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Abstract
Resulting from the availability of improved sources, research in the terahertz
(THz) spectral range has increased dramatically over the last decade, leading
essentially to the disappearance of the so-called ‘THz gap’. While most work to
date has been carried out with THz radiation of low field amplitude, a growing
number of experiments are using THz radiation with large electric and magnetic
fields that induce nonlinearities in the system under study. This ‘focus on’
collection contains a number of articles, both experimental and theoretical, in the
new subfield of THz nonlinear optics and spectroscopy on various systems,
among them molecular gases, superconductors, semiconductors, antiferro-
magnets and graphene.

Keywords: terahertz radiation, light–matter interaction, Rabi oscillations, high-
field transport

A nonlinear response to the electromagnetic field requires high intensity. At first glance, it may
seem improbable to achieve sufficiently large intensities (or electric field amplitudes) in the THz
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frequency range. Since intensity is pulse energy divided by pulse length and illuminated area, in
the THz range all three factors reduce the reachable intensity: the pulse energy is much smaller
than at higher optical frequencies, the pulses are longer (the minimum pulse length can be taken
roughly as the inverse of the frequency), and the illuminated area is at least on the order of the
wavelength squared. As the papers in this ‘focus on’ collection show, despite the lower
intensities in the THz range, it is possible to observe THz nonlinearities. What are the reasons
for this fact? For an answer to this question one first has to consider when nonlinearities occur.
One possibility also present in other spectral ranges is a transition driven resonantly with high
field amplitude. Here a nonlinearity occurs if the population transfer from the ground to the
excited state is appreciable. With the transition dipole moment d and the electric field E this is
equivalent to ν≪/dE h , i.e. if the Rabi frequency reaches the order of magnitude of the
transition frequency. Here it helps that in the THz range the transition dipole moments are
typically larger than for higher frequencies. This can be seen simply from the uncertainty
relation: increasing the size of a system reduces the momentum uncertainty and thus the energy,
resulting eventually in THz-frequency transitions. At the same time, transition dipole moments
scale with the system dimensions. Another possibility unique to the THz range that can lead to
nonlinearities is the acceleration of charged carriers in the THz field. Here nonlinearities occur if
the kinetic energy gained from the accelerating field becomes comparable to energies in the
system, e.g. to the band gap in a semiconductor. Since the kinetic energy gained is proportional
to the time the field acts in one direction, THz pulses have the advantage of comparatively long
acceleration times. Therefore, in the THz range, much lower intensities are required to observe
nonlinearities than for higher frequencies. Even these intensities only became available in the
last decade or so, rendering the study of THz nonlinearities a relatively new field.

The generation of high THz intensities is still a topic of research. In this collection, several
papers consider THz generation in a laser-generated plasma [1–3]. These sources can achieve
very broad spectra, extending up to a frequency of ≈100 THz (corresponding to a wavelength
of μ3 m) if very short pump pulses are used. For many applications, they have the disadvantage
that the spatial profile of their emission is quite complex. Three further papers consider other
methods for THz generation, one by intracavity mixing [4] and two with quantum cascade
lasers [5, 6].

Apart from generation, detection is also an important topic. In [7], the authors present a
scheme to allow for the determination of the square of the electric field as a function of time
over a broad frequency range by four-wave mixing in gases.

The remaining papers consider the action of high-intensity THz pulses on solids, among
them antiferromagnets, superconductors, graphene and semiconductors.

The paper on antiferromagnets [8] is unique in this collection of articles in that the relevant
interaction is with the THz magnetic field, while in all other papers it is only with the THz
electric field. In this respect, one should note that an electromagnetic wave with an electric field
amplitude of −3 MV cm 1 is accompanied by a magnetic field with an amplitude of 1 T.

A natural object of THz studies is superconductors, since in conventional superconductors
the superconducting gap is in the THz range. In this collection, there are three papers on
superconductors, two on conventional [9, 10] and one on high-temperature [11] superconductors.

In graphene, which can be considered a two-dimensional semiconductor with a zero band
gap, the THz range is particularly interesting, since here THz pulses can induce both resonant
transitions between the valence and conduction band (one can find points in the k space where
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the energy difference is equal to the THz frequency), and lead to electrical transport by moving
the charge carriers in real and reciprocal space. This interplay between inter- and intraband
transitions is calculated in [12]. The predicted [12, 13] generation of THz higher harmonics was
not observed in [14], but in [15]. In [16] surface plasmons in graphene are considered.

The majority of papers in this collection are concerned with the study of semiconductors
[8, 17–23]. While their band gaps are typically much larger than THz photon energies (an
exception to this is the narrow-gap semiconductor InSb [8]), one can still have resonant
transitions in the THz range, either between discrete levels of impurities [17] or between
discrete states caused by spatial confinement, e.g. in quantum wells [18–20]. As mentioned in
the introduction, a second way for nonlinearities to occur is via transport over a large part of the
Brillouin zone [21, 22].

This ‘focus on’ collection shows that it is possible to perform nonlinear THz studies for a
wide range of materials. In many cases, such studies lead to new results not available with other
techniques. Further advances in the generation and detection of THz pulses and in
understanding their interaction with matter will certainly lead to a continued series of exciting
results in the future.
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