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Abstract
Turbulent kinetic energy cascades in fluid dynamical systems are usually characterized by scale invariance.
However, representations of subgrid scales in large eddy simulations do not necessarily fulfill this constraint.
So far, scale invariance has been considered in the context of isotropic, incompressible, and three-dimensional
turbulence. In the present paper, the theory is extended to compressible flows that obey the hydrostatic
approximation, as well as to corresponding subgrid-scale parametrizations. A criterion is presented to check
if the symmetries of the governing equations are correctly translated into the equations used in numerical
models. By applying scaling transformations to the model equations, relations between the scaling factors are
obtained by demanding that the mathematical structure of the equations does not change.

The criterion is validated by recovering the breakdown of scale invariance in the classical Smagorinsky
model and confirming scale invariance for the Dynamic Smagorinsky Model. The criterion also shows that
the compressible continuity equation is intrinsically scale-invariant. The criterion also proves that a scale-
invariant turbulent kinetic energy equation or a scale-invariant equation of motion for a passive tracer is
obtained only with a dynamic mixing length. For large-scale atmospheric flows governed by the hydrostatic
balance the energy cascade is due to horizontal advection and the vertical length scale exhibits a scaling
behaviour that is different from that derived for horizontal length scales.
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1 Introduction
To investigate the dynamics of fluids by means of nu-
merical models, it is of paramount importance that the
model applied for a particular purpose is physically and
mathematically consistent (Daly and Harlow, 1970;
Oberlack, 1997; Gassmann, 2011). When ignoring
this aspect, numerical models can nevertheless be ap-
plied with success as long as the limits of such a model
are taken into account (cf. Petrik et al., 2011). How-
ever, it can not be excluded that some unphysical model
behaviour arises that questions the validity of the results
obtained.

Physical and mathematical consistency means,
among other things, that conservation laws, mathemati-
cally described by corresponding symmetries and invari-
ances of the governing equations, must be taken into ac-
count. For instance, conservation of energy is connected
to an invariance of the equations of motion with respect
to a translation in time; spatial translational invariance
is linked to the conservation of momentum, and rota-
tional invariance is reflected by the conservation of an-
gular momentum. These conservation laws are univer-
sally valid and independent from the effective length
scale of the processes considered. In contrast to the con-
servation laws, scale invariance does not hold for the
whole spectral range of scales and a conserved quan-
tity corresponding to scale invariance that is valid for
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all scales does not exist. Nevertheless, by applying the
Lagrangian formalism and Noether’s theorem to scal-
ing transformations of the effective Lagrangian, one may
obtain under certain constraints a conserved quantity
associated with scale invariance (Forger and Römer,
2004). A profound discussion of the consistent treatment
of scale invariance in geophysical fluid dynamics has not
been done so far. In the present paper we make an at-
tempt into this direction.

The Euler equations for constant density possess
ten infinitesimal invariances or symmetries (Oberlack,
2000): one in time, two for scales, three for translation
(generalized Galileian), three for rotation, and one for
pressure. When applying the Euler equations to the at-
mosphere and focusing on large scales, most of these
symmetries are broken. In particular, the pressure in-
variance and the accelerated Galilei transformation (not
the classical Galilei transformation for constant veloci-
ties), which are a direct consequence of incompressibil-
ity (Oberlack, 2000), do not hold due to compressibil-
ity. Furthermore, for a shallow atmosphere the rotational
invariance approximately holds only in the horizontal
plane for subsynoptic and smaller scales. Finally, tem-
poral scale invariance is explicitly broken for time scales
� 1 hour mainly due to the diurnal cycle.

When looking at the turbulent kinetic energy cascade
in the atmosphere, there is no single scale-invariant sub-
range covering the whole spectral range from planetary
scales to the microscales where viscosity becomes im-
portant. Instead, the energy spectrum is piecewise gov-
erned by subranges where different terms of the gov-
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Figure 1: Schematic of the theoretical horizontal kinetic energy
spectrum for the atmosphere (solid), and air-borne measurements
after Nastrom and Gage (1985, dotted).

erning equations become dominant. This is illustrated
schematically in Fig. 1 for a horizontal kinetic energy
spectrum typical for the upper troposphere. For exam-
ple, the regime of isotropic turbulence (isotropic in-
ertial subrange in Fig. 1), Kolmogorov’s spectral the-
ory (see, e.g., Vallis (2006), chapter 8) assumes a
broad inertial range between injection of kinetic energy
and dissipation (by molecular friction). Between these
scales, the kinetic energy is conservatively transferred
to smaller and smaller scales. This picture holds only if
we have self-similarity within the inertial range; that is,
the Navier-Stokes equations (hereafter: NSE) are only
scale-invariant as long as external forcing and internal
friction are negligible for the scales that govern the in-
ertial range. For isotropic turbulence, we find this be-
haviour between the outer or Ozmidov scale (where the
transition to isotropic three-dimensional turbulence oc-
curs) and the inner or Kolmogorov scale (where viscos-
ity becomes relevant). The explanation of the mesoscale
regime (anisotropic inertial subrange in Fig. 1) in the
horizontal wavenumber spectrum is more complicated.
A transition from a −3 to the −5/3 power law emerges,
according to the observations of Nastrom and Gage
(1985), at scales of about 400 km.

For scales usually resolved in General Circulation
Models (GCMs), the Primitive Equations (PE) can be
used to describe the fluid. Here, the hydrostatic approxi-
mation only allows for a horizontal energy cascade. The
assumption of an equipartition of the cascades of kinetic
and (available) potential energy then leads to an aspect
ratio of horizontal and vertical scales that approaches
unity at the Ozmidov scale (see discussion of Strati-
fied Turbulence by, e.g., Lindborg, 2006; ; Brune and
Becker, 2013; ; Augier and Lindborg, 2013). How-
ever, there remain still open questions concerning this
concept. In contrast, the synoptic subrange is governed
by quasi-geostrophic theory and is well understood as a

result of a forward enstrophy cascade (e.g., Burrows,
1976; Boer and Shepherd, 1983).

Due to the huge variety of physical processes at
different scales, numerical models cannot resolve cer-
tain parts of the motion and subgrid-scale parameteri-
zations are needed. It is trivial that GCMs, as an ex-
ample of Large Eddy Simulations (hereafter: LES), do
not simulate molecular friction explicitly. Thus, to ob-
tain the energy cascade that maintains the Lorenz en-
ergy cycle (Lorenz, 1967), appropriate parameteriza-
tions of subgrid-scale processes are required. This is
true also for regional numerical simulations (Wilby and
Wigley, 1997; Hamilton and Ohfuchi, 2008). On the
other hand, microphysical simulations, e.g. of precipi-
tation processes, have to incorporate molecular friction
explicitly, whereas the Coriolis force is irrelevant in this
case. Since numerical models are expected to represent
the physical processes relevant at the scales resolved,
the model equations (including parametrizations) should
preserve the same properties as the governing equations
at these scales (Stull, 1988; Popovych and Bihlo,
2012).

To resolve part of the mesoscale horizontal energy
cascade in a PE model, scale invariance of the applied
subgrid-scale parametrization is necessary. In particu-
lar, a dissipation mechanism that covers both horizon-
tal and vertical turbulent diffusion above the bound-
ary layer is needed in order to mimic the transfer of
energy from resolved to unresolved scales within the
mesoscale anisotropic inertial range. A variety of ap-
proaches for turbulence parametrizations is known from
the literature: the Eddy viscosity or Smagorinsky model
(Smagorinsky, 1963; Smagorinsky, 1993), the nonlin-
ear or gradient model (Clark et al., 1979), the similarity
model (Bardina et al., 1980), the Dynamic Smagorin-
sky Model (hereafter: DSM, Germano et al., 1991), and
the deconvolution method (Stolz and Adams, 1999).
Other new approaches make use of concepts that were
initially developed in fields other than fluid dynamics
and describe the turbulent diffusion and dissipation by
scattering and annihilation processes of quasi-particles
(called vorticons, Baumert, 2009) or they apply a
renormalization group analysis approach well known
from quantum field theory (Yakhot and Orszag, 1986;
Barbi and Münster, 2010). However, not all of these
parametrizations ensure scale invariance. The widely-
used classical Smagorinsky model does not ensure scale
invariance, while the DSM is scale-invariant (Ober-
lack, 1997).

To demonstrate the importance of scale invariance
for the closure used in atmospheric circulation models,
Fig. 2 shows the horizontal kinetic energy spectrum for
the upper troposphere from three different simulations
with the Kühlungsborn Mechanistic General Circulation
Model (KMCM, see Becker and Burkhardt (2007)).
The model is applied here with very high resolution as
in Brune and Becker (2013). The only difference be-
tween the simulations is the formulation of horizontal
diffusion. A classical Smagorinsky model using a con-



Meteorol. Z., 24, 2015 U. Schaefer-Rolffs et al.: Scale invariance criterion 5

Figure 2: Kinetic energy spectrum in the upper troposphere from
KMCM simulations. Dashed: constant mixing length lh = 11.6 km;
dotted: constant mixing length lh = 23.2 km; solid: dynamic mixing
length. The classical Smagorinsky model is not sufficient to simulate
a reasonable KE spectrum for all resolved wavenumbers, while
the simulation using a Dynamic Smagorinsky Model indicates a
transition to a shallower slope from wavenumber 120. The thin
dashed lines indicate k−3 and k−5/3 power laws.

stant horizontal mixing length (lh = 11.6 km, dashed
line in Fig. 2) results in a reasonable spectrum only for
the synoptic subrange with wavenumbers smaller than
100, while a clear −5/3 power law as expected for the
mesoscales is not simulated. If we increase the mixing
length to lh = 23.2 km in order to reduce the energy at
high wavenumbers, the slope of the spectrum becomes
too steep at synoptic scales (dotted line in Fig. 2). In
contrast, the spectrum obtained when using the DSM for
horizontal diffusion (Schaefer-Rolffs and Becker,
2013) looks reasonable for both the synoptic scales and
the mesoscales with the indication of a transition to a
−5/3 power law in the mesoscales. Note that in other
spectral models such a behaviour is obtained only by
means of an unphysical hyperdiffusion.

The present paper is organized as follows: In Sec-
tion 2 we discuss some general considerations about
scale invariance. Section 3 provides a mathematical cri-
terion that allows to check the consistency of the model
equations, followed by the application to isotropic tur-
bulence in Section 4. A discussion of the implications
of the criterion for LES of atmospheric flows using the
PE is given in Section 5. We close our investigation with
some general remarks in Section 6.

2 General considerations about scale
invariance

Consider a flow and its relevant variables such as fluid
velocity or tracer concentration. We call the power spec-
trum of these variables scale-invariant if the two-point

correlation function in wavenumber space obeys a cas-
cade over a large wavenumber regime. For example,
an energy cascade is present whenever energy is con-
servatively transferred over a finite range in wavenum-
ber space (inertial range) from a well defined injection
scale to a dissipation scale. The intermediate range is
called inertial range and a necessary prerequisite is that
the transfer rate or spectral flux, ε, is constant. The en-
ergy inertial range can develop only if the governing
equations, for instance the NSE, exhibit the mathemati-
cal property that they can be rescaled without changing
the mathematical structure of the equations (Oberlack,
1997).

Hereafter, the scaling transformation of a variable
a is defined as a∗ = eca a, with ca denoting the scal-
ing factor. We emphasize that this scaling has to be
clearly distinguished from non-dimensionalizations. In
the latter, we introduce characteristic lengths, times, and
other quantities to obtain a non-dimensional version of
the original equation. This often leads to dimension-
less numbers such as the Reynolds number. Conversely,
when rescaled, the variables only change their value, but
keep their units. A scaling with the exponent of the scal-
ing factor indicates the relationship of the procedure to
the more general Weyl transformation.

It is known that the constraint of a constant spectral
energy flux yields a fixed relation between the spatial
and temporal scaling factors, ct = 2

3cx, cf. Section 3. In
the Euler equations, spatial and temporal scale invari-
ance can independently hold or be broken. In contrast,
for the NSE, where friction cannot be neglected, there
exists only a combined scale invariance for the spatial
and temporal dimensions, leading to a second compet-
ing relation between cx and ct in contradiction to Kol-
mogorov’s theory: Let us consider a fluid with charac-
teristic length scale L, velocity scaleU, and (advective)
time scale T = L/U; then, to retain the same behaviour
of the flow at different scales, one has to modify both
L and T simultaneously such that the Reynolds num-
ber Re = UL/ν (where ν is the constant kinematic vis-
cosity) is constant, cf. Oberlack and Rosteck (2010).
The exclusion of a Kolmogorov regime at scales where
molecular viscosity becomes relevant can easily be il-
lustrated: Assume that the viscosity is constant. Divid-
ing the spatial scale L by a factor of 2, the velocity
U = L/T must be multiplied by a factor of 2 to preserve
the flow behaviour characterized by Re = const. In other
words, the fluid has to move faster, and this is equiva-
lent to shorten the advective time scale T quadratically,
i.e. in this particular case by a factor of four, due to
Re = L2/T ν. (As in real experiments the velocity often
cannot be tuned to a predefined magnitude, a constant
Reynolds number is often realized by using a different
fluid with a lower viscosity.) Thus, assuming a constant
viscosity leads to the second relation, ct = 2cx which
contradicts scale invariance (the only solution that ful-
fills both constraints is the trivial solution ct = cx = 0).
However, if molecular friction can be neglected for a
range of scales, Kolmogorov’s theory can be applied and
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the energy cascade forms provided the energy cascade is
ultimately balanced by molecular friction in the viscous
subrange. Therefore, it is evident that in LES a scaling
transformation of the equations of motions must not lead
to a second relationship between the spatial and tempo-
ral scaling parameters that would contradict the relation
ct = 2

3cx. In particular, the introduction of a turbulent
viscosity should preserve scale invariance.

3 The invariance criterion

To give a general overview, we start with partial dif-
ferential equations derived from first principles, e.g. the
NSE in the notation of Oberlack (1999)

F(y, z, z(1), z(2), . . . ) = 0. (3.1)

Here y and z are the independent and dependent vari-
ables, respectively and z(n) refers to the nth-order deriva-
tives of z with respect to y. The transformation

y = φ(y∗, z∗), z = ψ(y∗, z∗) (3.2)

is a symmetry transformation if the following equiva-
lence holds

F(y, z, z(1), z(2), . . . ) = 0

⇔ F(y∗, z∗, z∗(1), z∗(2), . . . ) = 0. (3.3)

In other words, the transformation (3.2) substituted into
Eq. (3.1) does not change the mathematical structure
of Eq. (3.1) when it is written in the new variables y∗

and z∗. We suppose that the spatially averaged version of
Eq. (3.1), hereafter denoted as model equations, which
are appropriate for discretization in numerical mod-
els, describes the system under consideration reasonably
down to a prescribed length scale Δ (that can be inter-
preted as a cut-off or resolution scale when discretized).
Scales smaller than Δ are averaged out, and their im-
pact on larger scales is described only by so-called sub-
scale terms in the averaged equations. Regarding physi-
cal consistency, the symmetry related to the transforma-
tion (3.2) shall be preserved even if parametrizations of
sub-scale terms are included (Oberlack, 1997), i.e., the
model equations have to satisfy

F(y, z, z(1), z(2), . . . ) = 0

⇔ F(y∗, z∗, z∗(1), z∗(2), . . . ) = 0. (3.4)

Here, averaging over the scale Δ is indicated by an
overbar. Specifically, consider a scalar variable a that
obeys the equation of motion

∂ta + (v · ∇)a = Fa(t, xi, a, b1, b2, . . . ). (3.5)

Here, Fa represents sources and sinks for a and will
henceforth be denoted as source function. The bl denote
additional dependent variables such as pressure, etc.

Note that Eq. (3.5) can be regarded as a tracer equation.
The transformed equation

∂t∗a
∗ + (v∗ · ∇∗)a∗ = Fa(t∗, x∗i , a

∗, b∗l ) (3.6)

must hold if the applied transformation (3.2) is a sym-
metry. This definition of a symmetry allows us to derive
a criterion to validate the consistency of any sub-scale
parametrization included in F with respect to the for-
mal transformation (3.2).

As mentioned in the introduction, symmetries of the
NSE have extensively been discussed in the literature
(Bytev, 1972; Gusyantnikova and Yumaguzhin,
1989; Oberlack, 1997; Razafindralandy et al.,
2007). Here, we focus on the implications of the less
known scale invariance constraint. In contrast to global
symmetries, scale invariance is valid only within an in-
ertial subrange; an example is the inertial range cor-
responding to isotropic three-dimensional turbulence
(Kolmogorov, 1941).

Let us assume that a rescaled version of Eq. (3.5) can
be obtained using the scaling transformations defined for
the inertial range where isotropic Kolmogorov-like k−5/3

turbulence occurs (for details see Oberlack (2000))

t∗ = ect t,

x∗i = ecx xi,

v∗i = ecx−ct vi,

a∗ = eca a,

b∗l = ecbl bl. (3.7)

With these definitions, a scale invariance criterion can
be formulated as following:

Scale invariance of the model equations within a
finite range of scales is preserved if the source function
fulfills

e
2
3 cx−caFa(e

2
3 cx t, ecx xi, e

ca a, ecbl bl) = Fa(t, xi, a, bl).
(3.8)

Hence, a specific relation between the scaling factors
exists in the regime of scale invariance.

Derivation: Assume a constant spectral energy flux
ε∗ = ε = const. Since ε ∼ L2/T 3, we have 0 = cε =
2cx − 3ct, and the temporal scaling is related to spatial
scaling according to

ct =
2
3

cx, (3.9)

as was already mentioned in Section 2. Inserting this
relationship into the ansatz (3.7), we find

t∗ = e
2
3 cx t,

x∗i = ecx xi,

v∗i = e
1
3 cx vi,

a∗ = eca a,

b∗l = ecbl bl, (3.10)
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which is the well-known scaling behaviour of a
Kolmogorov-like turbulent flow (cf. Vallis (2006),
chapter 8.2.3). With the transformation (3.10) the
rescaled equation (3.6) can be written as

eca−ct∂ta + eca−ct (v · ∇)a = Fa(ect t, ecx xi, e
ca a, ecbl bl)

(3.11)
or

∂ta + (v · ∇)a = e
2
3 cx−caFa(e

2
3 cx t, ecx xi, e

ca a, ecbl bl)
!
= Fa(t, xi, a, bl). (3.12)

Hence, scale invariance is preserved if the source func-
tion Fa(t, xi, a, bl) fulfills the relation (3.8). Hereafter,
we use the abbreviation

Ga(t, xi, a, bl) ≡ e
2
3 cx−caFa(e

2
3 cx t, ecx xi, e

caa, ecbl bl)
(3.13)

to formulate the criterion concisely as Ga
!
= Fa, which is

similar to the model analysis of scaling transformations
in Razafindralandy et al. (2007). Because the scaling
transformation (3.10) is linear and multiplicative, it is
possible to independently check each summand in the
source term for scale invariance.

4 Application of the criterion to
isotropic flows

We first verify our criterion by applying it to fluid dy-
namical equations in the isotropic case for which the re-
sults are already known. We begin with the Euler equa-
tions, procede with the NSE by incorporating molec-
ular friction, and then consider LES with turbulence
parametrization, i.e. the averaged NSE with parameter-
ized turbulent instead of molecular friction.

4.1 Euler equations with constant density

The Euler equations with constant density are given by

∂tv + (v · ∇)v = −
∇p
ρ

; ∇ · v = 0 (4.1)

The continuity equation is trivially fulfilled for any value
of the scaling parameter cx,

∇∗ · v∗ = e−
2
3 cx∇ · v = 0. (4.2)

Applying the scaling transformation (3.10) to the pres-
sure gradient term leads to

Gv = −e
1
3 cx
∇∗p∗
ρ∗

= −e−
2
3 cx+cp−cρ ∇p

ρ
. (4.3)

(Note that throughout this paper, cp denotes the scaling
factor of the pressure and not the specific heat capacity.)
From Eq. (4.3) one can see that Eq. (4.1) allows for scale
invariance if cp − cρ = 2

3cx such that

Gv = −
∇p
ρ

= Fv. (4.4)

This result agrees with Oberlack (1999); Oberlack
(2000). Due to the linearity of the criterion we are al-
lowed to skip the pressure gradient term in the subse-
quent discussions of fluid dynamical equations of mo-
tion.

4.2 Navier-Stokes equations (NSE) and
turbulent friction

We now consider the NSE for constant density,

∂tv + (v · ∇)v = −
∇p
ρ

+ ν∇2v, ∇ · v = 0. (4.5)

The second term on the right-hand side of the momen-
tum equation leads to the transformed source term

Gv,2 = e
1
3 cxν∗(∇∗)2v∗

= e−
4
3 cx+cνν∇2v. (4.6)

Here, we assume that the viscosity ν is a material con-
stant that does not scale such that ν∗ = ν or cν = 0.
This is in contrast to Oberlack (1999) who includes
the molecular viscosity formally as an additional inde-
pendent variable of the system. Since ν is constant in
our consideration, we can write

Gv,2 = e−
4
3 cxν∇2v

!
= Fv,2. (4.7)

Thus, Gv,2 is independent of the scaling factor only for
cx = 0. This is a consequence of introducing a con-
stant viscosity: The viscous term in the NSE breaks the
scale invariance and does not allow for a −5/3 power
law at scales where viscous effects are relevant (e.g. the
viscous subrange), as expected. Consequently, a simple
turbulent diffusion scheme with constant turbulent vis-
cosity is also subject to the constraint (4.7) and cannot
ensure scale invariance.

Therefore, we now consider a non-constant turbulent
viscosity. Usually, the turbulent stress is assumed to be
proportional to the wind shear,

ρv′iv
′
j = −KS i j, (4.8)

where K is the turbulent analogue of a molecular diffu-
sion coefficient and S i j = (∂iv j + ∂ jvi)/2 are the compo-
nents of the shear tensor S. The Reynolds-averaged NSE
with the corresponding parametrization of turbulent fric-
tion are

∂tv + (v · ∇)v = −
∇p
ρ

+ ∇(KS); ∇ · v = 0. (4.9)

The transformed momentum diffusion term reads
with cS = −ct = − 2

3cx and cK ,

Gv,2 = e
1
3 cx∇∗(K∗S∗) = ecK− 4

3 cx∇(KS)
!
= Fv,2. (4.10)

Thus the scaling factor for the diffusion coefficient has
to obey the relation cK = 4

3cx to ensure scale invariance.
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In other words, if we combine molecular and turbulent
diffusion as

Ktot = K + ν, (4.11)

scale invariance is only possible for K � ν, i.e. at scales
where molecular friction is negligible. The limit K ∼ ν
would correspond to the transition in wavenumber space
from the inertial to the viscous subrange at the inner
scale, see Fig. 1.

4.3 Classical Smagorinsky model

According of Smagorinsky’s generalized mixing length
concept, the diffusion coefficient is given by

K = l2|S|. (4.12)

This model has widely been used in LES (c.f., e.g.,
chapter 13 in: Pope, 2000). For this approach the scaling
factor of the diffusion coefficient can be written as

cK = 2cl −
2
3

cx. (4.13)

In the classical Smagorinsky model, the mixing length
is assumed to be a prescribed parameter. Hence, l is
constant such that l∗ = l (thus cl = 0) which leads to
the following transformed source term corresponding to
turbulent momentum diffusion

Gv,2 = e−2cx l2∇(|S|S)
!
= Fv,2. (4.14)

According to our criterion (3.8), scale invariance can be
achieved only by setting cx = 0 which means that no
scale transformation at all can be applied to Eq. (4.9).
This is a characteristic result of a prescribed mixing
length as assumed by the classical Smagorinsky model
as was already pointed out by Oberlack (1997).

4.4 Dynamic Smagorinsky Model (DSM)

The Dynamic Smagorinsky Model (DSM, Germano
et al., 1991; Meneveau and Katz, 2000) is a method
to calculate the mixing length locally from the resolved
scales, using the approach l = CS Δ, where Δ is the pre-
scribed resolution scale and CS the variable Smagorin-
sky parameter. Hence, the variability and the scaling
behaviour of l is described by CS . Note that the ex-
act definition of CS varies due to different solutions of
the basic tensor equation in the literature (Lilly, 1992;
Schaefer-Rolffs and Becker, 2013), but the scaling
behaviour can satisfactorily be described for all solu-
tions by l2 ∼ C2

S ∼ O[v2/|S|2]. Thus, l∗ � l and a
closer examination of the scaling properties of the mix-
ing length in this case gives

cl = cx. (4.15)

Instead of Eq. (4.14) we now have the transformed tur-
bulent diffusion term

Gv,2 = e−2cx∇
[(

ecx l
)2 |S|S

]
(4.16)

which finally results in

Gv,2 = ∇(l2|S|S) = Fv,2. (4.17)

According to our criterion (3.8), the averaged NSE to-
gether with the DSM to parameterize unresolved turbu-
lent scales are scale-invariant (cf. Oberlack, 1997). The
DSM therefore provides the correct scaling properties to
allow for a turbulent energy cascade from the resolved
to unresolved scales, as is required in LES.

As mentioned in the introduction, there exist a va-
riety of subgrid-scale models other than the DSM in
the literature. The similarity model (Bardina et al.,
1980) assumes that the subgrid-scale momentum flux
(∝ O[v′2]) is directly proportional to that of the resolved
flow (∝ O[v2]), thus scale invariance is a priori assumed
here in a literal sense. Though physical consistency eas-
ily is achieved in these models, as the proportionality pa-
rameter can be held constant, the dissipation is too weak
when this approach is used in simulations. A different,
so-called gradient model was proposed by Clark et al.
(1979), where the form of the shear tensor is slightly dif-
ferent from S i j. Nevertheless, the scaling properties are
the same as for the Smagorinsky ansatz. Hence, to fulfill
scale invariance of the gradient model, one has to intro-
duce a dynamical mixing length in analogy to the DSM.

4.5 Compressible Euler equations

Let us consider the Euler momentum equation

∂tv + (v · ∇)v = −
∇p
ρ

(4.18)

together with the compressible continuity equation and
the thermodynamic equation in terms of enthalpy h for
isentropic flow,

∂tρ + (v · ∇)ρ = −ρ∇ · v, (4.19)

∂th + (v · ∇)h =
(∂t + v · ∇)p

ρ
. (4.20)

In this case, the source term of the rescaled continuity
equation (4.19) reads

Gρ = −e
2
3 cx−cρρ∗∇∗ · v∗ = −ρ∇ · v = Fρ (4.21)

and scale invariance is automatically fulfilled for any
value of the scaling parameter of the density, cρ. This
justifies to skip the continuity equation from the scaling
analysis also in the compressible case. The scaling of
the pressure gradient term in the thermodynamic equa-
tion (4.19) yields

Gh = −e
2
3 cx−ch

∂t∗ p∗ + (v∗ · ∇∗)p∗

ρ∗

= −e−ch+cp−cρ ∂t p + (v · ∇)p
ρ

!
= Fh. (4.22)
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Since we know from Section 4.1 that cp − cρ = 2
3cx,

the thermodynamic equation is scale-invariant if the en-
thalpy scaling factor satisfy ch = 2

3 cx. This is in ac-
cordance with the scaling factor for the kinetic energy,
cv2 = 2cv = 2

3 cx.

4.6 The TKE closure

A slightly more sophisticated description of turbulent
flows includes a prognostic equation to describe the
evolution of the turbulent kinetic energy (TKE), k =

v′2/2. The equations describing this so-called k-model
are given by van Mieghem (1973) or Becker (2003).
In the absense of gravity we have

∂tv + (v · ∇)v = −
∇p
ρ

+
1
ρ
∇(ρKS), (4.23)

∂th + (v · ∇)h =
(∂t + v · ∇)p

ρ
− dtk

+
1
ρ
∇
(
ρhK
∇Θ

Θ

)
+ K|S|2, (4.24)

dtk = ∂tk + (v · ∇)k +
1
ρ
∇(ρK∇k)

= K(S∇)v − ε, (4.25)

∂tρ + (v · ∇)ρ = −ρ∇ · v. (4.26)

Here, Θ is potential temperature, K = lk
√

k, ε = k
3/2
/lk,

and lk the mixing length of the k-model. Since ε does
not scale, cε = 0. Thus, due to ck = 2

3clk = 2cv′ , we
have cv′ = 1

3clk . The assumption of a constant lk leads to
cv′ = clk = 0 and the turbulent velocities do not scale,
unlike the resolved velocities (which scale as cv = 1

3cx).
Therefore, an inertial range for the turbulent scales is
not consistent with the assumption of a constant mixing
length, in analogy to what we have seen for the classical
Smagorinsky model (Section 4.3). Alternatively, there
exist approaches for a dynamical mixing length in a k-
model. Applying for instance the formulation of Wong
(1992), we get lk ∝ O[v2/(k1/2|S|)]. This leads to

ck =
2
3

clk , (4.27)

clk = 2cv −
1
2

ck − cS (4.28)

with the solution clk = cx (in analogy to the DSM) and
ck = 2

3cx. Furthermore, we have cv′ = 1
3cx = cv and

cK = clk ck/2 = 4
3cx such that the application of the

transformation (3.10) converts the source terms of the
momentum, enthalpy, and TKE equations to

Gv,2 = e
1
3 cx∇∗(K∗S∗) = ∇(KS) = Fv,2, (4.29)

Gh,2,3,4 = e0·cx

[
− [∂t∗ + (v∗ · ∇∗)]k∗

+
1
ρ∗
∇
(
ρ∗h∗K∗

∇∗Θ∗

Θ∗

)
+ K∗|S∗|2

]

= −[∂t + (v · ∇)]k +
1
ρ
∇
(
ρhK
∇Θ

Θ

)

+ K|S|2 = Fh,2,3,4 (4.30)

Gk = e0·cx [∇∗(K∗∇∗k∗) + K∗(S∗∇∗)v∗ − ε∗]
= ∇(K∇k) − K(S∇)v − ε = Fk. (4.31)

Hence, only a dynamical mixing length, as formulated
by Wong (1992) for instance, ensures scale invariance
of the TKE closure.

4.7 The Tracer equation

In the cases considered so far only the equations of mo-
tion for a homogenous fluid were investigated. However,
the basic equation (3.5) can be applied also to a tracer
subject to isotropic turbulent diffusion. Here, we focus
on the inertial range for the tracer variance. For the sake
of simplicity we restrict ourselves to a fluid with con-
stant density. The corresponding tracer equation is given
by

∂tC + (v · ∇)C = ∇(KC∇C), (4.32)

with some diffusion coefficient KC . The right-hand side
of the rescaled Eq. (4.32) reads

GC = e
2
3 cx−cC∇∗(K∗C∇

∗C∗)

= e−
4
3 cx+cKC∇(KC∇C)

!
= FC . (4.33)

For a constant diffusivity KC (similar to the case of
molecular friction), we have the same situation as for the
corresponding momentum diffusion, namely that scale
invariance is violated. Thus, if experiments show an
inertial range in the atmospheric power spectrum of
some tracer concentration, we postulate that a constant
turbulent diffusivity is not physically consistent. Rather,
a dynamic diffusion coefficient KC ∝ l2C |S| (where lC is a
dynamical mixing length) obeying the relation cK = 4

3cx
(which is identical to the relation in the DSM) must be
applied to ensure scale invariance. Note that due to this
constraint the tracer mixing length must show the same
scaling behaviour as that for momentum, although both
mixing lengths are most likely different. A dynamical
approach similar to the DSM yields

l2C ∝ O[(C|v|)/(|S||∇C|)] (4.34)

which ensures scale invariance.
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5 Application to large-scale
atmospheric flows

Up to now we have considered only isotropic turbulence
without external forces. Apparently, these assumptions
are not valid for large-scale flows in the atmosphere.
Hence, we now investigate the more complex cases of
large-scale stratified flow.

5.1 Large-scale stratified flow

To describe atmospheric flows, we have to take grav-
ity and the apparent separation of horizontal and verti-
cal scales into account as manifested by hydrostatic bal-
ance. In general, the appropriate system of equations are
the Primitive Equations (cf. Pichler, 1997),

∂tu = u × ( f + ξ)ez − ∇
u2

2
− w∂zu −

∇p
ρ

+ R (5.1)

∂z p = −ρg, (5.2)

dth =
dt p
ρ

+ Q + ε, (5.3)

0 = ∂tρ + ∇ · (ρu) + ∂z(ρw), (5.4)

where u and w are the horizontal and vertical velocity,
∇ is the horizontal gradient operator, ξ = ez · (∇ × u) is
the horizontal vorticity, f and g are the Coriolis param-
eter and the acceleration due to gravity, and R, Q, and
ε are turbulent friction, differential heating, and dissipa-
tion respectively. We consider the anisotropic (but hori-
zontally isotropic) inertial range in the mesoscales (see
Fig. 1) where Stratified Turbulence is supposed to ex-
ist, i.e. a horizontal energy cascade with a −5/3 power
law with respect to the horizontal wavenumber (Lind-
borg, 2006). Within this range, we assume that non-
conservative terms and the Coriolis force are negligible.
The rearranged Primitive Equations are1

∂tu − u × ξez

+∇
u2

2
+ w∂zu = −

∇p
ρ

(5.5)

g = −
∂z p
ρ
, (5.6)

(∂t + u · ∇ + w∂z)h =
(∂t + u · ∇ + w∂z)p

ρ
, (5.7)

(∂t + u · ∇ + w∂z)ρ = ρ(∇ · u + ∂zw). (5.8)

It is easy to verify that with respect to the scaling
transformation (3.10) the vertical advection terms show
the same scaling behaviour as the horizontal advection
terms. By applying the scaling transformation from Sec-
tion 4.1 to the horizontal momentum equation (5.5) we
obtain the relation cp − cρ = 2

3cx. Applying the scaling

1Note that −u×ξez +∇ u2

2 is subject to the same scaling behaviour as (u ·∇)u,
but the latter is not correct in spherical coordinates.

transformation to the hydrostatic equation (5.5) leads to

g = −
dz∗ p∗

ρ∗
= −ecp−cρ−cz

dz p
ρ
. (5.9)

From this we see that scale invariance holds if the ver-
tical scaling relation cp − cρ = cz is fulfilled. Thus, the
intuitive relation cz = cx is no longer valid; rather, the
horizontal and vertical scaling relations are linked ac-
cording to

cz =
2
3

cx. (5.10)

Hence, scale invariance is still possible for a hydrostatic
(i.e. stratified) flow, but with a different vertical scaling
behaviour than in the isotropic case without gravity.

This result can be compared with the aspect ratio
from Stratified turbulence (Lindborg, 2006),

Z/X ∼ ε1/3X−2/3/N, (5.11)

where X and Z are horizontal and vertical length scales.
If we acknowledge that the buoyancy frequency N is
scale dependent, N2 = g∂zΘ/Θ yields a scaling factor
cN = −cx/3. Then, we find a scaling relation from the
aspect ratio (5.11)

cz − cx = cε −
2
3

cx − cN = −
1
3

cx (5.12)

which is identical to Eq. (5.10). However, the mean
buoyancy frequency is usually considered to be constant
such that the scaling ratio according to (5.11) would
rather yield

cz =
1
3

cx. (5.13)

The question remain how to reconcile the two scale
relations (5.10) and (5.13).

5.2 The primitive equations with
non-isotropic turbulent diffusion

In large-scale flows as described above the horizontal
and vertical length scales are several orders of mag-
nitude larger than the viscous scales. When applying
the Primitive Equations to these flows, they have to be
closed by a turbulent diffusion scheme in order to bal-
ance the energy cascade that correspond to the irre-
versible branch of the Lorenz energy cycle (Lorenz,
1967). Assuming that the numerical resolution covers a
good part of the mesoscales, we can apply the results of
Section 4 to the horizontally isotropic horizontal energy
cascade and parameterize the non-resolved scales by a
corresponding DSM (Schaefer-Rolffs and Becker,
2013). However, we have to take into account that also a
vertical diffusion term of the form ρ−1∂z(ρKz∂zu) is part
of the horizontal momentum equation (5.5). In order to
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check the scale invariance criterion for this term, we ap-
ply the transformation (3.10) along with cz = 2

3 cx. This
yields the transformed source term

Gu = e
1
3 cx

1
ρ∗
∂z∗(ρ

∗K∗z ∂z∗u∗)

= e−
2
3 cx+cKz

1
ρ
∂z(ρKz∂zu)

!
= Fu. (5.14)

Thus, the vertical diffusion coefficient has to scale as

cKz =
2
3

cx (5.15)

to preserve scale invariance. Assuming a simple mixing
length ansatz, Kz = l2z |∂zu|, where lz is the vertical
mixing length, we obtain

cKz = 2clz −
1
3

cx (5.16)

for the scaling factors and

clz =
cx

2
. (5.17)

for the vertical mixing length. The latter scales differ-
ently from both the horizontal mixing length (clh = cx,
see Eq. (4.15)) and the vertical length scale cz = 2cx/3.
It is shown in the Appendix that this is a general property
of the vertical mixing length, regardless of the parame-
terized turbulent variable.

As far as we know, an approach to compute dynami-
cally the vertical mixing length such as to preserve scale
invariance associated with a forward horizontal energy
cascade in the mesoscales has not been discussed in the
literature yet. The relation (5.17) suggests the following
formulation for the dynamic vertical mixing length,

lz =
√

l0 lh, (5.18)

where l0 is a constant and lh is the dynamic horizontal
mixing length given by the DSM. Equation (5.18) rep-
resents the dynamic vertical mixing length in the free
troposphere when the truncation scale lies within the
mesoscales.

6 Summary and conclusions

In this paper we have derived a criterion to check scale
invariance for subgrid-scale parametrizations applied in
fluid dynamical equations of motion used for LES. The
criterion is inspired by the work of Oberlack (2000)
and based on the testing of how the source terms of
the model equations transform under a symmetry trans-
formation. The derivation can be summarized as fol-
lows: We start by applying the scaling transformation
a∗ = eca a to the equation of motion for some flow vari-
able a. Scale invariance implies that the mathematical

structure of the equation of motion does not change un-
der the transformation; i.e., the sum of all scaling fac-
tors in the exponent must be zero. To check this we re-
arrange the transformed equation such that the material
time derivative is written on the left-hand side whereas
all other terms appear on the right-hand side. The sum
of these source terms is denoted in the function Ga; and
each individual term in Ga can be considered separately.
This method is summarized in our criterion (3.8).

The governing equations of motions that describe
a system within an inertial range, e.g., the compress-
ible Euler equations without apparent forces and other
source terms, are scale-invariant per se and thus ful-
fill the criterion automatically. However, equations of
motions for numerical simulations are usually modi-
fied by employing parametrizations of unresolved pro-
cesses. These parametrizations are part of the inertial
range but do not necessarily preserve scale invariance.
Hence, the proposed criterion can check the physical
consistency of the subgrid-scale parametrizations. As a
test of the criterion, we have applied our method to the
Euler and Navier-Stokes equations (NSE). We have re-
covered the result of Oberlack (2000) that only in ab-
sence of molecular viscosity scale invariance is fulfilled
for all scales. Because numerical simulations of large-
scale flow require LES, we extended our investigations
to turbulence parametrizations. We have confirmed that
the classical Smagorinsky model (which assumes a con-
stant mixing length) does not preserve scale invariance,
while the Dynamic Smagorinsky Model (DSM, Ger-
mano et al., 1991) does. We have shown that the com-
pressible version of the continuity equation as well as
the enthalpy equation in the regime of isentropic flow are
scale-invariant. Considering the TKE closure, we have
shown that scale invariance holds for a dynamic mix-
ing length according to Wong (1992). Finally, we have
proven for the equation for a tracer that a constant tracer
diffusion coefficient violates the assumption of scale in-
variance. Rather, a dynamically calculated tracer diffu-
sivity, showing the same scaling behaviour as the dif-
fusion coefficient for momentum according to the DSM
ensures scale invariance. All these results confirm the
statement of Oberlack (1997) that “the dynamic pro-
cedure [. . . ] restores scale invariance, which may be vi-
olated by certain base [turbulence] models.”

In order to apply our criterion to the atmosphere, we
investigated the more complex case of large-scale flows.
We have seen that in the Primitive Equations, where due
to the hydrostatic approximation only a horizontal en-
ergy cascade by the resolved flow is allowed, a scale-
invariant formulation of the horizontal momentum equa-
tion is still possible, as was already shown for strongly
stratified flows (Billant and Chomaz, 2001). Accord-
ing to the proposed criterion, the ratio of vertical and
horizontal length scales is cz = 2cx/3. The correspond-
ing aspect ratio can only be reconciled with the concept
of Stratified Turbulence if we allow the buoyancy fre-
quency to be scale dependent. A scale-invariant horizon-
tal momentum equation further leads to the constraint
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that the scaling factor of the vertical mixing length is
different from both the horizontal mixing length and the
vertical scale. We have proposed a formula for the ver-
tical mixing length, lz =

√
l0 lh, where l0 is a constant

factor and lh is the horizontal mixing length determined
by the DSM as given in Schaefer-Rolffs and Becker
(2013).

Summarizing, our criterion to test scale invariance
for any subgrid-scale models in LES is easy to apply.
From the examples considered in this study it is evident
that any turbulent diffusion coefficient has to be calcu-
lated dynamically to ensure scale invariance, regardless
of the specific flow variable considered. In a more gen-
eral sense, modelers who need to parameterize subgrid-
scale processes may check their formulation and even-
tually obtain modifications that ensure scale invariance.
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Appendix

Here we want so show that for hydrostatic flow, a ver-
tical mixing length approach always leads to a scale ra-
tio as given by Eq. (5.17). The basic assumptions are
that the turbulent variables scale analogously to their
large-scale counterparts and that the vertical wind be-
haves like

w ∼ |u|Z
X
,

where u and w are horizontal and vertical winds, and
X and Z are horizontal and vertical scales. Thus, cw =
cu + cz − cx. Since the mixing length approach for a
variable a is given by

a′w′ ∼ −l2z |∂zu|∂za, (6.1)

we get

ca + cw = 2clz + (cu − cz) + (ca − cz). (6.2)

The scaling factor ca cancels, and clz can be written as

clz =
cw − cu + 2cz

2
=

3cz − cx

2
.

Making use of Eq. (5.10) then leads to

clz =
cx

2
,

which is identical to Eq. (5.17).
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