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ABSTRACT
The adhesion of a punch to a linear elastic, confined layer is
investigated. Numerical analysis is performed to determine the
equivalent elastic modulus in terms of layer confinement. The size
of the layer relative to the punch radius and its Poisson’s ratio are
found to affect the layer stiffness. The results reveal that the
equivalent modulus of a highly confined layer depends on its
Poisson’s ratio, whereas, in contrast, an unconfined layer is only
sensitive to the extent of the elastic film. The solutions of the
equivalent modulus obtained from the simulations are fitted by
an analytical function that, subsequently, is utilized to deduce the
energy release rate for detachment of the punch via linear elastic
fracture mechanics. The energy release rate strongly varies with
layer confinement. Regimes for stable and unstable crack growth
can be identified that, in turn, are correlated to interfacial stress
distributions to distinguish between different detachment
mechanisms.
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Introduction

Confined adhesive layers are commonly present in a great variety of
technical applications and natural systems. Examples include pressure sensitive
adhesives[1–4], adhesive hydrogel films[5–7], micropatterned adhesives[8,9], and the
adhesive secretions of (fouling) species sticking to a diversity of substrates[10–12].
The adhesion and contact mechanics of such confined layers depends not only on
material properties but also on the boundary conditions and the degree of con-
finement. To characterize this situation in the present paper, we consider a rigid
punch adhering to a linear elastic layer immobilized on a rigid substrate, as
illustrated in Figure 1. Because of its simple setup, such adhesion, in the form of
the tack test, is widely used to probe adhesive characteristics.

Theoretical concepts describing the fundamental mechanics involved have
been well known since the middle of the last century[11,13–16]. In general, the
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detachment of two adhering surfaces is related to the adhesion energy, w, and
the energy release rate, G, given by

G ¼ @U
@A

; (1)

where U is the system potential energy and A is the area of contact that is
diminished by an increment of detachment. Based on such a fracture mechanics
approach as first introduced by Griffith[17], Kendall considered two limiting cases
for an elastic, incompressible film (i.e. with Poisson’s ratio υ ¼ 0:5) sandwiched
between a rigid punch and a rigid substrate[13]: (i) the elastic layer is very thick
compared to the radius, a, of the punch i.e. h≫ a, where h is the thickness of the
layer; and (ii) the layer is very thin compared to the punch radius. For case (i)
Kendall obtained the following equation for the pull-off stress:

σp ¼
ffiffiffiffiffiffiffiffiffiffiffi
32EG
3πa

r
; (2)

where σp is defined as the force to detach the punch divided by the cross-
sectional area of the punch, and E is Young’s modulus of the layer. Thus, σp
scales with the punch radius a�0:5. For case (ii), that is h � a, the pull-off
stress is[11]:

σp ¼
ffiffiffiffiffiffiffiffiffi
2EG
h

r
: (3)

Here, the pull-off stress scales with the layer thickness h�0:5 and, in contrast
to case (i), is insensitive to the punch radius. However, configurations of
interest rarely conform to the limiting cases, e.g. elastic films with thicknesses

Figure 1. An axisymmetric cylindrical rigid punch adhering to a confined elastic layer immobi-
lized on a rigid substrate.
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similar to the punch radius. This intermediate case (h � a) must be con-
sidered independently.

Ganghoffer and Gent[16] first treated this problem based on a finite
element analysis for linearly elastic materials by calculating the equivalent
modulus, �E, in terms of the confinement, a=h, as follows:

�E ¼ �σ

�ε
¼ F=A

u=h
¼ 2Uh

u2a2π
; (4)

where �σ is the average axial stress in the layer over the contact area, �ε is the
effective axial strain in the layer, F is the load applied to the punch, u is the
punch displacement (see Figure 1), and U is the strain energy stored in the
layer. In displacement control, U is thus the potential energy of the system.
Based on Ganghoffer’s and Gent’s numerical data, a semi-empirical analytical
function for the compliance, C, of the elastic layer as a function of a=h was
derived by Shull et al.[1]. Nowadays, their function is widely used for analyz-
ing experimental results. For example, the compliance can be easily inserted
into Equation. (1) to deduce the energy release rate, in turn determining
adhesion performance. One can then distinguish between stable and unstable
regimes of crack growth[2,3,18]. However, there are indications that the
analytical function for compliance overestimates experimental data in some
cases[3]. Thus it is desirable to revisit the stress analysis of the tack test to
provide more accurate estimates of compliances and energy release rates.

Furthermore, the interfacial stress distribution at the interface between the
rigid probe and the adhesive elastic layer is of particular importance for
gaining insights regarding different detachment mechanisms. Experimental
work indicates that for circular punches there exists a transition from
axisymmetric edge crack detachment to edge cracks exhibiting fingering
instabilities[19–21]. Sometimes interfacial cavitation occurs with increasing
confinement of the layer[21–23]. These phenomena provide additional motiva-
tion for undertaking further stress analysis of the tack test.

Although the experimental configuration illustrated in Figure 1 has frequently
been used and analyzed in the past, there remain challenges and open questions
that are addressed in the present paper: First, the mesh size used for numerical
simulations and its impact on the equivalent modulus is investigated and the
outcomes compared to Ganghoffer’s and Gent’s[16] results. An improved mesh
design addressing the presence of a corner stress singularity is introduced.
Second, the equivalent modulus, �E, as a function of the confinement (h=a),
Poisson’s ratio (ν), and the radius of the film (R) is computed, thereby providing
detailed insights into the influence of geometric parameters and material prop-
erties of the elastic layer in a manner that augments those already in the
literature. Third, we propose a new analytical function for �E based on the
numerical values obtained, that, being based on our new, more accurate results,
is a more reliable characterization of the effective elasticity of the confined elastic
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layer than has been provided previously. The semi-empirical function is then
used to calculate the energy release rate, and therefore to provide a better
estimate of the driving force for detachment of a stiff punch from the confined
elastic layer to which it is adhered. Finally, the interfacial stress distribution at
the punch is computed and, in correlation to the energy release rate, these results
are utilized to classify detachment mechanisms.

Finite element model

Figure 1 illustrates the axisymmetric problem treated in the present paper: A
rigid cylindrical punch adheres to an elastic layer that is immobilized on a rigid
substrate. The elastic layer at the interface AB is fixed (ur ¼ uθ ¼ uz ¼ 0),
whereas a vertical displacement (uz ¼ u) is imposed on it along the interface
CD, but without horizontal displacement (no slip condition). It should be noted
that in such conditions a displacement applied to the punch becomes a pre-
scribed displacement on the punch-layer interface CD, because of the rigidity of
the punch. It should be further noted that stress singularities are expected at the
locations B and D. The coordinates r, θ, and z represent the radial, circumfer-
ential and axial directions. The thickness of the elastic layer is h, the radius of the
punch is a, and the outer radius of the circular elastic layer is R. The Young’s
modulus of the layer is set to E ¼ 1 MPa, whereas the Poisson’s ratio is varied
from 0.48 to 0.4999999. The finite element simulations are obtained using the
commercial finite element software ABAQUS 2016 (SIMULIA, Maastricht,
Netherlands). Eight-node axisymmetric elements (CAX8) are used with full
numerical integration for Poisson’s ratios � 0.495. For Poisson’s ratios
> 0.495, hybrid elements (CAX8H) are employed. It should be noted that the
results presented in the present paper are based on linear elastic fracture
mechanics, whereas viscoelasticity and large deformations are not accounted for.

Numerical results

Comparison of mesh designs

First, we compare results from three different finite element mesh config-
urations (as illustrated in Figure 2) to investigate the effect of mesh design
and element density on the equivalent modulus. The 3 configurations are:

(i) The mesh used by Ganghoffer and Gent[16], (Figure 2a),
(ii) A uniform mesh of square elements. The size of the elements is a=n,

where n varies from 1 to 512 (Figure 2b),
(iii) A mesh having focused arrangements at the corner singularity loca-

tions B and D (Figure 2c, d). The smallest element size was 10–4,
whereas the maximum element size was min (1=25, h=25). The
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transition from the minimum to the maximum element size is
limited to the region min (h=2, 0:1).

For the comparison of the differentmesh strategies the following conditions are
chosen (adopted from ref[16]): the elastic layer has h=a ¼ 2:5, the configuration of
the elastic layer is R=a ¼ 16=9 ¼ 4:4444, and Poisson’s ratio is ν ¼ 0:495. The
results for the equivalent modulus, normalized by Young’s modulus, E, are
illustrated in Figure 3 and summarized in Table 1. It can be seen clearly that the
results vary with mesh design. Specifically, the meshes composed of quadrilateral
elements of uniform size reveal that, as expected, a higher number of elements (i.e.
a finer mesh) leads to a smaller value of the equivalent modulus. As the mesh is
refined, the values obtained should tend toward an asymptotic value, the unknown
exact solution (to within residual numerical error). Based on this insight, the exact
value for the equivalent modulus is most probably slightly less than the value
corresponding to the result from the mesh having n ¼ 512.

The equivalent modulus obtained with the mesh design having focused
arrangements at the locations of stress singularities is slightly smaller compared
to that computed using the finest mesh of uniform quadrilateral elements with

Figure 2. Representative mesh designs used in the present study. (a) The mesh used by
Ganghoffer and Gent[16]. (b) A mesh of uniform square elements of element size a=n, where a
is the punch radius and n is an integer that varies from 1 to 512. (c) The mesh having focused
arrangements at the corner singularities. (d) Magnified region of the focused mesh at the corner
of the punch.
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n ¼ 512. We conclude that this mesh design most likely provides the most
accurate values for the equivalent modulus among all themesh designs considered
in our study. We emphasize that the equivalent modulus obtained using
Ganghoffer’s and Gent’s[16] mesh design is in error by 6:85% compared to the
best result from the improved mesh designs. Hence, the values of equivalent
modulus reported by Ganghoffer and Gent[16] are most probably inaccurate. It
follows that further quantities derived from Ganghoffer’s and Gent’s[16] computa-
tions, such as energy release rates, are most probably also inaccurate. The
improved mesh design, with focused arrangements, is therefore used for all
other simulations in the present paper.

Elastic layer confinement

Figure 4 displays the variation of the equivalent modulus as a function of the
elastic layer confinement, h=a, ranging from 0.02 to 50. The results are obtained

Figure 3. The equivalent modulus computed from the various mesh designs (see Figure 2). The
elastic layer has the following dimensions: h=a ¼ 2:5, R=a ¼ 16=9. Poisson’s ratio is ν ¼ 0:495.
The result highlighted as Ganghoffer’s is from ref.[16].

Table 1. Normalized equivalent moduli, �E=E, obtained using the various meshes (see Figures 2 and 3).

n Number of elements Number of nodes �E=E

i) Mesh from ref.[16] 90 317 3.6752
ii) Mesh of square elements with element size a=n 1 12 51 4.8237

2 45 164 3.9994
4 180 597 3.6958
8 720 2273 3.5622
16 2840 8743 3.4999
32 11360 34525 3.4694
64 45440 137209 3.4543
128 182080 548019 3.4469
256 728320 2188517 3.4432
512 2913280 8746953 3.4413

iii) Mesh with focused arrangements at B and D. 5105 25930 3.4396
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using fine increments of h=a, resulting in smooth curves, and are computed for
Poisson’s ratios 0.48, 0.495, and 0.4999. The equivalent modulus varies dramati-
cally with confinement, in accordance with the results previously reported by
Ganghoffer andGent[16]. Starting from a very thick, unconfined layer (h � a), the
equivalent modulus decreases monotonically with decreasing layer thickness. In
the unconfined limit, the equivalent modulus scales nearly proportionally with
a=h for all Poisson’s ratios. For specific Poisson’s ratios minima occur for the
equivalent modulus at values of a=h ranging between 0.68 and 0.84. That is in
contrast to a singleminimumat a=h ¼ 1 for all Poisson’s ratios reported in ref.[16].
For greater confinement (a=h > 0:84), the equivalent moduli increase again, most
likely because lateral retraction of the material is suppressed with that constraint
stiffening the response. However, the resulting values of equivalent modulus
depend strongly on compressibility (i.e. Poisson’s ratio), in contrast to the beha-
vior for thick, unconfined layers. As an example, it can be seen that the equivalent
modulus for a=h ¼ 10 doubles for a slight increase of Poisson’s ratio from ν ¼
0:495 to ν ¼ 0:4999. We note that this increase in Poisson’s ratio at fixed Young’s
modulus involves a 50-fold increase in the bulk modulus, indicating that the
associated increase in equivalent modulus occurs largely due to an increased
contribution from hydrostatic stress. Interestingly, for very thin, nearly incom-
pressible layers, with ν ¼ 0:4999, the equivalent modulus exhibits scaling that is
close to being proportional to a=hð Þ2. Such scaling may represent the limiting
behavior for, thin, wide, confined, incompressible layers[24].

In addition to the results for the equivalent modulus obtained by the
improved mesh design, the original values published in ref.[16] are plotted
in Figure 4. It can be seen that there is reasonable agreement among our
new results and those of Ganghoffer and Gent[16] for a=h < 10, although
there is a modest discrepancy in the results for the thickest layers. This

Figure 4. Numerically obtained equivalent modulus in terms of the elastic layer confinement,
a=h, for various Poisson’s ratios, ν (black lines, designated “New results” in the legend). The radius
of the elastic layer was 50 times the punch radius. The gray dots, designated ‘Ganghoffer’s results’
in the legend, represent the Ganghoffer and Gent results reported in ref.[16].
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agreement continues for very thin layers in the case of a Poisson’s ratio of
0.48, and perhaps also for a Poisson’s ratio of 0.495, though there appears
to be a divergence in the latter case for extremely thin layers with
a=h > 20. In the case of the least compressible material, with Poisson’s
ratio 0.4999, it is very clear that there is disagreement for the very
thinnest layers. The observed discrepancies in the values of equivalent
modulus may originate for the following reasons: (i) Ganghoffer and Gent
obtained their results using a coarser mesh as discussed above; (ii) In
addition, these authors modeled the punch as a deformable object having
an elastic modulus 108 times greater than that of the film, whereas in our
simulations the punch is rigid; (iii) In our simulations, the layer radius, R,
was set to 50a, whereas in ref.[16] it is reported that R was chosen to be at
least three times the radius of the punch, although no exact values are
stated.

Effect of the radius of the layer

A comprehensive study of the effect of the radius, R, of the layer on the
equivalent modulus has not yet been reported in the literature. However,
we find it can have a significant effect on the equivalent modulus.
Figure 5 demonstrates the effect of the value of R=a on the equivalent
modulus; the equivalent modulus is now shown as a function of h=a for
various Poisson’s ratios, in contrast to being plotted against a=h as in
Figure 4. Two characteristic regimes are identified: (i) For highly con-
fined layers (h=a � 0:02), the value R=a has no significant effect on the
results, but, as noted above, Poisson’s ratio has a prominent influence on
the equivalent modulus. (ii) For unconfined layers (h=a � 10), the effect
of Poisson’s ratio is negligible, as also noted above, but the radius of the
layer is found to have a significant influence on the equivalent modulus.
As one would expect, the equivalent modulus equals Young’s modulus
when the layer is the same diameter as the punch, but rises with
increasing extent of the layer beyond the perimeter of the punch. This
behavior reflects the constraint that material around the contact zone
imposes on the deformations that occur near the punch; at the largest
radii and thicknesses of the layer, the solution becomes akin to the
indentation of a rigid punch into an elastic half-space. These results
are further underpinned by Figure A1 and Figure A2 (see Appendix)
that show graphs of normalized equivalent moduli versus Poisson’s ratio
for specific values of h=a and of normalized equivalent moduli versus
layer radius for specific values of Poisson’s ratio, respectively. Overall,
there exists a transition region from 0:02 < h=a < 10 where both para-
meters affect the equivalent modulus.
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Fitted analytical functions for the equivalent modulus

This section presents an analytical function for the equivalent modulus that we
fitted to the numerical results. The function is fitted to the finite element results
for R ¼ 50a, because these adequately approximate the effect of a layer having
infinite radius within the range of confinement ratios, h=a, from 0.02 to 50.
Therefore, the function developed is suitable for sheets of elastic material having
a radius very much larger than that of the punch. The main goal in this section is
to find a suitable function that can be used to represent the equivalent modulus

Figure 5. Normalized equivalent modulus as a function of layer thickness normalized by punch
radius in terms of the radius, R, of the layer for various Poisson’s ratios, ν.
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for all values of Poisson’s ratio in the range 0:48 � ν � 0:5. Many candidate
functions were investigated. The one chosen has the form:1

�E
E
¼ K1 þ h=a

K2 þ h=að ÞK3
þ K4 þ h=a

K5 þ h=að ÞK6
; (5)

where the parameters Ki i ¼ 1 . . . 6ð Þ are functions of Poisson’s ratio as follows:

K1 ¼ 0:1811 � 33:6939 0:5 � νð Þ0:715 þ 5:2574ν

K2 ¼ �3:531 þ 2:3473 0:5 � νð Þ0:5256 þ 9:2434ν

K3 ¼ �30:12� 0:4099 0:5 � νð Þ0:2384 þ 59:1455ν

K4 ¼ 14:5412 þ 3:8871 0:5 � νð Þ0:5213 � 28:0909ν

K5 ¼ 2:266 þ 199:591 0:5 � νð Þ1:9625 � 4:5322ν

K6 ¼ 21:5731 � 25:3997 0:5 � νð Þ0:7325 � 39:1534ν

(6)

Consequently, by combining Equations. (5) and (6) we arrive at the function
�E=E ¼ Ê ¼ Ê h=a; νð Þ that can be used to determine the equivalent modulus in
the ranges h=a ¼ 0:02 to 50 and ν ¼ 0:48 to 0:5. The accuracy of this function
is demonstrated in Figure 6, where it is compared with the finite element results.
One can see that the selected function provides an accurate approximation for
the equivalent modulus in the entire domain under investigation.

For ν ¼ 0:499999 and h=a < 0:1, the equivalent modulus scales with

h=að Þ�2, which represents the severely confined limit for incompressible
elastic films. In Equation. (5) the relevant asymptotic behavior is captured
by the 2nd term on the right hand side, which, when ν ¼ 0:5, approaches

very close to K4 þ h=að Þ a=hð Þ2 while the 1st term is negligible for small h. In
contrast, in the unconfined limit (h=a > 10), the equivalent modulus scales
linearly with h=a for R ¼ 50a, but is insensitive to the Poisson’s ratio.

Energy release rate

Based on the analytical function for the equivalent modulus, Equations. (5) and
(6), the energy release rate can be derived to characterize adhesion. The equiva-
lent modulus can be inserted into Equation. (1) to determine G as follow:

1In our approach to finding a suitable function, we tried over 500 possibilities. Our preference was to find the
simplest possible function, such as sums of ratios of polynomials as in Equation. (5). Our choice of the specific
form given in Equation. (5) was favored by the fact that, when we plotted each Ki versus Poisson’s ratio, we
found that the resulting graphs could be accurately characterized by polynomials. We computed R-squared
coefficients and found all to be � 0:99. We found it preferable to use (0:5� v) as the argument in the nonlinear
term in the polynomials due to our focus on materials that are almost incompressible.
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G ¼ @U
@A

¼ @

@A
�E� u2a2π

2h

� �
¼ @

@a
�E� u2a2π

2h

� �
1

2aπ

¼ u2

2h
@�E
@a

� a
2
þ �E

� �
(7)

We introduce h=a ¼ η for simplicity. Then

@�E
@a

¼ @�E
@η

@η

@a
¼ � h

a2
@�E
@η

(8)

Therefore, the energy release rate can be written as

G ¼ u2

4h
2�E� η

@�E
@η

� �
(9)

A dimensionless normalized energy release rate is defined as:

�G ¼ Gh
u2E

¼
�E
2E

� η

4E
@�E
@η

� �
(10)

Figure 7 shows results for the normalized energy release rate, �G, as functions
of h=a for specific Poisson’s ratios. For thick, unconfined layers, �G is insen-
sitive to the material’s Poisson’s ratio, whereas for thin, confined layers, the
normalized energy release rate differs by up to two orders of magnitude
depending on Poisson’s ratio. Figure 7 exhibits minima for �G at confinement

Figure 6. Comparison of the fitted analytical function (solid lines) with finite element results
(circles) for the equivalent modulus for various Poisson’s ratios.
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Figure 7. Normalized energy release rate as a function of h=a for different Poisson’s ratios.

Table 2. Critical values for h=a and a=h, defined to be where the normalized energy release rate,
�G, is a minimum (see Figures 7 and 8), and the associated minimum value of �G. The values
denoted by (a) are those given by Webber et al.[2].

Poisson’s ratio
h=a where �G has
a minimum, i.e. η	

a=h where �G has a
minimum, i.e. η	ð Þ�1

Associated minimum
value of �G

0:48 2:0935 0:4777 1:2869
0:49 2:2729 0:4399 1:3710
0:5 2:2804 0:4385 1:4204
0:5(a) 2:201(a) 0:45(a) 1:267(a)

Figure 8. Comparison of the new results for the normalized energy release rate with the results
reported in Webber et al.[2].
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ratios summarized in Table 2, where those minimum values for �G are also

given. These critical confinements, η	 or η	ð Þ�1, correspond to distinct
detachment mechanisms of stable and unstable growth of the detached
area, as previously reported by Webber et al.[2]. Detachment commences
when the energy release rate equals the adhesion energy, w. Figure 8 show
that dG=da < 0 for a=h < η	ð Þ�1 (see Table 2). Hence, if a=h < η	ð Þ�1

complete detachment occurs immediately upon G becoming equal to w as
the imposed punch displacement is increased. This occurs because G
increases with decreasing contact radius, a, resulting in an unstable growth
of the detached area of the punch. In contrast, dG=da > 0 for a=h > η	ð Þ�1.
In this situation as the imposed displacement of the punch is increased,
detachment starts when G becomes equal to w, as before. However, G
decreases with decreasing contact radius, and thus the imposed displacement
on the punch must be increased if further increments of detachment are to
occur. This process must be continued until the critical confinement,
a=h ¼ η	ð Þ�1, is achieved, at which stage the advancing detachment shifts
from stable to unstable growth.

In Figure 8, the results obtained from Equations. (5), (6), and (10) based
on our new finite element calculations are compared with the equivalent
result from Webber et al. [2], where their result is given for a Poisson’s ratio
of 0.5, i.e. an incompressible material. Our critical values of a/h for all
Poisson’s ratios are in reasonable agreement with those of Webber et al.[2],
and our critical values do not vary very significantly with Poisson’s ratio (see
Table 2). However, the results from Webber et al.[2] underestimate the
minimum value of �G by about 10% for a Poisson’s ration of 0.5 (see
Table 2), and overestimates �G significantly for thin, confined layers having
a/h > 1.1 for all Poisson’s ratios. It is most likely that this discrepancy
originates from the relatively inaccurate finite element results published by
Ganghoffer and Gent[16], that served as a basis for the analytical function for
the energy release rate deduced in the work of Webber et al.[2].

Interfacial stress distribution

To document the stress at the interface between the rigid punch and the elastic
layer, we provide the plots in Figure 9, which are all obtained for the elastic
layer having a radius of 50a. We note that the dominant interfacial stress
component is typically σz, i.e. the normal traction on the contact, so we have
restricted attention to that component. Figure 9 shows the normalized stress
σz=�σ at the interface for three values of Poisson’s ratio, where �σ ¼ �E�ε ¼ �Eh=u
is the average stress at the interface. The stress is shown as a function of both
the confinement ratio, h/a, and �=a, where � is the distance from the corner
(location D) toward the center of the punch along the interface. Since we have
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stress singularities at the corner D (see Figure 1) the interfacial stress is plotted
on a logarithmic scale (base 10)[25,26]. The critical confinement value, denoted
as η	, at which the normalized energy release rate exhibits a minimum, is
emphasized by use a black line along the plot at that location. The following
observations can be made:

(i) There is a distinct corner stress singularity for h=a > η	, exhibited by
the high values of stress near the corner D in this case. The strength
of the stress singularity (represented by the linear slope of the stress
distribution close to the corner) and its magnitude for a given
Poisson’s ratio are similar for all confinements h=a larger than η	.
Hence, for thick, unconfined layers, the separation most probably
occurs via edge crack detachment. Upon crack initiation, the energy
release rate further increases with decreasing contact area (see
Figures 7 and 8), resulting in an unstable crack growth, as observed
in several reports[23,25].

(ii) There is a transition region for h=a just below η	, where the strength
and magnitude of the stress singularity decreases while, simulta-
neously, the stress at the center of contact increases. The propensity
for edge crack detachment remains; however, in contrast to uncon-
fined layers, the energy release rate decreases during detachment
leading to stable crack growth, whereby instabilities of the crack
front have often been observed[19–21].

(iii) For highly confined layers with h=a much smaller than η	, the stress
near the center of the contact is high and falls significantly as the

Figure 9. Normal stress, σz=�σ, along the interface (logarithmic scales base 10) between the rigid
punch and the elastic layer as a function of layer confinement h=a for Poisson’s ratio (a) 0.4999999,
(b) 0.49, and (c) 0.48. The coordinate � corresponds to the distance from the perimeter toward the
center of the punch (see Figure 1). The solid line, labeled with η	, highlights the stress distribution at
the critical confinement ratio h=a ¼ η	 (see Table 2).
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corner D is approached. Note that the stress singularity at the corner,
though it is present, is not dominant. In the case where the elastic
layer has properties that most closely approach incompressible elas-
ticity (ν = 0.4999999) and is subject to the greatest degree of con-
finement (h=a ¼ 0:02), the normalized stress at the center of the
punch reaches a value of about 2 in accordance with previous
estimates based on incompressibility of the elastic layer[22,27].
However, for layers that are more compressible (ν < 0:4999999),
the maximum stress at the center of the punch remains below 2. In
Figure 10, the stress at the center of the punch is shown for specific
values of Poisson’s ratio as a function of h=a. It can be seen that this
stress rises with each Poisson’s ratio as the degree of confinement
becomes more severe, i.e. as h=a diminishes. However, at a specific
value of the Poisson’s ratio, there is a maximum in each plot, and the
stress at the center of the punch then falls as h=a is increased. It can
be seen in Figure 10 that this maximum value increases with
Poisson’s ratio, and occurs at more severe degrees of confinement
as that ratio gets larger. Due to the reduced magnitude of the corner
stress singularity, the propensity for edge crack detachment
decreased. Now, the interfacial detachment most likely occurs via
cavitation and fibrillation or the propagation of penny-shaped cracks
depending on the confinement, the film elasticity and the Poisson’s
ratio[28]. As in ii), the energy release rate decreases during progressive
detachment, resulting in stable crack growth[2,28,29].

It should be noted that our description of the distinct detachment
mechanisms, though qualitative, is in line with earlier reports[2,28,29]. A
detailed analysis regarding which mechanism is active, dependent on the
interfacial stress distribution and the energy release rate, will be under-
taken in future research.

Figure 10. Normal stress, σz=�σ, on the interface between the rigid punch and the elastic layer at
the center of the punch as a function of the layer confinement, h=a, for various Poisson’s ratios.
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Discussion

The elastic deformation and adhesion associated with a rigid punch
attached to an elastic layer that, in turn, is immobilized to a rigid
substrate, has been investigated numerically. The finite element model
used in the present study was chosen carefully to ensure accuracy based
on comparison of different mesh designs. As a result, a mesh design that
includes refinement at the corner of the punch and at the corner of the
elastic layer near the substrate, capturing expected stress singularities,
was identified to deliver the most accurate results. With that choice of
mesh, the problem of a rigid punch attached to and deforming an elastic
layer was solved for various values of Poisson’s ratio close to 0.5. The
punch was displaced normally to the surface of the elastic layer, causing
an axial strain in the elastic layer between the punch and the rigid
substrate. The average stress applied axially to the punch was computed,
and an equivalent modulus of the system was obtained by dividing the
average stress on the punch by the axial strain in the elastic layer. This
equivalent modulus was obtained as a function of layer confinement,
defined as the ratio of the thickness of the layer to the radius of the
punch, of the layer’s Poisson’s ratio, and, for the first time, of the radius
of the elastic layer. Starting from unconfined layers, the equivalent
modulus monotically decreased with increasing confinement. Here, the
equivalent modulus is found to be insensitive to the Poisson’s ratio, but
significantly varies with the radius of the layer. Higher radii of the layer
lead to higher equivalent moduli, most probably due to the higher
amount of material around the contact involved in the elastic deforma-
tion. For values of a=h between 0.68 and 0.84, minima for the equivalent
modulus were obtained for different Poisson’s ratios. For greater con-
finement, the equivalent moduli increased again. Now the increase sig-
nificantly varies with the Poisson’s ratio, but is insensitive to the extent
of the layer. The stiffening of highly confined layers is most likely caused
by the suppression of lateral material retraction that strongly varies with
the material’s compressibility (i.e. Poisson’s ratio). Within the range of
parameters investigated, the numerical results were fitted by a two-
parameter analytical function that, in turn, was used to calculate the
energy release rate as a measure for the adhesion of films. For highly
confined layers, the energy release rate significantly varies with Poisson’s
ratio. Hence, the material’s compressibility is identified as a critical
parameter for adhesion performance.

In experiments, incompressible materials (i.e. ν ¼ 0:5) are often
assumed, but slight deviations cannot be ruled out, that consequently
may lead to overestimates of adhesion energies. In such materials that
are nearly, but not quite, incompressible, nucleation of small interfacial

16 R. HENSEL ET AL.



cavities is likely to result in smaller “effective” adhesion energies at the
macroscopic scale. Plots of normalized energy release rate versus the
diameter of the adhered surface obtained from our results typically show
a minimum that separates regimes of stable and unstable crack growth.
These results can be further correlated with interfacial stress distributions,
that, most likely, provide qualitative explanations for distinctions in
mechanisms, such as self-similar contraction of the adhered area, cavita-
tion and fingering, by which a stiff punch detaches from an elastic layer,
as observed in several experiments[1–3,18,23,29].

Conclusions

Numerical analysis was performed to determine the equivalent modulus
of an isotropic elastic layer confined by stiff adjacent materials. For the
equivalent modulus we developed an analytical function from our
numerical results dependent on material and geometric parameters.
This function has been utilized to deduce the energy release rate for
detachment of a punch from the confined layer in terms of material and
geometric parameters. The following conclusions can be drawn:

– A mesh design that includes refinement at locations where stress
singularities are expected provides the most accurate results for the
equivalent modulus.

– The equivalent modulus of a highly confined layer (i.e. with thickness to
radius ratio h=a � 0:02) depends on its Poisson’s ratio. In contrast, the
influence of the material’s compressibility (i.e. Poisson’s ratio) is negli-
gible for unconfined (i.e. thick) layers.

– The equivalent modulus for unconfined layers (h=a � 10) depends on
the radius of the elastic film, whereas the extent of the layer does not
affect the stiffness of very thin films.

– In a tack test experiment, edge crack detachment, fingering instabil-
ities and the detachment via cavitation or penny-shaped cracks are
common mechanisms. Which of them is active depends on the extent
of layer confinement that determines the interfacial stress distribution
and the rate of change of the energy release rate during detachment
propagation.
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Appendix

The equivalent modulus is insensitive to Poisson’s ratio for unconfined thick layers (h=a � 10), but
that ratio becomes an important parameter with increasing confinement (Figure A1). As an
example, the increase of Poisson’s ratio from 0.48 to 0.4999999 results in an increase of the
equivalent modulus by about two orders of magnitude as shown in Figure A1f. In contrast, the
equivalent modulus is insensitive to the radius of the elastic layer for highly confined thin layers
(h=a � 0:02), but is influenced by that radius with decreasing confinement (Figure A2). As an
example, an increase of the aspect ratio, R=a, of the layer from 1 to 10 leads to an increase of the
equivalent modulus by about one order of magnitude as shown in Figure A2d.

Figure A1. Normalized equivalent modulus as a function of Poisson’s ratio for various radii of the
elastic layer and various confinement ratios: (a) h=a ¼ 50, (b) h=a ¼ 10, (c) h=a ¼ 1, (d) h=a ¼ 0:2,
(e) h=a ¼ 0:1, and (f) h=a ¼ 0:02.

Figure A2. Normalized equivalent modulus as a function of the radius of the elastic layer
normalized by the punch radius, R=a, for various Poisson’s ratios and confinement ratios: (a)
h=a ¼ 0:02, (b) h=a ¼ 0:2, (c) h=a ¼ 1, and (d) h=a ¼ 10.

20 R. HENSEL ET AL.


	Abstract
	Introduction
	Finite element model
	Numerical results
	Comparison of mesh designs
	Elastic layer confinement
	Effect of the radius of the layer

	Fitted analytical functions for the equivalent modulus
	Energy release rate
	Interfacial stress distribution
	Discussion
	Conclusions
	Funding
	References
	Appendix

