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GIBBS MEASURES ASSOCIATED TO THE INTEGRALS OF MOTION OF
THE PERIODIC DERIVATIVE NONLINEAR SCHRODINGER EQUATION

GIUSEPPE GENOVESE, RENATO LUCA, AND DANIELE VALERI

AsstrACT. We study the one dimensional periodic derivative nonlinear Schrodinger (DNLS)
equation. This is known to be a completely integrable system, in the sense that there is an
infinite sequence of formal integrals of motion fhk, k € Z4. In each fhgk the term with the
highest regularity involves the Sobolev norm Hk(’]l‘) of the solution of the DNLS equation. We
show that a functional measure on L?(T), absolutely continuous w.r.t. the Gaussian measure
with covariance (I 4+ (—A)¥)~1, is associated to each integral of motion Shog, k> 1.

1. INTRODUCTION

In this paper we consider the derivative nonlinear Schrédinger equation (DNLS) in the space

periodic setting:
{ iy = ' +ip (U’W’F)/ (1.1)
1/1(%0) = wo(x) ’ '
where ¢(z,t) : T xR — C, ¢yo(z) : T — C, ¥'(z,t) denotes the derivative with respect to x, and
B € R is a real parameter.

The DNLS is a dispersive nonlinear equation coming from magnetohydrodinamics. It describes
the motion along the longitudinal direction of a circularly polarized wave, generated in a low
density plasma by an external magnetic field [Rog71][Mjo76] (see also [SS99]). It is known to be
an integrable system [IKN78] (see also [DSK13]) in the sense that there is an infinite sequence of
linearly independent quantities (integrals of motion) which are conserved by the flow of (1.1) for
sufficiently regular solutions. The integrals of motion are functionals defined on Sobolev spaces
of increasing regularity.

The aim of this paper is to construct an infinite sequence of functional Gibbs measures associ-
ated to the integrals of motion. These measures turn out to be absolutely continuous with respect
to the standard Gaussian measures with covariance (I + (—A)*)~!, thus different measures are
disjointly supported (see Appendix A).

The program of statistical mechanics of PDEs begins with the seminal paper by Lebowitz,
Rose and Speer [LRS88]. The authors study the periodic one dimensional NLS equations and
introduce the statistical ensembles naturally associated to the Hamiltonian functional as in a
classical field theory. Successively, Bourgain completed this study: in [Bou94] by proving the
invariance of the Gibbs measure for the periodic case and in [Bou00| extending the results to
the real line. Similar achievements have been obtained with different methods in [Mck95] for
cubic NLS, in [MV94] for the wave equation, and in two dimensions in [Bou96] for defocusing
cubic NLS equation, in [BS96] for the focusing case, in three dimensions for the Gross-Pitaevskii
equation in [Bou97].

For integrable PDEs one can carry out the same study by profiting from an infinite number of
higher Hamiltonian functionals. This was originally noted by Zhidkov [Zhi01], who analysed the
Korteweg-de Vries (KdV) and cubic nonlinear Schrédinger (NLS) equation on T. The main idea,
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already contained in [[LRS88], is to restrict the measure associated to a given integral of motion to
the set of solutions with fixed values for all the other integrals of motion involving less regularity
(in a sense that will be clarified below). The invariance of such a set of measures gives interesting
informations on the long time behavior of the regular solutions, for instance through the Poincaré
Recurrence Theorem (see [Zhi01], [BTT14]). In the last years this approach has been adopted in
a series of papers by Tzvetkov, Visciglia and Deng [T7zv10, TV13a, TV13b, TV14, Denl4, DTV 14]
for the Benjamin Ono equation on T. In this case, because of the nature of the equation, a more
careful construction of the measure is required. A major difficulty compared to KdV and NLS
is that the non linearity has a non trivial one-derivative loss. This is a feature which we find in
the DNLS equation as well.

Despite the extensive study in the past decades on integrable PDEs, a limited attention has
been given to the integrability properties of the DNLS equation. An infinite sequence of integrals
of motion for this equation has been found in [KXN78] using the inverse scattering method. More
recently, another proof of the integrability of the DNLS equation has been achieved using the
so-called the Lenard-Magri scheme [Mag78] within the framework of (non local) Poisson Vertex
Algebras [DSK13].

The first few integrals of motion of the DNLS equation are:

Jho = 3912, (1.2)
fin =5 [ wd+ Slwle.
Tha =30t + 58 [ w200 + S, (1.3
[is = /ww"+ﬂ/ P+ SO + @) + 56 [+ LI,
Jha =310l + 58 [ (wovd" - v i)

+ 380 [ QI + 5P + ) + T80 [0+ .

Here and further, we denote by [ f = 5= [, f. Note that, while for k even the term of highest

regularity in the integral of motion [ hy is the H3 (T) norm, for odd k this term is not definite
in sign. This prevents us to associate an invariant Gibbs measure to every integral of motion
Jhi, k € Zy. The same does not occur for KdV, NLS or Benjamin-Ono equations.

The DNLS equation has been shown to be locally well posed for initial data in H*='/2 both
for periodic and non periodic settings (see [Her06] and respectively [Tak99]). The global well-
posedness has been proven for H*Z/2(R) in [MWX11] and in H*>/2(T) in [Win10]. The global
results hold for initial data with small L?(T) norm. For instance a standard procedure (see

[Her06]) allows to globalize the local H'(T) solutions with [[¢o||z2(r) < 57 by using the

3\
conservation law [ ho and the following Gagliardo-Nirenberg inequality:

1
el Zoery < Ml gro ey lull7eery + g\lulliam (1.4)

The lack of well-posedness at low regularity makes hard to construct an invariant measure
associated to the lowest order integrals of motion. For [ho the main issue is that there is no
well-posedness in ()., H 2 3¢ (T) which is the support of the Gaussian measure with covariance
I-A. A very delicate analysis is necessary to deal with this problem. In [NOR-BS12| the
authors constructed a functional measure in the Fourier-Lebesgue space FL*"(T), r € (2,4),
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s € [1/2,1 —r~1), for which there is a local existence theorem [GI08|. They are able to prove
the invariance of this measure with respect to the DNLS flow (studying in fact the gauged DNLS
equation). Then in [NR-BSS11] the study is completed, by proving the absolute continuity of
this measure with respect to the Gibbs measure constructed in [TT10], which would be a more
natural candidate for the invariant measure associated to the energy functional [hs. To the best
of our knowledge, so far these are the sole known results for Gibbs measures associated to the
DNLS equation.

1.1. Set up and Main Result. The main goal of this paper is to construct Gaussian measures
supported on Sobolev spaces with increasing regularity, associated to the integrals of motion of
the DNLS. Let us introduce now the main objects we are going to deal with.

As usual we denote by H*(T), k € Z, the completion of C*°(T) with respect to the norm
induced by the scalar product

(w,v) e = (1+|n) > wpv, .
nez
where u,, are the Fourier coefficients of u. For every k € Z,, H*(T) is a separable Hilbert space,
and we note that H°(T) = L*(T). A function in H*(T) is represented as a sequence {un }nez,
such that 37, (1 + [n|)?*|u,|? is finite uniformly in N € Z, .

We also use the homogeneous Sobolev spaces H*(T), defined as the completion of C°°(T) with
respect to the norm induced by the homogenous scalar product

(u,0) g == Z n**a,v, .
neL
Now we consider the Hilbert space L?(T). For any k € Z,, let us denote by I + (—A)* the

k
closure in L*(T) of the operator 1 + (—d%) acting on C'°(T). As it is well known this is a

positive, self adjoint operator with a trivial kernel. Therefore its inverse (I — A*)~! is bounded
and moreover it can be shown that it is of trace class.

In virtue of this last property we can construct a Gaussian measure on L?(T) as follows. We
denote by e, = €"* the eigenvectors of I + (—A)k:

I+ (—A)e, = (14 n**)e,.
Since I + (—A)* is self-adjoint the set of its eigenvectors spans the space L?(T), and so each
function u(z) € L*(T) can be written as
u(z) = Z Up €,
nez

that is nothing but Fourier series. We consider at first finite dimensional truncations, looking
only at the components of the expansion for [n| < N. We define

[Ljn<n V140
- (27r)2N+1
to be the complex Gaussian measure of a set A C C2N*!, This measure can be extended in infinite

dimensions following a standard method [Sko74][Zhi01]. For any Borel subset B C C2N+! we
introduce the corresponding cylindrical set in L?(T) as

My(B) ={u € L*(T) | [u_N,@-N,...,un,un] € B}.

Since I+ (—A)* is of trace class, we can extend the Gaussian measure v to L?(T) functions

by setting v, (My) := 7 (My) and then using Kolmogorov reconstruction theorem. It can be

verified that this defines a countably additive measure on L?(T). We refer to [Bog08][Sko74] for
3
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a more detailed presentation (see also Appendix A for some properties that will be used in the
paper). We denote by L? the Banach space of functionals " : L?(T) — C such that

[dn@irwp <.

For the ease of notation we simply denote as E[-] (instead of E-, [-]) the expectation value w.r.t.
the measure v;. Anyway the particular v, considered will be always clear from the context.

For N > 1, we set Exy = spanc{e™® | |n| < N}, and we denote by Py : L?*(T) — Ey the

projection map onto the space Ey. Namely, foru =73 ., une™® € L%(T), we have

Pyu:= Z Up e (1.5)
[n|<N

When there is no confusion, we simply denote
uy := Pyu. (1.6)
For 1 € L?(T), we show in Section 2 that

1

Jhar[p)] = 5”#’”%& + [arl¥], keZ,,

where [qj, is a sum of terms of the form
f’(/_J(al) B .,l/_,(az)q/,(ﬂl) B .,l/,(ﬂl)?

with l <2k +2, 0;,8; € Zy and Y., a; + f; < 2k — 1.

Let now R > 0, and let yx : R — [0, 1] be a smooth function such that x =0 € R\ [~ R, +R]
and x =1 in [-R/2,+R/2]. For k > 2, let us fix R,;, > 0, for m = 0,...,k — 1. Thus we can
define the density

k—1
Grn () = ( 11 x&.. (Jham(wn)) )e’f‘“(w}v). (1.7)
m=0
The associated measure dpy N is

Pk,N(dw) = Gk,N(W’Yk(‘W) .

The main result of the paper is the following:

Theorem 1.1. Let k > 2 and Ry < ﬁ. The sequence G n(¢) defined by equation (1.7)

converges in measure, as N — 0o, w.r.t. the measure vi. Denote by Gy (v) its limit. Then, there
exists po(Ro, - .., Rgk—1) > 0 such that, for all p < po, G(¢0) € LP () and G n () converges to
Gr(¥) in LP(yk).

As a consequence of Theorem 1.1, we obtain that the measures pj; y weakly converge, as
N — oo, to the Gibbs measures p;, on L?(T):

pr(dy) = Gr()ye(dy) .

Since each Gy is supported on a set of positive measure w.r.t. ~g, for every k > 2, pj is non
trivial and absolutely continuous w.r.t. to ;. We choose the class observables associated to each
of these Gibbs measure to be the functionals in LZ;.
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1.2. Strategy of the Proof. The first part of our proof relies on a careful analysis of the
algebraic structures of the integrals of motion of the DNLS equation. This has been done in
Section 2. We use the Lenard-Magri scheme of integrability for non local Poisson vertex algebras
to find out the following general structure of the integrals of motion:

1 ] - -
[ o= 5101 + 56k + 1) [FOUE D50+ o remainder, ke 2,

where we consider as remainder all the terms that we can estimate with a certain power of the
H*=1 norm. Note that this quantity is finite in the support of the Gaussian measure ~;.

In Section 3 we show, under the L? smallness assumption, that the Sobolev norm H” of the
solutions of the DNLS equation (1.1) stays bounded by a constant depending on the values of
Jhom, m =1,...,k, integrals of motion. Therefore, when we introduce the cut off functions y
in (1.7), we know that the H® norms, s < k — 1, are bounded a.s. in the support of the Gibbs
measure p; y uniformly in N. This allows us to prove in Section 4 that all the remainder terms
converge point-wise in the support of pi, n as N — oo, thus also in measure w.r.t. ;.

The terms [ ¢*)4p(E=D)e) are estimated by the H*(T) norm, which is not finite in the support
of ;. Therefore they need to be treated separately. This is done by using a method outlined
by Bourgain in [Bou96] (see also [BS96]), which is reminiscent of the works in quantum field
theory in the 70 [GRS75, Sim74]. Successively this approach has been exploited by Tzvetkov
and collaborators in [TT10] for DNLS equation and in [Tzv10, TV13a] for the Benjamin Ono
equation.

In Section 4 we prove the convergence in L?(q;) of these terms as N — oo, employing es-
sentially the Wick theorem. L?(vx) convergence yields LP(vx) (p € [1,00)) convergence by a
standard hyper-contractivity argument. This is enough to prove convergence in measure of the
density. In Section 5 we ultimate our strategy showing LP(7;) boundedness of the density Gy,
for p € [1,00), provided that [hg is sufficiently small. We make use of some helpful properties
of the measures 7, reviewed in Appendix A.

From the LP(~;) boundedness the convergence in LP(~;) (and so the weak convergence) of
the density easily follows.

In the whole paper (except for Section 4) we are not concerned about the dynamics. However
the measures that we construct are naturally expected to be invariant under the flow of DNLS.
To prove this result, a careful analysis is required (as for instance in the case of the Benjamin-Ono
equation [TV13b, TV14, DTV14]) which we leave to a forthcoming work.

Throughout the paper we write X <Y to denote that X < CY for some positive constant C'
independent on X,Y.

Acknowledgments. This work begun during the visit of the first and second author to SISSA
in Trieste. Then this research was supported through the programme “Research in Pairs” by the
Mathematisches Forschungsinstitut Oberwolfach in 2014. We thank these institutions for the kind
hospitality. G.G. is supported by the Swiss National Science Foundation. R. L. is supported by
the ERC grant 277778 and MINECO grant SEV-2011-0087 (Spain) and partially supported by
the Italian Project FIRB 2012 “Dispersive dynamics: Fourier Analysis and Variational Methods”.
We are grateful to B. Schlein for constant encouragement and many valuable comments.

2. STRUCTURE OF THE INTEGRALS OF MOTION OF THE DNLS EQUATION

In this section we recall briefly the theory of Poisson vertex algebras aimed at the study of
the integrability properties of bi-Hamiltonian equations using the so-called Lenard-Magri scheme
(see [Mag78, BDSK09, DSK13]). We use this formalism to describe explicitly the structure of
the integrals of motion of the DNLS equation which will be used throughout the paper.
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2.1. Algebras of differential polynomials. Let V be the algebra of differential polynomials
in ¢ variables: V = (C[ul(»n) |i € I,n € Zy], where I = {1,...,¢}. (In fact, most of the results hold
in the generality of algebras of differential functions, as defined in [DSK13].) It is a differential

algebra with derivation defined by 8(uz(»")) = uz(-m_l). We also let IC be the field of fractions of V
(it is still a differential algebra).
For P € V! we have the associated evolutionary vector field

0
= 3 on)ts
i€l n€Zy
This makes V* into a Lie algebra, with Lie bracket [Xp, Xg] = X[p g, given by
[P,Q] = Xp(Q) — Xo(P) = Dq(9)P — Dp(9)Q,

where Dp(9) and Dg(9) denote the Frechet derivatives of P,Q € V¥ (we refer to [BDSK09] for
the definition of Frechet derivative).

For f €V its variational derivative is gT]i = (%) € V¥ where
i/iel

5f _ Z (—8)” af . (2.1)

6ui neZy augn)

Given an element & € V¥, the equation & = 6 can be solved for h € V if and only if D¢(9) is a
self-adjoint operator: D¢(0) = D{(0) (see [BDSKO09]).

For f € V, we denote by [f = f + 9V, where 9V = {0h | h € V}, the image of f in the
quotient space V/9V, and we call it a local functional. Note that the integral symbol is motivated
by the fact that V/9V provides a universal space where integration by parts holds, namely

[fog=—[gof, for every f,g€ V.

It is possible to show that Ker % = 9V @ C. Hence, 3 5— (Sf—f = 0. Recall also that we have a
non-degenerate pairing (-|-) : V¥ x V¥ — V/9V given by (P|§ J P& (see [BDSKI ‘)])

Given f € V\C, we Say that it has differential order n, and we write ord(f) = n, 1f (n) #0

for some i € I and (m> =0 for all j € I and m > n. We also set the differential order of

elements in C equal to —o00. Let us denote by V,, the space of polynomials of differential order
at most n. This gives an increasing sequence of subalgebras C =V_,, C Vy C V; C --- C V such
that Zﬂin C Vn+1.

We extend the notion of differential order to elements in P € V* as follows:

ord(P) = max{ord(Py),...,ord(Pp)} .

We also define two gradings on V in the following way. First, we let deg be the usual polynomial
grading of V defined by

degul(-n)zl, forevery i€ I,n € Zy .

On the other hand we define the differential grading on V, which we denote dd, by
dduz(ln):n7 for every i € I,n € Zy .

This means that, given a monomial (i1,...,i € I ,n1,...,n, € Z4)

f= u(nl)u(n2) B (nk ev,

io
we have
deg(f) =k, dd(f)=n1+ -+ ng.
6



Note that, for a homogeneous polynomial f € V, we have
deg(0f) = deg(f),  dd(0f) =dd(f) +1. (2.2)

2.2. Rational matrix pseudodifferential operators and the association relation. Con-
sider the skewfield ((071)) of pseudodifferential operators with coefficients in K, and the sub-
algebra V[0] of differential operators on V.

The algebra V(9) of rational pseudodifferential operators consists of pseudodifferential oper-
ators L(d) € V((0~')) which admit a fractional decomposition L(d) = A(9)B(d)~!, for some
A(9), B(0) € V[0], B(9) # 0. The algebra of rational matriz pseudodifferential operators is, by
definition, Matyx, V() [CDSK13].

A matrix differential operator B(0) € Matyy, V[0] is called non-degenerate if it is invertible
in Matgyw, K((071)). Any matrix H(9) € Matyx, V(d) can be written as a ratio of two matrix
differential operators: H(9) = A(9)B~1(9), with A(9), B(0) € Matsx, V][9], and B(9d) non-
degenerate.

Given H () € Matyy, V(9), we say that £ € VP! and P € V* are H-associated, and denote it
by

£+ P, (2.3)
if there exist a fractional decomposition H = AB~! with A,B € Matx,V[0] and B non-
degenerate, and an element F' € K¢, such that £ = BF, P = AF [DSK13].

2.3. Non-local Poisson structures. A non-local Poisson vertex algebra is a differential algebra
V endowed with a A-bracket {-x-} : V x V — V((A7!)), where V((A™!)) denotes the space of
Laurent series in A~! with coefficients in V), satisfying sesquilinearity (f,g € V):
{0fagt = =M/agl, {99} = (A+0){fag},
the Leibniz rule (f,g,h € V):
{faght = {fagth +{f\h}g,
skewsymmetry (f,g € V):

{fagt=—{g9-r-af},
admissibility (f,g,h € V):
{fdguh}y € VIN L 07 0+ )7 Il
and Jacobi identity (f,g,h € V):
{Alguh}}y —{gu{fisn}} = {Hgharuh}

We refer to [DSK13] for the details on the notation.
To a matrix pseudodifferential operator H = (H; (8))1 jer € Matyxy V((0~1)) we associate a

A-bracket, {-x-}g: V xV = V((A™1)), given by the following Master Formula (see [DSK13]):

hatn= Y Loy v+ o(A-0" L cvn ). @4
i,jel OUj U

m,nely

For arbitrary H, it is proved in [BDSK09] and [DSK13], that the A-bracket (2.4) satisfies sesquilin-
earity and the Leibniz rule. Furthermore, it has been shown that skewadjointness of H is equiv-
alent to the skewsymmetry condition, and that, if H is a rational matrix pseudodifferential
operator, then the admissibility condition holds.

Definition 2.1. A non-local Poisson structure on V is a skewadjoint rational matrix pseudodif-

ferential operator H with coefficients in V such that the corresponding A-bracket (2.4) satisfies

Jacobi identity, namely, V endowed with the A-bracket (2.4) is a non-local Poisson vertex algebra.
7



Two non-local Poisson structures H, K € Matyy,V(9) on V are said to be compatible if any
of their linear combination (or, equivalently, their sum) is a non-local Poisson structure. In this
case we say that (H, K) form a bi-Poisson structure on V.

2.4. Hamiltonian equations and integrability. Let H € Matyy, ) (9) be a non-local Poisson
structure. An evolution equation on the variables u = (uz)

du

— =Pel’, 2.5
o (2.5)
is called Hamiltonian with respect to the non-local Poisson structure H and the Hamiltonian

functional [h € V/IV if (see Section 2.2)
oh
= p.
du
Equation (2.5) is called bi- Hamiltonian if there are two compatible non-local Poisson structures
H and K, and two local functionals [hg, [h1 € V/OV, such that
oh oh
S0 p and 2P (2.6)
ou ou

An integral of motion for the Hamiltonian equation (2.5) is a local functional [f € V/dV which

S

is constant in time, namely, such that (P|%) = 0. The usual requirement for integrability is to
have sequences { [y, }nez, C V/OV and {P,}nez, C V', starting with [ho = [h and Py = P,
such that

sh, H
(C1) &= +— P, for every n € Z.,

(C2) [%m, P, =0 for all m,n € Z4,

(C3) (P, | 222) =0 for all m,n € Zy.

(C4) The elements P, span an infinite dimensional subspace of V*.
In this case, we have an integrable hierarchy of Hamiltonian equations

C;lt% = Pn , ne Z+ .
Elements [hy,’s are called higher Hamiltonians, the P,’s are called higher symmetries, and the
condition (P, 55}‘;) = 0 says that [h,, and [h, are in involution. Note that (C4) implies that
element %Ln span an infinite dimensional subspace of V¢. The converse holds provided that either
H or K is non-degenerate.

Suppose we have a bi-Hamiltonian equation (2.5), associated to the compatible non-local
Poisson structures H, K and the Hamiltonian functionals [ho, [h1, in the sense of equation (2.6).
The Lenard-Magri scheme of integrability consists in finding sequences { [hy, }nez, C V/0V and
{P.}nez, C V!, starting with Py = P and the given Hamiltonian functionals [ho, [h1, satistying
the following recursive relations:

ohn H K O0hnt1
S P TJ for all n € Z, . (2.7)
In this case, we have the corresponding bi-Hamiltonian hierarchy
d
%:Pneve, nez,, (2.8)

all Hamiltonian functionals [h,,, n € Z, are integrals of motion for all equations of the hierarchy,
and they are in involution with respect to both non-local Poisson structures H and K, and all
commutators [P,,, P,] are zero, provided that one of the non-local Poisson structures H or K is
local (see [DSK13, Sec.7.4]). Hence, in this situation (2.8) is an integrable hierarchy of compatible
evolution equations, provided that condition (C4) holds.

8



2.5. A bi-Hamiltonian structure and integrability for the DNLS equation. Let V =

Cla™,b™ | n € Z,] be the algebra of differential polynomials in two variables a and b. Some-

times we will also use the notation a’ = a"), o’ = a(? and so on (and similarly for the b(™)’s).
Let H, K € Matax2 V((071)) be pseudodifferential operators with coefficients in V defined as

follows: . .
(9 0 [ 2807 ob  —1-28b0 ' oa
= (0 5‘) and - K = (1 —2Bad tob 2Bad0 ' oa ) ’

where 5 € C. Note that H(9) € Mataxo V(9] is in fact a differential operator.
The following result have been proved in [DSK13].

Theorem 2.2. (a) There exist A(0), B(0) € Mataxa V[0], with B(J) non-degenerate, such that
K = A(0)B(0)~'. Explicitly:

b 155,
A(8) = ( K 20 2ga2 wab) and B(8) = (% éaoo a) .
(b) (H, K) is a bi-Poisson structure on V.
(c) There exist infinite sequences { [hy}nez, CV/OV and {P,}nez, C V? such that the Lenard-
Magri recursive relations (2.7) hold.
(d) ord (%Lu") =n, for every n € Zy. In particular, since H is non-degenerate, all the elements
[hy’s and P,’s are linearly independent (see Section 2.4).
In conclusion, by the discussion in Section 2.4, we get an integrable hierarchy of bi-Hamiltonian
equations (2.8) and all the Hamiltonian functionals fhn, n € Zy, are integrals of motion for all
equations of the hierarchy.

The first few elements in the series of the integrals of motion are

[ho = %f (a+0%) . [ha= [ (b + g( 25 0%)?). (2.9)
The corresponding Hamiltonian equations, given by (2.8), are
%Z) =a | %‘; ="+ B (a(a® + %))’
e~ b praiaiai (b(a® + 7))’

Let us write ¥ = a 4 ib. Then, the first non-trivial equation of the hierarchy is the derivative
non linear Schrédinger (DNLS) equation:

P90 =i ()
1

Let us consider § € C as a formal parameter, and let us naturally extend the notion of
polynomial degree and differential degree of V to the field of fractions /C and to X2. The following
result is a consequence of the Lenard-Magri recursive relations (2.7) and the explicit form of the

differential operators A and B.

Proposition 2.3. For every n € Z,, the variational derivatives 5{;’; ’s are polynomials in B
(with coefficients in V?) of order n. Let us write

6hn = [(Shn\ i
Fu T2 < u )k B

k=0
Then, for every 0 < k < n, we have

0rd<6hn> =n—=k.
ou /),

9



Moreover, the components of (‘i;’; ) . are homogeneous polynomial with respect to the polynomial

grading (respectively, differential grading) of degree:

deg (5hn> =2k+1 (respectwely, dd ((Shn) =n— k:) .
ou /), ou /

Proof. The fact that the variational derivatives ‘ngl ’s are polynomials in 8 (with coefficients in
V?) of order n is true for n = 0, 1 using equation (2.12) and the definition of variational derivative
(2.1). Let us assume that % has order n as a polynomial in 3, and let us write explicitly the
Lenard-Magri recursion relations (2.7) using the formulas for the differential operators A and B.
We get the following system of equations

D(ag) = —ad 2l _ poOln

oa ob

O Oy
—tl _ 9= — 2Ba%g (2.10)
s1e %

n+1 n

— 9o o
3b 05a —2Pabg,
where g € K and 5h§a“ , éhgb“ € V have to be determined (we know the system can be solved by

Theorem 2.2(b)). From the first equation in (2.10) and inductive assumption, it follows that ¢

is a polynomial of order n in §. Then, by the second and third equation in (2.10), it follows that
‘Shg"—u“ is a polynomial of order n + 1 in 5.
Moreover, by Theorem 7.15(c) in [DSK13], we have that ord (‘Shg%) = ord(P,). Recall that

P,=H (?—J). Hence, equating the orders of the coefficients of powers of § we get

ord((shnﬂ) zord<H(5hn> ):n—l—l—k:.
ou & ou /

In the last equality we used the fact that 0V, C V,11. The last part of the proposition follows
by a simple inductive argument using equations (2.2) and (2.10). O

Remark 2.4. By the first part of Proposition 2.3, we can write h,, as a polynomial in 5. By the
second part, using the definition of variational derivative and equation (2.2), we get that

hn =Y hn kB, (2.11)
k=0
where h,, ;. € V are homogeneous differential polynomials such that deg(h, ) = 2k + 2 and

dd(hy, ) =n — k.

2.6. Explicit structure of the integrals of motion of the DNLS equation. Let us define
a sequence {&, fnez, C V? as follows:

a / a a2 2
§0 = (b) ) El = (ba/‘tLﬂﬂl()(a;:beg)) ’ (2'12)

and, for n > 1, we set

60— (1) (2C7 = n 4 1B £ Y g,
" b+ (20 +1)B(a® +67)a®" V) 48, )

¢ —(—1)" b7+ 1 28a(aa® + bb*™)) + (2n+1)B(a? + bQ)a(Q")—i—r‘Q’nH
2n+1 — 7a(2n+1)+ 2I8b(aa(2n)+ bb(2n)) 4 (2n+1)ﬂ(a2 + b2)b(2n)+7‘gn+1 )

where 13, € Va,,_2 and 1§, | € Va,_1, for x = a or b.
10



Lemma 2.5. Let us denote &, = (5") € V?, for every n € Z,. Then we have:

&
(a)
agh,  y — bes 1 — (~1)"H19 (aa<2”> + bb<2n>)
— (=1)"(2n + 189 ((a® + b)) (@b®* ™V — al2"7Db)) € Va1
(b)
agh,, — beg, — (~1)"0 (b)) — a2~ Vp)
—(~1)"(2n + 1)80 ((a2 +b%)(aa®"2) + bb(Q”’Q))) € Van_s.
(c)
€8, —0Eb, — (—1)"28a (aa@”) + bb<2">) € Van1,
€ ir + 08, — (—1)"28b (aa(Q”) + bb<2n>) € Van_1.
(d)

fgn - aggnfl - (_1)n+12ﬁa (ab(Qn_l)b - a(2n_1)b) S V2n72 )

b, + 05,1 — (=1)"7128b (b)) — a7 Vp) € Vyy 5.

Proof. Straightforward.

Let us also define a sequence {P,},ecz, C V2 as follows:

P, = He, = (g§§> -

Lemma 2.6. For every n € Z, there exists F,, € K? such that:
(G,) Py, — AFQn S V22n71 and €2n+1 — BF;, € V22n,1,'
(b) P2n+1 — AF2n+1 S V22n and £2n+2 — BFQn_H S V22n

Proof. For every n € Z, let us consider

(a2 + b2)(ab(2n_1) _ a(2n—1)b)

where
(2n) bb(2n)
fon = (U ()" a1
(2n+1) _ ,(2n+1) 9 9 (2n) (2n)
fons = (—1)1 22 a O (1 an 4 gyl t I aa T BT

and g, € V,,_2. Then, using the definition of the differential operators A and B given by Theorem
2.2(a), it is straightforward to check that part (a) follows from Lemma 2.5(a) and (c), while part

(b) follows from Lemma 2.5(b) and (d).

Proposition 2.7. Let {[hn}tnez, C V/OV be the sequence in Theorem 2.2. Then, for every

n € Zy, we have

Shn )
E - §n € Vn—2 .

11



Proof. By equation (2.9) and the definition of variational derivative (2.1) it follows that i= = &,
for n = 0,1. Hence, by Theorem 2.2(d), in order to prove the proposition we need to show that
the sequence {&, }nez, C V? satisfies the Lenard-Magri recursive relations (2.7) up to elements
in V,,_o. This follows by definition of the association relation (2.3), the definition of the sequence

{P.}nez, C V? and Lemma 2.6(a) and (b). O

Corollary 2.8. For every n € Z, we can assume that the conserved densities ho,, €V, defined
by Theorem 2.2, have the form:
1
hon = 5 ((a(”))2 + (b(”))2) + 20+ 1)8 (a2 + 52) o™ V™ 4+ Ry,
where Ro, € V1.

Proof. 1t follows by Proposition 2.7 and the definition of the variational derivative (2.1), using the
fact that OV, C Vyy1, for every k € Z, and that the variational derivative of a total derivative
is zero. O

2.7. Changing variables. Let V€ be the algebra of differential polynomials in two variables )
and 1. We have a differential algebra isomorphism V = VC given on generators by

D, %=
2 7 2
Clearly,the inverse map is given by ¢ = a +ib and 1) = a — ib. (In the usual analytical language,
if a and b are real functions, then we want to consider them as the real and imaginary parts of
the function 1).)

The differential order, the polynomial grading and the differential grading of ¥ and VC are
compatible under this isomorphism. Hence, all the results in the Section 2.5 hold true for
‘%" € (V©)?2 (by an abuse of notation we are denoting with the same symbol an element in V
and its image in V*) Moreover, we can restate Corollary 2.8 as follows.

Corollary 2.9. For everyn € Z, we can assume that the conserved densities ha, € YV, defined

by Theorem 2.2, have the form:
1 o I +1)i - e
han = 20050 4 GO D g0y 4 g,

where Ro,, € Vg,l,

Proof. Clearly, (a(™)? 4+ (b(™)2 = (™))" for every n € Z,. Moreover, we have

n— n i 7(n n—1).7 n),;,(n—1),7 n(n), (n—1y\ 7 n n—1).7
(a? +82)a" D) = L (HOID Gy — OGO Gy 4GPy D)
(2.13)
Note that, integrating by parts, we have

My = DY Dhrp) mod OV = (—p ™MDy + f) mod 9V, (2.14)

where f € VS |. Moreover, again using integration by parts, we have

P gy = —p Do gy) mod OV = (=M "Dy + 29) mod 9V,
with g € VC_;. Then,
™ =Dypyp = £ mod 9V . (2.15)
Similarly, we get that
D=V eheh = h mod 9V . (2.16)
for some h € VC_|. Combining equations (2.13), (2.14), (2.15) and (2.16) the proof is concluded.

O
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We want to give a description of the conserved densities ho, € VC which will be used in
throughout the rest of the paper.
Let V be the algebra of differential polynomials in one variable u. Let us denote by

VLY (2.17)
the differential algebra homomorphism defined as follows: given f € V€, we denote by fe V the
differential polynomial obtained by replacing 1 and ¢ by u (and their n-th derivatives by u(”)).
Note that V inherits the polynomial and differential grading of V.

Recall, by Remark 2.4, that we can write the conserved densities as in equation (2.11). Then,
by Corollary 2.9, we have that

1 _
hono = 549, (2.18)
and

2n+ 1)
SECIES

PP+ " eon(p)p, (2.19)
peP
where ¢x(p) € C (they can be possibly 0) and

ﬁ — {p c VC | 'p’: u(nfl)u(nl)u(”w)u(n3) , N1 +ng +n3 = ’]’L,O é ns3 S n9 S ni S n — 1} . (220)
3. CONTROL OF THE SOBOLEV NORMS

The goal of this section is to show the persistence of regularity of small solutions of DNLS
equation (1.1) by using the higher Hamiltonians introduced in Theorem 2.2.
For every k € Z,, we denote

E, = fhgk .
By equations (2.11), (2.18), (2.19) and Corollary 2.9 it is possible to write
1
= S 19lle + S (31)
where
2k -I-l
gi = D 000,06~ D+ 8> calp p+2/3 hakm - (3.2)
peP

We recall that dd(hy ) = 2k —m and P is defined in (2.20) .

Remark 3.1. Note that using Proposition 2.7 (and recalling equation (2.11)) it is possible to

write
2k+1

Jhoks1 = *f¢(k)¢(k+1) + Z B™ [hoki1,m -

m=1
Instead of the case of [hay, the constant term in B of the above equation has no definite sign
and, in particular, it does not coincide with [[¢| g /2.

The main result of the section is the following

Proposition 3.2. Let k € Z,. For every 0 < m < k let us fix R,, > 0, and let us assume that
Ry < ﬁ. There exists C = C(Ro, ..., R, k,|B|) such that if
|En[Y)]| < Ry, forany m=0,...k,
then
[Pl < C. (3.3)
In order to prove Proposition 3.2 we need some preliminary results.
13



Lemma 3.3. Letk > 2 andu € H*1. Forl > 5 anda; >0 (i=1,...1) such that a;+- - +ay <
2k — 2, we have

‘fu(o‘l) )] <l - (3.4)

Proof. After reordering the terms in the integrand in the Lh.s. of (3.4) we may assume that
@1 > ag > -+ > qq. Furthermore, using integration by part we may assume that

ar, a9 <k-—1, and oa; <k—-2, 1=3,...,1. (3.5)
By the Holder inequality and the first condition in (3.5) we get

l
< lullfs Hllu(ai) L
=3

Using the embedding H! < L> and the second condition in (3.5) we have (for all i = 3,...,1):
@z S Il < Jlull o - 3.7)

The inequality (3.4) follows combining the inequalities (3.6) and (3.7). O

’ Julen) |yl (3.6)

Lemma 3.4. Let k > 2 and uw € H* . Let also a1 > as > a3 > a4 > 0 be such that

ay+as+ag+as=2k—1. Fora; =k —1 and as,a3,a4 < k — 1, we have

’ Juth=Dya2)y(0a)y(as)

< llullgpe-s -
Proof. Same as the proof of Lemma 3.3. O
Lemma 3.5. Let k > 2 and let u € H*. Then
[JuPut=0u2| < elful, + Ce)fulye
fo alle > 0.
Proof. By using the Holder inequality and the embedding H! — L> we get
[ Fa®u 2] <l ol gocs e 3w S Wl

The proof is concluded by applying the Young inequality in the last expression. O
Corollary 3.6. Let k > 2. For every v € H* we have

| Jax ()] < elk)el| ¢l (3.8)
where C = C([|¢[| gro, 9l g1, €, &, [B])-

Proof. Let us focus on the representation (3.2):

(2K + 1)i

Ge(¥) = B EVgp 1+ B3 eo(p)p + Z B™ Bk -

pGP =

The Lemma 3.3 and the fact that || = || allow us to bound (through the homomorphism
defined in (2.17))

[ e < CAR M ggos 191l g1, K) (3.9)
for all m = 2,...,2k. Similarly, Lemma 3.4 implies
ol < CAl¥ Mo, (81 i %) (3.10)
for all p € P. Finally, Lemma 3.5 gives
| [P pE D] < elfullFe + O ) l|ullFumr - (3.11)

14



Combining the equation (3.2), the inequalities (3.9), (3.10) and (3.11), the estimate (3.8)
follows. U

Lemma 3.7. Let ¢ € H' and let us denote Ry = ||¢||z2. Then

_— 3 1
| [ py?| < §\|1/)||?'{le + ﬁRé-

Proof. By the Holder inequality we get

[0 | < [l g 9% 22 = 19l g 190126 (3.12)
Using the Gagliardo—Nirenberg inequaltity (1.4) we get
1 1
1 g 1l ze < I3 10022 + o= 10l a1l Z2 = 1915, B + o= 1l g RS- (3.13)
27 27
Furthermore, using the Young inequality we have
1 1 1
ol RS < SIl3 B + 55 Ro - (3.14)
Combining (3.12), (3.13) and (3.14) the proof follows. O

Now we are ready to prove Proposition 3.2.
Proof of Proposition 3.2. We prove (3.3) by induction on k. For k = 0, there is nothing to prove,
since Eg(¢) = 1/2||¢||2. (equation (1.2)).
For k = 1, by equation (1.3) we can write E1(¢) = 1/2[|¢]|%, + [¢1(¢), where
Bi oo B2
Ja(¥) = Zﬂfi/f Y + ZWJ”US .

Hence, we have

1 3 -
S0l = Ba(w) = [a1(¥) < Bi(¥) - S8/0' 00, (3.15)
By Lemma 3.7 and choosing Ry < ﬁ we obtain
30 .o, 1 3
B0 < Sl + RS- (3.16)

Thus, by (3.15) and (3.16), it follows that
1 3
213 < 1B+ 55 By =: C(Ro, Ra).

This proves (3.3) in the case k = 1. Let us assume that equation (3.3) holds for k > 2, namely

”’ll)”H’C < C(Ro, ceey Rlﬁ kv |5|) )
and let us show that it holds for k£ + 1. By equation (3.1) and Corollary 3.6 we have

1
§||?/J||i~,k+1 < B ()] = [ae1(¥)

(3.17)

< Ryr1 + c(k)ell ol Fier + CUBN oo 19l s €5 K, 18]) -

On the other by the inductive assumption we have
C(Hw”HOa ||7/}||Hk7€a k7 ‘BD = C(R07 o 7Rka57 kv |B|) .

Hence, from (3.17), choosing £ < 1/4¢(k), we get

1

Z”w‘lijk+1 S C(Roa ey Rk7Rk+17 k + 17 |/6|) )
thus proving the equation (3.3) and concluding the proof. O
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4. CONVERGENCE OF THE INTEGRALS OF MOTION

In this section we study the convergence of Gy n(v) defined in (1.7) with respect to the
Gaussian measure ;. The main result is given by the following

Proposition 4.1. Let k> 2 and 1 <m < k. Then [ gn(¢¥n) converges in measure to [ ¢, (1)
w.r.t. the Gaussian measure dy,. Furthermore, if 1 < m < k, then E,,(1{n) converges in
measure to Ep, (V) w.r.t. v.

As a consequence, by composition and multiplication of continuos functions, we obtain

Corollary 4.2. The sequence Gy, n(¢) converges in measure, with respect to v, as N — 0o, to
a function which we (already) denoted G (v).

We split the proof of Proposition 4.1 in several steps.

Lemma 4.3. Let k > 2, and let a; > ag > ag > ayg > 0 be such that oy +as +az+ay = 2k —1.
Fora; =k —1 and as,as,aqs < k—1, we have

(k—1) (a2) (a3) (044) (k=1),,(a2),, (@3),, (oc4)
1\}1_r)noo fu Un = [u m

almost everywhere with respect to the measure y,.
Proof. We have

|fu§\];_1)ug\(;2)ug\?3)u§34) _ fu(kfl)u(az)u(az)u(mn < Ay + A,
where

|f (k=1) (k= 1)) (a2) (OtB) (044)| Ay = |fu(k71)(u§32)u§$3)u§\?4)7u(0‘2)u(a3)u(a4))|

by using the embedding H' < L and the fact that uy — u in H¥!, y,-almost surely, we
immediately see that A; — 0, yx-almost surely. Then we notice that

Az < By + B
where
L= |fu(k71)(u§\([12) _ u(az))ug\?a)ug\?uL B, \fu (k—1) az) u(@3) g (@a) _ ugf,”)ug\‘;“‘))l
and as before B; — 0, y-almost surely. We finally notice that
By < Cy + Cq
where
Cr = | [u Du) @) —ugyuloD|, Oy = [ fuhDu G () —uG)| (41)

and as before both C1,Cy — 0, vyg-almost surely, which completes the proof.
O

Lemma 4.4. Fork>2,1>5, anda; >0 (i=1,...,1) such that 0 < ay + -+ -+ oy <2k — 2,
we have
lim [uy (1) ..ual) fu(al) Coulen)

N—o0
almost everywhere with respect to the measure j.

Proof. As in the proof of Lemma 3.3, by reordering and integration by parts we can reduce to
the case
aj,a < k-1, and a;<k-—-2, i=3,...,1.

Then the proof is the same of Lemma 4.3.
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Let | € Z. We denote by S; the group of permutations on [ elements. In the sequel we use
the following version of the Wick formula (we refer to [Cai73] or to [GRST75, Sim74] for more

details). Let (my,...,m;,n1,...,n;) € Z*. Then we have
!
1T mtons | = > H +”|ln””| (4.2)
j=1 0€S; i= 1 o (i)

Let us denote by
)= JUON T e (43)

Proposition 4.5. Let k > 2. The sequence {fN}NeZ+ is a Cauchy sequence in L,QM, for all
s < k—1/2. Indeed, for all N > M > 1, we have

1= s, S o=

Proof. By an explicit computation we get
. k—1 7 T
; 1/}) = Zznlfml 1¢m1'¢)m2wn1wn2 )
AN

where
Ay = {(m1,ma,n1,m2) € Z* | |my|, |ni] < N, ny +ng =my +ma}.

We use the conventions that the labels m; (respectively n;) are associated to the Fourier coeffi-
cients of 1 (respectively 1). Moreover we define

An.m = {(m1, me,n1,m2) € Ax , max(|mal, mal, [n1|, [n2|) > M} .
Thus
fN(d’) ) =i Z nlfmlf 1¢m1wm2¢n1¢nz- (4.4)

AN, M

Taking the square of equation (4.4) we get

IN@) = @)= > aimyT lmgnglﬂ@bmjwn],

Anarx Ay j=1
where
v = {(ms,my,n3,ng) € Z* | |m4|, |ni| < N, msg+my =ns +nyg},
N = {(ms,ma, nz,ng) € Ay | max(Jmsl, [mal, [nal, [nal) > M}.

By definition of the measure 5 we have

=l = Y obmd ke 8 | [T, | (45)

AN M XAl oy Jj=1

By using the Wick formula (4.2) with [ = 4, equation (4.5) becomes

Il Ahls, = X bttt S e g
AN xAl 0€S, i= 1 ()

Let us consider the subgroup G = {1, (12), (34), (12)(34)} C S4 and its action on Sy by left
multiplication. For X C Sy, we denote by G- X = {gz | g € G,z € X} the orbit of the
subset X. We have the following partition of Sy = W7 U Wy U W5, where Wy := G - {1} = G

17



Wy := G-{(13),(14), (23), (24)} and W3 := G-{(13)(24) }. Hence, we can further rewrite equation
(4.6) as follows:

k 1,k
nln ”0(3)

1+|n|)

(4.7)

175 = IR s, Z > >

i= 1A1 v CEWS j=1

where the subsets of indices A§V7 o Will be presented case by case.
We consider the three contributions to the sum in (4.7) separately.

First case: i = 1. We have
A}\LM = {(n1,m2,n3,n4) € Z* | |ni| < N ,max(|n|, |na|) > M ,max(|ns|, |n4|) > M},

and the contribution to the sum in (4.7) is

4 4
A TG (4 IngR)2 TEo (U4 Ingl9)2 Ty (U4 [ng %)% Ty (1 + [ny[%)?
N,M

(4.8)
The sum in (4.8) is zero. In fact, all the functions involved in the sum are odd functions with
respect to the transformation ny — —nq, no — —ng while the index set A}\h a is invariant.

Second case: 1 = 2. In this case we have
A?\I,M = {(n1,n2,n3) € Z* | |ns| < N ,max(|ny], |ns|) > M, ,max(|n1|, |ng|) > M}.

Similarly to the previous case, the contribution in the sum (4.7) corresponding to a permutation
o € Wy which fixes 1 (respectively 3) is zero since the summand is odd with respect to the
transformation ny — —n; (respectively ns — —ng) while the index set A?V a 1s invariant. The
summands corresponding to the remaining elements in W5 have the followmg form

Z nll n22 n33 (4.9)
o (U )t (14 [naf*)? (14 [na|F)? '
N,M

where ag,a3 € {0,k — 1,k}, a1 + az + a3 = 4k — 2 (hence 2k — 2 < a; < 4k — 2). So, by a
straightforward computation, we have (we remind that we are considering k > 2)

al az (ls 1
(1.9) < 3 o n2 Bs < (4.10)
(L+[na[F)2 (1 + [n2f*)2 (1 + |ngl*)2 ~ M

max(|nil,|n2[)>M,
max(|n1|,|ns)>M

Third case: 1 = 3. We have
A% o = {(n2,n3,n4) € Z% | In;| < N, max(|ng + ng — na|, [na|, |ns|, [nal) > M}.

Two summands in (4.7), corresponding to the elements (13)(24) and (1423) in W3, have respec-
tively the following form

S )
o (U Ing +na —nal*)? (14 [n2]*)? (1+ |ng|*)? (1 4 [na]*)? '
N,M

Z (n3 + Ny *n2)2k 1 ].?f 1 Tl{z_l (4 12)
o (U Ing +na = nal*)? (14 [n2f*)? (1 + [ng|*)? (1 4 |naf*)?

N, M
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We can bound these terms as

1 nak—l) 1 1
4.11 < < 4.13
(4.10) 2 1 Tl L+ ma P2 (L1 T F)2 (4.13)

max(|nzl,[nal,[na)>M/3

(4.12) < 3 ! ny” M1 (4.14)
T (T sz (L m2)? (L ngl)2 (L [nal )2 ™ ME S

The other two terms correspond to (14)(23) and (1324). They can be estimated respectively as

Z (n3 +ng —no)k nk nk=1 nk=1 < 1 (4.15)
2 Tt b o al®? (L5 s P (b b2 (L 2~ At
N,M
Z (n3 + ng — ng)¥ ny~! nat=Y 1 < 1 (4.16)
(L4 |n3 4 ng —n2[k)? (1 + [n2|*)2 (14 |n3]*)2 (1 + |ngl®)2 ~ ME-1 '

3
AN,M

In conclusion, recollecting all the contributions given by (4.10) and (4.13-4.16) , we see immedi-
ately that, for £ > 2, we have

1
k _ ¢k 2 <
I fx fMHLgk ~ (4.17)

thus concluding the proof. |

We can extend the estimate (4.17) to all the LP(H?, v, )-norms, with p > 1. For 1 <p <21t is
trivial, since 7 is a probability measure. For p > 2 we have to use the properties of the Gaussian
measure. For any r—linear form ¥"(v), a direct application of the Nelson hypercontractivity
inequality [Nel73], as shown for instance in [Sim74, Theorem 1.22], yields

1)z, < (0= 1)2 07|z, -
This leads us to the following
Corollary 4.6. For allp > 2 and N > M > 1, we have

(p—1)?
TR

Corollary 4.7. Let k > 2, then fq;c,gk_l(ﬂ)]\f) converges in measure to quygk_l(d)), w.r.t. Yg.

13 (W) = FN () o rre ) S (4.18)

Proof. Tt follows by the explicit form of [ gz 2x—1 given in Corollary 2.9 and by Proposition 4.5
and Lemma 4.3. O

Finally we can prove Proposition 4.1.

Proof of Proposition /4.1. The explicit form of [g¢; given by Corollary 2.9, Lemma 4.4 and Corol-
lary 4.7 imply that [g,,(¢n) converges in measure to [¢,(¢) w.r.t. v, for 1 <m <k, k> 2. In
addition, Proposition 3.2 ensures that as long as 1 < m < k we have ||¢n | gm < C N-uniformly,
thereby it converges to ||¢| gm a.e. w.r.t. vi. O

5. PROOF OF THEOREM 1.1

In this section we conclude the proof of Theorem 1.1. First, we state a useful technical lemma
that we borrow from [T7zv10, Proposition 4.5]. We report the proof for the sake of completeness:
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Lemma 5.1. Let (2, S, 1) a finite measure space. If there are C,r > 0, and an integer py > 0,
such that for every p > py we have

HF”P S Cprv
then there exist 0 < § < re~! and a constant L = L(r,d,py) such that

[aness s (1£1)’
()] 5 )

neZy

fawe s ()] = for 2 5 (E)

< L. (5.1)

Proof. We expand

S =

exp

Thus

oy [Ralls
- ol n/r
ez, ™ on/
,/7.
se IE 5" myn
< Y et aly)
n<por n>por
w | FI
= Z m Cn/,r +L1(r767p0)7
n<por

where the constant Lj(r,§) is finite for § < re~!. For the finite sum we readily have

IFr < |F|r < om/rpg,

n/r —
hence )
on | FI: 5n
Z ﬁ Cn/r < Z Fpg = LQ(T757PO)'
npor n<por
The constant Lo is always finite, so we can set L = L1 + Lo and the assert follows. 0

Remark 5.2. Note that the exponent 1/r in (5.1) is optimal: actually the formula remains valid
for each o < 1/r, but fails otherwise.

By using Lemma 5.1 and Proposition 4.5 we can deduce that we have a sub-exponential tail
for the convergence in probability of the Cauchy sequence f% defined in equation (4.3).

Lemma 5.3. Let N > M > 1 be integer numbers and f¥ defined as in (4.3). Then for any
A >0 and k > 2 we have

W (Ifx = farl =A%) Sexp <—?AM1/4> : (5.2)

Proof. By formula (4.18) in Proposition 4.5 we can apply the Lemma 5.1 with F = f% — f~
po=2,r=2 C=2/V/N and § = 2/3. We immediately obtain

A 1/2
/%(dw)exp % ('fN fMNN) < .

2
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Formula (5.2) follows straightforwardly from Markov inequality:

\FlfN fMl AN1/4
2

e (If% = i > A = 3

IA
@
"
ho)
/|\
Wl N
>
32
NS
N
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=
@
i
o)
%
—
2
g,j
=

IN
o)
o]
il
/I\\
| Do
>
=
=
o~
~——
Il
o)
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il
/
|
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>

=

=

o~
~_—

O

Now we come to the most important result of this section, namely the integrability of the
density Gy, n (1) w.r.t. the Gaussian measure ;. More precisely we state:

Proposition 5.4. Assume Ry < E‘T@ and C = C(Ryg, ..., Rp_1,k,|B|) the constant appearing

-1
in Proposition 5.2. Then for any k > 2, for every p < pp := min ((3 CR%) ,(SROC)_1> , we
have for the Gibbs density introduced in (1.7) that for all N > R§C?

1Gr,N ()| Lp(y) < C < +00.
The proof needs two accessory results:

Lemma 5.5. For every p > 0 and k > 1, we have

1GrN (@) lLr () <€

k-1
H X&p (ST (¥n)) e InN]
m=0

LP ()

Proof. The lemma follows as a direct consequence from Corollary 2.9, Lemmas 3.3, 3.4, 4.4, 4.3,
and Proposition 3.2. O

Lemma 5.6. For A > R%\/N we have
Vi (Sup "‘/’5\1;)1/;N‘ > )\) SN2 T
zeT

Proof. The proof follows from Propositions A.5 and A.8 for quadratic forms in Appendix A.
Expanding in Fourier series we see that

Qn(z) = W @)dn(@) = | Y (ih)Fe Dm0,

l7l,|h|<N

is a quadratic form in the Fourier coefficients of ¢ and it fulfills the requirement (A.5) in Propo-
sition A.5, with T} < 1. Hence, for each = € T we obtain

o (|6 @in (@) 2 2) s et
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for all A > 0. Moreover, for any z,y € T, by the Cauchy—Schwarz and Bernstein inequality
Qx(@) - Qx| = |[ Qx)a:
y

Ve =yll@n|l 2

Ve —yIN||Qn|| 2

Ve — y|N%+kR(2) .

Therefore we can apply Proposition A.8 with o = % and Ly = N%‘H“Rg to get for any € > 0
and A\ > N2TFR2 /2

IN A

IN

o—M/4

" (sup [ @) ()] 2 A) =
We recover the assert by setting ¢ = N~272F, O

Now we can give the

Proof of Proposition 5./. By Lemma 5.5 we have to estimate

teo — o gE Dy
2y, H Xr,, ([ham(¥n)) e NON > ¢ ) dt (5.3)
0 m=0

We use
(1:[ X&, (Jhom(¥n)) € SN IWNwNZt)
m=0
= ®) 5k=1) 7
= <HXR (Jham (o)) e~ #8705 WN>t,|fh2m(wN)|<Rm,0<m<k—1>
<

o (|08 x| =t fhom(n)] < R 0 <m <k —1) .

It is convenient to split the integral in (5.3) into three parts:

exp(RSC?) exp(R3CVN) +o0
(5.3) = / () + / () + / (). (5.4)

xp(RSC2) xp(R3CVN)
For t < eR5C” it suffices to use the trivial bound
i (| [0V onin| =t fhom(@n)| € R 0Sm <k 1) 1. (55)
In the range R$C? < Int < CR3VN we define N* = N*(t) := [Int] and decompose
o ([ e 08 x| =t fham(n)] < R0 <m < k= 1)

< M <‘f1/}N &%{_1)¢N¢;N f@lJ(k) PED by | > h;) (5.6)
+m (‘ME@W?%N*&N* > m;) : (5.7)

For the first addendum (5.6), we exploit formula (5.2) in Lemma 5.3, with /N > (CR3)™!Int,
to obtain

Vi (‘fw%“)z/?%“_”wmﬁzv f¢(k) Pty | >
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Since in (5.7) we have Int > R3Cv/N*, we can treat this term and the third addendum in
(5.4) (where we consider Int > R3C\/N) by the same method as follows. We bound

o898 D vnin| < 1980wl R

whence

o (|08 x| =t fhem(n)] < R 0 < m < k- 1)
< (ma%)z/}ﬁv)ww\RoC > lnt> .
TE

Thus to estimate the r.h.s. probability we use Lemma 5.6 with A\ = }%ntc to get

k—1
k(HxMUMMwJ e )WWZQSNH%”%“ (59)
m=0

In particular for N = N* we have
k) 7(k— "
e (| D8 e b

Now we can estimate (5.3). We first notice that (5.5) gives
R§C?

e 0 k—1
(k) 7(k—1) T
/ Ly <H XR,, (fhzm(l/JN)) effw; PNV enin > t) dt < eRgc2
0 m=0

Then by using (5.10) and (5.8) we obtain

exp(RICVN) k-1 ]
/ ' Py, <H XRm ([hom(¥n)) € —Jo o e > t) dt
m=0

602
eROC

) < (N*)2t2ke~sHoe | (5.10)

tpflf(SROC)—l In¢2+2k

exp(R3CV'N)
<

602
eROC

3
+ L / PPN - (ovem)

602
eROC

We note that as p < min <(3\/CR3> ,(8RoC)~ > both the functions on the r.h.s. are

integrable, so we can bound them by an appropriate constant.
Finally, using (5.9), we have

+00 k—1 .
/ Py, <H XRo (Jhom(¥n)) € SR ey t>
e m=0

xp(R3CVN)
+o0 6_411]%70%
< N2 / i
exp(R%C\/ﬁ) \/E
+oo
N2+2k/ tp717(4RoC)‘1dt
exp(RSC\/ﬁ)

N2+2k ,—[p—(4RoC) ' IVN
lp—1—(4RoC)~1 ~
that vanishes for N — oo, provided that p < (4RoC)~*

We can finally proceed to complete the proof of Theorem 1.1 as follows
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Proof of Theorem 1.1. The first part of the statement has been proved in Corollary 4.2. We are
left to show that G (v0) € LP(v) and that it is the LP(-y;)-limit of the sequence Gy n(¥).

We start proving that Gi(v) € LP(y). Let p > 1 and let us choose Ry > 0 such that
Proposition 5.4 holds for pg > 1. Then there exists a subsequence G n,, (¢), m € Z,, such
that Gy n,, (¢) = Gi(v), almost everywhere, with respect to the measure ;. Hence, by Fatou’s
Lemma, we have

[1Gu@Putw) < timint [ G, (6)0) < oc.

thus proving that for 1 < p < pg given by Proposition 5.4 Gy (v) € LP(v;). By the uniform (for
N large enough) LP(~yy)-boundedness of Gy n (1) we also have

/|Gk,N(¢) = Gr(¥)[Pdyi(y) < oo.
We are now ready to prove the convergence in LP(7) for p < pg. For all € > 0, we define

Arwe ={ € H" | |Gen(¥) = Gr(¥)| < e},
and denote by A%N’E its complement. Then let p < ¢ < pg

/ (G () — G () P () =
/ G () — G () P () + / G () — G () P (4)

c
Ak,N,e k,N,e

c 1-p/
< Py(Apne) + 1Gr N (@) = Ge() o,y (E(AGN))
Since G, n (1) converges to G (1) with respect to the measure 7y, we have that, as N — oo,
Ye(AgNe) = 1, YW(Afne) =0,
Therefore, for a certain 0y, vanishing for N — oo, we have the inequality
”Gk,N(w) - Gk(w)Hip(%) <ef+ 5N||Gk7N(w) - Gk(w)leq(%)

that concludes the proof.

APPENDIX A. GAUSSIAN MEASURES IN SOBOLEV SPACES: A TOOLBOX

We are here interested in giving a succinct but self contained survey on the theory of Gaussian
measures in Hilbert Sobolev spaces. For a complete treatment we refer to [Sko74][Bog98].

A.1. Concentration of Measure in H k(T). Here we study the concentration property of the
Gaussian measure with covariance (I + (—A)*¥)~!. The main feature is that the measure is
concentrated on functions in L?(T) having slightly less then k — % weak derivatives as regularity.
This is stated precisely by the following

i) =1

Proposition A.1. For every k > 0 we have 7y <ﬂ€>0

We will proceed by steps. At first we prove

Lemma A.2. v,(H*"2%¢) =0 for every e > 0.
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Proof. We take any function ¢ € H*(T) with s > k— 1. We have that || x|| ;. is finite uniformly
in N, where we recall ¢ is the projection on the Fourier modes |n| < N defined by (1.5) and
(1.6). We show that for all A >0

e (lenllgs <A) =0, as N — oo.

To do so, we make use of the Markov inequality: for every p > 0

2k
i (lewllge <A < e*/ I1 (Mdgondcﬁn) P SN CEE MRS R R PME
i<y N V2T
< B 1 o=} T 19417 =i T n2C R 2

ez / Wd@zd@/n

pA 1 p
= 2z In(1
exp |5 D n( R
In|<N,

n#0

)|

where we have performed the change of variables ¢, = V1 + n?*yp,, and set —2(k — s) =: x. Let
us first consider negative x. In this case

S (1 + “K> > 2N In(1 + ),
InI<N, In

n#0
and so we have an exponential decay in N for every choice of positive u:
BA
2

W (lewllg SA) SeZe VR (s > k). (A1)

For € [0,1) the series > In (1 + ) diverges as N'~". Hence

_ —2(k—s) 1
e llowli: SN S0 (kze> k- 3). (A.2)

Finally for K = 1 we have a logarithmic divergence at exponent and therefore

vk<||soN||Hssx>§<‘j§> o (s=reg). (A3)

for arbitrary p > 0. We obtain the statement by taking N — oo in (A.1), (A.2) and (A.3). O

Remark A.3. The same strategy can be also used to show the stronger statement

1
Y& (lenllgs <InN) —0as N — oo, (s>k—2).

Lemma A.4. We have that for every s < k — % and A >0
e (lellge = A) S e (A.4)

Proof. Let us take a function ¢ € H® for some s < k — % We look at its truncation ¢y and

again it is ||| ;7. finite uniformly in N. We exploit the reverse Chernoff bound at finite N: for
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every u € (0,1) and A > 0, we get

2k ,
wllenli =0 < % [ ] (112” d%ds&n>e FE0lenl o Ko n®leal”
™

In|<N

IN
®

2 1 P P D >R AV SR PAE
/deondgpne 2 n nl e n

pA 1 0
= S Ej In(1-
T T “( W) !
In|<N,
n#0

where again we have used the same change of variables as before. Note that now it is k > 1.
Since £ 3, In(1 — &) is convergent for all 1 < 1 and x > 1, we can choose p € (0,1) and take
the limit N — co. We get (A.4) by setting p = 1/2. O

Equation (A.4) implies that ||u||f« is bounded with probability 1 for every k < s — 3. This is
sufficient to complete the proof of Proposition A.1.

A.2. Quadratic Forms. Then we present some result about quadratic forms of Gaussian ran-
dom variables that is used in the paper.

Proposition A.5. Let k > 2 and Q be a (2N + 1) x (2N + 1) matriz such that

sup% =: Ty < +00 (A.5)
Then for A >0
T (9, Q) = A) S e 4Tk, (A.6)
Proof. To begin with, we exploit the Markov inequality: for any u > 0
T (0, Qp) > A) < e " Eet(#%), (A.7)

Now we compute

1 +n?k
Eeﬂ(%Q@) = / H ( m d(pnd@n> exXp | —3 Z@z 1 +]2k) ij — 2/~Lng)

InI<N i
]‘ / /=1 —/ 1 —/ /
= @y dp’ N dPn @y dPy exp —52% (055 — 2uQi;(k)) ¥
4,3
— o} Indet(I-24Q(k)) (A.8)

where we have performed the change of variables ¢ = /1 +j%*¢;, @} = /1 + j2¢@p; and we
have introduced Q;; (k) := Qi;/+/(1+ 72%)(1 + i2¥). We claim that

| Tr((Quy (k)™ STy, m € Zy, (A.9)
so the expansion of the determinant
“+o0
(2p)™ Tr((Qi5(k))™)
-1 I-2 = Al
ndet(T — 2uQ(k)) mZ:l - (A.10)
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is convergent provided that p < ﬁ We choose =
inequality. It remains to show the (A9)

TI‘((Q(]{}))m) = Z Q2112 . Qimim+1 (k)5i1im+1

ﬁk, so that (A.7, A.8) imply the desired

_ Z Qiliz A innim+16i1i7n+l
i e (0B (4 3L+ 39) (L2 (1+ 28 (1 +28,,)

6i17im+l

> VI HER) (1 a2k

i1,e )ZTVL+1

1
B Z \/1—1—@ ..

)Z‘"L

IN

1+ ZQk)

1 m
" e ST,
(o)
where we have used the assumption (A.5) in the first inequality and and k > 2 in the last
inequality. O

Remark A.6. We observe that we can make different assumptions on the matrix ) and obtain
similar inequalities. For instance, if the trace norm of Q(k) is finite uniformly in N, we have (see
for instance Lemma 3.3 in [Sim05])

—Indet(I - 2uQ(k)) < |Q(F)rx
and so for every N
W (. Qp) > A) S e MIeWlire (A.11)
by the same argument of the last proposition. If we assume the Hilbert-Schmidt norm of Q(k) to
be finite uniformly in N, we obtain the Hanson-Wright inequality (see [HW71] and more recently
[RV13]), holding for any N
i (Var(p, Qp) > A?) < e emin(/10E) s AR (A.12)

where || A|| denotes the operator norm of A and ¢ is a positive constant.

Remark A.7. For any linear operator Ay := ZN

n=1

;P4 with
T = Z ﬁ < oo uniformly in N
k -— . (1_‘_22]6) y i
<N
by using Vi (|A¢| > N) = Yi(|Ap|? > A\?) we can infer
T (|Ag] > X) S e /T (A.13)

Note that if Ap = ¢(*) we have T, < oo uniformly in N for s < k — %. In this way we can

2
improve Lemma A .4, obtaining a sub-gaussian decay.

Proposition A.8. Let Q(x) be a N x N matriz as before. Moreover we assume Q(x) to be
Hélder continuous w.r.t. x € T with exponent a and constant Ly, i.e.

(0, Q2)9) = (¢, QW)¢)| < |z —y|*,  for every ¢ € RY. (A.14)
Then for any e > 0 and A\ > 2Lye®

Vi (sup(%Qw) > A) N
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Proof. We exploit Proposition A.5 along with an e-net argument. For £ > 0 we divide the interval
T in 1/e points at distance e. We denote by z; a point in the j-th segment, and by =* the point
in which the maximum is attained. By Proposition A.5 for each © € T we obtain for A > 0

(0, Qa)p) = A) S e 4T (A.16)
Let jo be such that |z;, — 2*| < e. Therefore it has to be

(¢, Q(z*)p) — (9, Q(xjo)p)| < Lne®, for every ¢ € RY.

Then we use the union bound for the probabilities:

w(QEIZN < P (jQ@) 2 Al —al <)
< Sou(lewiz3)

S (106 - Qw2 5 |l - oyl <<).

IN

A

We immediately see by (A.14) that the second addendum in the last formula is zero as soon as
A > 2Lye®. Therefore we bound the first addendum by the total number of terms in the sum,
which is 7!, times the estimate (A.16), so obtaining (A.15). O
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