) for some c̃ > 0 and p, q > 1.
This sets the spaces U and X in which the coercivity Hypothesis 2.7 is verified, namely

U = W 1,p
ΓD

(Ω; Rd) ∩H1
ΓD

(Ω; Rd) and X = W 1,q(Ω; Rm).

It is not difficult to check that Hyp. 2.2 is also fulfilled.

The other basic condition (cf. [Rou09, (16)]) is that there exists ` ≥ 0 such that the mapping (e, z, Z) 7→
ϕ(e, z, Z)+`|e|2 is convex, which guarantees the validity of our uniform Fréchet differentiability Hyps. 4.2 & 5.2.

In [Rou09, Prop. 5.3] Roubíček also proposes three sets of conditions (cf. (66a)/(66b)/(66c) therein) that
he alternatively uses to verify the mutual recovery sequence condition from Hyp. 2.5. More in detail,

(a) either it is assumed ([Rou09, (66a)]) that R is continuous (and in particular takes values in [0, +∞)),
in combination with the condition that ∂eϕ is p-strongly monotone, i.e.

∃α > 0 ∀ (z, Z) ∈ Rm × Rm×d ∀ e, ẽ ∈ Rd×d
sym :

α(|ẽ|p−2ẽ−|e|p−2e) : (ẽ−e) ≤ (∂eϕ(ẽ, z, Z)−∂eϕ(e, z, Z)).
(6.4)

Observe that (6.4) implies our Hyp. 4.8, whereas the combination of (6.4) and continuity of R allows
for the choice of the constant recovery sequence z̃n = z̃ in Hyp. 2.5;

(b) or, (cf. [Rou09, (66b)]), in addition to (6.4) suitable growth properties of (z, Z) 7→ ϕ(z, Z) and of
(z, Z) 7→ ∂(z,Z)ϕ(z, Z) are required. This again ensures Hyp. 4.8, while the recovery sequence (z̃n)n

for Hyp. 2.5 is constructed via the so-called binomial trick ;
(c) or it is supposed, cf. [Rou09, (66c)]), that ϕ(e, z, Z) = ϕ1(e, z, Z) + ϕ2(z, Z) with (e, Z) 7→ ϕ1(e, z, Z)

affine and fulfilling suitable growth conditions, and ϕ2 quadratic. This guarantees Hyps. 2.5 and 4.8.

Existence of energetic solutions. All in all, we have verified that the class of material models in [Rou09]
complies, in the case % = 0, with all the conditions in Theorem 1. Thus our own result applies, yielding the
existence of energetic solutions.

In the case % > 0, Roubíček additionally assumes a growth condition for ∂eϕ (cf. [Rou09, (21)]) that is
akin to our own Hypothesis 5.3, although slightly weaker. Indeed, it leads to a weaker formulation of the
momentum equation than ours (5.14) (cf. Thm. 4), in which the inertial term is integrated by parts in time.

6.2. Rate-independent damage in visco-elastic solids. In this section we highlight some possible ex-
tensions, which are included in our analytical results but not yet covered by the results by Roubíček, at
the example of partial damage in visco-elastic solids at small strains, located in a bounded Lipschitz domain
Ω ⊂ Rd, observed over the finite timespan [0, T ]. Here, the state variables under consideration are the displace-
ment field u : [0, T ] × Ω → Rd, with ε(u) = 1

2 (∇u + ∇u>) the small strain tensor, and the damage variable
z : [0, T ]× Ω → [0, 1]. In particular, z(t, x) = 1 corresponds to the case that the material is fully intact at the
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point (t, x) ∈ [0, T ] × Ω, while z(t, x) = 0 refers to maximal damage at (t, x). As common in the modeling of
rate-independent damage without healing, the 1-homogeneous dissipation potential is

R(ζ) :=
∫

Ω

R(ζ) dx , R(ζ) :=
{ |ζ| if ζ ≤ 0,

+∞ otherwise.
(6.5)

The energy functional E : [0, T ]×V × Z → (−∞, +∞] has the following structure

E(t, u, z) :=
{ ∫

Ω
g(z)W (ε(u) + ε(uD(t)))− f(t)·u dx + G(z) if (u, z) ∈ U×X,

+∞ otherwise.
(6.6)

Here, f ∈ C1([0, T ];V∗) is a given external loading and uD ∈ C1([0, T ];U) the extension of a Dirichlet datum,
prescribed on the Dirichlet boundary ΓD = ∂Ω, into the domain Ω; note that we have set ΓD = ∂Ω, only for
the shortness of the exposition. The energy contributions g(·)W (·) and G(·), encompassing a gradient term in
z, will have to be chosen such that the topological setup (2.1) and (2.4) is satisfied. Here we want to point out
that the latter condition includes the case of (the non-reflexive space) X = BV(Ω), which allows in particular
in the example of damage that

G : X → [0, +∞], G(z) := |Dz|(Ω) +
∫

Ω

I[0,1](z) (6.7)

is composed of the total variation |Dz|(Ω) of z in Ω and the indicator function of the interval [0, 1] with
I[0,1](z) = 0 if z ∈ [0, 1] and I[0,1](z) = +∞ otherwise. This is our choice of G throughout this section. In
particular, by [AFP05, Rem. 3.5, Thm. 3.23], it is ensured that G(zn) ≤ C for a sequence (zn)n implies that
there exists z with G(z) ≤ C and a subsequence such that zn → z in L1(Ω), and that G is lower semicontinuous
with respect to strong convergence in L1(Ω). Moreover, to ensure that the energy of the system decreases with
increasing damage, which is a typical feature of material damage, the function g is chosen as follows:

g ∈ C0([0, 1]) monotonically increasing with 0 < g0 < g(0) < g(1) < g1 < +∞ ; (6.8)

the fact that 0 < g0 < g(0) features partial damage as this constraint ensures the coercivity of E(t, ·, 0) given
that W is chosen suitably. More precisely, for the density W we assume

Convexity: W ∈ C0(Rd×d, R+) is convex, (6.9a)

Coercivity: ∃C > 0, p ∈ (1,∞), ∀e ∈ Rd×d : W (e) ≥ C|e|p , (6.9b)

Stress control: ∃C > 0, p′ = p/(p− 1), ∀e ∈ Rd×d : |∂sup
e W (e)|p′ ≤ C(W (e) + 1) , (6.9c)

where ∂eW : Rd×d ⇒ Rd×d is the convex analysis subdifferential, and |∂sup
e W (e)| := sup{|ξ| : ξ ∈ ∂eW (e)}.

As for the viscous dissipation V : V → [0, +∞) we stay general for the moment and only assume that

U ⊂ V continuously, and V complies with Hyp. 2.3. (6.10)

In addition, we are going to consider the case of inertia with a kinetic energy given by

K(u′) :=
%

2
‖u′‖2W, where W := L2(Ω, Rd) . (6.11)

We are going to use this example to emphasize how the growth assumptions on W affect the choice of V, and
which of the existence theorems is applicable in the different cases.

In view of (6.5), (6.7), and (6.9) we have

U := {v ∈ W 1,p(Ω, Rd), v = 0 on ΓD} , X := BV(Ω) ∩ L∞(Ω) , Z := L1(Ω) . (6.12)

We now summarize the basic properties of E and of the corresponding system (V,W,Z, V, R, E).

Proposition 6.1 (Properties of E and (V,W,Z, V, R, E)). Let the evolutionary system (V,W,Z, V, R, E) be

given by (6.5)–(6.12). Then, the following statements hold:

(1) The energy functional E : [0, T ]×V×Z → (−∞, +∞] has bounded sublevels in U×X, i.e. also (2.18)
from Hyp. 2.7 holds true.

(2) E : [0, T ]×V×Z → (−∞, +∞] is bounded from below and lower semicontinuous w.r.t. weak convergence

in V for u and strong convergence in Lq(Ω), for any q ∈ [1,∞), for z, whence (2.5) in Hyp. (2.2).
(3) The mutual recovery sequence condition from Hyp. 2.5 holds true.
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Proof. Ad (1): The boundedness of the energy sublevels ensues on the one hand directly from the definition
of G and on the other hand from coercivity estimate (6.9b) together with Korn’s inequality and the bounds on
the given data, since

E(t,u, z) ≥
∫

Ω

g0C|ε(u+uD)|p dx− sup
t
‖f(t)‖V∗‖u‖V

≥ g0C21−pCK‖u‖p
U − aC‖uD(t)‖p

U − CVU sup
t
‖f(t)‖V∗‖u‖U

≥ g0C2−pCK‖u‖p
U − C̃ = c‖u‖p

U − C̃

(6.13)

In the last line we have used Young’s inequality with exponent p and the factor ε = (g0C2−pCKp)1/p.

Ad (2): The boundedness from below is a direct consequence from the above deduced estimate together
with the fact that G(z) ≥ 0 for all z ∈ Z. The lower semicontinuity of E(t, ·, ·) w.r.t. weak convergence in V
and strong convergence in Lq(Ω) is ensured by [AFP05, Rem. 3.5, Thm. 3.23], assumption (6.9a), and lower
semicontinuity results such as e.g. [FL07, Thm. 7.5].

Ad (3): For the construction of the mutual recovery sequence we refer to [Tho13]. For given ẑ ∈ X with ẑ ≤
z a.e. in Ω this construction is such that 0 ≤ ẑk ≤ zk a.e. in Ω, ẑk → ẑ in L1(Ω), lim supk→∞

(
G(ẑk)−G(zk)

)
≤

G(ẑ) − G(z). Hence, also R(ẑk−zk) → R(ẑ−z). In order to find that lim supk→∞
∫
Ω
(g(ẑk)−g(zk))W (ε(uk +

uD(t)) dx ≤
∫
Ω
(g(ẑ)−g(z))W (ε(u+uD(t)) dx we observe that the expression is non-positive for all k ∈ N. We

now define the functional Ẽ : Z×Z×V → [0, +∞], Ẽ(z, ẑ,u) :=
∫
Ω
(g(z)−g(ẑ)W (ε(u+uD))+I[0,+∞)(z− ẑ) dx

and observe that Ẽ is lower semicontinuous with respect to strong convergence in Lq(Ω) and weak convergence
in V. Hence, we obtain the desired estimate by lower semicontinuity. �

In order to establish the whole bunch of assumptions of the abstract existence results, it remains to discuss
the conditions on ∂−u E(t, ·, z) and ∂tE(t,u, z). For this, we note that u 7→ E(t, u, z) is convex, hence ∂−u E(t, u, z)
coincides with the convex analysis subdifferential ∂uE(t, u, z) and will thus be denoted by ∂uE(t, u, z) hereafter.
By the sum rule, any element ξ ∈ ∂uE(t, u, z) ⊂ V∗ is represented by

ξ = − div g(z)ξ̃ − f(t) with ξ̃ ∈ ∂eW (ε(u+uD(t))) for all (t, u, z) ∈ dom(∂uE), where

dom(∂uE) = {(t, u, z) ∈ [0, T ]×V × Z, − div g(z)ξ̃ − f(t) ∈ V∗ & ξ̃ ∈ ∂eW (ε(u+uD(t)))} .
(6.14)

Therefore, in view of the definition of the convex analysis subdifferential, we have that the Fréchet subdiffer-
entiability conditions are satisfied, cf. , Hyp. 4.2 for % = 0 and Hyp. 5.2 for % > 0. Moreover, due to (6.14) and
the regularity of uD we find that the power of the energy is given by

∂tE(t,u, z) = 〈− div g(z)ξ̃,u′D(t)〉V − 〈f ′(t),u〉V =
∫

Ω

g(z)ξ̃ :ε(u′D(t))dx− 〈f ′(t),u〉V

for all ξ̃ ∈ ∂eW (ε(u+uD(t))) ,

(6.15)

where the above equivalence is also due to ΓD = ∂Ω. The integral
∫
Ω

g(z)ξ̃ : ε(u′D(t))dx is well defined for all
ξ̃ ∈ ∂eW (ε(u+uD(t))), thanks to the stress control condition (6.9c) and the regularity of uD. It thus remains
to verify the closedness of the subdifferential ∂uE(t, ·, z), and this will also help us deduce the properties of
∂tE(t,u, z) stated in condition (2.5c). Moreover, if % > 0, also the subgradient estimate proposed in Hyp.
5.3 has to be checked. To do so, we are going to distinguish between the case that V has general superlinear
growth and the case that V is quadratic. The latter case e.g. covers Kelvin-Voigt rheology, where V is given by
(6.2), and hence V = H1

0 (Ω, Rd) so that, for U ⊂ V continuously, p ≥ 2 is necessary. One may also consider a
weak damping of the form V(u′) := 1

2

∫
Ω

c|u′|2 dx, i.e. here V = L2(Ω, Rd) and U b V for any p > 2d/(d + 2).
In the case that V is of general superlinear growth we have in mind that e.g. V(u′) := ‖ε(u′)‖q

Lr(Ω,Rd×d)
with

1 < r ≤ p and q > 1, such that V = W 1,r(Ω, Rd) and U ⊂ V continuously. But also a weak damping can
be handled of the form V(u′) := ‖u′‖q

Lr(Ω,Rd)
with p > rd/(d + r) and r, q > 1, such that V = Lr(Ω, Rd) and

U b V. Moreover we will treat gradient systems (% = 0) and evolutionary systems (% > 0) separately.

The case % = 0 and V quadratic. In this setting (which already falls outside the scope of the results in
[Rou09]), as outlined in (4.1), the viscous dissipation potential V(v) := 1

2a(v, v) is defined via a continuous
and coercive bilinear form a : V ×V → R. Now, the assumptions of Theorem 1 have to be checked. In view
of Prop. 6.1, condition (2.5c) on ∂tE(t,u, z) and the closedness of ∂uE have to be established. According to
Section 4.1, this can be done by verifying the recovery sequence Hypothesis 4.6 if U b V, whereas, if only
U ⊂ V continuously, the closedness is to be verified via the closedness-argument à la Minty from Hyp. 4.8.
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Proposition 6.2 (Properties of ∂uE(t, ·, z) and ∂tE(t,u, z)). Let the assumptions of Prop. 6.1 hold true and

assume that V : V → [0, +∞) is quadratic.

(1) Let V b U. Then E : [0, T ]×V × Z → (−∞, +∞] satisfies the recovery sequence Hypothesis 4.6.

(2) Let U ⊂ V continuously. Then E : [0, T ] × V × Z → (−∞, +∞] satisfies the closedness à la Minty

from Hypothesis 4.8.

(3) For any (t,u, z) ∈ [0, T ]×V×Z with E(t, u, z) ≤ C the power of the energy ∂tE fulfills condition (2.5c).

Proof. Ad (1): For any given ũ ∈ V, the constant sequence ũk = ũ serves as a recovery sequence in Hyp. 4.6.

Ad (2): Consider a sequence (tk,uk, zk)k ⊂ [0, T ]×V × Z complying with the assumptions in (4.14), i.e.
tk → t pointwise a.e. in (0, T ), uk ⇀ u in L∞(0, T ;U)∩H1(0, T ;V), zk

∗
⇀ z in L∞(0, T ; Lq(Ω)) and zk(t) → z(t)

in Lq(Ω) for any 1 ≤ q < ∞ and all t ∈ [0, T ], ξk ⇀ ξ in L2(0, T ;V∗) with ξk ∈ ∂uE(tk(t),uk(t), zk(t)) for a.e.
t ∈ (0, T ), and lim supk

∫ T

0
〈ξk,uk〉V ≤ 〈ξ,u〉V. We have to verify that also ξ(t) ∈ ∂uE(t(t),u(t), z(t)) for a.e.

t ∈ (0, T ). For this, we may repeat the very same arguments as in Example 4.14.

Ad (3): We first establish the power control. For this, we note that |∂tE(t,u, z)| ≤ |〈− div g(z)ξ̃,u′D(t)〉V|+
|〈f ′(t),u〉V| and we handle each of the two terms separately. For the term involving f we see that

|〈f ′(t),u〉V| ≤ ‖f ′(t)‖V∗‖u‖V ≤ Cf c
−1(E(t,u, z) + C̃) (6.16)

due to the regularity of f and the fact that the energy sublevels are uniformly bounded by Prop. 6.1(1), more
precisely, we used (6.13). For the term involving uD we find

|〈− div g(z)ξ̃,u′D(t)〉V| ≤
∫

Ω

|g(z)∂eW (ε(u) + ε(uD(t))) :ε(u′D(t))| dx

(1)

≤ ‖g(z)∂eW (ε(u) + ε(uD(t)))‖Lp′ (Ω,Rd×d)‖ε(u′D(t))‖Lp(Ω,Rd×d)

(2)

≤ CDg
1/p
1 ‖g(z)W (ε(u) + ε(uD(t)))‖1/p′

L1(Ω,Rd×d)

≤ CDg
1/p
1

(
‖g(z)W (ε(u) + ε(uD(t)))‖L1(Ω,Rd×d) + 1

)1/p′ − 〈f(t),u〉V + sup
t∈[0,T ]

‖f(t)‖V∗‖u‖V

≤ CDg
1/p
1 E(t,u, z) + CDg

1/p
1 + Cf c

−1(E(t,u, z) + C̃) .

(6.17)

For (1), we have applied Hölder’s inequality, while for (2) we have used that g0 < g(z) < g1, hence g(z)p′ <

gp′−1
1 g(z), and (p′− 1)/p′ = 1/p. Moreover, we have introduced CD > supt∈[0,T ] ‖e(u′D(t))‖Lp(Ω,Rd×d). In order

to re-establish E(t,u, z), we have eliminated the power 1/p′ < 1 by adding 1 under the root, we have added
the work of the external loadings and compensated its possible non-positivity by the corresponding continuity
estimate. Finally, as for (6.16), we have used Cf as the uniform bound on f and the bound on u by (6.13).

Secondly, we convince ourselves that lim supk ∂tE(tk,uk, zk) ≤ ∂tE(t,u, z) if E(tk,uk, zk) ≤ C for all k ∈ N,

tk → t, uk ⇀ u in V, and zk → z in L1(Ω). In fact, choose a sequence ξ̃k ∈ ∂eW (ε(uk +uD(tk))) such
that ∂tE(tk,uk, zk) =

∫
Ω

g(zk)ξ̃k : ε(u′D(tk)) dx − 〈f ′(tk),uk〉V, cf. (6.15). It follows from (6.9c) and from
E(tk,uk, zk) ≤ C that, up to a subsequence ξ̃k ⇀ ξ in Lp′(Ω; Rd×d) and, by the strong-weak closedness of
∂eW , we conclude that ξ̃ ∈ ∂eW (ε(u+uD(t))), where we have also used that uD(tk) → uD(t) in U. Taking
into account the available convergences and the boundedness properties of g, with the dominated convergence
theorem one shows that limk→∞

∫
Ω

g(zk)ξ̃k :ε(u′D(tk))dx =
∫
Ω

g(z)ξ̃ :ε(u′D(t))dx. By the regularity properties
of f we also find that f(tk) → f(t) in V∗. Thus, in view of the representation (6.15) of ∂tE we even obtain by
weak-strong convergence arguments that ∂tE(tk,uk, zk) → ∂tE(t,u, z). �

Now, Theorem 1 guarantees the existence of an energetic solution.

Theorem 6.3. Let the assumptions of Prop. 6.2 hold true. Then the gradient system (V,Z, V, R, E) admits

an energetic solution.

The case % = 0 and V of general superlinear growth. In this frame, the closedness of ∂uE(t, ·, z) is to be
verified via Hypothesis 4.25. This hypothesis requires the identification of the limit (as an element of the limit
subdifferential) via weak convergence both of the sequence (uk)k and the elements (ξk)k of their corresponding
subdifferentials without any additional identification qualification (such as the existence of a recovery sequence
for the energy functional, cf. Hyp. 4.6, or the closedness à la Minty, cf. Hyp. 4.8). In view of the form (6.6) of
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the energy functional, such identification can be carried out if W is of quadratic nature. In other words, in case
of a viscous dissipation potential of general superlinear growth, the energy functional has to be of quadratic
growth in the respective variable, i.e., here, we may consider

W (e) := 1
2e :C :e with C ∈ Rd×d×d×d symmetric and positively definite. (6.18)

Hence, U = H1
0 (Ω, Rd) and the condition U ⊂ V restricts V to be either a Sobolev space W 1,q

0 (Ω, Rd) with
1 < q ≤ 2 or a Lebesgue space Lq(Ω, Rd) with 1 < q ≤ 2d/(d− 2) for d > 2 and 1 < q < ∞ for d = 2. By the
representation formula (6.14), we have with the ansatz (6.18) that, if uk ⇀ u in V, zk → z in Z, ξk ⇀ ξ in V∗

with ξk ∈ ∂uE(t,uk, zk) for all k ∈ N, then also ξ ∈ ∂uE(t,u, z). With this argument it can be observed that
also lim supk ∂tE(tk,uk, zk) ≤ E(t,u, z), which is required in (2.5c). Therefore we now summarize

Proposition 6.4 (Properties of ∂uE(t, ·, z) and ∂tE(t, u, z)). Let the assumptions of Prop. 6.1 hold true and

let E(t, ·, z) be quadratic as in (6.18) as well as U = H1
0 (Ω, Rd) ⊂ V. Then, the system (V,Z, V, R, E) satisfies

the closedness Hypothesis 4.25 as well as condition (2.5c).

Now, we may invoke Theorem 2, which ensures the existence of a weak energetic solution.

Theorem 6.5. Let the assumptions of Prop. 6.4 be satisfied. Then the gradient system (V,Z, V, R, E) admits

a weak energetic solution.

The case % > 0 and V of general superlinear growth. As above, the closedness of ∂uE(t, ·, z) has to be
verified via Hypothesis 4.25 and hence, also here the energy functional has to be quadratic with W of the form
(6.18) and U = H1

0 (Ω, Rd). In addition, if % > 0, also the subgradient estimate due to Hyp. 5.3 has to be
shown. More precisely, for ξ ∈ ∂uE(t,u, z) it has to be established that |〈ξ, v〉V| ≤ C (E(t,u, z) + ‖u‖V + 1)
for all v ∈ V. However, taking a closer look at the representation formula (6.14) we see that the stress control
(6.9c) can only imply the subgradient estimate in terms of the energy if the divergence can be swapped to
the test function v ∈ V by partial integration. But this requires that ε(v) ∈ Lp(Ω, Rd×d) with p ≥ 2 for any
v ∈ V, hence V ⊂ W 1,p

0 (Ω; Rd) with p ≥ 2. On other hand, U ⊂ V enforces p ≤ 2. All in all, this leads to
V = U = H1

0 (Ω, Rd).

Proposition 6.6 (Properties of ∂uE(t, ·, z) and ∂tE(t,u, z)). Let the assumptions of Prop. 6.4 be satisfied and

let V = U = H1
0 (Ω, Rd). Then, the evolutionary system (V,W,Z, V, R, E) satisfies the closedness Hypothesis

4.25 as well as condition (2.5c) and ∂uE(t, ·, z) complies with the subgradient estimate (5.8) from Hyp. 5.3.

Due to these findings the abstract existence Theorem 3 yields the existence of a weak energetic solution.

Theorem 6.7. Let the assumptions of Prop. 6.6 hold true. Then the evolutionary system (V,W,Z, V, R, E)
admits a weak energetic solution.

The case % > 0, V quadratic, and V b W. Here, the topological setup U ⊂ V b W together with (6.12)
determines that V := W 1,r

0 (Ω; Rd) with r ∈ [r∗, p] for r∗ = 2d/(d + 2) if d > 2, r∗ > 1 if d = 2. However, as
already seen above, the subgradient estimate due to Hyp. 5.3 enforces that V = U; using the stress control
(6.9c) it can be verified with calculations similar to the ones in the proof of Prop. 6.2(3). Moreover, for this
setting, the closedness of ∂uE(t, ·, z) is again to be verified via the closedness-argument à la Minty, as already
done in Prop. 6.2(2). Therefrom then also follows the lim sup-qualification of ∂tE, cf. condition (2.5c), again
arguing along the lines of Prop. 6.2(3).

Proposition 6.8 (Properties of ∂uE(t, ·, z) and ∂tE(t,u, z)). Let the assumptions of Prop. 6.2 be satisfied and

let V be quadratic and V = U b W. Then, the evolutionary system (V,W,Z, V, R, E) satisfies the closedness

Hypothesis 4.8, condition (2.5c) and ∂uE(t, ·, z) complies with the subgradient estimate (5.8) from Hyp. 5.3.

This enables us to deduce the existence of energetic solutions via Theorem 4.

Theorem 6.9. Let the assumptions of Prop. 6.8 be satisfied. Then the evolutionary system (V,W,Z, V, R, E)
admits an energetic solution.
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6.3. Rate-dependent damage and rate-independent plasticity with hardening at small strains.

We now focus on a coupled elasto-plastic damage model (at small strains) that was proposed in [AMV14] and
first mathematically analyzed in [Cri14, CL15]. While [Cri14] addresses the existence of energetic solutions
(quasistatic evolutions) for the fully rate-independent evolution of plasticity and damage, [CL15] studies the
system regularized by viscosity in the damage variable, and develops the asymptotic analysis for vanishing
viscosity.

In what follows, we aim to revisit the mixed rate-dependent (for the damage variable) / rate-independent
(for the plasticity tensor) system studied in [CL15]. There, the authors have proved the existence of a weak
notion of solution featuring a formulation of the damage flow rule in terms of a Kuhn-Tucker inequality, in place
of a standard subdifferential inclusion, coupled with an energy-dissipation balance. In fact, such a formulation
is akin to the weak solvability concept proposed and analyzed in [HK11, HK13] for (rate-dependent) damage
coupled with phase separation.

Here we are going to address a variant of this damage/plasticity system, featuring hardening and a gradient
regularization for the plastic tensor, and where unidirectionality of damage is neglected. To this regularized
system it is possible to apply our abstract approach, leading to the existence of energetic solutions, which are in
fact stronger than the solutions obtained in [CL15]. In particular, we will solve the damage flow rule pointwise
a.e. in the space-time domain, cf. (6.34) below.

Energy. We consider damage in a body located in a sufficiently smooth (cf. (6.28) below) bounded domain
Ω ⊂ Rd with d ∈ {2, 3}. The “viscous” and “rate-independent” variables are, respectively

u := α ∈ [0, 1] damage parameter; z := p ∈ Rd×d
dev := {π ∈ Rd×d

sym : tr(π) = 0} plastic tensor.

The overall energy is given by the sum of three contributions

E(t, α, p) := E1(α) + E2(p) + E3(t, α, p). (6.19)

We take

E1 : Hs(Ω) → (−∞, +∞] , E1(α) := as(α, α) +
∫

Ω

I[0,1](α) + γ(α)dx , (6.20)

where, along the lines of [KRZ13], and as also done in [CL15], we choose for the gradient regularization of the
damage variable the bilinear form

as(α1, α2) =
∫

Ω

∫

Ω

(
∇α1(x)−∇α1(y)

)
·
(
∇α2(x)−∇α2(y)

)

|x− y|d+2(s−1)
dxdy with s ∈

(
d

2
, 2
)

(6.21)

associated with the s-Laplacian operator As : Hs(Ω) → Hs(Ω) (with Hs(Ω) we denote the space W s,2(Ω)). In
what follows, we will exploit in a crucial way that, since s > d

2 , there holds

Hs(Ω) b C0,δ(Ω) for some δ ∈ (0, 1]. (6.22)

The other contributions to the energy E1 are the indicator function of the interval [0, 1], enforcing the constraint
z ∈ [0, 1], and a smooth, but possibly nonconvex, function γ ∈ C1([0, 1]). Unlike in [CL15], where the case of
perfect plasticity was considered, we encompass hardening and gradient plasticity in our model through

E2 : H1(Ω; Rd×d
dev ) → (0, +∞) , E2(p) :=

∫

Ω

1
2p :H :p + |∇p|2 dx (6.23a)

with H a symmetric, positive definite operator (of Prager/Ziegler type) on Rd×d
dev such that

∃ h > 0 ∀ p ∈ Rd×d
dev : p :H :p ≥ h|p2| . (6.23b)

Finally, we define E3 : [0, T ]×C0(Ω; [0, 1])× L2(Ω; Rd×d
dev ) by minimizing out the displacement from the elastic

energy, namely

E3(t, α, p) := min
u∈H1

Γ
D

(Ω;Rd)
I(t, α,u, p) with

I(t, α,u, p) :=
∫

Ω

1
2g(α)(ε(u + uD)− p) :C : (ε(u + uD)− p)dx− 〈f(t),u〉 .

(6.24)

Here, following [KRZ13, Sec. 2.4], we assume that

C ∈ C0,δ(Ω; Lin(Rd×d
sym , Rd×d

sym)) for δ ∈ (0, 1] as in (6.22),

∃ c0 > 0 for all ξ ∈ Rd×d
sym and almost all x ∈ Ω : C(x)ξ : ξ ≥ c0|ξ|2,

(6.25)
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and that the constitutive function g fulfills

g ∈ C1([0, 1]), and ∃ c1 > 0 ∀ z ∈ [0, 1] : g(z) ≥ c1. (6.26)

Along the footsteps of [KRZ13], we assume for the Dirichlet datum uD and the external load f that

uD ∈ C1,1([0, T ]; W 1,4(Ω; Rd)), f ∈ C1,1([0, T ]; W−1,4(Ω; Rd)). (6.27)

Let us mention in advance that (6.27) will have a crucial role in the derivation of higher integrability estimates
for the (unique) minimizer of the energy I(t, α, ·, p), cf. Lemma 6.10 below, along with the condition that

Ω has C1-boundary ∂Ω, and Dirichlet boundary ΓD = ∂Ω. (6.28)

Dissipation. For the damage variable, we consider the quadratic dissipation potential

V(α′) :=
∫

Ω

1
2
|α′|2 dx ∀α′ ∈ V := L2(Ω). (6.29)

Clearly, V complies with Hypothesis 2.3. Observe that V does not encompass the unidirectionality constraint
α′ ≤ 0, since, as mentioned in the introduction, in the analysis developed in this paper we cannot allow for V

taking the value +∞.

For the plastic tensor, along the footsteps of [AMV14], we include in the 1-homogeneous dissipation potential
a dependence on the damage variable, namely we define

R : C0(Ω; [0, 1])× Z → [0, +∞), with Z := L1(Ω; Rd×d
dev ), by R(α, π′) :=

∫

Ω

H(α, π′)dx with

H : [0, 1]× Rd×d
dev → [0, +∞) continuous , H(α, ·) convex and 1-positively homogeneous ∀α ∈ [0, 1],

∃ r, R > 0 ∀ (α, π′) ∈ [0, 1]× Rd×d
dev : r|π| ≤ H(α, π′) ≤ R|π′| .

(6.30a)

It follows from (6.30a) that for every α ∈ [0, 1] the dissipation density H(α, ·) is the support function of a
closed convex K(α) ⊂ Rd×d

dev , i.e.

H(α, π′) = sup
σ∈K(α)

σ : π′ .

In the lines of [Cri14, Rmk. 2.1], we further specialize to the case in which

K(α) = h(α)K with

{
h : [0, 1] → [0, +∞) continuous, and ∃ c2 > 0 ∀α ∈ [0, 1] : h(α) ≥ c2 > 0,

K ⊂ Rd×d
dev closed, convex, with Br(0) ⊂ K ⊂ BR(0) for some 0 < r < R.

(6.30b)

Hence, we have the following explicit formula for H

H(α, π′) = h(α) sup
σ∈K

σ : π′
.= h(α)|π′|K , (6.31)

where we have used the norm | · |K induced by K, equivalent to the Euclidean norm thanks to (6.30b). It is
immediate to verify that for every α ∈ C0(Ω; [0, 1]) the dissipation potential R(α, ·) complies with Hyp. 2.3,
with a constant uniform w.r.t. α.

The special form (6.31) of H naturally leads to the following definition for the total variation functional
induced by R: we set on an interval [s, t] ⊂ [0, T ]

VarR(α, p; [s, t]) :=
∫∫

[s,t]×Ω

h(α)|p′|K(dxdr) for every α ∈ C0([0, T ]; C0(Ω; [0, 1])) and p ∈ BV([0, T ];Z).

(6.32)
where the Radon measure p′ ∈ M([0, T ] × Ω; Rd×d

dev ) is the distributional derivative of p, and |p′|K its total
variation with respect to the norm | · |K .

The notion of energetic solution and the time-discrete scheme. We now revisit the notion of energetic

solution to the system (V,Z, V, R, E) given by (6.19), (6.29), and (6.30), adapting Def. 3.1, for % = 0, to the
present situation with a state-dependent dissipation potential R. Hence, the semistability condition reads

E(t, α(t), p(t)) ≤ E(t, α(t), p̃) + R(α(t), p̃−p(t)) ∀ p̃ ∈ L1(Ω; Rd×d
dev ) for all t ∈ [0, T ], (6.33)
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whereas the energy-dissipation inequality has the same form as (3.4) but features the α-dependent total vari-
ation VarR(α, p; [0, t]). Finally, let us highlight that the subdifferential inclusion for α reads

α′(t) + Asα(t) + ∂I[0,1](α(t)) + γ′(α(t))

+
1
2
g′(α)(ε(umin(t) + uD(t))− p(t)) :C : (ε(umin(t) + uD(t))− p(t)) 3 0 in L2(Ω) for a.a. t ∈ (0, T ),

(6.34)
where we have used the explicit formula (6.48) below for the Fréchet subdifferential of α 7→ E(t, α, p) (w.r.t.
the L2(Ω)-topology), with umin(t) ∈ H1

ΓD
(Ω; Rd) the (unique) minimizer of I(t, α(t), ·, p(t)).

In order to prove the existence of energetic solutions to (V,Z, V, R, E), we pass to the limit in the time-
discretization scheme from Problem 4.1, where the first minimum problem (4.3a) now reads

pn
τ ∈ Argmin

p∈Z

(
τR

(
αn−1

τ ,
p− pn−1

τ

τ

)
+ E(tn, αn−1

τ , p)
)

, (6.35)

whereas (4.3b) stays the same. Hence, for the limit passage in the semistability condition it will be necessary
to verify the following mutual recovery sequence condition, tailored to the fact that the map α 7→ G(α, p) has
sublevels bounded in Hs(Ω), cf. Proposition 6.13 below, and that we will be able to prove for every t ∈ [0, T ]
that (ατ (t)− ατ (t)) ⇀ 0 in Hs(Ω), cf. (4.16c) :
Let (tn, ᾱn, αn, pn)n ⊂ [0, T ]×Hs(Ω)×Hs(Ω)×H1(Ω; Rd×d

dev ) fulfill for every n ∈ N the semistability condition

E(tn, αn, pn) ≤ E(tn, αn, p̃) + R(ᾱn, p̃−pn) ∀ p̃ ∈ L1(Ω; Rd×d
dev ),

and suppose that tn → t, (αn, pn) ⇀ (α, p) in Hs(Ω) × H1(Ω; Rd×d
dev ) with supn∈N G(αn, pn) ≤ C, and that

(αn − ᾱn) ⇀ 0 in Hs(Ω). Then for every p̃ ∈ L1(Ω; Rd×d
dev ) there exists p̃n ⇀ p̃ in L1(Ω; Rd×d

dev ) such that

lim
n→∞

(R(ᾱn, p̃n−pn) + E(tn, αn, p̃n)− E(tn, αn, pn)) ≤ R(α, p̃−p) + E(t, α, p̃)− E(t, α, p). (6.36)

Properties of the reduced energy E3. Prior to verifying the hypotheses of Thm. 1, we start with the
following preliminary results, providing basic properties of the reduced energy E3 from (6.24). In Lemmas
6.10–6.12 (whose proofs are indeed drawn from [KRZ13]), we will distinguish between the properties valid for
p ∈ L2(Ω; Rd×d), and those requiring p ∈ L4(Ω; Rd×d).

Lemma 6.10. Assume (6.25)–(6.28). Then, for every (t, α, p) ∈ [0, T ]×C0(Ω; [0, 1])×L2(Ω; Rd×d
dev ) there exists

a unique minimizer umin = umin(t, α, p) ∈ H1
ΓD

(Ω; Rd) and

∀ ε ∈ (0, c0c1) ∃ dε
1 > 0 ∀ (t, α, p) ∈ [0, T ]× C0(Ω; [0, 1])× L2(Ω; Rd×d

dev ) :

E3(t, α, p) ≥1
2
(c0c1 − ε)‖umin‖2H1(Ω;Rd) +

1
2

(
c0c1 −

1
ε

)
‖p‖2

L2(Ω;Rd×d
dev )

− dε
1(‖uD‖2L∞(0,T ;W 1,4(Ω;Rd)) + ‖f‖2L∞(0,T ;W−1,4(Ω;Rd)))

(6.37)

Moreover, if p ∈ L4(Ω; Rd×d
dev ), then umin ∈ W 1,4(Ω; Rd) and

for every M > 0 there exist d2(M), d3(M) > 0 such that

∀ (t, α, p) ∈ [0, T ]× C0(Ω; [0, 1])× L4(Ω; Rd×d
dev ), ‖α‖C0(Ω) + ‖p‖L4(Ω;Rd×d

dev ) ≤ M :

‖umin(t, α, p)‖W 1,4(Ω;Rd) ≤ d2(M)
(
‖uD‖L∞(0,T ;W 1,4(Ω;Rd)) + ‖f‖L∞(0,T ;W−1,4(Ω;Rd))

)
;

(6.38)

∀ (t1, α1, p), (t2, α2, p) ∈ [0, T ]× C0(Ω; [0, 1])× L4(Ω; Rd×d
dev ), ‖α1‖C0(Ω) + ‖α2‖C0(Ω) + ‖p‖L4(Ω;Rd×d

dev ) ≤ M :

‖umin(t1, α1, p)−umin(t2, α2, p)‖W 1,4(Ω;Rd)

≤ d3(M)(|t1 − t2|+ ‖α1 − α2‖C0(Ω))
(
‖uD‖L∞(0,T ;W 1,4(Ω;Rd)) + ‖f‖L∞(0,T ;W−1,4(Ω;Rd))

)
.

(6.39)

Sketch of the proof. Estimate (6.37) can be easily checked by elementary calculations, also making use of Korn’s
inequality (cf. also the calculations for [KRZ13, Lemma 2.4]. The existence of a minimizer standardly follows
from the coercivity and lower semicontinuity properties of the functional I(t, α, ·, p), via the direct method ; its
uniqueness is due to the uniform convexity of I(t, α, ·, p). Estimates (6.38) and (6.39) rely on higher integrability
results for weak solutions to elliptic equations in smooth domains, cf. e.g. [Giu03, Sec. 10.4]: we refer to the
proofs of [KRZ13, Lemmas 2.4–2.5, Prop. 2.11] for all details. �
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Let us highlight that (6.39) is a continuous dependence estimate for umin with fixed p. It will play a crucial
role for the study of the continuity properties of DαE3(·, ·, p) in our next result.

Lemma 6.11. Assume (6.25)–(6.28). Then:

(1) For every (α, p) ∈ C0(Ω; [0, 1])× L2(Ω; Rd×d
dev ) the map t 7→ E3(α, p) is in C1([0, T ]; R) with

∂tE3(t, α, p) =
∫

Ω

g(α)C(ε(umin(t, α, p) + uD(t))− p) : ε(u′D(t)dx− 〈f ′(t),umin(t, α, p)〉H1(Ω;Rd), (6.40)

and there exists a constant d4 > 0 such that for all (t, α, p) ∈ [0, T ]× C0(Ω); [0, 1])× L2(Ω; Rd×d
dev )

|∂tE3(t, α, p)| ≤ d4

(
‖uD‖2C1([0,T ];W 1,4(Ω;Rd)) + ‖f‖2

C1([0,T ];W−1,4
Γ
D

(Ω;Rd))
+ ‖p‖2

L2(Ω;Rd×d
dev )

)
. (6.41)

Moreover, there exist d5 > 0 depending on ‖uD‖C1,1([0,T ];W 1,4(Ω;Rd)), ‖f‖C1,1([0,T ];W−1,4
Γ
D

(Ω;Rd)), and such

that for all (ti, αi, pi) ∈ [0, T ]× C0(Ω; [0, 1])× L2(Ω; Rd×d
dev ), i = 1, 2,

|∂tE3(t1, α1, p1)− ∂tE3(t2, α2, p2)| ≤ d5(|t1−t2|+ ‖α1 − α2‖C0(Ω) + ‖p1 − p2‖L2(Ω;Rd×d
dev )) . (6.42)

(2) For every t ∈ [0, T ] and p ∈ L2(Ω; Rd×d
dev ) the functional α 7→ E3(t, α, p) is Gâteaux-differentiable on

C0(Ω; [0, 1]) with Gâteaux derivative

DαE3(t, α, p)[β] =
∫

Ω

1
2g′(α)(ε(umin(t, α, p)+uD)−p) :C : (ε(umin(t, α, p)+uD)−p)βdx for all β ∈ C0(Ω).

(6.43)
If p ∈ L4(Ω; Rd×d

dev ), then DαE3(t, α, p) can be identified with an element in L2(Ω) and, moreover,

there exists a constant d6 > 0, depending on ‖uD‖C1,1([0,T ];W 1,4(Ω;Rd)), ‖f‖C1,1([0,T ];W−1,4
Γ
D

(Ω;Rd)), and

p ∈ L4(Ω; Rd×d
dev ), such that for every t1, t2 ∈ [0, T ] and α1, α2 ∈ C0(Ω)

‖DαE3(t1, α1, p)−DαE3(t2, α2, p)‖L2(Ω) ≤ d6

(
|t1 − t2|+ ‖α1−α2‖C0(Ω)

)
. (6.44)

Sketch of the proof. We refer to [KRZ13, Lemma 2.6] for the proof of (6.40)–(6.42). Formula (6.43) can be ob-
tained straightforwardly and, in view of (6.38), one sees that DαE3(t, α, p) ∈ L2(Ω) as soon as p ∈ L4(Ω; Rd×d

dev ).
The proof of (6.44) can be obtained by suitably adapting the calculations for [KRZ13, Lemma 2.8]. �

Finally, we examine the continuity properties of E3.

Lemma 6.12. Assume (6.25)–(6.28). Then,

(1) for every p ∈ L4(Ω; Rd×d
dev ) the functional (t, α) 7→ E3(t, α, p) is in C1,1([0, T ]; C0(Ω; [0, 1]));

(2) for every sequence (tn, αn, pn) ⊂ [0, T ]× C0(Ω; [0, 1])× L2(Ω; Rd×d
dev )





tn → t,

αn → α in C0(Ω),

pn → p in L2(Ω; Rd×d
dev )





⇒ E3(tn, αn, pn) → E3(t, α, p) . (6.45)

Sketch of the proof. The Fréchet differentiability, with Lipschitz continuous differential, of E3(·, ·, p) is a conse-
quence of Lemma 6.11. To show (6.45), we first observe that, given a sequence (tn, αn, pn)n as in (6.45), the
sequence un := umin(tn, αn, pn), bounded in H1(Ω; Rd) by (6.37), up to a (not relabeled) subsequence weakly
converges to some limit u in H1

ΓD
(Ω; Rd). With standard lower semicontinuity arguments we find

lim inf
n→∞

E3(tn, αn, pn) = lim inf
n→∞

I(tn, αn,un, pn) ≥ I(t, α,u, p) ≥ E3(t, α, p) .

We now show that u is the unique minimizer of I(t, α, ·, p) by observing that

I(t, α,u, p) ≤ lim sup
n→∞

I(tn, αn,un, pn)
(1)

≤ lim sup
n→∞

I(tn, αn,v, pn)
(2)
= I(t, α,v, p) ∀v ∈ H1

ΓD
(Ω; Rd) , (6.46)

where (1) is due to un ∈ Argmin I(tn, αn, ·, pn), and (2) is guaranteed by the convergence properties of
(tn, αn, pn)n. Choosing v = u in (6.46), we find that limn→∞ I(tn, αn,un, pn) = I(t, α,u, p), whence (6.45). �
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Properties of the energy E. We are now in the position to check that the energy functional E complies with
the conditions of Thm. 1.

Proposition 6.13. Assume (6.25)–(6.28). Let E be defined by (6.19), (6.20), (6.23), and (6.24) and, in

addition, suppose that the constants h, c0, and c1 from (6.23b), (6.25), and (6.26), respectively, fulfill

c0c1 >
1

h + c0c1
. (6.47)

Then,

(1) E complies with Hypotheses 2.2 and 2.7, with the spaces U = Hs(Ω) and X = H1(Ω; Rd×d
dev ).

(2) The mutual recovery sequence condition (6.36) is satisfied.

(3) The Fréchet subdifferential ∂−α E(t, α, p) : L2(Ω) ⇒ L2(Ω) is given at any point (t, α, p) ∈ dom(∂−α E) by

∂−α E(t, α, p) = Asα+∂I[0,1](α)+γ′(α)+ 1
2g′(α)(ε(umin(t, α, p)+uD)−p) :C : (ε(umin(t, α, p)+uD)−p), (6.48)

and the uniform Fréchet subdifferentiability condition from Hyp. 4.2 is satisfied.

(4) E complies with Hyp. 4.6.

Proof. Ad (1): Taking into account that the function γ is bounded from below on [0, 1], the positive definiteness
of the hardening tensor H, and the previously proved (6.37), we find that E is bounded from below. Indeed,
from the hardening contribution one gains the positive term h

2‖p‖2L2(Ω;Rd×d
dev )

, and it is sufficient to choose the

constant ε ∈ (0, c0c1) in (6.37) such that h+c0c1− 1
ε > 0. This is possible thanks to the compatibility condition

(6.47). In this way, we also also straightforwardly verify the coercivity property (2.18).

To check (2.5a) in Hyp. 2.7, let us consider a sequence (αn, pn) ⇀ (α, p) in L2(Ω)× L1(Ω; Rd×d
dev ) such that

lim infn→∞ E(t, αn, pn) < +∞: up to a subsequence we may suppose that supn E(t, αn, pn) < +∞. Hence, by
(2.18), we find that (αn, pn) ⇀ (α, p) in Hs(Ω) × H1(Ω; Rd×d

dev ) b C0(Ω) × L2(Ω; Rd×d
dev ). Thus, by (6.45) we

conclude that E3(t, αn, pn) → E3(t, α, p). The lower semicontinuity inequality for E1 and E2 is standard.

Clearly, for every (t, α, p) ∈ [0, T ] × C0(Ω; [0, 1]) × L2(Ω; Rd×d
dev ) we have ∂tE(t, α, p) = ∂tE3(t, α, p). Hence,

(2.5c) is a consequence of (6.41), which gives a control of the power in terms of the energy, and of (6.42),
yielding the upper semicontinuity of the power. This concludes the verification of Hypothesis 2.2.

Ad (2): Let (tn, αn, pn)n ⊂ [0, T ]×L2(Ω)×L1(Ω; Rd×d
dev ) be a sequence in the conditions of Hyp. 2.5. Thanks to

Hyp. 2.7 and by the compact embeddings Hs(Ω) b C0(Ω) and H1(Ω; Rd×d
dev ) b L2(Ω; Rd×d

dev ) we have (αn, pn) →
(α, p) in C0(Ω)×L2(Ω; Rd×d

dev ). Hence, for (6.36) we may choose the constant recovery sequence p̃n := p̃, taking
into account that{

R(ᾱn, p̃− pn) → R(α, p̃− p) as ᾱn → α in C0(Ω) and pn → p in L2(Ω; Rd×d
dev ),

E(tn, αn, p̃) → E(t, α, p) by Lemma 6.12.

Ad (3): The representation formula for ∂−α E ensues from the sum rule for the Fréchet subdifferential, taking
into account that E(t, ·, p) is given by the sum of either Gâteaux differentiable or convex terms. Next, we
observe that for every t ∈ [0, T ], α1, α2 ∈ C0(Ω), and p ∈ L4(Ω; Rd×d

dev ) and for every ξi ∈ ∂−α E(t, αi, p), i = 1, 2:
∫

Ω

(ξ1−ξ2) (α1−α2)dx ≥ as(α1−α2, α1−α2) +
∫

Ω

(γ′(α1)−γ′(α2)) (α1−α2)dx

+
∫

Ω

(DαE3(t, α1, p)−DαE3(t, α2, p)) (α1−α2)dx

≥ ‖α1−α2‖2Hs(Ω) − ‖α1−α2‖2L2(Ω) − C‖α1−α2‖2L2(Ω) − d6‖α1−α2‖C0(Ω)‖α1−α2‖L2(Ω),

where the first inequality is due to the monotonicity of ∂I[0,1], and the second one follows from adding and

subtracting ‖α1−α2‖2L2(Ω), since
√
‖α‖2L2(Ω) + as(α, α) gives the Hs(Ω)-norm, from using that γ is Lipschitz

continuous on [0, 1], and from estimate (6.44). Using now that

∀ ε > 0 ∃Cε > 0 ∀α ∈ Hs(Ω) : ‖α‖C0(Ω) ≤ ε‖α‖Hs(Ω) + Cε‖α‖L2(Ω)

in view of the embeddings Hs(Ω) b C0(Ω) ⊂ L2(Ω), we conclude that

∃ d7, d8 > 0 ∀ (t, p) ∈ [0, T ]× L4(Ω; Rd×d
dev ) ∀α1, α2 ∈ Hs(Ω) ∀ ξi ∈ ∂−α E(t, αi, p), i = 1, 2 :

∫

Ω

(ξ1−ξ2) (α1−α2)dx ≥ d7‖α1−α2‖2Hs(Ω) − d8‖α1−α2‖2L2(Ω).
(6.49)
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It is standard to deduce from (6.49) that E complies with the λ-convexity (4.7), whence Hyp. 4.2.

Ad (4): Hypothesis 4.6 can be verified with the choice of the constant recovery sequence α̃n := α̃, taking into
account that, for a sequence (tn, αn, pn)n as in Hyp. 4.6,

lim sup
n→∞

(E(tn, α̃, pn)− E(tn, αn, pn)) = lim sup
n→∞

(E1(α̃) + E3(tn, α̃, pn)− E1(αn)− E3(tn, α, pn))

≤ E1(α̃) + E3(t, α̃, p)− E1(α)− E3(t, α, p) = E(t, α̃, p)− E(t, α, p)

thanks to (6.45) and the lower semicontinuity properties of E1 and E3. �

Hence, from Theorem 1 we conclude

Theorem 6.14. Assume (6.25)–(6.28), and (6.47). Then, for every (α0, p0) ∈ Hs(Ω) ∩ H1(Ω; Rd×d
dev ) there

exists an enhanced energetic solution (α, p), with

α ∈ L∞(0, T ; Hs(Ω)) ∩H1(0, T ; L2(Ω)) and p ∈ L∞(0, T ; H1(Ω; Rd×d
dev )) ∩ BV([0, T ]; L1(Ω; Rd×d

dev ))

to the gradient system (V,Z, V, R, E) given by (6.19), (6.29), and (6.30) such that α(0) = α0 and p(0) = p0.

7. Proofs of Theorems 1 – 4

In the proof of our existence results for the gradient system (V,Z, V, R, E) we will reverse the order in
Section 4 and indeed start with the case of a general dissipation potential V in Sec. 7.1. In this general frame,
on the one hand, we will employ variational techniques tailored to the proof of the discrete energy-dissipation
inequality. On the other hand, in the limit passage to the time-continuous limit we will resort to Young measure
arguments that will play a major role also in the particular case V quadratic, cf. Sec. 7.2. Finally, in Sec. 7.3
we will address the proofs of Theorems 3 (V general) and 4 (V quadratic).

7.1. Proof of Theorem 2. For the time-discrete analysis of the rate-dependent differential inclusion (3.2), we
will adapt the arguments from the proof of [MRS13b, Thm. 4.4], see also [RS06]. More precisely, we will start
by providing some “stationary estimates” for the solutions of the time-incremental minimum problem (4.23a),
yielding the discrete (un

τ )Nτ
n=1, at each fixed time-step. In particular, in Lemma 7.1 below, we will give the crucial

time-discrete energy-dissipation inequality (7.5). We shall combine it with the estimates associated with the
minimum problem (4.23b), yielding the discrete (zn

τ )Nτ
n=1, to derive the a priori estimates on the approximate

solutions in Proposition 7.2. Also relying on Young measure compactness arguments, in Prop. 7.3 we derive
a series of convergences (along suitable subsequences) of the discrete solutions to a pair (u, z), which we will
then show to be a weak energetic solution to the gradient system (V,Z, V, R, E).

Preliminarily, we fix some properties of the minimization problem

Ir(t̄, ū, z̄) := inf
u∈Du

(
rV

(
u− ū

r

)
+ E(t̄ + r, u, z̄)

)
, for given (t̄, ū, z̄) ∈ [0, T ]×Du ×Dz and 0 < r < T − t̄,

(7.1)
in Lemma 7.1 below, which we recall here from [MRS13b] for the reader’s convenience. Observe that it is in the
proof of this Lemma, in particular in the derivation of the energy-dissipation inequality (7.5), that condition
(4.22) on V comes into play, cf. the proof of [MRS13b, Lemma 6.1].

Lemma 7.1. [MRS13b, Lemma 6.1] Under Hypotheses 2.2, 2.3, 2.7, condition (4.22) on V, and Hyp. 4.11,

for every (t̄, ū, z̄) ∈ [0, T ]×Du ×Dz and 0 < r < min{τo, T − t̄} the set

Mr(t̄, ū, z̄) := Argmin
u∈Du

(
rV

(
u− ū

r

)
+ E(t̄ + r, u, z̄)

)
6= Ø,

and there exists a measurable selection r ∈ (0, T − t̄) 7→ ur ∈ Mr(t̄, ū, z̄) fulfilling for every r ∈ (0, T − t̄) the

Euler-Lagrange equation

∂V

(
ur − u

r

)
+ ∂−u E(t̄ + r, ur, z̄) 3 0 in V∗, (7.2)

as well as

∃C > 0 ∀ r ∈ (0, T − t̄) : G(ur, z̄) ≤ G(ū, z̄), (7.3)

lim
r↓0

‖ur − ū‖V = 0, lim
r↓0

Ir(t̄, ū, z̄) = E(t̄, ū, z̄), (7.4)
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and complying with the energy-dissipation inequality

r0V

(
ur0 − ū

r0

)
+
∫ r0

0

V∗(−ξr)dr + E(t̄ + r0, ur0 , z̄) ≤ E(t̄, ū, z̄) +
∫ r0

0

∂tE(t̄ + r, ur, z̄)dr (7.5)

for any r0 ∈ (0, T − t̄), with ξr any selection in ∂−u E(t̄ + r, ur, z̄) ∩
(
−∂V

(
ur−u

r

))
.

While referring to [MRS13b] for the proof, let us only comment here on the Euler-Lagrange equation: it is
an immediate consequence of [MRS13b, Prop. 4.2], which can be applied thanks to Hypothesis 4.11.

Exploiting (7.5), we will now derive the discrete version (7.8) of the energy-dissipation inequality (3.4),
whence all of the a priori estimates on the approximate solutions arising from the time-discrete scheme in
Problem 4.10. The Euler-Lagrange equation (7.2) rewrites for the variational interpolant ũτ from (4.24) as

∂V

(
ũτ (t)− uτ (t)

t− tτ (t)

)
+ ∂−u E(t, ũτ (t), zτ (t)) 3 0 in V∗ for a.a. t ∈ (0, T ).

In what follows, we will denote by ξ̃τ : (0, T ) → V∗ a measurable map fulfilling

ξ̃τ (t) ∈ ∂−u E(t, ũτ (t), zτ (t)), −ξ̃τ (t) ∈ ∂V

(
ũτ (t)− uτ (t)

t− tτ (t)

)
for a.a. t ∈ (0, T ). (7.6)

For later use, we also point out that the minimum problem (4.23a) yields

ξτ (t) ∈ ∂−u E(t, uτ (t), zτ (t)), −ξτ (t) ∈ ∂V (u′τ (t)) for a.a. t ∈ (0, T ), (7.7)

with ξτ : (0, T ) → V∗ the piecewise constant interpolant of the elements (ξn
τ )Nτ

n=1 fulfilling the Euler-Lagrange
equation for (4.23a).

Proposition 7.2. Assume Hypotheses 2.2, 2.3, 2.7, and condition (4.22) on V.

Then, the interpolants (uτ , uτ , uτ , ũτ , zτ , zτ , zτ )τ and (ξ̃τ )τ of the discrete solutions to Problem 4.10 comply

with the discrete energy-dissipation inequality

∫ tτ (t)

tτ (s)

V (u′τ (r)) + V∗(−ξ̃τ (r))dr +
∫ tτ (t)

tτ (s)

R(z′τ (r))dr + E(tτ (t), uτ (t), zτ (t))

≤ E(tτ (s), uτ (s), zτ (s)) +
∫ tτ (t)

tτ (s)

∂tE(r, ũτ (r), zτ (r))dr,

(7.8)

and the discrete semistability condition

E(tτ (t), uτ (t), zτ (t)) ≤ E(tτ (t), uτ (t), z̃) + R(z̃ − zτ (t)) for all z̃ ∈ Z and for all t ∈ (0, T ]. (7.9)

Moreover, there exists C > 0 such that for every 0 < τ < τo the following estimates hold

sup
t∈(0,T )

(
G(uτ (t), zτ (t)) + τoV

(
uτ (t)− u0

τo

)
+ R(zτ (t)− z0)

)
≤ C,

sup
t∈(0,T )

(
G(ũτ (t), zτ (t)) + τoV

(
ũτ (t)− u0

τo

)
+ R(zτ (t)− z0)

)
≤ C,

(7.10a)

and analogously for sup
t∈(0,T )

G(uτ (t), zτ (t)) + τoV((uτ (t)− u0)/τo);

sup
t∈(0,T )

|∂tE(t, ũτ (t), zτ (t))| ≤ C; (7.10b)

∫ T

0

V (u′τ (r)) dr ≤ C,

∫ T

0

V∗(−ξ̃τ (r))dr ≤ C,

∫ T

0

R(z′τ (r))dr ≤ C; (7.10c)

the families (u′τ )τ ⊂ L1(0, T ;V) and (ξ̃τ )τ ⊂ L1(0, T ;V∗) are uniformly integrable, and

sup
t∈(0,T )

‖uτ (t)− uτ (t)‖V + sup
t∈(0,T )

‖uτ (t)− uτ (t)‖V + sup
t∈(0,T )

‖ũτ (t)− uτ (t)‖V = o(1) as τ ↓ 0. (7.10d)

Proof. The discrete semistability (7.9) is a direct consequence of the minimum problem (4.23b) and of the
triangle inequality satisfied by R. The proof of the remaining items in the statement follows the lines of
[MRS13b, Prop. 6.3]. Therefore we shall just outline its main steps, referring to [MRS13b] for all details.
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In order to derive (7.8), let us first of all fix two nodes tn−1, tn ∈ Pτ and write (7.5) with t̄ = tn−1,
ū = un−1

τ , z̄ = zn−1
τ , r0 = t − tn−1, ur0 = ũτ (t), ur = ũτ (r), and ξr = ξ̃τ (r), for r ∈ (tn−1, t). Thus we obtain

with a change of variables in the second integral on the left-hand side

(t− tn−1)V
(

ũτ (t)− uτ (t)
t− tn−1

)
+
∫ t

tn−1

V∗(−ξ̃τ (r))dr + E(t, ũτ (t), zτ (t))

≤ E(tn−1, uτ (t), zτ (t)) +
∫ t

tn−1

∂tE(r, ũτ (r), zτ (r))dr,

(7.11)

whence, for t = tn,
∫ tn

tn−1

V (u′τ (r)) + V∗(−ξ̃τ (r))dr + E(tn, un
τ , zn−1

τ ) ≤ E(tn−1, u
n−1
τ , zn−1

τ ) +
∫ tn

tn−1

∂tE(r, ũτ (r), zτ (r))dr. (7.12)

On the other hand, we deduce from (4.23b) that

τR

(
zn
τ − zn−1

τ

τ

)
+ E(tn, un

τ , zn
τ ) ≤ E(tn, un

τ , zn−1
τ ).

Adding this to (7.12), due to the cancelation of the term E(tn, un
τ , zn−1

τ ) we obtain
∫ tn

tn−1

V (u′τ (r)) + V∗(−ξ̃τ (r))dr + τR

(
zn
τ − zn−1

τ

τ

)
+ E(tn, un

τ , zn
τ )

≤ E(tn−1, u
n−1
τ , zn−1

τ ) +
∫ tn

tn−1

∂tE(r, ũτ (r), zτ (r))dr

which gives (7.8) upon summing up over the index n.

Using the power control condition from (2.5c) and arguing in the very same way as in the proof of [MRS13b,
Prop. 6.3], one infers that

sup
t∈(0,T )

(
G(uτ (t), zτ (t)) +

∫ tτ (t)

0

V(u′τ (s))ds

)
≤ C . (7.13)

In order to conclude the first of (7.10), we proceed in the following way: For t0 ∈ (0, T ) fixed, 1 ≤ n0 ≤ Nτ

fulfill tτ (t0) = n0τ ; suppose that n0τ ≤ τo, with τo > 0 from Hyp. 2.7. Then,

∫ tτ (t0)

0

V(u′τ (s))ds = n0τ

n0∑

n=1

1
n0

V

(
un

τ − un−1
τ

τ

)
(1)

≥ tτ (t0)V

(
n0∑

n=1

un
τ − un−1

τ

tτ (t0)

)
(2)

≥ τoV

(
uτ (t0)− u0

τo

)
,

where (1) follows from the convexity of V, and (2) from the fact that for every v ∈ V the map τ 7→ V
(

v
τ

)
is

nonincreasing. Then, from (7.13) we conclude that τoV
(

uτ (t0)−u0
τo

)
≤ C for t0 ∈ (0, T ) sufficiently small such

that tτ (t0) ≤ τo. Then, the estimate

sup
t∈(0,T )

τoV

(
uτ (t)− u0

τo

)
≤ C (7.14)

can be concluded with a standard argument, dividing [0, T ] into subintervals of length less or equal than τo.
The calculations for the estimate of the R-dissipation are simpler by 1-homogeneity, and we thus conclude the
first of (7.10a). The second of (7.10a) analogously ensues from (7.11). Let us only finally comment on the
bound for supt∈[0,T ] G(uτ (t), zτ (t)) in (7.10a): From (4.23a) we deduce for every t ∈ [0, T ]

E(tτ (t), uτ (t), zτ (t)) ≤ E(tτ (t), uτ (t), zτ (t)) = E(tτ (t), uτ (t), zτ (t)) +
∫ tτ (t)

tτ (t)

∂tE(s, uτ (t), zτ (t))ds ≤ C,

where the last estimate ensues from the bound for supt∈[0,T ] G(uτ (t), zτ (t)), and from (2.5c). �

The next result shall also involve the Young measure limit of the family (ξ̃τ )τ . We refer to the Appendix for
a self-contained exposition of the Young measure compactness result underlying the proof of Proposition 7.3.
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Proposition 7.3. Assume Hypotheses 2.2, 2.3, 2.7, and the closedness (4.25a) from Hypothesis 4.11.

Then, for every vanishing sequence (τk)k of time-steps there exist a (not relabeled) subsequence, a pair (u, z)
as in (3.1), a function E ∈ BV([0, T ]), and a time-dependent Young measure µ = (µt)t∈(0,T ) ∈ Y(0, T ;V∗)
such that convergences (4.16) hold as k →∞ and, in addition





E (t) = limk→∞ E(tτk
(t), uτk

(t), zτk
(t)) for all t ∈ [0, T ],

E (t) ≤ lim infk→∞ E(tτk
(t), uτk

(t), zτk
(t)) for almost all t ∈ (0, T ),

E (t) ≥ E(t, u(t), z(t)) for all t ∈ [0, T ],
(7.15)

while µ is the limit Young measure of (ξ̃τk
)k, whence

ξ̃τk
⇀ ξ in L1(0, T ;V∗) with ξ(t) =

∫

V∗
ζ dµt(ζ) for a.a. t ∈ (0, T ). (7.16)

Moreover, the following energy-dissipation inequality holds for all 0 ≤ s ≤ t ≤ T
∫ t

s

V (u′(r)) dr +
∫ t

s

∫

V∗
V∗(−ζ)dµr(ζ)dr + VarR(z; [s, t]) + E (t)

≤ E (s) +
∫ t

s

∂tE(r, u(r), z(r))dr.

(7.17)

Proof. Convergences (4.16a)–(4.16c) ensue from estimates (7.10) via standard compactness arguments, cf.
[Sim87], also taking into account the coercivity from Hyp. 2.7. The pointwise σX-convergence for (zτk

)k (which
then implies (4.16g) thanks to (2.4b)), is a consequence of the bounds in L∞(0, T ;X) ∩ BV([0, T ];Z) via a
Helly-type argument (cf. e.g. [MT04, Thm. 6.1]), which also gives

VarR(z; [s, t]) ≤ lim inf
k→∞

∫ t

s

R(z′τk
(r))dr,

whence z ∈ BV([0, T ];Z). Finally, convergence (4.16f) ensues from a standard argument, cf. e.g. the proof of
[RTP15, Thm. 4.1]. With (4.16f) at hand, it is then easy to deduce convergences (4.16d) and (4.16e) for (zτk

)k

as well. We refer to the proof of [MRS13b, Prop. 6.4] for all details on the first and third inequalities in (7.15)
and on (7.16). The limit passage in (7.8), leading to (7.17), also follows from the arguments for [MRS13b,
Prop. 6.4], combined with the observation that

lim inf
k→∞

∫ tτk
(t)

tτk
(s)

R(z′τk
(r))dr ≥ VarR(z; [s, t])

for every 0 ≤ s ≤ t ≤ T , thanks to (4.16g). Finally, let us comment on the second of (7.15). It ensues from
the minimum problem (4.23b), yielding

E(tτk
(t), uτk

(t), zτk
(t)) ≤ E(tτk

(t), uτk
(t), zτk

(t)) for all t ∈ [0, T ].

For later use, observe also that (2.5c) yields

lim sup
τk↓0

∂tE(t, ũτk
(t), zτk

(t)) ≤ ∂tE(t, u(t), z(t)) for a.a. t ∈ (0, T ). (7.18)

�

We are now in the position to conclude the proof of Theorem 2. In order to obtain the energy-dissipation
inequality (3.4) we need to gain further insight into the Young measure energy-dissipation inequality (7.17), and
in particular into the properties of the limit µ = (µt)t∈(0,T ) of (ξ̃τk

). It follows from Theorem A.2 ahead that
for almost all t ∈ (0, T ) the measure µt is concentrated on the limit points of (ξ̃τk

(t))k with respect to the weak
topology of V∗. Now, due to the first of (7.6), ξ̃τk

(t) ∈ ∂−u E(t, ũτk
(t), zτk

(t)) for almost all t ∈ (0, T ). Combining
the pointwise convergences (4.16c) and (4.16g) for (ũτk

(t))k and (zτk
(t))k with the closedness condition (4.25a),

we ultimately conclude that

the support of µt is a subset of ∂−u E(t, u(t), z(t)) for almost all t ∈ (0, T ). (7.19)

Since the latter set is closed and convex, we conclude that

ξ(t) =
∫

V∗
ζ dµt(ζ) ∈ ∂−u E(t, u(t), z(t)) for a.a. t ∈ (0, T ) , (7.20)
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Then, by Jensen’s inequality we have
∫ t

s

∫

V∗
V∗(−ζ)dµr(ζ)dr ≥

∫ t

s

V∗(−ξ(r))dr for every 0 ≤ s ≤ t ≤ T. (7.21)

Hence, in view of (7.21) and (7.18) we are in the position to deduce from (7.17), written on the interval (0, t),
the energy-dissipation inequality (3.4).

Furthermore, observe that, when it holds, the enhanced closedness/continuity condition (4.25b) guarantees

lim
k→∞

E(tτk
(t), uτk

(t), zτk
(t)) = E (t) = E(t, u(t), z(t)) for almost all t ∈ (0, T ). (7.22)

To check this, from estimate (7.10c) and Fatou’s Lemma we deduce that lim infk→∞ ‖u′τk
(t)‖V < +∞ for

almost all t ∈ (0, T ). Since ∂V : V ⇒ V∗ is a bounded operator, we then have

lim inf
k→∞

‖ξτk
(t)‖V∗ < +∞ for a.a. t ∈ (0, T ), (7.23)

where t 7→ ξτ (t) is the selection in (−∂V(u′τ (t))) ∩ ∂−E(t, uτ (t), zτ (t)) fulfilling the Euler Lagrange equation
(7.7). We are thus in the position to apply condition (4.25b) (also in view of (7.10a)), thus concluding that

lim inf
k→∞

E(tτk
(t), uτk

(t), zτk
(t)) = E(t, u(t), z(t)) for a.a. t ∈ (0, T ). (7.24)

But then, by the second and the third of (7.15), we infer E(t, u(t), z(t)) ≤ E (t) ≤ E(t, u(t), z(t)) for almost all
t ∈ (0, T ), whence (7.22). Therefore, from (7.17) we gather the enhanced energy-dissipation inequality (4.21).

Finally, with a standard procedure in the analysis of rate-independent processes we pass to the limit in the
discrete semistability (7.9) by resorting to the mutual recovery sequence condition (2.16). More detailed, for
all t ∈ (0, T ) we apply Hypothesis 2.5 to the sequences (uτk

(t), zτk
(t))k, converging to (u(t), z(t)) as in (4.16c)

and (4.16g), and thus for every z̃ ∈ Z we construct a sequence z̃k ⇀ z in Z such that (2.16) holds. Exploiting
(2.16), we thus conclude that the semistability inequality (3.3) holds with z̃. Observe that, under the enhanced
condition (4.25b), we have the additional energy convergence (7.22), hence we may employ the weaker variant
of (2.16) in Remark 2.6. This concludes the proof.

7.2. Proof of Theorem 1. Preliminarily, observe that from (4.3b) we conclude that

0 ∈ ∂−
(

τV

( · − un−1
τ

τ

)
+ E(tn, ·, zn

τ )
)

(un
τ ) = ∂V

(
un

τ − un−1
τ

τ

)
+ ∂−u E(tn, un

τ , zn
τ ), (7.25)

where the last equality follows from the sum rule for the Fréchet subdifferential, since V is Fréchet differentiable.
Hence we obtain the Euler-Lagrange equation

∂V

(
un

τ − un−1
τ

τ

)
+ ξn

τ 3 0, ξn
τ ∈ ∂−u E(tn, un

τ , zn
τ ) for all n = 1, . . . , Nτ . (7.26)

We denote by ξτ the piecewise constant interpolant of the elements (ξn
τ )Nτ

n=1 ⊂ V∗, so that (7.26) rewrites as

∂V (u′τ (t)) + ξτ (t) 3 0, ξτ (t) ∈ ∂−u E(tτ (t), uτ (t), zτ (t)) for a.a. t ∈ (0, T ). (7.27)

We start with the counterpart to Proposition 7.2. Observe that the result below holds for any dissipation
potential V, not necessarily quadratic. Instead, the uniform Fréchet subdifferentiability from Hypothesis 4.2
plays here a key role.

Proposition 7.4. Assume Hypotheses 2.2, 2.3, 2.7, and 4.2. Let (uτ , uτ , uτ , zτ , zτ , zτ )τ and (ξτ )τ be the

approximate solutions constructed from the time-discretization scheme in Problem 4.1.

Then, there exists C > 0 such that for every 0 < τ < τo the following estimates hold

sup
t∈(0,T )

(
G(uτ (t), zτ (t)) + τoV

(
uτ (t)− u0

τo

)
+ R(zτ (t)− z0)

)
≤ C, sup

t∈(0,T )

|∂tE(t, uτ (t), zτ (t))| ≤ C,

(7.28a)
∫ T

0

V (u′τ (r)) dr ≤ C,

∫ T

0

R(z′τ (r))dr ≤ C, (7.28b)

∫ T

0

V∗(−ξτ (r))dr ≤ C, (7.28c)

and (7.10d) holds.
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Furthermore, the interpolants comply with the discrete semistability condition

E(tτ (t), uτ (t), zτ (t)) ≤ E(tτ (t), uτ (t), z̃) + R(z̃ − zτ (t)) for all z̃ ∈ Z and for all t ∈ (0, T ], (7.29)

and with the discrete energy-dissipation inequality
∫ tτ (t)

tτ (s)

V (u′τ (r)) + V∗(−ξτ (r))dr +
∫ tτ (t)

tτ (s)

R(z′τ (r))dr + E(tτ (t), uτ (t), zτ (t))

≤E(tτ (s), uτ (s), zτ (s)) +
∫ tτ (t)

tτ (s)

∂tE(r, uτ (r), zτ (r))dr + ΛC

∫ tτ (t)

tτ (s)

‖uτ (r)− uτ (r)‖V‖u′τ (r)‖V dr,

(7.30)

with ΛC > 0 depending on C from (7.28a) via (4.6).

Observe that, for V quadratic, estimates (7.28b) and (7.28c) in particular yield

‖u′τ (r)‖L2(0,T ;V) ≤ C, ‖ξτ (r)‖L2(0,T ;V∗) ≤ C. (7.31)

Proof. While the discrete semistability (7.29) is again a direct consequence of the minimum problem (4.3a),
the discrete energy-dissipation inequality (7.30) follows from a combination of the time-discrete scheme (4.3)
with the uniform Fréchet subdifferentiability condition (4.6) on energy sublevels. Hence, it can be derived only
after obtaining the energy estimate (7.28a). Therefore, we need to derive an intermediate energy-dissipation
inequality, i.e. (7.34) below.

Let us fix n ∈ {1, . . . , Nτ}. From the minimum problem (4.3a) we gather

τR

(
zn
τ − zn−1

τ

τ

)
+ E(tn, un−1

τ , zn
τ ) ≤ E(tn, un−1

τ , zn−1
τ ), (7.32)

while (4.3b) yields

τV

(
un

τ − un−1
τ

τ

)
+ E(tn, un

τ , zn
τ ) ≤ E(tn, un−1

τ , zn
τ ). (7.33)

Adding (7.32) and (7.33) and summing over the index n leads to the intermediate inequality for all 0 ≤ s ≤ t ≤ T
∫ tτ (t)

tτ (s)

(V (u′τ (r)) +R(z′τ (r))) dr + E(tτ (t), uτ (t), zτ (t)) ≤ E(tτ (s), uτ (s), zτ (s)) +
∫ tτ (t)

tτ (s)

∂tE(r, uτ (r), zτ (r))dr

(7.34)
whereby estimates (7.28a) and (7.28b) ensue from the very same arguments as for the proof of Proposition 7.2.
Moreover, we recover the stability estimates (7.10d) as a consequence of the dissipation bound in (7.28b).

We now obtain (7.30) by rephrasing the discrete Euler-Lagrange equation (7.26) as

V

(
un

τ − un−1
τ

τ

)
+ V∗(−ξn

τ ) = 〈−ξn
τ ,

un
τ−un−1

τ

τ
〉
V

. (7.35)

On the other hand, from ξn
τ ∈ ∂−u E(tn, un

τ , zn
τ ) and (4.6) we obtain

− 〈ξn
τ , un

τ − un−1
τ 〉V ≤ E(tn, un−1

τ , zn
τ )− E(tn, un

τ , zn
τ ) + ΛC‖un

τ − un−1
τ ‖2V,

with ΛC > 0 depending on C, taking into account that (un
τ , zn

τ ) ∈ SC by (7.28a), and that (un−1
τ , zn

τ ) as well
as belongs to SC since

E(tn, un−1
τ , zn

τ )
(7.32)

≤ E(tn, un−1
τ , zn−1

τ ) = E(tn−1, u
n−1
τ , zn−1

τ ) +
∫ tn

tn−1

∂tE(s, un−1
τ , zn−1

τ )ds
(7.28a)

≤ C̃. (7.36)

Combining (7.35) and (7.36) we arrive at

τV

(
un

τ − un−1
τ

τ

)
+ τV∗(−ξn

τ ) ≤ E(tn, un−1
τ , zn

τ )− E(tn, un
τ , zn

τ ) + ΛC‖un
τ − un−1

τ ‖2V,

which we add to (7.32), thus obtaining, with the cancelation of two terms and using that E(tn, un−1
τ , zn

τ ) =
E(tn−1, u

n−1
τ , zn

τ ) +
∫ tn

tn−1
∂tE(s, un−1

τ , zn−1
τ )ds,

τV

(
un

τ − un−1
τ

τ

)
+ τV∗(−ξn

τ ) + τR

(
zn
τ − zn−1

τ

τ

)
+ E(tn, un

τ , zn
τ )

≤ E(tn−1, u
n−1
τ , zn−1

τ ) +
∫ tn

tn−1

∂tE(s, un−1
τ , zn−1

τ )ds + ΛC‖un
τ − un−1

τ ‖2V .

(7.37)
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Adding up over the index n leads to (7.30).

Observe that the last term on the right-hand side of (7.30) can be estimated as

ΛC

∫ tτ (t)

tτ (s)

‖uτ (r)− uτ (r)‖V‖u′τ (r)‖V dr ≤ Cτ

∫ T

0

‖u′τ (r)‖2V dr ≤ Cτ, (7.38)

where for the last estimate we have relied on the previously obtained (7.28b). Thus, from (7.30) we deduce
(7.28c). �

The proof of the forthcoming Proposition 7.5 relies on the same Young measure argument as Prop. 7.3,
hence we omit the details. Let us only mention that, in order to conclude the energy-dissipation inequality
(7.40) below we pass to the limit in (7.30), relying on the bound on (7.38) to conclude that the last term on
the right-hand side of (7.30) tends to zero. We also use (7.21) from the proof of Theorem 2.

Proposition 7.5. Assume Hypotheses 2.2, 2.3, 2.7, and 4.2. Let V be quadratic, cf. (4.1).

Then, for every vanishing sequence (τk)k of time-steps there exist a (not relabeled) subsequence, a pair (u, z)
as in (3.1) and a function E ∈ BV([0, T ]), such that convergences (4.16) hold as k →∞ as well as convergence

(4.17) and the energy convergence (7.15). There also exists a Young measure µ = (µt)t∈(0,T ), limit of (ξτk
)k,

such that

ξτk
⇀ ξ in L2(0, T ;V∗) with ξ(t) =

∫

V∗
ζ dµt(ζ) for a.a. t ∈ (0, T ). (7.39)

Moreover, the following energy-dissipation inequality holds for all 0 ≤ s ≤ t ≤ T
∫ t

s

V (u′(r)) dr +
∫ t

s

V∗(−ξ(r))dr + VarR(z; [s, t]) + E (t) ≤ E (s) +
∫ t

s

∂tE(t, r, u(r))dr. (7.40)

We are now in the position to develop the proof of Theorem 1. The energy-dissipation inequality (3.4)
on (0, t) follows from (7.40), taking into account that E (t) ≥ E(t, u(t), z(t)) for all t ∈ (0, T ], and that E (0) =
E(0, u0, z0) by (7.15). It remains to prove the subdifferential inclusion (3.2). For this, we distinguish two cases:

Case (1): Hyp. 4.6 holds: It follows from U b V that

uτk
, uτk

, uτk
→ u in L∞(0, T ;V). (7.41)

Hence, we have convergence (4.19) and, in view of Lemma 4.7, the energy convergence (4.20) holds.
Moreover, Lemma 4.7 guarantees that for almost all t ∈ (0, T ) the set of the limit points of the sequence
(ξτk

(t))k, hence the support of the measure µt, is contained in ∂−u E(t, u(t), z(t)). Then, with the same
argument as in the proof of Theorem 2, cf. (7.20), we find that ξ(t) ∈ ∂−u E(t, u(t), z(t)) for a.a. t ∈ (0, T ).
On the other hand, since V is quadratic, passing to the limit as k → ∞ in (7.27) we conclude that
−ξ(t) ∈ ∂V(u′(t)) = {Au′(t)} for almost all t ∈ (0, T ), and (3.2) ensues.

Case (2): Hyp. 4.8 holds: Passing to the limit in (7.27), exploiting the fact that V is quadratic, we get
−ξ(t) ∈ ∂V(u′(t)) = {Au′(t)} for almost all t ∈ (0, T ). We now use Hypothesis 4.8 to show that

ξ(t) ∈ ∂−u E(t, u(t), z(t)) for a.a. t ∈ (0, T ). (7.42)

With this aim, we test (7.27) by uτk
, integrate in time, and find for every t ∈ [0, T ] that

lim sup
k→∞

∫ tτk
(t)

0

〈ξτk
, uτk

〉
V

ds = − lim inf
k→∞

∫ tτk
(t)

0

〈Au′τk
, uτk

〉V ds

≤ − lim inf
k→∞

1
2a(uτk

(t), uτk
(t)) + 1

2a(u0, u0)

≤ − 1
2a(u(t), u(t)) + 1

2a(u0, u0) = −
∫ t

0

〈Au′, u〉V ds =
∫ t

0

〈ξ, u〉V ds.

(7.43)

Then, in view of the closedness property (4.14) we conclude (7.42). If (4.15) holds in addition, we infer
the energy convergence (4.20).

Clearly, under the energy convergence (4.20) it is possible to conclude that (u, z) fulfills the energy-dissipation
inequality (3.4) for all t ∈ (0, T ] and almost all s ∈ (0, t). For the limit passage in the discrete semistability
(7.29) we resort to Hypothesis 2.5.
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Observe that, under Hypothesis 4.6 or under the enhanced (4.15), we also have E(tτk
(t), uτk

(t), zτk
(t)) →

E(t, u(t), z(t)) as k →∞ for almost all t ∈ (0, T ). Then, arguing as in (7.36) we infer that

lim sup
k→∞

E(tτk
(t), uτk

(t), zτk
(t)) ≤ E(t, u(t), z(t)),

whence E(tτk
(t), uτk

(t), zτk
(t)) → E(t, u(t), z(t)) for almost all t ∈ (0, T ). Therefore, it is sufficient to exploit

the weaker variant of Hypothesis 2.5 in Remark 2.6. This concludes the proof.

We close this Section with the proof of Lemma 4.7: to prove that ξ ∈ ∂−u E(t, u, z), we will show that

E(t, v, z)− E(t, u, z) ≥ 〈ξ, v − u〉V−Λ‖v − u‖2V for every v ∈ Du (7.44)

With this aim, we use Hypothesis 4.6 and for every fixed v ∈ Du we consider a recovery sequence vn → v in V
such that (4.11) holds. By Hyp. 4.2, there exists Λ = ΛC > 0 such that for every n ∈ N

E(tn, vn, zn)− E(tn, un, zn) ≥ 〈ξn, vn − un〉V−Λ‖vn − un‖2V. (7.45)

We pass to the limit in (7.45) combining the convergences in (4.12) with (4.11), and conclude (7.44).

To prove the energy convergence, it is sufficient to check lim supn E(tn, un, zn) ≤ E(t, u, z). This can be
deduced from choosing v = u in (4.6), whence

E(t, u, z) ≥ lim sup
n→∞

E(tn, un, zn) + lim
n→∞

(
〈ξn, u− un〉V−Λ‖u− un‖2V

)
= lim sup

n→∞
E(tn, un, zn).

7.3. Proof of Theorems 3 and 4. The following result collects all the a priori estimates on the approximate
solutions constructed from the time-discretization scheme in Problem 5.1. In Proposition 7.6 below we will
derive the a priori estimates under the uniform subdifferentiability Hypothesis 5.2, whereas in Remark 7.7 we
will hint at the slightly different properties for which it is possible to deduce them under the weaker (5.15) in
the case V quadratic.

Proposition 7.6. Assume Hypotheses 2.2, 2.3, 2.7, as well as Hypotheses 5.2 and 5.3.

Let (uτ , uτ , uτ , zτ , zτ , zτ )τ be the approximate solutions constructed from the time-discretization scheme in Prob-

lem 5.1, with (vτ )τ from (5.5) and (ξτ )τ complying with (5.6).

Then, the interpolants satisfy the discrete semistability condition (7.29) and the discrete energy-dissipation

inequality

%

2
‖u′τ (t)‖2W +

∫ tτ (t)

tτ (s)

V (u′τ (r)) + V∗(−ξτ (r)−%v′τ (r))dr +
∫ tτ (t)

tτ (s)

R(z′τ (r))dr + E(tτ (t), uτ (t), zτ (t))

≤ %

2
‖u′τ (s)‖2W + E(tτ (s), uτ (s), zτ (s)) +

∫ tτ (t)

tτ (s)

∂tE(r, uτ (r), zτ (r))dr + Λτ1/2

∫ tτ (t)

tτ (s)

‖u′τ (r)‖WV(u′τ (r))1/2 dr,

(7.46)
with Λ > 0 as in (5.7). Furthermore, there exists C > 0 such that for every 0 < τ < τo there hold the stability

property (7.10d), the energy-dissipation estimates (7.28a)–(7.28b), and
∫ T

0

V∗(−ξτ (r)−%v′τ (r))dr ≤ C, (7.47a)

‖u′τ‖L∞(0,T ;W) ≤ C (7.47b)

Hence,

‖ξτ‖L∞(0,T ;V∗) ≤ C, (7.47c)

(v′τ )τ is uniformly integrable in L1(0, T ;V∗). (7.47d)

Proof. Preliminarily, we observe that the Euler-Lagrange equation (5.4) follows from the same argument as in
(7.25) in the case V quadratic, taking into account the sum rule

∂−
(

%

τ2
‖ · −2un−1

τ + un−2
τ ‖2W + τV

( · − un−1
τ

τ

)
+ E(tn, ·, zn

τ )
)

(un
τ )

= %
un

τ − 2un−1
τ + un−2

τ

τ2
+ ∂V

(
un

τ − un−1
τ

τ

)
+ ∂−u E(tn, un

τ , zn
τ )
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due to the Fréchet differentiability of V and of ‖ · ‖2W.

For V general, we apply [MRS13b, Prop. 4.2] to V and to En := E(tn, ·, zn
τ ) + %

τ2 ‖ · −2un−1
τ + un−2

τ ‖2W, and
then observe that the Fréchet subdifferential of En at un

τ decomposes into the sum of the Fréchet subdifferential
of E and the singleton { %

τ2 (un
τ − 2un−1

τ + un−2
τ )}.

We now start with the proof of (7.46). We rephrase the Euler-Lagrange equation (5.4) as (cf. (7.35))

V

(
un

τ − un−1
τ

τ

)
+ V∗

(
−ξn

τ − %
un

τ − 2un−1
τ + un−2

τ

τ2

)

= 〈−ξn
τ − %

un
τ − 2un−1

τ + un−2
τ

τ2
,
un

τ − un−1
τ

τ
〉
V

≤ − 〈ξn
τ ,

un
τ − un−1

τ

τ
〉
V

+
%

2τ

‖un−1
τ − un−2

τ ‖2W
τ2

− %

2τ

‖un
τ − un−1

τ ‖2W
τ2

.

(7.48)

On the other hand, from ξn
τ ∈ ∂−u E(tn, un

τ , zn
τ ) and the Fréchet subdifferentiability condition (5.7) we obtain

〈ξn
τ , un

τ − un−1
τ 〉V ≤ E(tn, un

τ , zn
τ )− E(tn, un−1

τ , zn
τ ) + Λ‖un

τ − un−1
τ ‖WV(un

τ − un−1
τ )1/2. (7.49)

Combining (7.48) and (7.49) with estimate (7.32) which derives from the minimum problem (5.3a), we get

%

2
‖un

τ − un−1
τ ‖2W

τ2
+ τV

(
un

τ − un−1
τ

τ

)
+ τV∗

(
−ξn

τ − %
un

τ − 2un−1
τ + un−2

τ

τ2

)
+ E(tn, un

τ , zn
τ ) + R(zn

τ−zn−1
τ )

≤ %

2
‖un−1

τ − un−2
τ ‖2W

τ2
+ E(tn−1, u

n−1
τ , zn−1

τ ) +
∫ tn

tn−1

∂tE(s, un−1
τ , zn−1

τ )ds + Λ‖un
τ − un−1

τ ‖WV(un
τ − un−1

τ )1/2.

Adding up over the index n leads to (7.46).

We are now in the position to deduce estimates (7.28a)–(7.28b) and (7.47). Indeed, we estimate the last
term on the right-hand side of (7.46) by

Λτ‖un
τ − un−1

τ

τ
‖WV(un

τ − un−1
τ )1/2

(1)

≤ Λτ‖un
τ − un−1

τ

τ
‖Wτ1/2V

(
un

τ − un−1
τ

τ

)1/2

= Λτ1/2

∫ tτ (t)

tτ (t)

‖u′τ (r)‖WV(u′τ (r))1/2 dr

(2)

≤ 1
2

∫ tτ (t)

tτ (t)

V(u′τ (r))dr + Cτ

∫ tτ (t)

tτ (t)

‖u′τ (r)‖2W dr,

where (1) follows from the fact that V(un
τ − un−1

τ ) ≤ τV(un
τ−un−1

τ

τ ) by the convexity of V and the fact that
V(0) = 0, while (2) is due to Young’s inequality. Therefore, from (7.46), we gather

%

2
‖u′τ (t)‖2W +

∫ tτ (t)

0

1
2
V (u′τ (r)) + V∗(−ξτ (r)− %v′τ (r))dr +

∫ tτ (t)

0

R(z′τ (r))dr + E(tτ (t), uτ (t), zτ (t))

≤ %

2
‖v0‖2W + E(0, u0, z0) +

∫ tτ (t)

0

∂tE(r, uτ (r), zτ (r))dr + Cτ

∫ tτ (t)

0

‖u′τ (r)‖2W dr

and we conclude by estimating the power term on the right-hand side via (2.5c), as in the proof of Proposition
7.2, and by applying the Gronwall Lemma. Therefore, estimates (7.28a)–(7.28b) and (7.47a)–(7.47b) ensue.

Finally, (7.47c) is a consequence of the bound for the energy (7.28a) combined with Hypothesis 5.3. Then,
(7.47d) follows from (7.47a), taking into account that V∗ has superlinear growth. �

Remark 7.7. First of all, let us mention that for V quadratic (cf. (4.1)), and under (5.15), the time-incremental
minimum problem for u in (5.3b) has a unique solution un

τ . To see this, let u1, u2 two solutions to (5.3b).
We subtract the Euler-Lagrange equation for u2 from the one for u1, and test the relation thus obtained by
u1 − u2. We thus conclude

%

τ2
‖u1 − u2‖2W +

1
τ

a(u1 − u2, u1 − u2) + 〈ξ1 − ξ2, u1 − u2〉V = 0,

with ξi ∈ ∂−u E(tn, ui, zn
τ ) fulfilling the Euler-Lagrange equation for i = 1, 2. Now, from (5.15) we gather that

〈ξ1 − ξ2, u1 − u2〉V ≥ −Λ‖u1 − u2‖2V.

Combining this with the above relation, using that a(·, ·) is coercive with respect to the norm of V, and choosing
τ > 0 sufficiently small, we ultimately deduce that ‖u1 − u2‖2W + c‖u1 − u2‖2V ≤ 0, whence u1 = u2.
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Moreover, observe that the very same arguments as in the proof of Prop. 7.6 yield that, in addition to the
discrete semistability (7.29), the approximate solutions fulfill the discrete energy-dissipation inequality

%

2
‖u′τ (t)‖2W +

∫ tτ (t)

tτ (s)

V (u′τ (r)) + V∗(−ξτ (r)−%v′τ (r))dr +
∫ tτ (t)

tτ (s)

R(z′τ (r))dr + E(tτ (t), uτ (t), zτ (t))

≤ %

2
‖u′τ (s)‖2W + E(tτ (s), uτ (s), zτ (s)) +

∫ tτ (t)

tτ (s)

∂tE(r, uτ (r), zτ (r))dr + Λτ1/2

∫ tτ (t)

tτ (s)

‖u′τ (r)‖2V dr,

(7.50)

whereby estimates (7.47) ensue. In particular, since V is quadratic, due to the quadratic growth of V∗ we have

‖v′τ‖L2(0,T ;V∗) ≤ C. (7.51)

We are now in the position to develop the proof of Theorem 3. Let (τk)k be a vanishing sequence. With
standard weak and strong compactness arguments (cf., e.g., [Sim87]), taking into account estimates (7.28) and
Hyp. 2.7, we find a quadruple (u, z, ξ, v) with (u, z) as in (3.1), ξ ∈ L∞(0, T ;V∗), and v ∈ L1(0, T ;V∗) such
that convergences (4.16) hold, and, in addition,

uτk

∗
⇀ u in W 1,∞(0, T ;W), (7.52)

uτk
→ u in C0([0, T ];W), (7.53)

uτk
(t) → u(t) in W for every t ∈ [0, T ], (7.54)

ξτk

∗
⇀ ξ in L∞(0, T ;V∗), (7.55)

vτk
⇀ v in W 1,1(0, T ;V∗). (7.56)

We easily find that v′ = u′′, whence u ∈ W 2,1(0, T ;V∗).

Next, we prove that

ξ(t) ∈ ∂−u E(t, u(t), z(t)) for a.a. t ∈ (0, T ). (7.57)

We distinguish two cases:

(1) Under the weak closedness condition from Hypothesis 4.11, we employ the very same Young measure
argument as in the proof of Theorem 2, cf. (7.20), and conclude (7.57).

(2) In the case U b V with Hypothesis 4.6, to prove (7.57) we again resort to the Young measure argument
from the proof of Theorem 1: In order to conclude that the set of the weak limit points of (ξτk

(t))k

w.r.t. the topology of V∗ is contained in ∂−u E(t, u(t), z(t)), we use the closedness property (4.12) from
Lemma 4.7. A close perusal of its proof shows that it extends to the case in which the uniform Fréchet

subdifferentiability holds in the form of Hypothesis 4.3. In fact, the remainder term in (7.45) now reads
−ΛV(vn − un)1/2‖vn − un‖W, and it goes to zero as n → ∞ since V ⊂ W continuously, and V is
continuous on V. Likewise, it also extends to the case when the Fréchet subdifferentiability Hypothesis
4.2 is replaced by its weaker variant (5.15).

We now address the limit passage in the discrete energy-dissipation inequality (7.50): It follows from (7.55)–
(7.56) that

lim inf
k→∞

∫ tτk
(t)

tτk
(s)

V∗(−ξτk
(r)−%v′τk

(r))dr ≥
∫ t

s

V∗(−ξ(r)−%u′′(r))dr

whereas for the remainder term on the right-hand side of (7.50) we have

Λτ1/2

∫ tτk
(t)

tτk
(s)

‖u′τk
(r)‖WV(u′τk

(r))1/2 dr ≤ Λτ1/2

(∫ tτk
(t)

tτk
(s)

‖u′τk
(r)‖2W dr

)(∫ tτk
(t)

tτk
(s)

V(u′τk
(r))dr

)
→ 0 as k →∞

in view of the previously obtained estimates (7.28b) and (7.47b). Therefore, we conclude the energy-dissipation
inequality (3.4) on every interval (0, t), and the enhanced (5.11) under the stronger requirement (4.25b) from
Hyp. 4.11, or under Hyp. 4.6.

Arguing as in the proof of Theorem 2, we use Hypothesis 2.5 (possibly in its weaker form from Remark 2.6
under (4.25b), or Hyp. 4.6), to pass to the limit in the discrete semistability (7.29) and conclude that (u, z)
fulfill the semistability (3.3).

Thus, we conclude that (u, z) is a weak energetic solution to the evolutionary system (V,W,Z, V, R, E).
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Finally, we present the proof of Theorem 4, just dwelling on its differences from the proof of Thm. 3. Let
(τk)k be a vanishing sequence. The very same compactness arguments as in the proof of Thm. 3 yield that
there exists a quadruple (u, z, ξ, v) with (u, z) as in (3.1), such that convergences (4.16) and (7.52)–(7.55) hold.
Moreover,

vτk
⇀ v = u′ in H1(0, T ;V∗), (7.58)

and, in view of the estimates for (u′τk
)k in L2(0, T ;V) ∩ L∞(0, T ;V∗) ∩ H1(0, T ;V∗) and of the compact

embedding V b W, we may also suppose, up to a further extraction, that

u′τk
→ u′ in Lp(0, T ;W) for all 1 ≤ p < ∞,

u′τk
(t) ⇀ u′(t) in W for all t ∈ [0, T ].

(7.59)

Exploiting convergences (7.52)–(7.55) as well as (7.58), and the fact that ∂V is a linear and bounded operator
A, we first pass to the limit in (5.6) and conclude that (u, z) fulfill

%u′′(t) + Au′(t) + ξ(t) = 0 for a.a. t ∈ (0, T ), (7.60)

with ξ ∈ L∞(0, T ;V∗) from (7.55). In order to show that ξ(t) ∈ ∂−u E(t, u(t), z(t)) for almost all t ∈ (0, T ), we
exploit Hypothesis 4.8. Hence, we test the discrete momentum equation (5.6) by uτk

and integrate in time,
thus obtaining

∫ tτk
(t)

0

〈ξτk
(s), uτk

(s)〉
V

ds = −%

∫ tτk
(t)

0

(v′τk
(s), uτk

(s))W ds−
∫ tτk

(t)

0

〈Au′τk
(s), uτk

(s)〉 ds
.= I1 + I2.

Now, the discrete integration-by-part formula yields

I1 = %

∫ tτk
(t)

0

(u′τk
(s), u′τk

(s− τk))W ds− %(uτk
(t), u′τk

(t))W + %(u0, u̇
0
τ )W

k→∞→ %

∫ t

0

(u′(s), u′(s))W ds− %(u′(t), u(t))W + %(u0, v0)W = −%

∫ t

0

(u′′(s), u(s))W ds,

with u̇0
τ := u0−u−1

τ

τ and u−1
τ from (5.2), where the limit passage ensues from convergences (7.59). With the very

same calculations as for (7.43), we find that lim supk→∞ I2 ≤ −
∫ t

0
〈Au′, u〉V ds. Taking into account (7.60),

we then conclude that lim supk→∞
∫ T

0
〈ξτk

(t), uτk
(t)〉

V
dt ≤

∫ T

0
〈ξ(t), u(t)〉V dt, whence the identification of

ξ(t) as an element in ∂−u E(t, u(t), z(t)) by Hypothesis 4.8. This concludes the proof.

Appendix A. Young measure tools

For the reader’s convenience, we collect here the definition of parameterized (or Young) measure with values
in infinite-dimensional spaces, and the Young measure compactness result from [MRS13b] (cf. also [RS06]).

Notation. Given an interval I ⊂ R, we denote by LI the σ-algebra of the Lebesgue measurable subsets of
I and, given a reflexive Banach space B, by B(B) its Borel σ-algebra. We use the symbol ⊗ for product
σ-algebrae. We recall that a LI ⊗B(B)-measurable function h : I ×B → (−∞, +∞] is a normal integrand if
for a.a. t ∈ (0, T ) the map x 7→ ht(x) = h(t, x) is lower semicontinuous on B.

We consider the space B endowed with the weak topology, and say that a L(0,T ) ⊗ B(B)–measurable
functional H : (0, T )×B → (−∞, +∞] is a weakly-normal integrand if for a.a. t ∈ (0, T ) the map

w 7→ h(t, w) is sequentially lower semicontinuous on B w.r.t. the weak topology. (A.1)

We denote by M (0, T ; V) the set of all L(0,T )-measurable functions y : (0, T ) → B. A sequence (wn) ⊂
M (0, T ; B) is said to be weakly-tight if there exists a weakly-normal integrand H : (0, T ) × B → (−∞, +∞]
such that the map

w 7→ Ht(w) has compact sublevels w.r.t. the weak topology of B, and

sup
n

∫ T

0

H(t, wn(t))dt < ∞.
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Definition A.1 ((Time-dependent) Young measures). A Young measure in the space B is a family

µ := {µt}t∈(0,T ) of Borel probability measures on B such that the map on (0, T )

t 7→ µt(A) is L(0,T )-measurable for all A ∈ B(B). (A.2)

We denote by Y (0, T ; B) the set of all Young measures in B.

Theorem A.2. [MRS13b, Theorems A.2, A.3] Let {Hn}, H : (0, T ) × B → (−∞, +∞] be weakly-normal

integrands such that for all w ∈ B and for a.a. t ∈ (0, T )

H(t, w) ≤ inf
{

lim inf
n→∞

Hn(t, wn) : wn ⇀ w in B
}

. (A.3)

Let (wn) ⊂ M (0, T ; B) be a weakly-tight sequence. Then, there exist a subsequence (wnk
) and a Young measure

µ = {µt}t∈(0,T ) such that for a.a. t ∈ (0, T )

µt is concentrated on the set L(t) :=
⋂∞

p=1

{
wnk

(t) : k ≥ p
}w

(A.4)

of the limit points of the sequence (wnk
(t)) with respect to the weak topology of B and, if the sequence t 7→

H−
nk

(t, wnk
(t)) is uniformly integrable, there holds

lim inf
k→∞

∫ T

0

Hnk
(t, wnk

(t)) dt ≥
∫ T

0

∫

V

H(t, w) dµt(w) dt . (A.5)

If in addition (wn) ⊂ Lp(0, T ; V) is bounded and, in the case p = 1, also uniformly integrable, then, up to

extracting a further subsequence from (wnk
) we have that, setting

w(t) :=
∫

B

w dµt(w) for a.a. t ∈ (0, T ) ,

there holds

wnk
⇀ w in Lp(0, T ; B), (A.6)

with ⇀ replaced by
∗
⇀ if p = ∞.
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