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ABSTRACT. When solving elliptic partial differential equations in a region containing
immersed interfaces (possibly evolving in time), it is often desirable to approximate the
problem using a uniform background discretisation, not aligned with the interface itself.
Optimal convergence rates are possible if the discretisation scheme is enriched by allow-
ing the discrete solution to have jumps aligned with the surface, at the cost of a higher
complexity in the implementation.

A much simpler way to reformulate immersed interface problems consists in replacing
the interface by a singular force field that produces the desired interface conditions, as done
in immersed boundary methods. These methods are known to have inferior convergence
properties, depending on the global regularity of the solution across the interface, when
compared to enriched methods.

In this work we prove that this detrimental effect on the convergence properties of the
approximate solution is only a local phenomenon, restricted to a small neighbourhood of
the interface. In particular we show that optimal approximations can be constructed in
a natural and inexpensive way, simply by reformulating the problem in a distributionally
consistent way, and by resorting to weighted norms when computing the global error of
the approximation.

1. INTRODUCTION

Interface problems are ubiquitous in nature, and they often involve changes in topology
or complex coupling across the interface itself. Such problems are typically governed
by elliptic partial differential equations (PDEs) defined on separate domains and coupled
together with interface conditions in the form of jumps in the solution and flux across the
interface.

It is a general opinion that reliable numerical solutions to interface problems can be ob-
tained using body fitted meshes (possibly evolving in time), as in the Arbitrary Lagrangian
Eulerian (ALE) framework [22, 14]. However, in the presence of topological changes,
large domain deformations, or freely moving interfaces, these methods may require re-
meshing, or even be impractical to use.

Several alternative approaches exist that reformulate the problem using a fixed back-
ground mesh, removing the requirement that the position of the interface be aligned with
the mesh. These methods originate from the Immersed Boundary Method (IBM), orig-
inally introduced by Peskin in [37], to study the blood flow around heart valves (see
also [38], or the review [33]), and evolved into a large variety of methods and algorithms.

We distinguish between two main different families of immersed methods. In the first
family the interface conditions are incorporated into the finite difference scheme, by modi-
fying the differential operators, or in the finite element space by enriching locally the basis
functions to allow for the correct jump conditions in the gradients or in the solution. The
second family leaves the discretisation intact, and reformulates the jump conditions using
singular source terms.

Important examples of the first family of methods are given by the Immersed Interface
Method (IIM) [28] and its finite element variant [29], or the eXtended Finite Element
Method (X-FEM) [42], that exploits partition of unity principles [32] (see also [18, 19]).
For a comparison between IIM and X-FEM see, for example, [44], while for some details
on the finite element formulation of the IIM see [30, 17, 24, 34].

The original Immersed Boundary Method [37] and its variants belong to the second cat-
egory. Singular source terms are formally written in terms of the Dirac delta distribution,
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and their discretisation follow two possible routes: i) the Dirac delta distribution is approx-
imated through a smooth function, or ii) the variational definition of the Dirac distribution
is used directly in the Finite Element formulation of the problem. For finite differences,
the first solution is the only viable option, even though the use of smooth kernels may ex-
cessively smear the singularities, leading to large errors in the approximation [23]. In finite
elements, instead, both solutions are possible. The methods derived from the Immersed
Finite Element Method (IFEM) still use approximations of the Dirac delta distribution
through the Reproducing Kernel Particle Method (RKPM) [45].

Variational formulations of the IBM were introduced in [6, 7, 8, 20], and later gener-
alised in [21], where the need to approximate Dirac delta distributions is removed by ex-
ploiting directly the weak formulation. Such formulations allow the solution of PDEs with
jumps in the gradients without enriching the finite element space, and without introducing
approximations of the Dirac delta distribution.

When IBM-like formulations are used to approximate interface problems, a natural de-
terioration is observed in the convergence of the approximate solution, which is no longer
globally smooth, and cannot be expected to converge optimally to the exact solution (see
the results section of [8], or [39]). A formal optimal convergence can be observed in
special cases [27], but in general the global convergence properties of these methods is
worse when compared to methods where the interface is captured accurately, either by
local enrichment of the finite dimensional space, as in the X-FEM or IIM, or by using
interface-fitted meshes, as in the ALE method.

In this work we show that this is only partially true, and that optimal approximations can
be constructed also when non-body fitted meshes are used, and when no explicit treatment
of the jump conditions are imposed in the solution. This can be achieved in a natural and
inexpensive way, simply by reformulating the problem in a distributionally consistent way,
and by resorting to weighted norms when computing the global error of the approximation.
We show here that the deterioration of the error is a purely local phenomena, restricted to
a small neighbourhood of the interface itself. In particular we prove that by using suitable
powers of the distance function from the interface as weights in weighted Sobolev norms
when computing the errors, optimal error estimates can be attained globally.

Weighted Sobolev spaces [26, 43], provide a natural framework for the study of the
convergence properties of problems with singular sources (see, for example, [2]). These
spaces are commonly used in studying problems with singularities in the domain (for ex-
ample in axisymmetric domains [5], or in domains with external cusps [15]) and when the
singularities are caused by degenerate or singular behavior of the coefficients of the differ-
ential operator [16, 10, 9]. A particularly useful class of weighted Sobolev spaces is given
by those spaces whose weights belong to the so-called Muckenhoupt class A

p

[35]. An
extensive approximation theory for weighted Sobolev spaces is presented in [36].

The ideas we present in this work are inspired by the works of D’Angelo and Quar-
teroni [13] and D’Angelo [12], where the authors discuss the coupling between one di-
mensional source terms and three dimensional diffusion-reaction equations [13], and finite
element approximations of elliptic problem with Dirac measures [12]. By applying the
same principles, we recover optimal error estimates in the approximation of problems with
singular sources distributed along co-dimension one surfaces, such as those arising in the
variational formulation of immersed methods.

In Section 2 and 3 we outline the problem we wish to solve, and introduce weighted
Sobolev spaces. Section 4 is dedicated to the definition of the numerical approximation,
and to the proof of the optimal converge rates in weighted Sobolev norms. Section 5
presents a numerical validation using both two- and three-dimensional examples, while
Section 6 provides some conclusions and perspectives.
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2. INTERFACE PROBLEMS

When approximating problems with interfaces using non-matching grids, one can choose
among several possibilities. For example, one could decide to discretise the differential op-
erators using finite differences, or to pose the problem in a finite dimensional space and
leave untouched the differential operators as in the finite element case.

In both cases, if one wants to enforce strongly the interface conditions, it is necessary
to modify the differential operators (as in the IIM method [28] for finite differences) or to
enrich the finite dimensional space (as in the X-FEM [42]). A third option, that we will
call distributional approach, consists in leaving the space and the differential operators un-
touched, and to rewrite the jump conditions in terms of singular sources, as in the original
Immersed Boundary Method [38].

The distributional approach can be tackled numerically either by mollification of Dirac
delta distributions, or by applying variational formulations, where the action of the Dirac
distributions is applied using its definition to the finite element test functions.

The analysis of the continuous problem, presented in Section 2.2, is identical in all
cases. The explicit construction of the jump conditions in terms of Green functions sug-
gests the correct definition of the distributional formulation, presented in Section 2.3, while
the standard variational formulation using finite elements is presented in Section 2.4.

2.1. Strong formulation. Let us consider a region ⌦ of Rn, n = 2, 3, separated into
⌦

+ and ⌦

� by a closed Lipschitz surface � of co-dimension one as in Figure 1, where
� \ @⌦ = ;. We denote with the symbol ⌫ the outer normal to either ⌦ or to the region
enclosed by �.

⌦

⌦

+

⌦

�

�

⌫

FIGURE 1. Domain representation

We use standard notations for Sobolev spaces (see, for example, [1]), i.e., Hs

(A) =

W s,2

(A), for real s, where L2

(A) = H0

(A) and H1

0

(A) represents square integrable func-
tions on A with square integrable first derivatives and whose trace is zero on the boundary
@A of the domain of definition A.

Problem 1 (Strong). Given b 2 L2

(⌦) and f 2 H� 1
2
(�), find a solution u of the problem

(1)

��u = b in ⌦ \ �,
[[u

⌫

]] = f on �,

[[u]] = 0 on �,

u = 0 on @⌦.
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The notation [[·]] is used to indicate the jump across the interface �, and u
⌫

indicates the
normal derivative of u, i.e., ⌫ · ru. The direction ⌫ on � is used to define precisely the
meaning of [[a]] for any quantity a, i.e.:

(2) [[a]] := a+ � a�,

where a+ lies on the same side of ⌫.

2.2. Existence, uniqueness and regularity. The solution to Problem 1 can be split into
its two main components, that have distinct characteristics in terms of regularity and prop-
erties of the solution.

We start by considering the problem of finding a harmonic function p in Rn \�, subject
to a jump constraint on � depending on f :

(3)

��p = 0 in Rn \ �,
[[p

⌫

]] = f on �,

[[p]] = 0 on �.

Using this auxiliary harmonic function, the solution to Problem 1 can be written as
u = z + p where z is a solution to

(4)
��z = f in ⌦,

z = �p on @⌦.

An explicit construction of p can be done by using the boundary integral representation
for harmonic functions. Let G be the fundamental solution of the Poisson problem in Rn,
that is,

(5) G(r) :=

(

� 1

2⇡

log |r| when n = 2,
1

4⇡|r| when n = 3.

The function G satisfies, in the distributional sense,

(6) ��

x

G(x� y) = �(x� y), 8x in Rn \ {y},
where � is the n-dimensional Dirac delta distribution, i.e., the distribution such that

(7)
Z

Rn

�(x� y)v(x) dx := v(y), 8v 2 D(Rn

), 8y 2 Rn,

and D(Rn

) is the space of infinitely differentiable functions, with compact support on Rn.
Then p admits the following boundary integral representation for harmonic functions:

(8) p(x) =

Z

�

G(x� y) f(y) d�
y

8x 2 Rn \ �,

where the function p(x) satisfies equation (3) (see, e.g., [25]).
If f 2 H� 1

2
(�) then p is globally in H1

(Rn

), it is harmonic in the entire Rn \ �, and
we can take its Laplacian in the entire Rn in the sense of distributions. Exploiting the
boundary integral representation (8), we get

��

x

p(x) =��

x

Z

�

G(x� y) f(y) d�
y

=

Z

�

(��

x

G(x� y)) f(y) d�
y

=

Z

�

�(x� y) f(y) d�
y

8x 2 Rn \ �.

(9)

If we define the operator M as

(10) (Mf)(x) :=

Z

�

�(x� y) f(y) d�
y

,

the solution p can be thought as a distributional solution to:
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Given f 2 H� 1
2
(�), find p 2 H1

(Rn

) such that:
��p = Mf in Rn,

lim

|x|!1
p(x) = 0.(11)

Since �\@⌦ = {;}, and away from � the solution p is harmonic, then its restriction on
@⌦ is at least Lipschitz and continous, and we conclude that problem (4) admits a unique
solution which is at least H2

(⌦). The solution u = z+ p to Problem 1 is globally H1

(⌦),
and at least H2

(⌦ \ �).

2.3. Distributional formulation. Problem 1 is equivalent to the following distributional
formulation, where the jump conditions are incorporated into a singular right hand side.

Problem 2 (Distributional). Given b 2 L2

(⌦), f 2 H� 1
2
(�), find the distribution u such

that

(12)

��u = b+Mf in ⌦,

(Mf)(x) :=

Z

�

�(x� y) f(y) d�
y

,

u = 0 on @⌦.

The function u = z+p is then a solution to Problem 1 in ⌦\�, and to Problem 2, in the
distributional sense, in the entire domain ⌦. The distributional definition of Mf is derived
in equations (5–9), and it is given by

(13) hMf,'i :=
Z

�

f ' d� 8' 2 D(Rn

).

This formulation is at the base of the Immersed Boundary Method [38]. In the IBM,
a problem similar to Problem 2 is discretised by Finite Differences, and the Dirac delta
distribution is replaced by a regularised delta function, used to interpolate between non-
matching sample points on the curve � and on the domain ⌦.

When regularised Dirac distributions are used, a natural deterioration is observed in
the convergence of the approximate solution. A formal second order convergence can be
observed in special cases [27], but in general the global convergence properties of these
methods is worse when compared to methods where the interface is taken into account
explicitly, like in the IIM [28]. Moreover, the regularisation itself introduces an additional
source of approximation, which smears out the singularity, and may deteriorate further the
convergence properties of the method [23].

2.4. Variational formulation. Since the solution u to the distributional Problem 2 is glob-
ally in H1

0

(⌦), it makes sense to reformulate it as a standard variational problem in H1

0

(⌦)

and to study the regularity properties of the operator M.
We begin by recalling standard results for trace operators. For a bounded domain ⌦

�

with boundary �, given a function u 2 C0

(⌦), it makes sense to define the restriction of
u on �, simply by considering its pointwise restriction. For Sobolev spaces, we recall the
following classical result (see, e.g., [11]):

Theorem 1 (Trace theorem). Let ⌦± be Lipschitz domains. For 0 < s < 1 the interior
and the exterior trace operators

�int :Hs+

1
2
(⌦

�
) ! Hs

(�),

�ext :Hs+

1
2
(⌦

+

) ! Hs

(�),

are bounded, linear, and injective mappings, that posses bounded right inverses. If the

function v is globally Hs+

1

2

(⌦), then there exists a constant C
T

> 0 such that

(14) k�intvk
s,�

= k�extvk
s,�

 C
T

kvk
s+

1
2 ,⌦

, 8v 2 Hs+

1
2
(⌦).



6

If the traces coincide, we will omit the symbol altogether, simply indicating with v both
the function in Hs+

1
2
(⌦) and its restriction on Hs

(�).

Theorem 2 (Regularity of M). Let  be a function in Hc

(�), with c 2 R. Then M is a
continuous linear operator from Hc

(�) to Hm

(⌦), where

(15) M : Hc

(�) ! Hm

(⌦), m = � 1

2

+min(c,�"), 8" 2 (0, 1), c � � 1

2

.

Proof. For all ' 2 D(⌦) we have
�

�

�

�

Z

⌦

Z

�

�(x� y) (y)'(x) d�
y

d⌦

x

�

�

�

�

=

�

�

�

�

Z

�

 (y)'(y) d�
y

�

�

�

�

 k k
c,�

k'k�c,�

.

For �1 < c < 0, we can use Theorem 1 to get

hM ,'i  C
T

k k
c,�

k'k 1
2�c,⌦

,

and the first part of the thesis follows with a density argument. When c is positive or zero,
we use instead

�

�

�

�

Z

�

 (y)'(y) d�
y

�

�

�

�

 k k
0,�

k'k
0,�

 k k
c,�

k'k
",�

 C
T

k k
c,�

k'k
"+

1
2 ,⌦

,

for 0 < " < 1, and again, the second part of the thesis follows with a density argument. ⇤

The final variational problem can be formulated as follows.

Problem 3 (Variational). Given b 2 L2

(⌦) and f 2 H� 1
2
(�), find u 2 H1

0

(⌦) such that:

(16)
(ru,rv) = (b, v) + hMf, vi 8v 2 H1

0

(⌦),

hMf, vi :=
Z

�

f v d� 8v 2 H1

0

(⌦).

We indicate with (·, ·) the L2

(⌦) inner product, and with h·, ·i the duality product be-
tween H1

0

(⌦) and H�1

(⌦).
This formulation does not require any approximation of the Dirac delta, as long as the

regularity of M is compatible with test functions in H1

0

(⌦). This allows a natural approx-
imation by Galerkin methods, using, for example, finite elements [6, 7, 20]. By writing a
finite element approximation of order ` of Problem 3, we can expect error estimates of the
type

(17) |u� u
h

|
m,⌦

 Chk�m|u|
k,⌦

, k � 1  `, m = 0, 1,

where u
h

is the finite element solution [11].
For simply connected domains, with Lipschitz boundary @⌦, Problem 3 is 2-regular,

and the exact solution satisfies the estimate:

(18) |u|
k,⌦

 kb+Mfk
k�2,⌦

.

Theorem 2 indicates that the regularity of the right hand side in Problem 3 is limited
by the regularity of M. For the general case f 2 H� 1

2
(�), M belongs to H�1

(⌦), and
for the 2-regularity of the Laplacian we expect a solution at most in H1

(⌦). However, if
� is only Lipschitz, there is a limit in the regularity boost that we can get by using a more
regular f . In particular, increasing the regularity of f beyond L2

(�) does not result in a
more regular M, which is limited to H� 1

2�"

(⌦), for " > 0. This would result in a solution
which is at most H 3

2�"

(⌦) when f 2 L2

(�) or more regular.
Such low regularity of the datum will affect the numerical approximation of the prob-

lem, and produce sub-optimal error estimates when standard finite elements are used. This
phenomena is known and observed in the literature of the variational formulation of the
Immersed Boundary Method [8, 21], and motivated this work.
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We have shown in previous sections that the solution is expected to be at least H2

(⌦\�),
and it seems reasonable to assume that the numerical solution to such problems is sub-
optimal only in a small neighbourhood of �.

In this work we show that the numerical solution obtained with the classical finite el-
ement method applied directly to Problem 3, results in approximate solutions which con-
verge optimally when we measure the error with properly chosen weighted Sobolev norms.
Similar ideas are presented in [15, 2], and in [12, 13].

3. WEIGHTED SOBOLEV SPACES

The set � has zero measure, so it is reasonable to introduce weighted Sobolev norms,
where the weight is chosen to be an appropriate power of the distance from the co-dimension
one surface �. Such weight mitigates the jump of the gradient of u across �, allowing a
more regular variational formulation of the problem in the entire ⌦ in a rigorous and nu-
merically convenient way.

We define the Hilbert space of measurable functions (see, e.g., [26, 43])

(19) L2

↵

(⌦) =

⇢

u(x) : ⌦ ! R s.t.
Z

⌦

u(x)2d2↵(x) dx < 1, ↵ 2
�

�n

2

, n

2

�

�

equipped with the scalar product

(20) (u, v)
↵

:=

Z

⌦

u(x)v(x)d2↵(x) dx.

In (19) and (20), d is the distance between the point x and the surface �, that is

(21) d(x) = dist(x,�).

Remark 1 (Muckenhoupt A
2

-weight). For any ↵ in
�

�n

2

, n

2

�

, the weighting function w :

Rn ! R
+

defined by w(x) := dist(x,�)2↵, is a Muckenhoupt class A
2

-weight, that is

(22) sup

B=Br(x),x2Rn
,r>0

✓

1

|B|

Z

B

w(x) dx

◆✓

1

|B|

Z

B

w(x)�1

dx

◆

< +1,

where B
r

(x) is the ball centered at x with radius r, and |B| is its measure [35, 26, 43].

We notice that L2

�↵

(⌦) is the dual space of L2

↵

(⌦). Moreover we denote by kuk
0,↵,⌦

the
norm of a function u in L2

↵

(⌦), i.e., kd↵uk
0,0,⌦

, where d is defined in (21). From now on
we will use the notation kuk

0,0,⌦

⌘ kuk
0,⌦

for all u 2 L2

(⌦). The duality pairing between
L2

↵

(⌦) and L2

�↵

(⌦) is indicated with hu, vi. The usual inequality hu, vi = hd↵u, d�↵vi 
kuk

0,↵,⌦

kvk
0,�↵,⌦

follows from Schwartz inequality in L2

(⌦).
Similarly, we define the weighted Sobolev spaces

Hs

↵

(⌦) = {u such that D�u 2 L2

↵

(⌦), |�|  s},
where s 2 N, � is a multi-index and D� its corresponding distributional derivative. These
weighted Sobolev spaces can be equipped with the following seminorms and norms

|u|
s,↵,⌦

:=

0

@

X

|�|=s

kD�uk2
0,↵,⌦

1

A

1
2

, kuk
s,↵,⌦

:=

 

s

X

k=0

|u|2
k,↵,⌦

!

1
2

,

and we define the Kondratiev type weighted spaces V s

↵

(⌦) using the same seminorms, but
weighting them differently according to the index of derivation, i.e.,

V s

↵

:= {u such that D�u 2 L2

↵�j

(⌦), |�| = s� j, j = 0, . . . , s},
equipped with the following norm:

|||u|||
s,↵,⌦

:=

0

@

s

X

j=0

|u|
j,↵�s+j,⌦

1

A

1
2

.
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For example, |||u|||
1,↵,⌦

:= |u|
1,↵,⌦

+ ||u||
0,↵�1,⌦

.

Remark 2. The embeddings V m+s

↵

,! V m

↵

and V m

↵+✏

,! V m

↵

are continuous for s � 0

and ✏ � 0. The continuity constants appearing in the embeddings are not uniform with
respect to the weight ↵. One consequence, for example, is that the norms in V 1

↵

and H1

↵

are equivalent, but not uniformly with respect to ↵.

We define the space

(23) W
↵

:= {u 2 H1

↵

(⌦) such that u|
@⌦

= 0},

with norm k · k
1,↵,⌦

and denote with W 0
�↵

its dual space with norm k · k�1,�↵,⌦

. Notice
that an equivalent definition is obtained using the ||| · ||| norms.

In [13] and [12], the authors proof that the Laplace operator �� is an isomorphism
from W

↵

to W 0
�↵

, for weighted Sobolev spaces where the weight function is the distance
from a co-dimension two curve. The same proof applies to the case of co-dimension one
surfaces, of interest in this paper.

Theorem 3 (Isomorphism of ��). The Laplace operator �� is an isomorphism from W
↵

to W 0
�↵

, for any ↵ in (�n

2

, n

2

).

Proof. The proof is identical to [12, Lemma 2.1]. The only difference is in the meaning
of the scalar function d↵ which there represents the distance from a curve of co-dimension
two, while here it represents the distance from a surface � of co-dimension one. This
distinction shows up also in the interval of validity of the power of the distance in the
weighted Sobolev spaces, that are (�n

2

, n

2

) here and (�1, 1) in [12]. ⇤

Lemma 4 (Weighted space of Dirac terms). The operator Mf defined in Problem (12) is
in W 0

�↵

for any ↵ in [0, 1

2

).

Proof. Since z(x) belongs to H1

↵

(⌦), we can use the result of Theorem 3 applied to z+ p,
i.e., the function ��(z + p) := b +Mf belongs to W�↵

(⌦) ⇢ W�↵

, independently on
the choice of b 2 L2

(⌦) and f 2 H� 1
2
(⌦). ⇤

The weighted variational problem can be written using a Petrov-Galerkin formulation

Problem 4 (Weighted variational). Given b 2 L2

(⌦) and f 2 H� 1
2
(�), for any ↵ in

[0, 1

2

), find u 2 W
↵

such that

(24)
hru,rvi = hb, vi+ hMf, vi 8v in W�↵

,

hMf, vi :=
Z

�

f v d� 8v 2 W�↵

,

Problem 4 is well posed and has a unique solution that satisfies

(25) kuk
1,↵,⌦

 Ckb+Mfk�1,�↵,⌦

 C(kbk
0,0,⌦

+ kfk� 1
2 ,�

).

Remark 3 (Non-weighted formulation). We remark here that the standard variational
formulation, presented in Problem 3, is a special case of Problem 4 when the power of the
distance is taken to be zero. In this case W

↵

= W�↵

= H1

0

(⌦) and we recover Problem 3.

4. NUMERICAL APPROXIMATION

We consider two independent decompositions of ⌦ and � into triangulations ⌦

h

and
�

h

, respectively, consisting of cells K (quadrilaterals and lines in 2D, and hexahedra and
quadrilaterals in 3D) such that

(1) ⌦ = [{K 2 ⌦

h

};
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(2) Any two cells K,K 0 only intersect in common faces, edges, or vertices. On ⌦

h

we define the finite dimensional subspace W k

h

⇢ W
↵

, 8↵ 2 (�1, 1), defined such
that

W r

h

:=

n

u
h

2 W
↵

�

�u
h|K 2 Qr

(K), K 2 ⌦

h

o

⌘ span{vi
h

}NW
i=1

,(26)

where Qr

(K) is a tensor product polynomial space of degree r on the cells K,
and N

W

is the dimension of the finite dimensional space.
The index h stands for the maximum radius of K, and we assume that both ⌦

h

and �

h

are shape regular, i.e., ⇢
K

 h  C⇢
K

where ⇢
K

is the radius of the largest ball contained
in K, and the inequality is valid for a generic constant C > 0 independent on h. We
assume, moreover, that

|K \ �|  C
0

h, 8K 2 ⌦

h

,(27)

where C
0

is a generic constant independent on h. These assumptions are generally satisfied
whenever h is sufficiently small to capture all the geometrical features of both � and ⌦.

Using the space W k

h

, the finite dimensional version of Problem 4 can be written as

Problem 5 (Discrete). Given b 2 L2

(⌦), f 2 H� 1
2
(�), for any ↵ in [0, 1

2

), Find u
h

2
W k

h

⇢ W
↵

such that

(28)
hru

h

,rv
h

i = hb, v
h

i+ hMf, v
h

i 8v
h

2 W k

h

⇢ W�↵

,

hMf, v
h

i :=
Z

�

f v
h

d� 8v
h

2 W k

h

⇢ W�↵

.

Remark 4 (Finite dimensional subspace of W
↵

). We remark here that the finite dimen-
sional space W k

h

is a subspace of W
↵

for all ↵ in (� 1

2

, 1

2

). This allows us to use the
same finite dimensional space for both test and trial functions in the numerical approxi-
mation, leading to a Galerkin approximation instead of the Petrov-Galerkin formulation of
the continuous Problem 4 (see, e.g., [12]).

From the point of view of the implementation, Problem 5 is a standard finite element
problem. The only difficulty is given by the integration of the test functions on the sur-
face �, which is not aligned with the grid where v

h

are defined. This is usually done by
some quadrature formulas, where the integration is performed approximately using a fixed
number of points on � (see, e.g., [21]).

4.1. Stability of the approximation. In this section we follow closely [12]. For each
element K 2 ⌦

h

we define the quantities

d
K

:= dist(K,�), d
K

:= max

x2K

dist(K,�), h
K

:= diam(K).

We assume that the mesh is quasi-uniform, i.e., there exist two positive constants c and
C such that

ch  h
K

 Ch.(29)

We split the mesh in two parts, one containing all elements close to �, that is

⌦

in
h

:= {K 2 ⌦

h

such that ¯d
K

 �h},

where � is a fixed safety coefficient, and the other, ⌦out
h

:= ⌦

h

\ ⌦in
h

.
It can be shown that

d
K

. h
K

, h
K

. d
K

. h
K

, 8K 2 ⌦

in
h

,

d
K

. d
K

, 8K 2 ⌦

out
h

,
(30)
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⌦

out
h

⌦

out
h

⌦

in
h

�

FIGURE 2. The splitting of the computational mesh in ⌦

in
h

(grey ele-
ments in the picture) and ⌦

out
h

(white elements in the picture).

where the notation x . y is used to indicate that there exists a constant C > 0 such that
x  Cy.

The properties in (30) can be used to prove that for |↵| < t, t 2 [0, 1

2

), the following
norms are equivalent

(31) ku
h

k
h,↵

. ku
h

k
0,↵,⌦

. ku
h

k
h,↵

, 8u
h

2 W r

h

where the discrete norm in (31) is defined as

(32) ku
h

k2
h,↵

:=

X

K2⌦h

(d
K

)

2↵ku
h

k2
0,K

,

and the constants of the inequalities depend only on t [12].

Theorem 5 (Stability of the problem [12]). Let 0 < ↵  t < 1

2

, we have that

sup

vh2W

r
h

hru
h

,rv
h

i
krv

h

k
0,�↵,⌦

& kru
h

k
0,↵,⌦

, sup

vh2W

k
h

hru
h

,rv
h

i
kru

h

k
0,↵,⌦

& krv
h

k
0,�↵,⌦

.

The Galerkin approximation is stable and the following error estimate holds

(33) ku� u
h

k
1,↵,⌦

. inf

vh2W

r
h

ku� v
h

k
1,↵,⌦

,

with constants that depend on t but not on ↵.

Lemma 6. Given u 2 H`

✏

(⌦), if m  `  k, and ✏  ↵, we have that

(34) |u|
m,↵,K

. d
(↵�✏)

K

h
(`�m)

K

|u|
`,✏,K

, 8K 2 ⌦

h

.

Proof. By the definition of the weighted norm, we have that

kuk
0,↵,K

= kud↵k
0,0,K

= kud(↵�✏)d✏k
0,0,K

= kud(↵�✏)k
0,✏,K

 ¯d
(↵�✏)

K

kuk
0,✏,K

,

and similarly for the higher order semi-norms.
A scaling argument, on the other hand, implies

|u|
m,✏,K

. hs�m

K

|u|
s,✏,K

,

and the thesis follows by a combination of the two inequalities. ⇤

4.2. Convergence rate of the finite element approximation. We consider the nodal
points x

j

of the basis functions �
i

that span the space W k

h

, i.e., W k

h

:= span{�
i

}N
i=1

,
and �

i

(x
j

) = �
ij

, where � is the Kronecher delta. We define the interpolation operator

(35) ⇧

h

: Hk+1

(⌦ \ �) \ V `

✏

(⌦) ! W k

h

,
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as the operator that coincides with the standard finite element interpolation operator in ⌦

out
h

(see, for example, [11]), and that sets the degrees of freedom whose support belongs to ⌦

in
h

to zero, i.e.:

(36) ⇧

h

u :=

X

i s.t. xi2⌦

out
h

u(x
i

)�
i

.

Different interpolation operators could be defined for more general weighted Sobolev
spaces, as in [36]. In this work we provide a generalisation of a result in [12, section 3.3],
for co-dimension one surfaces.

Theorem 7 (Properties of ⇧
h

). Let `  k + 1 be such that the embedding H`

(⌦) ,!
L1

(⌦) is continuous. For ↵ � ✏, m  `, the operator ⇧
h

satisfies the following inequali-
ties:

(37)
|u�⇧

h

u|
m,0,K

. hk+1�m

K

|u|
k+1,0,K

if K 2 ⌦

out
h

,

|⇧
h

u|
m,↵,K

. h`�m+↵�✏

k

|||u|||
`,✏,�K if K 2 ⌦

in
h

,

where �

K

is the set of all elements K 0 in ⌦

out
h

that share at least a node with K, i.e.,

�

K

:= {K 0 2 ⌦

out
h

: K 0 \K 6= ;}.

Proof. If K belongs to ⌦

out
h

, the first inequality follows from standard finite element theory
(see, for example, [11]). Let’s consider then K in ⌦

in
h

. If K does not share at least one
node with ⌦

out
h

, ⇧
h

u is identically zero on K, and the second inequality follows trivially.
Let us consider then the case in which K shares the node x

i

with K 0 ⇢ ⌦

out
h

, and assume
that for each element K 0 there exists an affine transformation such that K 0

= F
K

0
(

ˆK), and
û := u � F�1

K

0 .
In this case we can write

(38) |⇧
h

u|
m,↵,K


X

K

0 s.t. xi2K

0

|u(x
i

)||�
i

|
m,↵,K

0

We start by estimating |u(x
i

)|,

kuk1,0,K

0
= kûk1,0,

ˆ

K

. kûk
`,0,

ˆ

K

.

0

@

`

X

j=0

h2j�n

K

0 |u|2
j,0,K

0

1

A

1
2

=

0

@

¯

`�1

X

j=0

h2j�n

K

0 |u|2
j,0,K

0 +

`

X

j=

¯

`

h2j�n

K

0 |u|2
j,0,K

0

1

A

1
2

¯` s.t. ¯`+ ✏� ` > 0

=

0

@

¯

`�1

X

j=0

h2j�n

K

0
¯d

�2(j+✏�`)

K

0 |u|2
j,j+✏�`,K

0 +

`

X

j=

¯

`

h2j�n

K

0 d
�2(j+✏�`)

K

0 |u|2
j,j+✏�`,K

0

1

A

1
2

. h
`�✏�n

2
K

0

0

@

`

X

j=0

|u|2
j,j+✏�`,K

0

1

A

1
2

= h
`�✏�n

2
K

0 |||u|||
`,✏,K

0 ,

(39)

where we used i) standard scaling arguments for Sobolev norms, ii) the fact that since K 0 is
in �

K

, and therefore it is sufficiently close to �, we can write ¯d
K

0 . h
K

0 and h
K

0 . d
K

0 ,
iii) and the fact that for a negative power q�, we have |u|

m,0,K

0  ¯d �q

�

K

0 |u|
m,q

�
,K

0 while
for a positive power q+ we have |u|

m,0,K

0  d �q

+

K

0 |u|
m,q

+
,K

0 .
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To estimate the second term in the right-hand side of equation (38), |�
i

|
m,↵,K

0 , we use
again a scaling argument for Sobolev norms:

|�
i

|
m,↵,K

0 . h
�m+

n
2

K

0 |ˆ�
i

|
m,↵,

ˆ

K

. h
↵�m+

n
2

K

0 |ˆ�
i

|
m,0,

ˆ

K

. h
↵�m+

n
2

K

0 ,

(40)

where to obtain the last inequality we have used that |ˆ�
i

|
m,0,

ˆ

K

. 1.
Combining (38) and (40), and summing over all K 0 2 �

K

we get the second inequality
of the thesis.

⇤
We are now in the position to prove our main result.

Theorem 8. Let u 2 Hk+1

(⌦ \ �) \ H`

✏

(⌦). Assume that 0  `  k + 1, 0  m 
min{k, `}, ↵ 2 [0, 1/2), and ✏ 2 (�1/2,↵). Then

(41) |u�⇧

h

u|
m,↵,⌦

. hq|||u|||
`,✏,⌦

,

where q = min{k + 1�m, `�m+ ↵� ✏}, for any " > 0.

Proof. Consider K 2 ⌦

out
h

. Using Lemma 6 and property (37), we easily obtain

|u�⇧

h

u|
m,↵,K

. d
↵

K

|u�⇧

h

u|
m,0,K

. d
↵

K

hk+1�m

K

|u|
k+1,0,K

. hk+1�m

K

|u|
k+1,0,K

,

(42)

where we used that d
↵

K

 |⌦|↵ = C for ↵ � 0.
Similarly, for K in ⌦

in
h

, we have

(43) |u�⇧

h

u|
m,↵,K

 |u|
m,↵,K

+ |⇧
h

u|
m,↵,K

where we can estimate the first term in the right hand side of equation (43) using lemma 6,
and the second term using the second property in equation (37). ⇤

5. NUMERICAL VALIDATION

All numerical examples provided in this section were obtained using an open source
code based on the deal.II library [4, 3, 31].

We construct an artificial problem with a known exact solution, and check the error esti-
mates presented in the previous section. We begin with a simple two-dimensional problem,
where we impose the Dirichlet data in order to produce a harmonic solution in the domain
⌦ \ �, with a jump in the normal gradient along a circular interface, and extend the same
test case to the three-dimensional setting.

Recalling our main result (Theorem 8), we have that the exact solution of this problem
is in H2

(⌦ \ �) (it is in fact analytic everywhere except across �) and globally H
3
2
(⌦),

therefore we expect a convergence rate in weighted Sobolev spaces of the type:

(44) |u� u
h

|
m,↵,⌦

. h
3
2�m+↵|||u||| 3

2 ,0,⌦
, ↵ 2

⇥

0, 1

2

�

, m = 0, 1.

Notice that when ↵ ! 1/2, then the estimate tends to the optimal case, while when
↵ = 0, the estimate is classical (suboptimal due to the lack of global regularity in the
solution). These situations occur very often in numerical simulations of boundary value
problems with interfaces, and the results we present here show that a proper variational
formulation of the interface terms results in suboptimal convergence property of the finite
element scheme. However such sub-optimality is a local property due to the non-matching
nature of the discretisation, and it only influences the solution close to the surface �. If
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FIGURE 3. Elevation plot of the approximate solution to the two-
dimensional model problem (46) in the most refined case.

we take this into account when measuring the error, for example using a weighted Sobolev
norm as we do in this work, we recover the optimal estimate.

5.1. Two-dimensional case. In the two-dimensional case, we define the exact solution to
be

(45)
c = (0.3, 0.3)

r := x� c
u =

(

� ln(|r|) if |r| > 0.2,

� ln(0.2) if |r|  0.2.

The curve � is a circle of radius 0.2 with center in c. This function is the solution to the
following problem:

(46)

��u = 0 in ⌦ \ �,
u = � ln(|r|) on @⌦,

[[⌫ ·ru]] = f =

1

0.2

✓

=

1

|r| = ⌫ ·ru+

◆

on �,

[[u]] = 0 on �.

We use a bi-linear finite dimensional space W 1

h

, and show a plot of the numerical solu-
tion for h = 1/1024 in Figure 5.1. We compute the error in the weighted Sobolev norms
k ·k

0,↵,⌦

and k ·k
1,↵,⌦

for values of h varying from 1/4 to 1/1024, and values of ↵ varying
from zero (standard Sobolev norms in L2

(⌦) and H1

(⌦)) to 0.49.
We report the errors in the weighted L2

↵

(⌦) norm in Table 1 and in Figure 4, and for the
weighted H1

↵

(⌦) norm in Table 2 and in Figure 5.
From the tables we verify the results of Theorem 8, and we observe rates of convergence

in the standard L2

(⌦) and H1

(⌦) Sobolev norms which are coherent with the H3/2

(⌦)

global regularity of the solution. In particular we expect a convergence rate of order 3/2
for the L2

(⌦) norm and 1/2 for the H1

(⌦) norm. When increasing ↵ to a value close to
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#dofs ↵ = 0 ↵ = 0.1 ↵ = 0.2 ↵ = 0.3 ↵ = 0.4 ↵ = 0.499

25 6.6412 · 10�2

5.6298 · 10�2

4.7772 · 10�2

4.0580 · 10�2

3.4513 · 10�2

2.9441 · 10�2

81 1.6534 · 10�2

1.3347 · 10�2

1.0788 · 10�2

8.7317 · 10�3

7.0789 · 10�3

5.7619 · 10�3

289 7.1702 · 10�3

5.3627 · 10�3

4.0175 · 10�3

3.0157 · 10�3

2.2690 · 10�3

1.7170 · 10�3

1,089 2.6533 · 10�3

1.8443 · 10�3

1.2841 · 10�3

8.9595 · 10�4

6.2688 · 10�4

4.4186 · 10�4

4,225 9.4960 · 10�4

6.1451 · 10�4

3.9853 · 10�4

2.5918 · 10�4

1.6922 · 10�4

1.1157 · 10�4

16,641 3.0996 · 10�4

1.8793 · 10�4

1.1417 · 10�4

6.9562 · 10�5

4.2578 · 10�5

2.6384 · 10�5

66,049 1.1688 · 10�4

6.5940 · 10�5

3.7273 · 10�5

2.1131 · 10�5

1.2039 · 10�5

6.9595 · 10�6

263,169 4.1721 · 10�5

2.1943 · 10�5

1.1562 · 10�5

6.1104 · 10�6

3.2467 · 10�6

1.7548 · 10�6

1,050,625 1.4844 · 10�5

7.2710 · 10�6

3.5681 · 10�6

1.7561 · 10�6

8.6942 · 10�7

4.3911 · 10�7

TABLE 1. Error in the weighted L2

↵

norm ku � u
h

k
0,↵,⌦

for different
values of ↵ in the two-dimensional case.

10

1

10

2

10

3

10

4

10

5

10

6

10

�6

10

�4

10

�2

1.5

2.0

Degrees of freedom

L
2 ↵

er
ro

r

ku� u
h

k
0,↵,⌦

↵ = 0 ↵ = 0.1
↵ = 0.2 ↵ = 0.3
↵ = 0.4 ↵ = 0.49

FIGURE 4. Error in the weighted L2

↵

norm ku � u
h

k
0,↵,⌦

for different
values of ↵ in the two-dimensional case. The black triangles show two
representative rates of decrease of the error in terms of powers of the
mesh size h.

1/2, we observe that the errors in the weighed norms converge to the optimal rates (in this
case two and one).

#dofs ↵ = 0 ↵ = 0.1 ↵ = 0.2 ↵ = 0.3 ↵ = 0.4 ↵ = 0.499

25 1.0430 · 100 8.8597 · 10�1

7.5523 · 10�1

6.4486 · 10�1

5.5163 · 10�1

4.7357 · 10�1

81 6.5165 · 10�1

5.2694 · 10�1

4.2683 · 10�1

3.4631 · 10�1

2.8152 · 10�1

2.2984 · 10�1

289 5.1529 · 10�1

3.8646 · 10�1

2.9050 · 10�1

2.1895 · 10�1

1.6556 · 10�1

1.2604 · 10�1

1,089 3.7053 · 10�1

2.5813 · 10�1

1.8025 · 10�1

1.2628 · 10�1

8.8867 · 10�2

6.3147 · 10�2

4,225 2.6994 · 10�1

1.7514 · 10�1

1.1393 · 10�1

7.4397 · 10�2

4.8858 · 10�2

3.2501 · 10�2

16,641 1.8301 · 10�1

1.1107 · 10�1

6.7576 · 10�2

4.1278 · 10�2

2.5387 · 10�2

1.5875 · 10�2

66,049 1.3325 · 10�1

7.5323 · 10�2

4.2675 · 10�2

2.4274 · 10�2

1.3911 · 10�2

8.1333 · 10�3

263,169 9.5253 · 10�2

5.0205 · 10�2

2.6516 · 10�2

1.4057 · 10�2

7.5118 · 10�3

4.1101 · 10�3

1,050,625 6.7617 · 10�2

3.3196 · 10�2

1.6328 · 10�2

8.0600 · 10�3

4.0121 · 10�3

2.0531 · 10�3

TABLE 2. Error in the weighted H1

↵

norm ku � u
h

k
1,↵,⌦

for different
values of ↵ in the two-dimensional case.
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FIGURE 5. Error in the weighted H1

↵

norm ku� u
h

k
1,↵,⌦

for different
values of ↵ in the two-dimensional case. The black triangles show two
representative rates of decrease of the error in terms of powers of the
mesh size h.

5.2. Three-dimensional case. In the three-dimensional case, we define the exact solution
to be

(47)
c = (0.3, 0.3, 0.3)

r := x� c
u =

(

1

|r| if |r| > 0.2,
1

0.2

if |r|  0.2.

The surface � is a sphere of radius 0.2 with center in c. This function is the solution to
the following problem:

(48)

��u = 0 in ⌦ \ �,

u =

1

|r| on @⌦,

[[⌫ ·ru]] = f =

1

0.22

✓

=

1

|r|2 = ⌫ ·ru+

◆

on �,

[[u]] = 0 on �.

We use a bi-linear finite dimensional space W 1

h

, and show a plot of the numerical so-
lution for h = 1/128 in Figure 6. We compute the error in the weighted Sobolev norms
k · k

0,↵,⌦

and k · k
1,↵,⌦

for values of h varying from 1/4 to 1/128, and values of ↵ varying
from zero (standard Sobolev norms in L2

(⌦) and H1

(⌦)) to 0.49.

#dofs ↵ = 0 ↵ = 0.1 ↵ = 0.2 ↵ = 0.3 ↵ = 0.4 ↵ = 0.499

27 6.9612 · 10�1

6.2832 · 10�1

5.6798 · 10�1

5.1427 · 10�1

4.6649 · 10�1

4.2438 · 10�1

125 1.8304 · 10�1

1.5834 · 10�1

1.3717 · 10�1

1.1901 · 10�1

1.0341 · 10�1

9.0134 · 10�2

729 5.7647 · 10�2

4.6752 · 10�2

3.7965 · 10�2

3.0876 · 10�2

2.5154 · 10�2

2.0573 · 10�2

4,913 2.0731 · 10�2

1.5755 · 10�2

1.1994 · 10�2

9.1497 · 10�3

6.9966 · 10�3

5.3802 · 10�3

35,937 7.6882 · 10�3

5.4277 · 10�3

3.8402 · 10�3

2.7245 · 10�3

1.9398 · 10�3

1.3922 · 10�3

274,625 2.6488 · 10�3

1.7444 · 10�3

1.1517 · 10�3

7.6297 · 10�4

5.0788 · 10�4

3.4177 · 10�4

TABLE 3. Error in the weighted L2

↵

norm ku � u
h

k
0,↵,⌦

for different
values of ↵ in the three-dimensional case.
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FIGURE 6. Sections and contour plots of the approximate solution to
the three-dimensional model problem (48) in the most refined case.
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We report the errors in the weighted L2

↵

(⌦) norm in Table 3 and in Figure 7, and for the
weighted H1

↵

(⌦) norm in Table 4 and in Figure 8.
From the tables we verify again the results of Theorem 8 in the three dimensional case.

We observe rates of convergence in the standard L2

(⌦) and H1

(⌦) Sobolev norms which
are coherent with the H3/2

(⌦) global regularity of the solution. In particular we expect
a convergence rate of order 3/2 for the L2

(⌦) norm and 1/2 for the H1

(⌦) norm. When
increasing ↵ to a value close to 1/2, we observe that the errors in the weighed norms
converge to the optimal rates (in this case two and one).

#dofs ↵ = 0 ↵ = 0.1 ↵ = 0.2 ↵ = 0.3 ↵ = 0.4 ↵ = 0.499

27 5.0202 · 100 4.5494 · 100 4.1732 · 100 3.8379 · 100 3.5388 · 100 3.2743 · 100
125 3.1626 · 100 2.7516 · 100 2.4020 · 100 2.1003 · 100 1.8397 · 100 1.6165 · 100
729 2.1955 · 100 1.7900 · 100 1.4623 · 100 1.1966 · 100 9.8120 · 10�1

8.0792 · 10�1

4,913 1.6074 · 100 1.2250 · 100 9.3566 · 10�1

7.1642 · 10�1

5.5018 · 10�1

4.2513 · 10�1

35,937 1.1646 · 100 8.2468 · 10�1

5.8560 · 10�1

4.1729 · 10�1

2.9870 · 10�1

2.1579 · 10�1

274,625 8.1877 · 10�1

5.4059 · 10�1

3.5802 · 10�1

2.3813 · 10�1

1.5936 · 10�1

1.0801 · 10�1

TABLE 4. Error in the weighted H1

↵

norm ku � u
h

k
1,↵,⌦

for different
values of ↵ in the three-dimensional case.

6. CONCLUSIONS

One of the major point against the use of immersed boundary methods and their vari-
ational counterparts, comes from the unfavourable comparison in convergence rates that
can be achieved using matching grid methods (ALE [22, 14]), or enriching techniques
(IIM [28], X-FEM [33]).

In this work we have shown that this detrimental effect on the convergence properties is
only a local phenomena, restricted to a small neighbourhood of the interface. In particular
we have proved that optimal approximations can be constructed in a natural and inexpen-
sive way, simply by reformulating the problem in a distributionally consistent way, and by
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resorting to weighted norms when computing the global error of the approximation, where
the weight is an appropriate power of the distance from the interface. Weighted Sobolev
spaces [26, 43], provide a natural framework for the study of the convergence properties of
problems with singular sources [2] or problems with singularities in the domain [5, 15].

The method we have presented has the great advantage of not requiring any change in
the numerical approximation scheme, which is maintained the same as if no interface were
present, requiring only the construction of a special right hand side, incorporating the jump
conditions in a simple singularity [38, 8]. The analysis borrows heavily from the formalism
and the results presented in [12, 13].

Applications of this discretisation technique to fluid structure interaction problems is
well known and dates back to the early seventies [37]. Recent developments in finite
element variants are available, for example in [21, 41], and similar constructions are used
to impose boundary conditions on ocean circulation simulations [40].

It is still unclear if the same techniques may be used for the treatment of jumps in the
solution itself, as in these cases the regularity gain that could be achieved by weighted
Sobolev spaces alone may not be sufficient, and we are currently exploring alternative
approximation frameworks, following the lines of [36].
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